
Binary XML Storage and Query Processing in Oracle 11g

Ning Zhang Nipun Agarwal Sivasankaran Chandrasekar Sam Idicula
Vijay Medi Sabina Petride Balasubramanyam Sthanikam

Oracle Corporation
{ning.x.zhang, nipun.agarwal, sivasankaran.chandrasekar, sam.idicula,
vijay.medi, sabina.petride, balasubramanyam.sthanikam}@oracle.com

ABSTRACT
Oracle RDBMS has supported XML data management for
more than six years since version 9i. Prior to 11g, text-
centric XML documents can be stored as-is in a CLOB
column and schema-based data-centric documents can be
shredded and stored in object-relational (OR) tables mapped
from their XML Schema. However, both storage formats
have intrinsic limitations—XML/CLOB has unacceptable
query and update performance, and XML/OR requires XML
schema. To tackle this problem, Oracle 11g introduces a
native Binary XML storage format and a complete stack of
data management operations. Binary XML was designed
to address a wide range of real application problems en-
countered in XML data management—schema flexibility,
amenability to XML indexes, update performance, schema
evolution, just to name a few.

In this paper, we introduce the Binary XML storage for-
mat based on Oracle SecureFiles System[21]. We propose
a lightweight navigational index on top of the storage and
an NFA-based navigational algorithm to provide efficient
streaming processing. We further optimize query process-
ing by exploiting XML structural and schema information
that are collected in database dictionary. We conducted ex-
tensive experiments to demonstrate high performance of the
native Binary XML in query processing, update, and space
consumption.

1. INTRODUCTION
As XML evolved as a data model for semi-structured

data and the de facto format for data exchange, relational
database systems have been extended to offer supports to
store, update, and query XML data. Oracle has provided
XML data management capabilities for many years by means
of an abstract data type XMLType. This data type provides
a unified and consistent interface that encapsulates multiple
storage and indexing options. Since different storage models
have their own pros and cons, the user can choose the one
that fits their query and data manipulation requirements

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

best without changing the application code.
There are basically three approaches to storing XML doc-

uments in RDBMS: (1) storing the original XML documents
as-is in a LOB column (e.g., [17, 23]), (2) shredding XML
documents into object-relational (OR) tables and columns
(e.g., [28, 4]), and (3) designing a native storage format for
XML data model from scratch (e.g., [11, 29, 22]). Each ap-
proach has their own advantages and disadvantages. For
example, the LOB storage approach is the simplest one to
implement and support. It provides byte-level fidelity (e.g.,
it preserves extra white spaces which may be ignored by the
OR or the native formats) that could be needed for some dig-
ital signature schemes. CLOB is also efficient for inserting
or extracting the whole documents to or from the database.
However it crawls in query processing due to unavoidable
XML parsing at query processing time.

On the other hand, the OR storage format, if designed and
mapped correctly, could fly in query processing, thanks to
many years of research and development in object-relational
database systems. However, insertion, fragment extraction,
structural update, and document reconstruction require con-
siderable processing. In addition, for schema-based OR stor-
age applications need to have a well-structured, rigid XML
schema whose relational mapping is tuned by a DBA in order
to take advantage of this storage model. Loosely structured
schemas could lead to unmanageable number of tables and
joins. Also, applications requiring flexibility and schema
evolution are limited by those offered by relational tables
and columns. The result was that applications encountered
a large gap—if they could not map well to a relational way
of life due to tradeoffs mentioned above, they suffered a big
drop in performance or capabilities.

To start off, Oracle took advantage of existing storage
technologies (CLOB and OR storage) as much as possible.
However, based on working with many customer use cases, it
became clear that these storage options have many tradeoffs
that make it difficult to satisfy a large class of XML appli-
cations. Oracle 11g introduces a native storage format that
addresses the above difficulties and the following additional
challenges that arise from real-world business applications.

Schema chaos: In this scenario, customers want the flexi-
bility to manage XML data that may or may not have
schema, or may have “any” schema. For instance, a
telecommunication customer wants to manage XML
data generated from different towers, which generate
documents with slightly different schemas from each
other. They want to store them in one table and per-
form efficient query on the shared common pieces.

CLOB OR Binary XML

Query poor excellent good/excellent
DML poor good/excellent excellent
document
retrieval

excellent good/excellent excellent

schema flex-
ibility

good poor excellent

document
fidelity

excellent poor good/excellent

mid-tier in-
tegration

poor poor excellent

Table 1: Comparisons of different storage models

Schema evolution: This is a scenario for schema flexibil-
ity in the time dimension. That is XML schema could
be changed over time due to new application require-
ments. XML documents conforming to one schema
should be evolved to conform to a new schema. The
underlying storage should be able to support the mi-
gration efficiently.

Mid-tier integration: Most Oracle customers deploy their
applications in a multi-tier architecture requiring that
XML processing needs to work in concert with mid-
tier Java business logic. Therefore, the storage format
should support efficient data transfer from database
layer to the mid-tier.

Performance: Most of our customers expect high perfor-
mance in updating and querying of XML data. Al-
though space consumption is usually not a major con-
cern, it is a highly desirable feature particularly for
customers that require XML data transferred over the
wire. In addition, many operational features such as
partitioning are also requested by many customers that
manage large amount of data.

Table 1 compares different storage models with respect
to different application requirements. To summarize, the
Binary XML storage is intended to satisfy many application
needs for which XML itself was originally envisaged. It is
designed to bridge the gap between relational performance
for highly structured use cases and the needs of applications
that require schema flexibility and mid-tier integration.

In this paper, we show our experience of building a more
native XML storage that provides high performance with
schema flexibility. The main contributions of this paper are
as follows.

• We introduce the Binary XML format that provides a
good balance of compact size, decoding and encoding
speeds, as well as the basis of storing and indexing
XML in a database (Section 3).
• We show that the Binary XML storage based on the

above format can efficiently handle common database
operational needs (e.g., supporting XML indexes, par-
titioning, updates, and schema evolution) (Section 3.4).
• We propose a suite of novel query processing and op-

timization techniques that fully leverage the format to
provide good performance for XML processing (Sec-
tion 4). The core of the query processing techniques
is a search-based decoder that allows us to push down
XPath pattern matching to the storage layer, where
physical optimizations can be achieved by exploiting

the storage format. To further speedup tree naviga-
tion, the decoder can also utilize a per-document sum-
mary, a lightweight navigational index, which leads to
sub-linear I/O complexity. For complex XQuery ex-
pressions, we propose novel structural/schema-aware
rewrite and caching techniques to simplify the XQuery
to SQL translation as well as to save CPU and I/O
cost. The combination of all these techniques may
significantly improve the query performance without
sacrificing DML performance.
• We conducted extensive experiments that compare the

performance of query processing, DML and space con-
sumptions (Section 5).

2. RELATED WORK
There are generally two widely adopted approaches to

support XML storages in DBMS—the extended relational
approach and the native approach. In the extended rela-
tional approach, XML documents are converted to object-
relational (OR) tables and are stored in relational databases
or in object repositories (e.g., Shore [6]). In the native ap-
proach, XML documents are stored using a specially de-
signed native format. Each of the two approaches has ad-
vantages and disadvantages, although both are feasible for
supporting XML queries. Due to the lack of space, we briefly
survey the native storage and query processing approach and
compare them with Oracle Binary XML format.

2.1 Native Storage
Native XML storage has been studied for many years.

Kanne and Moerkotte propose the Natix storage system [15,
11] that partitions a large XML tree into subtrees, each of
which is stored in a record. The partition is designed such
that the record is small enough to fit into a disk page. Up-
dating is relatively easy since insertions and deletions are
usually local operations to a record. In general, this ap-
proach is more flexible than the interval or preorder-postorder
encodings in handling frequent updates. IBM System RX [3,
13] employs a similar technique, which partitions large XML
trees into small subtrees and uses an auxiliary structure Re-
gions Index to connect them. Each tree node keeps pointers
to its parent and children to support fast navigation. Updat-
ing to the XML tree is similar to what Natix does. Oracle
Binary XML storage uses a different approach by serializing
XML document in a logically sequential format. This format
is similar to the token stream defined in the BEA streaming
XQuery processor [12] (now the Oracle service bus token
stream). In addition to providing serialized access to the
input XML for streaming processing, Oracle Binary XML
format is also optimized for persistent storage. With the
help of auxiliary data structure, Binary XML supports fast
sublinear navigational XPath evaluation (see Section 4.3 for
detail). Binary XML storage also supports efficient piece-
wise update on top of Oracle 11g SecureFiles storage, which
extends the BLOB structure by supporting compression, en-
cryption, deduplication, and piecewise update [21].

Microsoft SQL Server stores XML typed data as a byte se-
quence of large binary object (BLOB) to preserve the XML
data model faithfully [24, 25, 20]. SQL Server 2008 has a
limitation that XML data has to be stored in a separate ta-
ble if an XML index is needed (unless an Index Organized
Table is used). Oracle Binary XML storage does not have
this limitation and XML data can be stored in the same ta-

ble as relational data. Also, for evaluating XQuery in the
absence of XML Index, SQL Server 2008 manifests a node
table containing one row per node at run time. This seems
to be expensive in terms of performance. Oracle Binary
XML storage provides a streaming evaluation of XPaths.

Another approach of native storing trees is to store tree
nodes in some serialized format. Koch proposes the Arb
storage model [16] to store a tree in its binary tree represen-
tation on disk. It is well known that any ordered tree T can
be translated into a binary tree B by translating the first
child of a node in T to the left child of the corresponding
node in B and the following sibling in T to the right child
in B. Arb stores tree nodes in document order. Each node
uses two bits to represent whether it has a left child and/or
a right child. Zhang et al. [29] propose a serialized storage
format for XML tree data model. The idea is based on the
fact that an ordered tree has an equivalent representation of
a balanced parenthesesed string, where the open/close tag of
an XML element corresponds to an open/close parenthesis.
Navigating on the tree is then translated to finding corre-
sponding open/close parentheses in the string. Updating
to the tree is also easily translated to inserting/deleting a
substring in the string representation. Wong et al. [27] ex-
tended [29] by introducing hierarchies in the balanced paren-
thesis strings. Oracle Binary XML storage format falls into
this category of serialized storage format. In addition to
representing XML tree data model as balanced parentheses,
Oracle Binary XML encodes into the stream the schema in-
formation and other structural properties, based on which
more optimization can be performed during query process-
ing. Oracle Binary XML also embed data into the encoding
stream while others do not.

Recently, AgileDelta proposed a binary XML format called
Efficient XML (EFX) [2] to the W3C working group. The
focus of EFX is on superior compression ratio based on XML
schema or structural information. The motivation of EFX is
to be able to transfer XML data efficiently over the network.
While this motivation is one of design goals of Oracle Binary
XML as well, the latter is also designed to accomplish much
wider application requirements, including efficient update
and indexing capabilities.

2.2 Query Processing
Path queries can be evaluated based on these native stor-

age systems by navigational approach. Basically there are
two types of navigational approach: query-driven and data-
driven. In the query-driven navigational operators (e.g.,
Natix [5]), each location step in the path expression is trans-
lated into a transition from one set of XML tree nodes to
another set. In the data-driven operators (e.g., Yfilter [9]
and XNav [14]), the query is translated into an automaton
and the data tree is traversed according to the current state
of the automaton. The query-driven approach is easier to
implement, but it may need multiple scans of the input. On
the other hand, the data-driven approach only needs one
scan of the data, but its implementation is much complex.

The streaming evaluation techniques proposed in this pa-
per is similar to YFilter, but with a number of novel ex-
tensions. First, we propose a search-based decoder that
is lightweight and much faster than an pure NFA pattern
matching. One of the reasons is that the decoder have the
complete information about storage metadata which can be
exploited to speedup navigation. One of the novel stor-

age metadata is called summary, which can be treated as a
lightweight navigational index. Secondly we propose a num-
ber of novel optimization techniques based on the schema
and structural information that rewrite the XML queries
in a much simpler form and execute the query in a faster
fashion.

3. ORACLE BINARY XML STORAGE
In this section, we introduce the design consideration of

Oracle Binary XML, the storage format, and how it handles
the challenges mentioned in Section 1.

3.1 Storage Format
The Oracle Binary XML format is designed to be com-

pact and efficient for a wide variety of operations includ-
ing streaming XPath evaluation, fragment extraction, node-
level updates, conversion to/from XML 1.0/1.1 (text) as well
as building a DOM. It works well in all tiers including the
database tier, on XML schema-based as well as non-schema-
based documents. In the Oracle Database, the underlying
storage for a binary XML document is a BLOB column,
hence allowing binary XML documents to leverage Oracle
SecureFiles LOB features such as encryption, deduplication,
compression and piecewise update. Due to the space limita-
tion, only the key features of the format are explained below.
A complete definition and explanation can be found at the
Oracle Binary XML RFC [7].

Binary XML lays the foundation of the native XML database
by storing the complete XML InfoSet [8] as well as the
XQuery data model [10], and supporting scalable perfor-
mance for common XML processing tasks such as query pro-
cessing, XML indexing, XML Schema validation and evolu-
tion. From a high level viewpoint, the Binary XML format
can be viewed as a serialized set of SAX [19] opcodes (op-
eration code) that are persist in a logically sequential form.
In addition, the format has the following properties.

• The format allows mixing of data and metadata to
provide complete schema flexibility. For applications
that have more structured needs, the format also al-
lows metadata to be stored separately.
• The format itself is transferable as a document or file

over standard protocols by fitting into IETF MIME
type conventions. This enables Oracle mid-tiers and
other parties to handle the format directly without
converting back-and-forth to XML in text form.
• The format attempts to provide relational performance

and functionality by approaching a relational row for-
mat for very structured schemas. The Binary XML
storage option takes advantage of XML schemas, if
available, to store a highly compacted XML using Or-
acle data types such as numbers and dates. This has
the added advantage of faster processing by saving on
data conversion costs.
• The format provides a mechanism of locators that serve

as node identifiers and can be used to start processing
from an arbitrary point. This forms the basis of XML
indexing and streaming evaluation for XPaths.

3.1.1 Tokenization
One of the major compression techniques is the use of a

token table (i.e., symbol table) to minimize space needed for
repeated items in XML. The format supports tokens of the

following types: QNames (for elements/attributes), Names-
pace URLs, and Namespace prefix. These are mapped to an
ID (integer) as follows:

NamespaceURL ←→ NamespaceTokenID
NamespaceTokenID,LocalName ←→ TokenID
NamespaceTokenID,Prefix ←→ PrefixTokenID

Token definitions can be specified in the encoded docu-
ment itself or by reference to a token repository. An inlined
token definition may appear at any point in the encoding,
assigning integer token IDs to each of these items. A to-
ken repository allows a set of related or similarly structured
documents to share a set of token definitions. Tokens from
a repository can be used by specifying the globally unique
identifier (GUID) of the processor or repository in the docu-
ment header. This allows for several optimizations including
compression, compilation of XPaths using token IDs, as well
as the ability to decode the InfoSet of any subtree without
starting at the beginning of the document.

3.1.2 Format Overview
The format consists of a set of document sections. A sec-

tion is a self-contained unit of data transfer, and represents
either an entire document or a subtree. In case of sections
corresponding to subtrees within a document, a section ref-
erence is used to provide a link from the parent section to
the child section. The ability to create sections at the level
of elements has many benefits including scalability and more
efficient storage layout.

Each section has a header, followed by the actual XML
data represented as a set of instructions. Each instruction
consists of an opcode followed by its operands. These in-
structions correspond to a document-ordered serialization of
the XML InfoSet. The section header contains meta infor-
mation such as processor GUID (to which token definitions
and schema references are scoped), DocID (identifier of the
document to which this section belongs), PathID (identi-
fier for the simple path from the root node of the section),
Order key (node unique identifier containing the ordering
information corresponding to the root node of the section),
and flags (indicating which of the above fields are present,
whether there are inline token definitions in the section etc).

The section data can be encoded in one of two modes:
basic or chunked. The basic mode consists of a single chunk
possibly containing inlined token definitions, in which case
the Binary XML decoder needs to process the section in-
struction by instruction, starting from the beginning. In the
chunked mode, a token definition is present at the beginning
of the section followed by a set of chunks free of token defi-
nitions. This guarantee can speed up processing by allowing
the receiver to process Binary XML data in that chunk with-
out scanning it instruction by instruction. For example, if
we insert a section into a database, we can bulk append the
node data in the section chunk into a target BLOB without
interpreting every opcode in the Binary XML stream.

In the general case, there is one Binary XML opcode corre-
sponding to one SAX event (e.g., START ELEMENT, END ELEMENT

and so on). If an element contains multiple text node chil-
dren and/or has interspersed comments, we need to use
these opcodes to mark the beginning and end of an element.
However, we can optimize it in many cases where the encod-
ing target is an attribute or the element is a simple element
that it does not have any child. In these cases, we use a

single instruction to represent the whole element, without
the need for a separate END ELEMENT opcode.

Opcodes are of one-byte fixed length. Instructions may
only have a single operand of variable length, and that operand
must be the last one. In this case, the length of the variable
length operand itself must be the first operand. The node
data values can be of 1/2/4/8-byte length. The first byte
of the length indicates the encoding type. For example, the
higher two bits 0x00 indicates the encoding type is string
and 0x01 binary. The following are some types of opcodes:

• Token Definition opcodes allow definition of different
types of token IDs.
• Element & Attribute opcodes specify the token ID or

kid number (the ordering of children based on XML
schema) of the attribute or element, and optionally a
prefix ID and type ID.
• Typed & untyped data opcodes specify the length and

value of the data operand of the current node. The
typed opcodes also specify the type of the data item.
• Schema-related opcodes indicate the start and end of

a schema scope.
• DTD-related opcodes represent DTD constructs like

element & attribute definitions.
• Opcodes for Text, CDATA, namespace declaration,

processing instructions and comments. Character data
is encoded in the UTF-8 character set.

3.1.3 Schema-based Encoding
If the document conforms to a particular XML schema,

the schema can be used for more optimal and type-aware en-
coding. For example, occurrence constraints and type defini-
tions can be used to derive a more compact and processing-
efficient representation of the XML InfoSet. Text nodes are
more compactly encoded using the data types (integer, float
etc.) specified in the schema. In highly structured cases,
this can result in the binary representation containing just
the lengths and values of element/attribute data (i.e., text
nodes represented in typed format).

When an XML schema is registered, each distinct element
or attribute (distinct by name & namespace) in the schema
is assigned a “property ID”. This ID is unique within a set
of related schemas (related by include/import). The prop-
erty ID is added as a special attribute of the corresponding
element or attribute declaration in the registered schema.

The registration process also computes the list of possible
child elements and attributes for each complex type in the
schema. Each element or attribute in this list is assigned
a sequential “kid number” (kidNum), to be used as a more
compact identifier than the property ID. Since the kidNum is
a local identifier for the child property within the context of
the parent element, it is typically smaller than the property
ID. An annotation is added to the complex type mapping
the property IDs to the corresponding kid numbers. For
example, consider the following snippet of XML schema.

<xsd:annotation>

<xsd:appInfo>

<csx:kidList sequential=‘‘true">

<csx:kid propertyID=‘‘3456" kidNum=‘‘1"/>

<csx:kid propertyID=‘‘3457" kidNum=‘‘2"/>

</csx:kidList>

</xsd:appInfo>

</xsd:annotation>

In particular, the “sequential” attribute in the above an-
notation refers to the usage of the schema-sequential mode.

3.1.4 Schema-sequential Mode
Binary XML storage can detect and annotate two special

modes, schema-sequential mode and array mode, during en-
coding and they are used for efficient query processing.

The schema-sequential mode can be used whenever the
Binary XML encoder determines that for a particular ele-
ment, all of the immediate element children must appear
in a fixed order. Typically, this is the order in which they
appear in the schema model. This case exists when the con-
tent model for a complexType element consists only of any
number of <sequence> and <choice> elements with max-
Occurs=1. The schema-sequential mode cannot be used if
there is any <sequence> or <choice> group with maxOccurs
> 1, or when there is an <all> group.

In schema-sequential mode, the Binary XML stream con-
sists only of the data values and does not contain any prop-
erty IDs or kidNums. Hence, the Binary XML decoder must
keep track of the current kidNum to infer the node informa-
tion for each piece of data. The current kidNum is increased
after each child operand. Note that even in the schema-
sequential mode, the child operands could carry explicit to-
ken ID known as the partial schema-sequential mode. This
allows us to handle Substitution Groups where the declared
element has been substituted by another element.

3.1.5 Array Mode
The array mode is used whenever the binary XML pro-

cessor detects multiple adjacent elements with the same
QName. A special opcode, ARRBEG, is used to indicate the
beginning of the array mode, and ARREND to indicate the
end. In the array mode, the property or token ID (either
explicitly in the stream or derived from the kidnum) for the
previous element is implicitly reused for each subsequent
data item encountered until ARREND is encountered. There
are two flavors of array mode—scalar mode and complex
mode. In complex array mode, the contents of the array
may be of complexType, and an end-of-element opcode is
used to delimit each array element. In scalar array mode
(used for simple typed elements), each array element con-
tains a single text node, and is encoded using a simple DAT
opcode containing only the actual data.

3.2 Locators
One of the major issues in the design of the format is the

amount of state that must be built up while processing a
binary XML stream. To handle XPath processing for use in
queries, indexes, printing, and XInclude, it is desirable for
indexes and other external reference mechanisms to be able
to use byte offsets to point into the stream without requiring
processing of the entire stream from the beginning. This
requires that any state necessary to start processing at an
arbitrary instruction be serializable into a small, fixed set
of bytes. That state, along with the byte offset and stream
reference, forms a locator, which can be used by indexes and
other external references to start Binary XML processing.

Binary XML uses the start of a complex element definition
as the point at which stateless processing may commence.
It allows jumping directly to the point. The state needed to
start processing at any arbitrary node is the state built up
from the start of the parent element. An implementation of

a locator might contain the current schema ID, a byte offset
into the underlying Binary XML stream, and bits indicating
whether sequential mode and array mode are in effect. If
the locator is in some special mode, more information is
included, such as a kid number and parent property ID, or
the last token ID processed.

3.3 Schema Evolution
XML Schemas in Oracle serve two purposes: (1) they de-

scribe the structure of the XML documents as defined in the
W3C XML Schema standard, and (2) they can be annotated
to dictate the mapping between the documents and physical
layout on disk in some cases.

The XML Schema significantly influences the Binary XML
format of a XML document. In fact, several pieces of in-
formation contained within the XML Schema are exploited
to optimize the Binary XML format. However, this im-
plies that we need efficiently maintain the conformance of
the document storage when the schema evolves. The evo-
lution of XML Schemas are constrained such that: (1) the
Binary XML instances encoded using the old XML Schema
can still be decoded correctly using the new XML Schema,
(2) the new XML schema should validate a superset of the
XML instances that were valid against the old XML Schema,
and (3) schema annotations that impact the Binary XML
format cannot be modified. Some of the schema evolu-
tions supported by Binary XML are adding an optional at-
tribute to a complexType or AttributeGroup, increasing the
value of maxOccurs, adding values to enumeration Simple-
Type at the end of the enumeration, increasing the value of
maxLength facet, and adding mixed content.

When a schema is evolved by adding new (optional) ele-
ments in the middle of the sequence, the newly added chil-
dren are not encoded using schema-sequential mode. The
kidNums of the earlier children are not changed, hence ex-
isting Binary XML data will continue to be valid per the new
version of the schema. The new element is assigned a new
kidNum, and the maxSeqKidNum value is set such that the
earlier children are encoded using schema-sequential mode.
The new element has to be encoded with an explicit kidNum
or token ID value, i.e., partial schema-sequential mode.

3.4 Operational Deployment
Oracle Binary XML is designed to support the entire life-

cycle of database applications. This means it supports DDL,
DML, query (SQL/X and XQuery), partitioning, XML in-
dexing, importing/exporting, expedite data loading, as well
as integration with mid-tier APIs (e.g., Java and C). We
highlight some features here due to space limitations:

Piecewise Update Binary XML format allows for piece-
wise updates by applying only the changed portions to
disk. This support builds on delta-update features pro-
vided by the Oracle SecureFiles [21] whereby the entire
data does not need to be over-written but simply the
changed portions. This reduces the I/O bandwidth
significantly. In many deployments, maintenance of
the XML index could easily be the dominant factor
during the execution of updates. However, in Ora-
cle, the index is also made aware of the exact changed
portions whereby only those rows in the XML index
that are related to the affected portions are updated.
Together, these two optimizations result in order of
magnitude better update processing compared to typ-

ical CLOB and OR uses where the entire document
might needed to be loaded/updated/written to disk.

Partitioning Binary XML storage supports partitioning
based on Virtual Columns. This leverages the benefits
of partitioning provided by Oracle Database. The ben-
efits include partition pruning and partition-wise joins
which result in much better performance and higher
scalability. Partitioning also eases administration of
large data. A Virtual Column (VC) is a user acces-
sible table column that does not exist on disk but is
evaluated based on values of other columns. For using
partitioning with Binary XML the user creates a VC
using either XMLQUERY or EXTRACTVALUE op-
erators. The operator for VC is evaluated to determine
the partition key.

Mid-tier processing: The Binary XML format can be un-
derstood by the Oracle mid-tier products allowing many
real-world applications to obtain improved performance.
The application logic in the mid-tier can directly pro-
cess the binary XML shipped from the database. This
avoids the overhead of serialization in the database and
the cost of repeated parsing in the mid-tier. In a simi-
lar vein, XML serialized data can be encoded directly
to the Binary XML format in the mid-tier thus freeing
more expensive database CPU cycles.

4. QUERY REWRITE AND PROCESSING
One of the major design considerations of Binary XML

storage format is to support efficient query processing. The
Binary XML storage would typically be used in conjunction
with an XML index for speeding up query access. The index
is designed to handle unstructured XML content (by means
of a path-value storage) as well as structured content (by
means of a property table). Query processing in the presence
of these indexes is covered in [18]. In this section, we focus
on query processing that leverages the binary XML format
assuming that desired documents or fragments might have
already been identified by the index. We start by briefly in-
troducing the techniques that rewrites XQuery queries into
Binary XML specific operators and row sources (constructs
that produce rows). A more comprehensive introduction to
Oracle’s approach to rewrite and normalization can also be
found in [18]. Then we present our NFA-based streaming
query processing and optimization techniques.

4.1 XPathTable Rewrite
The streaming XPath evaluation mechanism available with

Binary XML is exposed to other layers in the RDBMS in two
ways: (1) functional streaming evaluation, and (2) XPathTable
row source. Functional streaming evaluation is achieved by
using the NFA-based XPath evaluation from XML-related
SQL operators. XPathTable row source implements the row
source abstraction. That is it produces rows containing one
or more columns and can be joined with other row sources.
The columns can be either of XMLType or SQL primitive
types such as NUMBER and VARCHAR2. By implementing the
row source interface, we leverage a lot of the existing func-
tionality in the RDBMS such as the relational optimizer and
SQL query processing engine.

XPathTable row source is created automatically during
query optimizations (rewrite) at compilation time. Just like

the XMLTable construct in SQL/XML, XPathTable is a
construct that bridges the XML data model to the rela-
tional data model—it takes an XMLType data as input and
produces relational tables, which can also contain XML-
Type columns. The XPathTable row source is create for
two purposes: (1) to evaluate multiple XPaths in one pass
in streaming fashion, and (2) to handle XPath predicates,
rewrite XMLTable and XMLQuery constructs. In the sec-
ond case, XPathTable row source serves roughly the same
purpose as a TABLE(XMLSEQUENCE) construct on Ob-
ject Relational Storage which produces a virtual table row
source. Though TABLE(XMLSEQUENCE) can be used
against Binary XML storage, XPathTable has much better
functionality and performance.

If a set of XPaths are evaluated on the same base table
column, we detect this at query rewrite time and transform
the query by introducing the XPathTable row source and
replacing all the original references with columns of the new
XPathTable. The advantage of this is that all these XPaths
will be evaluated in one pass over the document using the
NFA based streaming evaluation (see Section 4.2).

Another case of using XPathTable is for projecting rows
from XML fragments. This case arises in XPath Predicates,
XMLTable and XML Query FLWR constructs. For exam-
ple, consider the following XQuery:

for $b in $doc("XMARK")/site/people/

person[@id = "person0"]

return $b/name/text()

This query can be rewritten to XMLTable and Oracle
XML operators as follows.

SELECT

(SELECT SYS_IXMLAGG(P.C2) COLUMN_VALUE

FROM XMLTABLE(

’/site/people/person’ PASSING OBJECT_VALUE

COLUMNS C0 XMLTYPE PATH ’.’,

C1 VARCHAR2 PATH ’/person/@id’,

C2 XMLTYPE PATH ’/person/name/text()’

) P

WHERE P.C1 = ’person0’

) RET

FROM XMARK XM

During query rewrite we transform the XPath predicate
on id attribute into a SQL predicate. To be able to do
that, we need to have a mechanism to generate one row per
person node in the document. For this (and for evaluating
many other kind of path expressions where we need one row
per node in the doc) we use the XMLTable construct. Here,
XMLTable P produces one row per person node with three
columns C0, C1 and C2. The XPath /site/people/person

is referred to as the driving XPath for the XMLTable. The
input to XMLTable in this case is the XMLType column
OBJECT VALUE in the table XMARK. This input operand is
called the driving operand for XMLTable. The SYS IXMLAGG

is Oracle XML aggregation operator and gathers the results
from all the rows from the XMLTable P into one fragment.
All the XMLTable columns are produced by one pass over
the input XML documents.

The above rewritten query can be further rewritten using
XPathTable by simply replacing XMLTALBE with XPathTable.
One of the reasons for the mapping is that XMLTable is a

γ

5 6
a

γ

γ

∗

1

42 3
c

γ

b

γ

γ

ε

a

Figure 1: NFA constructed from //a and /a/b/c

logical function and it can be rewritten to different evalu-
ation operators, and XPathTable is a physical operator on
Binary XML input and using streaming evaluation intro-
duced in Section 4.2.

4.2 Baseline Streaming Evaluation
XPath path expressions allow users to traverse XML trees

in different directions (termed “axes”), to filter tree nodes
by specifying predicates on tag names and values, and to
return qualified tree nodes. By analogy, path expressions
on trees are similar to regular expressions on strings: they
both allow the users to specify a pattern of interest in the
data to match, except that regular expressions specify pat-
terns in a character sequence (e.g., the regular expression
”Elapsed.*seconds” find the string that contains substrings
“Elapsed” and “seconds” in that order regardless of any
characters in between), while path expressions on trees can
specify node tags, value constraints and structural relation-
ships between nodes. For example, a path expression “//pur-
chaseOrder[@orderDate< ‘12-04-2008’]/item” returns all items
of any purchase orders whose order date is less than Decem-
ber 04, 2008. In this path expression, // and / are axes
that represent the ancestor-descendant and parent-child re-
lationship, respectively; purchaseOrder represents elements
whose tag name is “purchaseOrder” and @orderDate repre-
sents attributes whose names are “orderDate”. The parts in
the square brackets [] are called predicates, which could be a
path expression itself or a relational expression (such as the
one in the above example) between a path expression and a
value or between two path expressions. In summary, a path
expression evaluation operator needs to find all tree nodes
that satisfy three types of constraints: tag name constraints,
value constraints, and structural constraints.

In analogy to the fact that regular expressions are usu-
ally evaluated using finite state machine (FSM) or finite
automata (FA), path expressions can also be efficiently eval-
uated using finite automata. Oracle 11g implements a non-
deterministic finite automaton (NFA) to evaluate a set of
simple path expressions in one scan of the input encod-
ing. For example, we can combine the two simple path
expressions //a and /a/b/c into one NFA as shown in Fig-
ure 11. The benefits of this normalization are that we can
potentially combine different path expressions in an XQuery
FLWOR expression or SQL/XML query into one NFA and

1A γ-transitions are taken if no successful matches are found
till the end of the context element. Since a γ-transition is
implicit for every regular transition, they can be ignored
from the diagram.

set of simple

1 e1 s2 s3 e3 s4 e4 e0s0

NFA

get

next

event

return

next

eventget n−th child/sibling

whose tag is in set S&

whose value satisfies p

decode opcodes

read stream &

s e2

Binary XML Input Stream

Decoder

path expressionsNormalization

 Rewrite &

SQL/XML

XQuery

Figure 2: Binary XML Streaming Evaluation Archi-
tecture

evaluated them in one pass of the XML data, resulting in a
much efficient I/O cost.

Figure 2 shows the data flow of the NFA-based evaluation
system. In this system, the NFA module obtains a set of sim-
ple path expressions and constructs a state machine (states
and transitions between states) accordingly. During evalu-
ation, the NFA asks the underlying Decoder module to get
the next event in sequence from the input stream. Similar
to a standard XML SAX event, which contains information
such as whether the input stream encountered the beginning
or end of a document, element, attribute, or value, a Binary
XML event also contains information related to Binary XML
streaming evaluation, e.g., properties of the element in case
of schema-based storage. The job of the decoder is to sim-
ply decode the encodings in the input stream to an event
that can be understood by the NFA. We call this decoder
as the event-based decoder. The event-based decoder is used
if we need to decode every opcode in the input, e.g., when
printing an XML document or fragment.

However, event-based decoder combined with NFA is not
efficient in query processing. With the event-based decoder,
it is up to the NFA to decide whether the input event is a
match to its current states. If so the NFA triggers a state
transition or output of results, otherwise it just discards the
event. Since there could be a large portion of events to be
discarded by the NFA, the event-based decoder wastes a lot
of computing resources on generating irrelevant events. In
a nutshell, there are two major drawbacks of using event-
based decoder for query processing:

1. The event-based decoder needs to scan the whole in-
put stream and generate events for all encodings, even
though they are not useful to the NFA. This causes sig-
nificant overheads in I/O and CPU time in scanning
and constructing irrelevant events.

2. For schema-based documents, the schema information
is embedded in the input stream. The event-based de-
coder is unable to exploit them to do efficient skipping
since the NFA is asking for all events.

4.3 Search-based Decoder

We propose a search-based decoder to tackle the two prob-
lems mentioned above by pushing down the constraint check-
ing to the decoder module. The gist of the search-based de-
coder is similar to the predicate-pushdown technique that
is widely adopted in the relational query processing. With
the search-based decoder, the Binary XML streaming pro-
cessing architecture remains the same but the API from the
NFA to the decoder is changed to the italic text inside the
dashed call-out in Figure 2. Rather than pulling the next
event in sequence, the NFA first prepares a set of search
terms based on its current states, and then it calls the de-
coder for the first event that matches one of these search
terms. The search-based decoder will return an event that
either matches one of the search terms or an END ELEM or
END DOCUMENT event that indicates a mismatch.

Algorithm 1 NFA combined with Search-based Decoder

Next-Match

1 while TRUE
2 do terms← Prepare-Terms(currentStates);
3 evt← Search-Event(terms);
4 if evt = START DOCUMENT

5 then Process-Start-Doc(evt);
6 update current states;
7 elseif evt = START ELEM | START ATTRIB

8 then Process-Start-Element(evt);
9 update current states;

10 return TRUE;
11 elseif evt = END ELEM

12 then Process-End-Element(evt);
13 update current states;
14 elseif evt = END DOCUMENT

15 then return FALSE;
16 elseif evt = CHARACTER | PCDATA | CDATA
17 then Process-Chars(evt);

The pseudo-code of the matching process is illustrated in
Algorithm 1, which is very straightforward since most of
the heavy-lifting work has been pushed-down to the search-
based decoder Search-Event(terms). One caveat is that
the function Prepare-Terms(currentStates), if not designed
carefully, could be very expensive since it is called every time
before we call the search-based decoder. We will introduce
the optimization techniques for Prepare-Terms after in-
troducing the data structure of search terms.

A search term consists of a keyword (QNameID, kidNum,
or wildcard *) indicating the element or attribute name, a
level the keyword should appear relative to the current con-
text node, and an optional callback function that is used to
evaluate the predicate on the values. In the current imple-
mentation, the level could be 0, 1 or * (any), nodes at which
represent the following siblings, children or descendants of
the current context node, respectively. Theoretically, levels
could be negative, which indicates the following ancestors of
the context node, and a bit could indicate that the search is
in reverse document order for backward axes. In this paper,
we only consider forward axes for simplicity.

The search terms can be constructed at NFA compila-
tion time. Given a state in the NFA, there will be a corre-

sponding keyword for each out-edge, whose label is mapped
to a QNameID or kidNum. If the state has no ε-edge, all
keywords are at level 1, otherwise all keywords are at level
*. Level 0 is reserved for preceding-/following-sibling axes,
which is common in DOM API.

Given a set of current states N , a näıve implementation
of the function Prepare-Terms would just enumerate ev-
ery state n ∈ N and merge the search terms associated with
n in a set data structure S. The set S should be orga-
nized in a way to support efficient searching by the function
Search-Event. The search-based decoder traverse the tree
structure by keeping the relative level and decode the op-
code. It then needs to search inside S based on its level and
keyword after decoding any opcode, it is desirable to sort
the terms by their (level, keyword), so that we could use
more efficient binary search. To avoid expensive sorting for
each call of Prepare-Terms, we cache the sorted terms in a
hash table keyed by the set of current set of states. Since the
number of states are usually very small, we can use a small
bit vector to represent the set of the states as the key to the
hash function. For exceptionally large NFA, we fall back to
the näıve algorithm (sorting) for merging search terms.

With the knowledge of what it is looking for, the search-
based decoder may exploit the knowledge of specific stor-
age metadata to quickly skipping data that do not match
with the search terms. For example, consider an NFA that
is constructed from two simple path expressions /A/B and
/A/C[.=‘C1’] that may be normalized from /A[C=‘C1’]/B.
At the beginning, the NFA is expecting an element node
whose tag name is A. Any element whose name does not
match the tag name constraint is not of interest to the NFA.
Therefore, the NFA can call the Decoder to return the next
event which is a child element of the root and whose tag
name is ‘A’. The Decoder, who maintains the schema and
structural information, can quickly and safely skip the child
elements of the root and whose tag name is not A. For ex-
ample, if the Decoder knows that, based on the schema,
element A is the tenth element of the root node, then it can
directly jump to the right position, saving I/O for reading
all subtrees of the first nine elements and saving CPU for
constructing the events. Once the NFA got the event con-
taining element A, it is expecting either an element B or
C. Therefore, the NFA calls the Decoder to return an event
whose a child element of A and whose tag name is in the
set B, C, and the value of C is ‘C1’. If an event returned by
Decoder satisfies either condition (say C), the NFA enters
another state that requests the next sibling satisfying the
rest of the conditions (i.e., elements whose tag name is B).

Based on the above description, one of the requirements
of the search-based decoder is to be able to skipping a spe-
cific subtree efficiently. Since the Binary XML serializes a
subtree by its document order, a näıve way is to decode ev-
ery opcode while maintaining its level, which is incremented
on START ELEM and decremented on END ELEM. Since
we do not need to know the actual data in order to get the
type of the opcode and its length, we can simply decode the
metadata of each opcode and jump to specific offset based
on the opcode’s length. Although this näıve algorithm is
simple, it is effective since we do not need to read the ac-
tual node data, which usually consumes the majority of I/O
bandwidth. In fact, this is the algorithm we use if the input
data are transferred over the network. However, if the Bi-
nary XML is stored in database column, skipping subtrees

could be much efficient if we pay a small overhead.
We propose a per-document summary to expedite nav-

igation in the tree. It can be treated as a lightweight navi-
gational index that is optional to build on top of the Binary
XML storage. The idea is very straightforward: we maintain
an array of start and end offsets (si, ei) for “large” subtrees
sorted by si. A visualization of a navigational summary is
depicted in Figure 2, where the dashed lines on the Binary
XML Input Stream indicates the start si and end ei offsets
of elements eli. Note that el0 is the ancestor of el1–el4 and
not all descendants of el0 have an entry in the summary.
Likewise, the summary also maintains the start and end
offsets of arrays of elements. Based on the array mode defi-
nition, if the first element does not match the search term,
we can safely skip all elements till the end of the array. This
makes it efficient to skip large number of small elements.
To make the summary small and efficient for lookup, we
only include subtrees or arrays whose sizes are larger than a
certain threshold. This is effective in practice since smaller
subtrees are usually completely contained in one page and
are already read into cache by I/O prefetching. Therefore
the threshold should be greater than the database page size.

4.4 Structural/Schema-aware Optimizations
As introduced earlier, an XPath consists of several loca-

tion steps. We will refer a node in the XPath location step
as the XPath-node. The presence of a schema can speed up
the XPath searches in some cases.

The first schema-based optimization is called instantia-
tion, where we replace a more generic path expression with
a specialized one. One example is that XPaths with wild-
card (‘*’) and descendant axes (‘//’) can be expanded to
simple location steps consists of /-axes only. While these
rewrites are particular amenable to lookups in XML index
whose key are simple path IDs, the latter is also desirable
for streaming evaluation using search-based decoder. The
reason is that the search-based decoder can skip unmatched
subtrees with simple paths with /-axes only while it has
to search the whole subtree with //-axes. Schemas provide
vital information that is necessary to expand such XPaths.

The second schema-based optimization is called early-out,
where the search-based decoder can terminate searching in
the child list before exhaustively exploring it. The idea is
that for each search term (set of keywords) we can also pass a
term-list (termination list). Once any keyword in the term-
list is found, the search-based decoder could safely skip any
children after that till the end of the context node. The
term-list can be generated by examining the compositor of
a complexType from XML Schema [1] during query compi-
lation. For example, if the XML schema has a sequence, the
node that occurs after the corresponding XPath node is a
candidate for the term-list. We will add all such nodes into
the term-list until we encounter a node with minOccurs >=
1. For instance, consider the following sequence definition
under path /a/b.

<sequence>

<element name="c" minOccurs="2" maxOccurs="2"/>

<element name="d" minOccurs="3" maxOccurs="3"/>

<sequence>

<element name="e" minOccurs="2" maxOccurs="5"/>

<element name="f" minOccurs="1" maxOccurs="2"/>

</sequence>

</sequence>

To process the XPath /a/b/c, we will add d to the term-list
for keyword c. If the minOccurs of d is 0, we will add both
d and e to the term-list.

The third optimization is called singleton identification,
where we annotate XPaths that will return a single node as
result. This annotation is particular useful when XQuery is
rewritten to XPathTable and singleton paths can be added
as a column in an existing XPathTable rather than generat-
ing a new XPathTable and a subquery. Examples of single-
tons XPaths are those ended with an attribute, or elements
whose minOccurs and maxOccurs equals to 0 or 1.

4.5 Caching in XPathTable Row Source
Some use cases need two or more nested XQuery FLWRs

both of which are driven by XPaths on the base table’s col-
umn. For example consider the following XQuery snippet.
Here $auction refers to the base table column.

for $p in $auction/site/people/person let $a :=

for $t in $auction/site/closed_auctions/

closed_auction

where $t/buyer/@person = $p/@id return $t

return <item person="{$p/name/text()}">{count($a)}

</item>

This XQuery will need two XPathTables one for the outer
FLWOR and the other for the inner FLWOR. The inputs to
both of these are the document stored in the database (re-
ferred by $auction). For each row produced by the outer
XPathTable, the inner XPathTable makes a pass over the
document and generates rows. For a given document in
database, this is repeated as many times as the number of
rows produced by the outer XPathTable. The rows pro-
duced by the inner XPathTable prior to predicate evaluation
will be the same for all the repetitions since they only de-
pend on the document. This is analogous to the nested-loop
joins between two relational tables.

As an optimization we cache the column values of the
inner XPathTable after the first execution for a given doc-
ument. For subsequent executions we apply the filters and
return the results from the cache without evaluating the in-
ner XPaths again. The cache will be flushed when we move
on to the next document. In essence, this evaluation strat-
egy is similar to the blocked nested-loop join of two tables.

The cache uses relatively small amount of memory since
it caches only Binary XML locators or SQL primitive types.
The memory usage of cache can be controlled by user us-
ing database tuning parameters. When the memory con-
sumption reaches the threshold, part of the cache will be
automatically written to temporary tables in the database.
Therefore, this scheme will not exhaust memory but pro-
vide a significant performance improvement for such queries
containing nested FLWORs.

5. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of Binary

XML storage and query processing. In particular, we look
at the compression ratio, query performance, and update
performance in both schema-based and non-schema-based
settings. All experiments are conducted on a PC running
Linux kernel 2.6.9 with 3 GHz Intel Xeon CPU and 6 GB
of main memory. We configured the Oracle DBMS server
with 512 MB of DB cache size and 8 KB of block size for all
cases.

Data Compression

0

10

20

30

40

50

60

70

80

90

DC TC XMARK

Data sets

C
o
m
p
re
s
s
io
n
 p
e
rc
e
n
ta
g
e

 (
c
o
m
p
re
s
s
e
d
/o
ri
g
in
a
l)

CSXN EFXN CSXS EFXS

Figure 3: Compression percentages (smaller is bet-
ter)

5.1 Compressions
In this experiment, we measure the compression ratios

that schema-based and non-schema-based Binary XML stor-
age achieved over the original data. We tested different data
sets various from 1 KB to 100 MB with different schema
characteristics: the DC is highly structured data-centric
schema; XMark is also a data-centric schema but with more
complex structures; and TC is a text-centric schema. Fig-
ure 3 shows the compression ratios (c/x where c is the com-
pressed size and x is the original document size). As we
seen from the figure, we achieve good compression ratios in
both schema-based (CSXS) and non-schemabased (CSXN)
but lags behind EFX (EFXN and EFXS) in all cases, re-
spectively. The reasons are EFX are mainly concentrate
on compression ratio but sacrificing other capabilities. For
example, EFX compresses a document by scanning the doc-
ument from beginning and utilizes the information that it
has seen to compress later elements. Based on this nature,
it is not clear whether it can provide a locator mechanism to
allow the query processor jumping to the middle of the input
and start decoding from there. This capability is critical in
supporting indexes.

Another tradeoff by EFX is the schema evolution capabil-
ity. By encoding elements closely coupled with schema, it
is hard to implement efficient schema evolution technology.
Oracle Binary XML is designed as a general purpose format
to database servers to handle all these requirements.

5.2 Update Performance
Binary XML storage’s DML performance is much better

than CLOB and OR since the fact that the former does
not need to render the document as a DOM before update
or shred the document into pieces before insert. So we only
evaluate the more interesting piece-wise update performance
here. To evaluate the performance of piece-wise update, we
tested different operations on the SecureFiles (piece-wise up-
date) and BasicFile (basic update) BLOB with different data
sizes, ranging from 1 KB to 2 MB. The tested operations are
shown as the x-axis in Figure 4. The y-axis is the average

DML Performance

0

5

10

15

20

25

30

35

40

45

50

AppendChildXML InsertChildXML Update at end Update at

beginning

Update operations

S
p
e
e
d
u
p
s

Ratios

Figure 4: Piece-wise update speedups

Full document retrieval time (smaller is better)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

OR CLOB CSX

Figure 5: Full Document Retrieval Timings

speedups using piece-wise update.
From the figure, we can see that insertions to the be-

ginning of the LOB significantly improves from the basic
update, as a result of the chaining technique [21].

5.3 Full Document Retrieval
It is a common operations to retrieve the full XML docu-

ment from an XML repository. In Oracle 11g, XML repos-
itory consists of an XML typed table and metadata. Fig-
ure 5 shows the performance of the full document retrieval
through the repository interface with different storage for-
mats. The y-axis is the timing (in seconds) to retrieve 10
MB XMark document from a repository. The CSX storage
incurs approximately 40% less time than CLOB and OR.

5.4 Query Performance
To experimentally study the query performance proposed

in Section 4, we compare the performance of 192 XMark

2Q14 is excluded in all tests since it exceeds an Oracle lim-

XMark (Schema-based) Query Performance

0.01

0.1

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

Queries

R
a
ti
o
s
 t
o
 B
in
a
ry
 X
M
L
 S
B

CLOB/CSXS (geomean>144) O-R/CSXS (geomean=0.91)

Figure 6: XMark Query Performance for Schema-
based Storages

queries [26] using different storage options. XMark data
sets are data-centric and its schema is reasonably complex.
Note that although all storage options support XML index
to speedup their performance, the experiments were con-
ducted without any indexes.

Figure 6 shows the performance numbers of 19 XMark
queries for schema-based (SB) storages—CLOB, OR, and
schema-based Binary XML (CSXS). The x-axis is the queries,
and the y-axis is the ratios, in logarithmic scale, of the num-
bers of CLOB, OR to the numbers of CSXS. A ratio greater
than 1 indicates the speedups the Binary XML schema-
based storage over the other storage formats.

As we can see from the figure, Binary XML schema-based
storage performs very good comparing to other storage op-
tions in all queries except Q4. The reason Q4 is not perform-
ing well is that there is an XQuery order operator (<<)
which is not currently supported in streaming evaluation.
CLOB storage almost consistently gives the worst perfor-
mance as expected. Q8–Q12 even did not finish after 3
hours. The reasons are twofold: (1) the whole document
need to be parsed before querying, and (2) the query pro-
cessing engine is based on DOM, which is very expensive.

The OR storage performs better than Binary XML schema-
bases storage in 9 out of 19 queries. These queries usually
have simple path expressions that can be mapped nicely to
a column in a table and few XML elements are constructed
as results. This means most cost resides in the OR query
processing rather than fragment extraction or document re-
construction. On the other hand, if the queries cannot be
rewritten to a columns or many results are returned, stream-
ing evaluation using Binary XML storage beat OR.

In summary if the documents have schemas, the geomet-
ric means of all the query performance ratios (CLOB and
OR vs. Binary XML schema-based) are 144.3 (34.6 if not
including Q8–Q12) and 0.91, respectively. Here OR gives
the best performance. Binary XML schema-bases storage
lags by only 9% in query performance but gives users the
schema flexibility and DML performance.

itation of 4 KB of text node.

XMark (non-schema-based) Query Performance

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20

Queries

R
a
ti
o
s
 t
o
 B
in
a
ry
 X
M
L
 N
S
B

CLOB/CSXN (geomean>54)

Figure 7: XMark Query Performance for Non-
schema-based Storages

If the documents have no schema, CLOB and Binary XML
non-schema-based storages are the two options. Figure 7
shows Binary XML outperforms CLOB in all queries with
factor of 54 (or 23 if not including Q8–Q12).

5.4.1 Comparing with Partitioning-based Storage
We also conducted performance comparisons to an open

source state-of-the-art tree-partitioning-based storage struc-
ture. Since that implementation does not support the full
XQuery and only support simple path expressions without
predicates. We tested path expressions with //-axes, wild-
cards and simple paths that consists of /-axes only. All
queries are wrapped by a count() function so that the re-
sults construction cost is eliminated. We obtain about 2x
speedup consistently in all paths even it is a simple short
path. The reasons seems to be twofold: (1) with //-axes and
long simple paths with /-axes only, the whole or most part
of the XML tree need to be traversed. In a tree-partitioning
based storage, this needs to follow the pointers to access
another subtree stored in another disk page, which could re-
sult in random I/O, whereas we benefit from sequential I/O
and caching from the SecureFiles storage; and (2) with the
simple short path, the tree-partitioning approach can skip
subtrees that does not match a certain step and jump be-
tween siblings following sibling pointers. With the help of
navigational summary, Binary XML can also jump to the
end of a large subtree. Furthermore, for small subtrees in
array mode, Binary XML streaming evaluation can jump
to the end of an array of elements, if they are not matches.
With the schema-aware optimizations, we can terminate the
search early even if we have not exhausted a child list.

6. FUTURE WORK AND CONCLUSION
We would like to extend streaming evaluation to broader

scope including the ordering operation and backward axes.
We also would like to develop cost models and optimization
techniques for these streaming operations. We will continue
working on improving the query and DML performance for
the Binary XML storage format.

In this paper, we present the Oracle Binary XML format
that consists of Oracle’s native XML storage and process-
ing. Binary XML is designed to satisfy a wide range of
requirements that are common for real-world business appli-
cations. In summary, Binary XML provides good balances
in schema flexibility, mid-tier integration, query processing,
update, and space consumptions.

7. REFERENCES
[1] XML Schema. Available at

http://www.w3.org/XML/Schema, May 2001.

[2] AgileDelta. Theory, Benefits and Requirements for
Efficient Encoding of XML Documents. http://www.
agiledelta.com/w3c_binary_xml_proposal.html.

[3] K. S. Beyer, R. Cochrane, V. Josifovski, J. Kleewein,
G. Lapis, G. M. Lohman, B. Lyle, F. Ozcan,
H. Pirahesh, N. Seemann, T. C. Truong, B. V. der
Linden, B. Vickery, and C. Zhang. System RX: One
Part Relational, One Part XML. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages
347–358, 2005.

[4] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 479–490, 2006.

[5] M. Brantner, S. Helmer, C.-C. Kanne, and
G. Moerkotte. Full-fledged Algebraic XPath
Processing in Natix. In Proc. 21st Int. Conf. on Data
Engineering, pages 705–716, 2005.

[6] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring up Persistent Applications. In
Proc. ACM SIGMOD Int. Conf. on Management of
Data, pages 383–394, 1994.

[7] S. Chandrasekar, S. Idicula, T. Yu, and N. Agarwal.
Oracle Binary XML Format. Available at
http://www.oracle.com/technology/tech/xml/

xmldb/Current/oracle_binaryxml_rfc.pdf.

[8] J. Cowan and R. Tobin. XML Information Set.
Available at http://www.w3.org/TR/xml-infoset/.

[9] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and
P. M. Fischer. Path Sharing and Predicate Evaluation
for High-Performance XML Filtering. ACM Trans.
Database Sys., 28(4), December 2003.

[10] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 Formal
Semantics. Available at
http://www.w3.org/TR/query-semantics/.

[11] T. Fiebig, S. Helmer, C.-C. Kanne, J. Mildenberger,
G. Moerkotte, R. Schiele, and T. Westmann. Anatomy
of a Native XML Base Management System. The
VLDB Journal, 11(4):292–314, 2002.

[12] D. Florescu, C. Hillery, D. Kossmann, P. Lucas,
F. Riccardi, T. Westmann, J. Carey, and
A. Sundararajan. The BEA streaming XQuery
processor. The VLDB Journal, 13(3):294–315, 2004.

[13] J. E. Funderburk, G. Kiernan, J. Shanmugasundaram,
E. Shekita, and C. Wei. XTABLES: Bridging
relational technology and XML. IBM Systems
Journal, 41(4):616–641, 2002.

[14] V. Josifovski, M. Fontoura, and A. Barta. Querying
XML Streams. The VLDB Journal, 14(2):197–210,
2005.

[15] C.-C. Kanne and G. Moerkotte. Efficient Storage of
XML Data. In Proc. 16th Int. Conf. on Data
Engineering, pages 198–209, 2000.

[16] C. Koch. Efficient Processing of Expressive
Node-Selecting Queries on XML Data in Secondary
Storage: A Tree Automata -based Approach. In Proc.
29th Int. Conf. on Very Large Data Bases, pages
249–260, 2003.

[17] M. Krishnaprasad, Z. H. Liu, A. Manikutty, J. W.
Warner, and V. Arora. Towards an industrial strength
SQL/XML Infrastructure. In Proc. 21st Int. Conf. on
Data Engineering, pages 991–1000, 2005.

[18] Z. H. Liu, S. Chandrasekar, T. Baby, and H. J. Chang.
Towards a Physical XML independent
XQuery/SQL/XML Engine. In Proc. 34th Int. Conf.
on Very Large Data Bases, pages 1356–1367, 2008.

[19] D. Megginson. The Simple API for XML. Available at
http://www.saxproject.org/.

[20] Microsoft. White Paper: What’s New for XML in
SQL Server 2008. White Paper.

[21] N. Mukherjee, B. Aleti, A. Ganesh,
K. Kunchithapadam, S. Lynn, S. Muthulingam,
K. Shergill, S. Wang, and W. Zhang. Oracle
SecureFiles System. In Proc. 34th Int. Conf. on Very
Large Data Bases, pages 1301–1312, 2008.

[22] M. Nicola and B. V. der Linden. Native XML Support
in DB2 Universal Database. In Proc. 31st Int. Conf.
on Very Large Data Bases, pages 1164–1174, 2005.

[23] S. Pal, I. Cseri, O. Seeliger, M. Rys, G. Schaller,
W. Yu, D. Tomic, A. Baras, B. Berg, D. Churin, and
E. Kogan. XQuery Implementation in a Relational
Database System. In Proc. 31st Int. Conf. on Very
Large Data Bases, pages 1175–1186, 2005.

[24] S. Pal, I. Cseri, O. Seeliger, G. Schaller,
L. Giakoumakis, and V. Zolotov. Indexing XML Data
Stored in a Relational Database. In Proc. 30th Int.
Conf. on Very Large Data Bases, pages 1134–1145,
2004.

[25] M. Rys. XML and relational database management
systems: inside Microsoft SQL Server 2005. In Proc.
ACM SIGMOD Int. Conf. on Management of Data,
pages 958–962, 2005.

[26] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103,
CWI, 2001.

[27] R. K. Wong, F. Lam, and W. M. Shui. Querying and
Maintaining a Compact XML Storage. In Proc. 16th
Int. World Wide Web Conference, pages 1073–1082,
2007.

[28] C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo, and
G. M. Lohman. On Supporting Containment Queries
in Relational Database Management Systems. In Proc.
ACM SIGMOD Int. Conf. on Management of Data,
pages 425–436, 2001.

[29] N. Zhang, V. Kacholia, and M. T. Özsu. A Succinct
Physical Storage Scheme for Efficient Evaluation of
Path Queries in XML. In Proc. 20th Int. Conf. on
Data Engineering, pages 54 – 65, 2004.

http://www.agiledelta.com/w3c_binary_xml_proposal.html
http://www.agiledelta.com/w3c_binary_xml_proposal.html
http://www.oracle.com/technology/tech/xml/xmldb/Current/oracle_binaryxml_rfc.pdf
http://www.oracle.com/technology/tech/xml/xmldb/Current/oracle_binaryxml_rfc.pdf
http://www.w3.org/TR/query-semantics/

	Introduction
	Related Work
	Native Storage
	Query Processing

	Oracle Binary XML Storage
	Storage Format
	Tokenization
	Format Overview
	Schema-based Encoding
	Schema-sequential Mode
	Array Mode

	Locators
	Schema Evolution
	Operational Deployment

	Query Rewrite and Processing
	XPathTable Rewrite
	Baseline Streaming Evaluation
	Search-based Decoder
	Structural/Schema-aware Optimizations
	Caching in XPathTable Row Source

	Experimental Results
	Compressions
	Update Performance
	Full Document Retrieval
	Query Performance
	Comparing with Partitioning-based Storage

	Future Work and Conclusion
	References

