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ABSTRACT
In many decision making applications, users typically issue aggre-
gate queries. To evaluate these computationally expensive queries,
online aggregation has been developed to provide approximate an-
swers (with their respective confidence intervals) quickly, and to
continuously refine the answers. In this paper, we extend the on-
line aggregation technique to a distributed context where sites are
maintained in a DHT (Distributed Hash Table) network. Our Dis-
tributed Online Aggregation (DoA) scheme iteratively and progres-
sively produces approximate aggregate answers as follows: in each
iteration, a small set of random samples are retrieved from the data
sites and distributed to the processing sites; at each processing site,
a local aggregate is computed based on the allocated samples; at a
coordinator site, these local aggregates are combined into a global
aggregate. DoA adaptively grows the number of processing nodes
as the sample size increases. To further reduce the sampling over-
head, the samples are retained as a precomputed synopsis over the
network to be used for processing future queries. We also study
how these synopsis can be maintained incrementally. We have
conducted extensive experiments on PlanetLab. The results show
that our DoA scheme reduces the initial waiting time significantly
and provides high quality approximate answers with running con-
fidence intervals progressively.

1. INTRODUCTION
Today’s enterprise business applications such as the supply chain

management (SCM) handle large amount of data that are distributed
over many companies. Each organization (presumably) has its own
enterprise resource planning (ERP) or database system managing
its own data. To facilitate decision making, data from these sources
have to be accessed, combined and summarized.

One traditional approach is to consolidate the data from the vari-
ous data sources into a database warehouse to be managed centrally
by a powerful (and expensive) server. However, such an approach
is not cost-effective and has limited scalability. More importantly,
it cannot provide timely information adequately for critical deci-
sion making. More recently, some distributed systems have been
proposed to support large scale data intensive applications, such
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as Google’s MapReduce [12] and Microsoft’s Dryad [19]. These
systems exploit parallelism from low-cost workstation clusters to
achieve comparable performance to high-end performance server.
Compared to the centralized systems, the distributed ones offer bet-
ter scalability and reliability at an affordable cost.

In this paper, we adopt the distributed approach by organizing
the participating sites (data sources or processing nodes) in a Peer-
to-Peer (P2P) network to facilitate parallelism. Figure 1 shows a
typical corporate network, where sites join the P2P network to form
a logical network overlay. Each site is responsible for its local data
and participates in query processing. Compared to other infras-
tructures, P2P network is a promising alternative for corporate net-
works because sites are autonomous and loosely connected, and the
system is scalable. Among the various types of P2P networks, the
structured ones are the most feasible for business applications [30].
Besides their search efficiency, the participating companies collab-
orate with common goals – cost reduction and profitability. In this
paper, we adopt Chord [27] as the overlay in view of its simplicity
and popularity.

Now, in a P2P-based corporate network, it is not uncommon for
the users (decision makers) to issue aggregate queries that provide
summarized statistics for daily or long term business activities. For
example, by collecting the sale’s report from its branches, WalMart
can plan its orders for the forthcoming week and arrange for the
necessary transportation more efficiently. To answer an aggregate
query, a large proportion of the databases needs to be accessed.
Compared to non-aggregate queries, aggregate queries are expen-
sive and require long processing time. While parallel and/or dis-
tributed processing techniques can be employed to speed up the
processing of such queries, the users may still find the long waiting
time (before any answers are returned) unacceptable.

In [16], Hellerstein et. al. argued that aggregate queries are typ-



ically used to get a “rough picture” from a large amount of data.
As such, instead of producing a precise answer, an “approximately
correct” answer suffices. This prompted Hellerstein et. al. to de-
sign online aggregation techniques to evaluate aggregation query
progressively as follows: as soon as a sufficient amount of data is
examined, an approximate answer and its corresponding running
confidence intervals can be presented to the user; as more data are
processed, the answer and the confidence intervals are refined. In
this way, an user receives immediate feedback on his/her aggregate
query. Moreover, the user can terminate the evaluation prematurely
(and hence saving computation overhead) if the approximate an-
swer suffices for his/her decision making or he/she can observe the
progression of the approximate/refined answer into the precise an-
swer when all the data have been processed.

In this paper, we extend the online aggregation technique to a dis-
tributed context where sites are maintained in a DHT (Distributed
Hash Table) network. Our Distributed Online Aggregation (DoA)
scheme iteratively and progressively produces approximate aggre-
gate answers as follows: in each iteration, a small set of random
samples are retrieved from data sites and distributed to process-
ing sites; at each processing site, a local aggregate is computed
based on the allocated samples; at a coordinator site, these local ag-
gregates are combined into a global (approximate) aggregate. We
present how the running confidence intervals for the global aggre-
gates are obtained from the local aggregates/intervals. DoA adap-
tively grows the number of processing sites as the sample size in-
creases. This is achieved using LH (Linear Hashing) [23] to adap-
tively split the samples and balance the load across different pro-
cessing sites.

To further reduce the sampling overhead, the samples are re-
tained as a precomputed synopsis over the network to be used for
processing future queries. To reduce the maintenance cost, the size
of the synopsis data is bounded. Consequently, samples from dif-
ferent tables compete for space. We propose an algorithm for op-
timizing the synopsis data with regard to the query distribution. A
ranking algorithm is used to measure the importance of the sam-
ples, and samples that are less beneficial are discarded from the
synopsis. We also study how these synopsis can be maintained in-
crementally.

We have implemented DoA and conducted extensive experiments
on PlanetLab. The results show that our DoA scheme reduces the
initial waiting time significantly and provides high quality approx-
imate answers with running confidence intervals progressively.

The rest of the paper is organized as follows. In Section 2, we
give a brief overview of related work. In Section 3, we describe the
system architecture and data flow. We present our sampling tech-
nique for the P2P systems in Section 4. In Section 5, we propose
our basic query processing scheme. And in section 6, we discuss
how to maintain the samples in the synopsis for processing future
queries. We report results of an evaluation of the proposed schemes
in Section 7. Finally, Section 8 concludes the paper.

2. RELATED WORK

2.1 Approximate Query Processing
In real systems, such as decision support systems (DSS), ex-

act answers to queries incur long response time, and is not al-
ways required. To provide early feedback and reduce processing
cost, approximate query processing is proposed to process aggre-
gate queries. There are two types of approximate query processing:
online aggregation [15, 16, 29] and precomputed synopsis [4, 25].
Online aggregation retrieves samples at query time and provides a
gradually refined answer under the user’s control. Once satisfied,
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the user can stop the processing immediately. On the contrary, the
precomputed synopsis scheme constructs and stores the synopsis
prior to query time. And the stored synopsis can be applied to pro-
cess incoming queries.

In our scheme, we combine the two types of approximate query
processing to address the data analytical problem in the distributed
OLAP systems. When a query cannot be processed by the synopsis,
we retrieve the samples on-the-fly; otherwise, the query will be
directly answered by the synopsis. Previous work on distributed
OLAP systems [5, 6] focuses on how to generate a distributed query
plan and does not support online aggregations.

2.2 Sampling Techniques
Sampling techniques have been well studied by the database com-

munity [13]. When precise result is not necessary or too costly to
compute, representative samples are selected to provide an approxi-
mate estimation. Recently, the sampling approach has been applied
to distributed systems. Bash et al. [10] and Henzinger et al. [17]
address the uniform sampling problem in sensor networks and In-
ternet environments respectively.

Sampling is extremely useful in P2P networks, where global
statistics, such as the average degree of peers and the total num-
ber of peers, are impossible to calculate precisely due to the high
overhead. Most existing work is based on unstructured P2P net-
work. The basic idea is to apply random walks [14] to sample the
peers in the network uniformly. However, as peers may have differ-
ent sizes of data and various degrees of connectivity, random walks
cannot guarantee unbiased result. Different schemes [9, 11] have
been proposed to address the problem of generating unbiased result
in the unstructured P2P networks. Based on the sampling approach,
Arai et al. [7, 8] proposed their approximate query processing strat-
egy for aggregate queries in unstructured P2P networks. The query
is processed via the sampled tuples from the peers’ databases.

Our scheme focuses on structured P2P networks, as they provide
better search efficiency and are more feasible for business applica-
tions. Since the routing index exists, sampling in structured P2P
networks are more manageable than in unstructured ones. How-
ever, as databases are maintained by each peer individually and the
global distribution is unknown, it is challenging to retrieve unbi-
ased samples as well.

3. DISTRIBUTED ONLINE AGGREGATION

3.1 System Overview
Figure 2 shows the architecture and data flow of our DoA system.

The data/processing nodes are connected using a DHT overlay. The
data nodes retrieve random samples continuously from the local



databases and apply a linear hash function to map the samples to
some specific processing nodes. The processing nodes process the
queries in parallel and report the results to the query coordinator.
The coordinator further combines the answers from the processing
nodes to produce a global approximate answer that is presented to
the user. The coordinator continues to refine its aggregate (and con-
fidence interval) as the local counterparts are refined. Once the user
is satisfied with the result, the processing can be terminated. As an
example, to compute the average sales of Walmart, each branch
may send its samples to the processing nodes which calculate the
average sales (together with a confidence interval) for the allocated
sampled data. The local averages (and confidence interval) are then
sent to the coordinator, which derives an aggregated summary that
is returned to the user. In our system, the data nodes also act as the
processing nodes. They cooperate with each other to speed up the
query processing.

To improve the performance of our DoA system, we introduce
several optimizations. First, DoA adaptively tunes the number of
processing nodes based on the size of the samples. In the ini-
tial stage of processing, the number of samples are small, and so
a few processing nodes are sufficient to handle the workload; as
more samples are required, the number of processing nodes is cor-
respondingly increased. To facilitate the varying number of pro-
cessing nodes, we adopt a linear hash function, as it can dynami-
cally increase its bucket number when more samples are required.
We map one bucket to one processing node and thus, more buck-
ets indicate more processing nodes get involved. Hence, the query
performance can be guaranteed.

Second, after the samples are disseminated to the buckets, we
will keep the buckets as a precomputed synopsis in the network. In
other words, the processing node will share part of its storage to
maintain the synopsis. When the local databases are updated, we
also reflect such updates in the synopsis (through an incremental
maintenance strategy that refines the synopsis to ensure its random-
ness). Note that we assume that updates to the local databases are
in batches rather than on-the-fly. Hence, the synopsis is stable most
of the time. We also study how these synopsis can be maintained
incrementally. To reduce the overhead of maintenance, the number
of buckets and the bucket size are bounded.

The samples in the buckets can be exploited to answer future
queries. Given a new query, we will first check the samples in the
synopsis. If the synopsis can be used to answer the query directly,
we do not need to access the local databases. Otherwise, the pro-
cessing nodes will retrieve samples from the data nodes until the
user terminates the processing or the query is processed completely.
In this way, we reduce the cost of mapping process by maintaining
the synopsis continuously.

The implementation details of the system are presented in the
following sections. Before we delve into the implementation de-
tails, we briefly introduce our network overlay structure and the
distributed indexing strategy.

3.2 Relational Index in DHT
The processing nodes and data nodes are connected in a DHT

network. Specifically, Chord [27] is used as an example to demon-
strate the idea; other DHT overlays can be easily extended to sup-
port our scheme. Figure 3 shows a 24-Chord, where four nodes join
the network with id 1, 4, 8 and 13 respectively. In Chord, each node
is responsible for a key space starting from its predecessor’s id to
its own id. Suppose the id of the peer is x. For routing purpose,
the peer keeps the IP addresses of the peers responsible for the key
x + 2i (0 ≤ i < m) in a 2m Chord. Hence, the peer will keep m
routing entries in its routing table.
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Figure 3: Chord and Relational Index

In our system, the nodes manage their data in local databases.
As the nodes may adopt different schemas, we map all data to a
global schema. Schema mapping is a complicated problem and is
beyond the scope of this paper. In this paper, we assume that the
data nodes have already built their mapping relations. By employ-
ing the DHT network, the nodes are connected together to provide
a global view of the data, and user queries are answered based on
the global view. Therefore, given a query, we need to forward the
query to all corresponding data nodes. To efficiently discover the
data nodes, we build a relational index in the DHT network. As
shown in Figure 3, there are three attributes in the relational index,
where “database” and “table” indicate the data source and are used
as the key to publish the index and “distribution” gives a coarse
estimation of the data distribution among nodes. For example, for
“part” table, the distribution column indicate that node 4 holds 100
tuples of the table, while node 13 holds 20 tuples. We do not main-
tain the ranges/values of these tuples. To balance the load, we apply
the second hash function method proposed in [28] to create r repli-
cas.

To retrieve samples for a specific table, the system looks up the
index by combining the table name and database name as the key.
Then, it will have an approximate estimation about the data dis-
tribution, based on which, a uniform sampling can be performed.
Finally, an approximate answer is generated based on the retrieved
samples. Error bounds and confidence intervals are provided as
well.

The local updates may affect the validity of the index. In this
paper, we adopt the lazy update scheme. The query processor re-
trieves samples based on the data distribution in the index. There-
fore, the data node will receive an estimated data distribution from
the index via the query processor. After the query is processed, the
data node computes the difference between the estimated statis-
tics and its local computed one (normally stored in the local his-
tograms). And if the difference is large enough, an update message
is triggered to modify the index entries.

More sophisticated index schemes can be proposed to optimize
the query processing. However, the above index scheme is enough
for processing the aggregate query approximately. In this paper, we
focus on optimizing and processing aggregate queries in parallel.

4. ADAPTIVE RANDOM SAMPLING
One of the key challenges in our design of DoA is to ensure that

the samples are randomly picked from among the distributed nodes.
We present in this section our approach to realize this.

4.1 Local Sampling
In our system, the node must provide an interface for picking

random samples from its database. The order of samples should not



be affected by their values. Hellerstein et al. [16] proposed three
methods: heap scans, index scans and sampling via indices. In this
paper, we adopt the approach of sampling via indices [24] since it
can provide better random samples, even when attributes are not
independent. Moreover, sampling via indices can be implemented
based on the API provided by major DBMSs. Specifically, Postgres
is employed as our underlying DBMS.

4.2 Distributed Sampling
Let T be a global table. Let P nodes contain tuples of T . Let

the set of tuples of T at node i be Ti (1 ≤ i ≤ P ). Recall that
in our DoA framework, the cardinality of Ti can be easily obtained
from the relational index in the DHT network. Based on this in-
formation, the following naive scheme, called GetSample(Table T ,
int k), can be used to generate k unbiased sample for T : (a) Each
node i provides the number of samples that is proportional to its
cardinality, i.e., node i provides ( |Ti|

|T | ·k) samples, where |T | refers
to the cardinality of table T . (b) Each node independently samples
its data locally. In our work, each local site’s samples are provided
by the local Postgres. (c) All the samples are collected to produce
an unbiased sample for T .

THEOREM 4.1. Suppose each node provides an unbiased set of
samples for its local data. Given the precise data distribution, algo-
rithm GetSample(T ,k) generates k unbiased samples for the table
T .

PROOF. A sampling of T is unbiased if each tuple in T has the
same probability of being picked, which is 1

|T | . Under algorithm
GetSample, for each node i with |Ti| tuples of T , if node i ran-
domly picks one sample from the Ti, each tuple of T (in Ti) has
the probability 1

|Ti|
of being sampled. Since we essentially pick

node i with probability |Ti|
|T | , each of Ti’s tuples has the same prob-

ability 1
|Ti|

× |Ti|
|T | = 1

|T | of being sampled.

To get random samples from a table, we have to know the data
distribution, specifically, the number of tuples hosted by each data
node. As the relational index is built for each table, we only have
an estimation about the data distribution. In particular, due to the
lazy update strategy, the estimation is only an approximation. This
means that the samples may not be as truly unbiased (unless the
estimated values reflect the true values). To handle this problem,
we propose a self-adaptive sampling scheme.

The proposed self-adaptive sampling scheme, shown in Algo-
rithm 1, generates samples in two phases. In the first phase, the
query processor checks the relational index to determine the set
of nodes, P , that hold tuples of T (line 1). Recall that the index
contains only estimated sizes of the table in these nodes (namely
t1e, t

2
e, · · · , t

|P |
e ), from which we can determine the estimated size

of T , i.e., te (line 2). Then, based on the indexed information and
Theorem 4.1, each node retrieves and returns a number of random
samples (lines 5-6). At the same time, the actual cardinality of T is
computed based on the responses of the nodes (line 7).

In the second phase, we refine the samples that have already been
computed in the first phase as follows. If enough samples have
been retrieved (i.e., t > te), we recalculate the necessary number
of samples from those already retrieved and return the combined
sampling data (lines 9–13). Otherwise, the algorithm issues another
message to retrieve more samples from the nodes (lines 14–19).

Algorithm 2 illustrates the actions at a node, when receiving the
sampling requirement. If isAdaptive is set to false, the node just
returns se samples as the estimation requires. If isAdaptive is set
to true, the node will recalculate the sample size according to the

Algorithm 1 SelfAdjustSample(Table T , int k)
// T : table to be sampled
// k : number of required samples
1: P = lookupRelationalIndex(T )
2: te =

∑|P |
i=1 ti

e
3: t = 0
4: for ∀ni ∈ P do
5: se=estimated number of samples from node ni

6: S[ni] = AdaptiveSampling(T, ni, k, se, te, true)
7: t = t + S[ni].n
8: S = ∅
9: if t ≥ te then

10: for ∀ni ∈ P do
11: se = S[ni].n×k

t

12: S = S ∪ {se random samples from S[ni].s}
13: return S
14: else
15: for ∀ni ∈ P do
16: se = k×S[ni].n

t
− k×S[ni].n

te

17: reval = AdaptiveSampling(T, ni, k, se, t, false)
18: S[ni].s = S[ni].s ∪ reval.s
19: return ∪∀ni∈P S[ni].s

Algorithm 2 AdaptiveSampling(Table T , Node ni, int k, int se, int
t, bool isAdaptive)
//k : total number of required samples
//se : estimated number of samples from ni

//t : estimated total number of tuples in table T
1: reval.s = ∅, reval.n = se

2: if isAdaptive = false then
3: reval.s = {se local samples from Ti}
4: else
5: reval.n = actual cardinality of Ti

6: reval.s = { reval.n
t

× k samples from Ti}
7: return reval

actual size of the table in the node. The real number of tuples in
a table can be obtained by searching the histogram or meta table
in the local database. A simple optimization is to retrieve δ more
samples than required. And if δ is large enough, the second phase
(in Algorithm 1) is not necessary.

THEOREM 4.2. Suppose each node provides an unbiased set of
samples for its local data. Algorithm 1 gets k unbiased samples for
table T in a distributed network.

PROOF. For node ni, let t and ti represent the total number of
tuples in T and the size of T in ni respectively. Let te and ti

e be
their estimated values. Unbiased sampling indicates that each tuple
should have the same probability 1

t
to appear in the samples. In

Algorithm 1, in phase 1, we first retrieve ti×k
te

samples from node
ni. Thus, each tuple in ni has the probability 1

ti
of being sampled.

Then, there are two cases (in phase 2):

1. if t ≥ te, we just pick ti×k
t

samples (out of the ti×k
te

samples
retrieved in phase 1). The sample number of each peer is
proportional to its data size. For peer ni, we have probability
ti
t

of picking its samples. Hence, for a tuple of ni, it has
probability 1

t
= ti

t
× 1

ti
of being sampled.

2. if t < te, we already have ti×k
te

samples from each node, but
we wanted ti×k

t
samples from each node. So, we need to

pick an additional number which is given by the difference.
So for node ni, its samples will also have the probability ti

t
of being selected.



Finally, it is easy to verify that the total number of returned samples
equals k.

5. ONLINE AGGREGATE QUERY PROCESS
ING

In this section, we discuss how to retrieve samples from the data
nodes to process the aggregate queries approximately. Our query
processing scheme can be split into three phases. In the first phase,
samples are pulled from the data nodes and disseminated to some
processing nodes. In the second phase, the processing nodes pro-
cess the queries in parallel and send the results to a coordinator.
Finally, in the third phase, the local results are combined into a
global answer.

Algorithm 3 QueryProcess(Query Q)
1: Coordinator C=getCordinator(Q)
2: Processing Nodes S = ∅
3: while TRUE do
4: getSamples(Q,k)
5: update S
6: for ∀s ∈ S do
7: s processes Q based on the samples
8: C collect results from S
9: C computes the global answer

10: if result satisfies user’s requirement then
11: break

Algorithm 3 illustrates our general idea. We generate a unique
id for each query. Based on the id, we assign the query to a spe-
cific node, which acts as the query coordinator. Initially, there are
no processing nodes for the query. Then, we retrieve k samples
for the query in each iteration. The samples are disseminated to
some processing nodes. The number of nodes may change dynam-
ically as the size of the samples increases. After all the samples
have been received, the processing nodes process the query in par-
allel and return the partial results (with corresponding confidence
intervals) to the coordinator. The coordinator computes the global
results. This process of sampling, local processing, and integrating
of local answers into a global results continue until the user is sat-
isfied with the approximate answers (in which case, the query may
be terminated prematurely).

In order to adaptively tune the number of processing nodes, we
adopt linear hash function to distribute samples across the process-
ing nodes. If a large number of samples need to be processed, more
processing nodes will get involved. In the following subsections,
we first discuss how to disseminate samples in a DHT network,
and then we present our distributed online aggregation technique
for a DHT network.

5.1 Namespace
In DHT networks, we need a key to publish and retrieve a sam-

pled tuple. In previous work [18], the database name, table name
and values of the key attributes are typically combined together and
used as the keys to disseminate tuples. We adopt the same scheme
for single relation queries. However, for queries involving (equi-)
joins, we need special care to guarantee that tuples from different
tables that can be joined together are sent to the same processing
node. Therefore, we need to generate the same key for these tuples.
To do so, we need to discover the relationships between the tables.
We define the joining group concept below for this purpose.

DEFINITION 5.1. Joining Group
A joining group is a set of attributes g = {T1.a1, T2.a2, · · · , Tk.ak}
such that (a) ∀Ti, Tj(1 ≤ i, j ≤ k), Ti 1Ti.ai=Tj.aj Tj is a valid
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operation, and (b) for any T.a /∈ g, Ti ∈ g, T 1T.a=Tj.aj Tj is
not a valid operation.

A joining group describes the equi-join relationships between
different tables. Before we publish the tuples, we can generate the
joining groups based on the global schema. Figure 4 shows the
TPC-H [3] schema. Two joining groups, g1={PART.PARTKEY,
PARTSUPP.PARTKEY, LINEITEM.PARTKEY} and g2={SUPPL-
IER.SUPPKEY, PARTSUPP.SUPPKEY, LINEITEM.SUPPKEY},
are generated for the attribute “PARTKEY” and “SUPPKEY” re-
spectively.

We define a namespace for each joining group and use it as the
key in the DHT network to disseminate the tuples.

DEFINITION 5.2. Joining Group’s Namespace
For a joining group g = {T1.a1, T2.a2, · · · , Tk.ak}, we sort the
attributes based on their names. The Namespace of g is defined as
the string concatenation of all the attributes’ names.

A table T may get involved in multiple joining groups. For ex-
ample, in Figure 4, PARTSUPP participates in two joining groups,
g1 and g2. To disseminate samples in T , we can randomly select
one of the joining groups or use all of the joining groups to create
multiple replicas. A better strategy employed in this paper is to se-
lect the joining groups based on the query, as the samples are pub-
lished for answering queries. For the single relational queries, we
pick a random joining group and use it to generate the namespace
for publishing our samples. For the multiple relational queries, we
select the joining groups based on the equi-join conditions. For
example, suppose the following query is issued to compute the av-
erage retail price of a specific supplier.

SELECT AVG(RETAILPRICE)
FROM PART, PARTSUPP, SUPPLIER
WHERE PART.PARTKEY=PARTSUPP.PARTKEY
AND PARTSUPP.SUPPKEY=SUPPLIER.SUPPKEY
GROUP BY SUPPKEY

Table PART and SUPPLIER will use joining groups g1 and g2

respectively, while table PARTSUPP can select any of the joining
groups. Different selections of PARTSUPP leads to different query
plans.

5.2 Samples Dissemination
To dynamically adapt the number of processing nodes on-the-

fly, we employ linear hashing such that each bucket is assigned to
a processing node. In this way, as the number of buckets grows
dynamically, the number of processing nodes also increases corre-
spondingly. Briefly, in linear hashing, the system has initially m
buckets - bucket 0 to bucket (m − 1). When a bucket is full (this
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Figure 5: Dissemination of samples.

can occur in any bucket), a new bucket m is created. Data in bucket
0 is then rehashed into buckets 0 and m. A new bucket may also be
added to accommodate the overflow in the bucket that is full. Sub-
sequently, when the next bucket overflows, bucket 1 will be split
between bucket 1 and a newly created bucket m + 1. This process
continues until all the initial m buckets have been split, after which
the level of the hash function increases by 1. For detail algorithms
of linear hashing, readers can refer to [23]. In this paper, we focus
on how to apply linear hashing to disseminate the samples.

When K samples are required from a specific table T , we invoke
algorithm 1 to retrieve the samples from the data nodes in parallel.
Each node, after receiving the request, starts to publish its samples
into the network. It first generates a namespace based on the join-
ing group and query. Then, it employs the linear hash function to
disseminate its samples. Figure 5 illustrates the data dissemination
process.

In Figure 5(a), we have three databases (DB1, DB2 and DB3)
maintained by three data nodes. Suppose 8 samples are required for
processing a query, we will retrieve 4, 2 and 2 samples from DB1,
DB2 and DB3 respectively. Let the size of the bucket in the linear
hash function be 2. And the hash function is defined as h(k)=k mod
2i, where i is the level of the linear hash. Figure 5(a) shows the
case when 8 and 9 are published. At first, there is only one bucket
and all data are inserted into the bucket. After 8 and 9 are inserted,
the bucket is full and cannot accept more samples. When new value
3 is inserted, the bucket splits and increases its level by 1. Now, the
hash function becomes h(k)=k mod 2. And thus, 8 is kept in B0

and 9 and 3 are stored in B1.
When new value 5 is inserted into B1, B1 becomes overloaded

as shown in Figure 5(b). However, we cannot split it as the level
pointer is set to B0. In Figure 5(c), after samples 6 and 10 are
inserted, B0 becomes overloaded and splits half of its data to the
new bucket B2 based on the hash function h(k)=k mod 4. The level
of B0 increases by 1 and the level pointer moves to B1. As B1

already satisfies the split condition, it creates the new bucket B2

and increases its level by 1. And the level pointer is reset to B0. In
the end, Figure 5(d) shows the final status of the buckets.

We give each bucket a unique id (combination of the names-
pace and the bucket number) and use the id as the key in the DHT
network to locate a processing node. The processing node is re-
sponsible for maintaining the bucket. It stores the bucket data,
bucket level and bucket number. In this way, we map the samples
in the same bucket to a specific processing node. All data within
the bucket have the same hash value.

We note that when the level (and hash function) is changed, the
data nodes are notified. The delay in updating the data nodes is
not a serious issue as data sent to the split bucket will be rehashed
accordingly.

5.3 Optimizing the Bucket Size

By employing linear hashing to disseminate the data, we can ef-
ficiently balance the load between processing nodes. The number
of processing nodes is proportional to the number of samples that
need to be processed. Each processing node is responsible for a
specific bucket of the linear hash function. Therefore, the size of
bucket affects the workload of the node. In this section, we try to
compute the optimal bucket size. Table 5.3 shows the parameters
used. Suppose S samples are required to process the query and
the bucket size is set to B. On average, there are x = S

αB
buckets,

where α is the load factor of the linear hash function and is between
65% and 70%[23]. This also indicates that x processing nodes are
needed to process the query in parallel.

For a single query, increasing the number of processing nodes
will increase the parallelism and thus reduce the processing time. x
should be set as large as possible. However, when multiple queries
are processed in the system simultaneously, the queries will com-
pete for the processing nodes. When buckets from different queries
are mapped to the same processing node, the node will process the
data in the FIFO (First-In-First-Out) order. The new query must
wait for the old one to be processed. Its query time thus includes
its own processing time and the waiting time. We present a model
to determine the optimal bucket size below.

Table 5.3 Parameters
Name Description Name Description

x number of buckets S average number of samples
B bucket size α LH load factor
λ query arrival rate N number of nodes
ν processing rate Hx xth harmonic number

Assume the query arrival rate follows a poisson distribution with
mean λ. Let the number of processing nodes in the system be N .
Because we use hash function to locate the processing nodes, for
each processing node, the queries arrive in a poisson distribution
with rate λx

N
, where x is the average number of buckets per query

(poisson distribution is always used to model the stochastic events).
Suppose q is a query starting at time t0 and {B0, B1, ...Bx−1} are
its buckets. The query is finished only when its last bucket re-
turns the final result (Here, a query is considered to be completed
as long as the error bound and confidence intervals has reached a
certain level of accuracy. In our experimental study, this happens
when the error bound is within 1% and the confidence level is at
98%. We also ignore the overhead at the coordinator as it is neg-
ligible given its task is a simple integration process.) Hence, the
processing time of q is determined by the longest job queue of Bi

in time t0. In linear hashing, the bucket’s data are changed over
time. As data are inserted randomly, we assume the number of data
in the bucket follows an exponential distribution with mean αB.
Moreover, as the processing time is proportional to the data in the
bucket, the processing time of a bucket also follows an exponential
distribution with mean αBν, where ν denotes the unit processing



time. Based on the above assumptions, we compute the expected
processing time as:

E(T ) = αBνx

+∞∑
m=0

mP{N(t0) = m}P x−1{N(t0) < m}

where P{N(t0) = m} denotes the probability of a m-length job
queue at time t0.

This problem is an instance of the famous fork-join queue prob-
lem in parallel computing. There is no exact solution, when the
allowed number of processing nodes is larger than 2. In this pa-
per, we adopt the result in [26], i.e., if each query is mapped to x
buckets, the mean processing time can be approximated by:

E(T ) ≈ (
Hx

H2
+

4

11
(1 − Hx

H2
)ρ)

12 − ρ

8µ(1 − ρ)
(1)

where Hx is the xth harmonic number, µ is the mean service time
and ρ = λx

µN
is the utilization of the processing node. In our

scenario, µ = 1
αBν

and ρ = αλxBν
N

. When x is large enough,
Hx ≈ ln(x). Suppose the average number of processed samples
for a query is S, we have x = S

αB
. The final solution for E(T ) is

E(T ) ≈ ( 2ln(x)
3

+ 4αλxBν
11N

(1 − 2ln(x)
3

)) 12αBνN−(αBν)2λx
8N−8αλxBν

≈ (
2ln( S

αB
)

3
+ 4λSν

11N
− 8λSνln( S

αB
)

33
) 12αBνN−αλBSν2

8N−8λSν

To simplify the representation, we define three parameters a, b and
c as:

a =
2ln(S

α
)

3
+

4λSν

11N
−

8λSνln(S
α
)

33

b =
8λSν

33
− 2

3

c =
12ανN − αλSν2

8N − 8λSν

And thus, the expected mean time can be approximated by

E(T ) ≈ acB + bcBln(B) (2)

If ac < 0 and cb > 0, by differentiation, we get the B value that
minimizes the response time.

B = e−1− a
b (3)

If ac > 0 ∧ cb < 0 or ac < 0 ∧ cb < 0, there is no minimal value
for E(T ). As the bucket size increases, the estimated processing
time decreases. Thus, we set the bucket size as large as possible
(map the data to one processing node).

Finally, if ac > 0 ∧ cb > 0, the bucket size should be as small
as possible. The optimal bucket size is S

N
, which indicates that all

processing nodes are involved in the query processing.
The optimal bucket size is determined by a series of parameters,

such as query arrival rate and average sample size. In the experi-
ment, we can set these parameters as the predefined values. In the
real system, we employ the peer gossip method to estimate the pa-
rameters. Each peer has a local estimation for the parameters based
on the past query processing. It will periodically exchange the esti-
mation with its neighbors (peers in its routing table). The efficiency
and effectiveness of the gossip based method have been verified in
[20, 21]. We will not discuss the detail in this paper.

5.4 Query Processing
Once the data dissemination process finishes, we can start the

query processing at the corresponding processing nodes. The pro-
cessing at each node is similar to the original online aggregation
[16], except that the queries in our system are processed in multi-
ple nodes. In our case, each processing node will produce a partial
result based on its current samples. Then, the results along with
some meta-data are sent to a coordinator for producing the final
result.

5.4.1 Confidence Computation
If the samples are selected randomly and in an unbiased way, we

can provide an error bound and confidence interval. The result v
with error bound ϵ and confidence interval c means that v is within
±ϵ of the real result vr with probability approximately c. Or we
can say that the real answer vr lies in the range [v − ϵ, v + ϵ]
with probability approximately c. In this paper, ϵ and c at each
processing node can be derived in the same manner as that in [16].

Consider a typical single relational aggregate query such as

SELECT op(expression(xi)) FROM T

Let µ be the expected aggregate value (average, sum or count)
and Y be the estimated value. Generally, we obtain a sample set S
by selecting k random samples from relation T .

1. Y = |T |
k

∑
∀ti∈S

c(expression(ti)), where |T | is the size of

table T , c(xi) = 1 if op = count and c(xi) = xi if op =
sum.

2. Y = 1
k

∑
∀ti∈S

expression(ti), when op = avg.

Suppose σ2 is the estimated variance of table T . Then by the
Central Limit Theorem,

√
k

σ
(Y −µ) is distributed approximately as

a standardized normal distribution. This assertion also holds if σ is
replaced by the estimators σ2

1 = k−1 ∑k
i=1(op(expression(xi))−

Y )2.
Given an error bound ϵ, the confidence can be computed by the

following formula:

P |Y − µ| ≤ ϵ ≈ 2ϕ

(
ϵ
√

n

σ1

)
− 1 (4)

For a typical multi-relational aggregate query such as

SELECT op(expression(xi, xj)) FROM T1, T2 WHERE T1.a = T2.b

Suppose we have sample set S1 and S2 for table T1 and T2 re-
spectively.

1. Y = |T1||T2|
|S1||S2|

∑
t1∈S1,t2∈S2

c(expression(t1, t2)), where c(xi) =

1 if op = count and c(xi) = xi if op = sum.

2. Y = 1
k′

∑
t1∈S1,t2∈S2

expression(t1, t2), where k′ is the

number of tuples after joining and op = avg.

To estimate the confidence and error bound of the multi-relational
query, we need to estimate the corresponding variances. Based on
the analysis of [15], the variance for sum and count can be com-
puted as:

σ =
σT1

|T1|
+

σT2

|T2|
(5)

where σTi is the variance of table Ti. And the variance of avg can
be estimated based on the variance of sum and count.
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Figure 6: Incremental Computation for Join

5.4.2 Result Collection at Coordinator
After the processing nodes finish their processing, the partial re-

sults will be gathered at the coordinator, where a final result is com-
puted for the query. Suppose k processing nodes get involved and
Xi is the node ni’s estimation. Let σXi denote the variance of
Xi and Cov(Xi, Xj) represent the covariance of Xi and Xj . The
variance for the final (approximate) result is estimated as:

σ =

k∑
i=1

wiσXi +

k∑
i=1

k∑
j=1,j ̸=i

Cov(Xi, Xj) (6)

We assign a weight wi to each individual estimation (
k∑

i=1

wi = 1).

Based on the analysis of [22], the covariance can be ignored and
the optimal estimation is obtained by setting

wi =
1

σXi

k∑
j=1

1
σXi

(7)

And thus, the final result is computed as:

X =
k∑

i=1

wiXi (8)

Because the sum of normal distributed variants follows normal dis-
tribution as well, we can use the same rule to estimate the confi-
dence and error bound of the result.

In most cases, the workload of the coordinator can be ignored.
However, if a large number of groups are generated in the process-
ing nodes, the coordinator may be overloaded by combining the re-
sults. Therefore, if the initial coordinator receives too many groups,
it will start up some other coordinators to share its load. The groups
are partitioned between the coordinators and the processing nodes
will forward the results of a group to the corresponding coordinator.

5.4.3 Incremental Computation
As described in Algorithm 3, in each iteration, we retrieve k

samples from the corresponding data nodes. If these samples can
generate a satisfied result for the user, we can stop the processing.
Otherwise, additional k samples will be retrieved. This process
continues until the user terminates the processing or the query has
been processed completely.

In each iteration, the processing node will generate a partial re-
sult based on the local samples. The local samples are the samples
mapped to the bucket maintained by this node. Now, as more sam-
ples are inserted, it would be ideal if the work done earlier can be
salvaged. In other words, the computation of the aggregates and
the corresponding confidence intervals can be incrementally com-
puted. However, this is only possible for buckets that are not split.
For a bucket that has been split during an iteration, we need to scan
the sample set completely again to re-produce a new partial result.

Here, we discuss the case when incremental computation can
be exploited. Suppose Ni, σi, x̄i and Xi denote the number of
samples, variance, average value and the estimated result in the ith
iteration, respectively. Let Si represent the new retrieved samples
in the ith iteration. Hence, Ni+1 = |Si+1|+ Ni. Based on the fol-
lowing equations, we can incrementally compute the partial result
and its error bound. For the average value, we have

x̄i+1 =
1

Ni+1
(Nix̄i +

∑
xj∈Si+1

xj) (9)

And the variance can be computed in a similar way.

σi+1 =
1

Ni+1

∑
∀xj

x2
j − x̄2

i+1

=
1

Ni+1
(Niσi + Nix̄

2
i +

∑
xj∈Si+1

xj)) − x̄2
i+1 (10)

Incremental computation can be easily adopted for the single rela-
tional query. In the new iteration, we only need to scan the new
samples and apply the above formulas to generate the new results.
In the case of multi-relational query, not only the new samples but
the old samples need to be scanned for producing the result.

Figure 6 shows how the multi-relational query is processed in an
iterative way. Suppose we retrieve one block samples from tables
T1 and T2 in each iteration. In the first iteration, samples in the
block a1 and b1 are joined together. In the second iteration, samples
in the block a2 need to join with samples in the block b1 and b2.
And similarly, samples in b2 need to join with samples in a1 as
well. This strategy is similar to the ripple join processing. The
difference is that as we apply the linear hash function, the samples
in the same bucket can join with each other with high probability.

In the single relational query, the processing of each iteration
is almost constant, as only the newly inserted samples need to be
processed, while in the multi-relational case, the processing of each
iteration increases linearly. In our system, the partial results are sent
to the coordinator for producing the final result. If the partial results
are sent after each iteration, the final result will be updated in an
irregular rate. To avoid such problem, when performing join, we
adopt the block-based update strategy. After the processing node
finishes joining samples in one block with another block, it will
report its partial result to the coordinator. For example, in Figure 6,
instead of waiting for the end of the iteration, the node will report
its report after joining block b2 with a1 in iteration 2.

6. MAINTAINING SAMPLES AS A PRECOM
PUTED SYNOPSIS

Sampling is an expensive operation. In DoA, instead of sam-
pling the data nodes for each query, we maintain the samples as a
precomputed synopsis over the network. After the samples are used
for processing the queries, we keep them in the processing nodes.
In other words, we keep the buckets of the linear hash function after
the query processing.

The existence of the synopsis changes the strategy of query pro-
cessing. We need to modify two lines of Algorithm 3 to reuse sam-
ples in the synopsis. First, in line 2, we can directly search for
the processing nodes for a specific query. The potential processing
nodes for a query is the nodes storing the corresponding buckets
for the query. As discussed before, we apply the joining group’s
namespace to discover such nodes. A challenging problem is how
to find all the candidate nodes. Fortunately, based on the protocol
of linear hash function, we can efficiently retrieve all the potential
processing nodes.



Initially, the query request is forwarded to the node responsible
for the first bucket of the linear hash function. The node maintains
the basic information about the bucket, such as the bucket level.
Suppose its bucket level is L, the total number of buckets is be-
tween 2L−1 to 2L. Then, this node forwards the query request to
the first 2L−1 processing nodes. After receiving the request, the
node responsible for the bucket x will process the query based on
the data in x and if its level is L, it will further forward the query
to the node responsible for the bucket x + 2L−1. In this way, all
the corresponding processing nodes will receive the query and start
their processing.

The second modification of Algorithm 3 is the sample retrieval
process in line 4. In the early stage of query processing, we apply
the samples in the synopsis to process the query. Therefore, there
is no network cost for the data nodes in this stage. However, if
existing samples cannot generate a satisfied result, more samples
will be retrieved from the data nodes on-the-fly. In our scheme,
each processing node also “remembers” the samples that have been
maintained as synopsis. In this way, any additional requests will
always retrieve different tuples.

6.1 Sample Replacement
Each processing node shares part of its local storage for main-

taining the synopses. These synopses essentially are the buckets
of different tables/namespaces that have been hashed to the pro-
cessing node. In other words, each processing node maintains syn-
opses for a number of buckets from different namespaces. To re-
duce the maintenance overheads, the system sets up an upper bound
for the shared storage. However, the amount of space allocated for
each namespace may be different. Thus, it is necessary to man-
age this storage carefully for optimal performance, especially when
the storage capacity has been reached. When more samples of a
namespace are retrieved, we need to “victimize” samples from an-
other namespace to hold these additional samples. Our solution is
described below.

For a processing node ni, suppose there are k buckets B1, ..., Bk

with different namespaces stored at ni. Let |Bi| represent the size
of the bucket (number of samples in the bucket). As mentioned
above, based on the system parameters, we have computed an op-
timal bucket capacity |B|. Recall, |Bi| < |B| since each bucket is
typically 65% full. Let S be the query set processed by ni in a time
period θ. We rank each bucket Bi as follows:

r(Bi) =
f(S, Bi)

|Bi|

where f(S, Bi) returns the number of queries processed by Bi.
Let g(Bi) denote the bytes required for storing a sample at Bi.

When the size of samples exceeds the defined threshold T (e.g.
k∑

i=1

|Bi|g(Bi) > T ), we need to remove some samples from the

synopsis to accept the newly inserted ones. Given the condition:

k∑
i=1

xig(Bi) ≤ T

where xi denotes the size of bucket after adjustment, we want to
maximize the benefit of synopsis, which is estimated as

Y =

k∑
i=1

xir(Bi)

This problem can be solved by a greedy algorithm. Each time, we
pick the bucket with highest rank and insert it into the reserved list
until the size of the list reaches the storage threshold. Then, for

the rest of the buckets, we will remove all the data in the buckets.
Note that the meta-data of these buckets are kept as a requirement
of linear hash function. The last bucket in the reserved list needs
special care. We remove part of its samples from the bucket until
the storage requirement is satisfied.

6.2 Synopsis Update
Different from online transaction systems, in the data warehouse

system, the data are inserted in a batch manner. After one day’s
commercial activity, the company will backup its business transac-
tional data into the data warehouse system for analysis. This obser-
vation indicates two facts. First, the system is updated periodically
in a batch manner. Second, most of the update operations are inser-
tions. These characteristics allow us to propose an efficient update
scheme for the synopsis.

To facilitate the update of samples, each peer maintains a sam-
ple table recording its samples in the synopsis. The table has three
columns, namely “Namespace”, “Bucket Size” and “Bucket Level”.
Namespace is the corresponding joining group’s namespace for
publishing the samples. Bucket size is the precomputed optimal
bucket capacity and bucket level is the current level of the buckets.
Bucket level can be estimated by asking the first bucket of the lin-
ear hash function. Suppose the returned level is L, then the buckets
level must be L or L − 1.

Suppose table T has t0 tuples in the data warehouse and t1 tuples
are inserted during the update process. We will select some ran-
dom samples from the newly inserted data to replace the old ones.
First, the maximal number of samples in the synopsis is estimated
as 2LB, where B is the optimal bucket size. Then, we retrieve
S = 2LBt1

t0+t1
samples from the newly inserted data and disseminate

them according to the linear hash protocol. Based on algorithm
GetSample, we can compute the number of samples required in
each data node. As mentioned before, the data in the synopsis are
dynamically adjusted based on the query pattern. Thus, S is an up-
per bound for the required samples. We need to adjust the number
of new samples in each bucket.

For a bucket Bi, it needs to replenish some new samples and
remove some old ones. Due to the limitation of storage, the size
of bucket after updating is kept to be less than |Bi|. Suppose there
are x new samples hashed to the bucket. Based on x, there are two
cases:

1. If |Bi|t1
t0+t1

≤ x, we get enough new samples to update the

bucket. Specifically, |Bi|t1
t0+t1

old samples are removed and the
same amount of new samples are inserted. In this case, the
number of data in the bucket is unchanged, but we do not
accept all the new samples.

2. If |Bi|t1
t0+t1

> x, there are not enough new samples to update
the bucket. In this case, we will shrink the size of the bucket.
|Bi| − t0x

t1
old samples are removed from the bucket and x

new samples are fully accepted. The bucket size is changed
to t0x

t1
+ x.

In both cases, we keep the ratio between the old samples and
the new samples in the bucket. And hence, the synopsis still main-
tains a uniform sample set for the data nodes. The correctness of
applying the synopsis to process the queries is guaranteed.

When updating the synopsis, we apply the batch insertion. In-
stead of inserting the new samples one by one, we group them
based on the hash value in the data nodes. Then, the samples to the
same bucket are sent together. This batch insertion is only valid in
the update case for two reasons. First, the number of new samples
is small and the local data node can group the samples efficiently



Table 1: Experimental parameters
Parameters Default Value Range of Values
error bound ±1% ±1% −±5%
confidence 95% 80% − 98%
data size per group 1G 1G - 5G
λ (avg query per second) 10 (Q1)/ 1 (Q2) 10 (Q1)/ 1 (Q2)
shared storage per node 10M 10M

(buffer them in the memory). Second and the most important rea-
son is that the buckets are never split during the update process as
we keep the bucket size. Then, we can compute the samples for
each bucket beforehand.

7. EXPERIMENT EVALUATION
To evaluate the performance of our DoA mechanism, we deploy

our system on PlanetLab [2]. Specifically, we construct a corpo-
rate network with 128 nodes on the Chord overlay. The TPC-
H toolkit [3] is employed to generate the test data. Two tables,
lineitem and orders, are used in the experiments. We generated a
1G TPC-H dataset which includes 6000K and 1500K tuples from
tables lineitem and orders, respectively. To simulate a multi-corporate
scenario, we group the nodes into 6 groups. Each group is given a
specific namespace and hosts one dataset. All groups, except the
last one, will have 20 data nodes. The data is evenly partitioned
among the nodes. Therefore, for the 1G TPC-H dataset, each node
in the group will manage about 600K tuples of lineitem or 150K
tuples of orders. Each node provides 10M memory for maintaining
the synopsis. We find that in most cases, the sample size is quite
small and even a small-size memory can buffer all the samples.

Q1=

SELECT avg(l extendedprice × l discount) AS revenue
FROM lineitem l
WHERE l shipdate < x+ 1 year AND l shipdate ≥ x AND
l discount < y + 0.01 AND l discount ≥ y − 0.01 AND
l quantity < z

Q2=

SELECT avg(l quantity)

FROM lineitem l, orders o
WHERE l shipdate < x+ 1 year AND l shipdate ≥ x AND
l orderkey = o orderkey AND o orderpriority like ’%s’

The query is issued to a specific node group. In the experiment,
two query templates, shown above, are employed to generate dif-
ferent types of queries. Q1 represents the typical single-relational
query and Q2 is used to produce the multi-relational query. Param-
eters x, y, z and s are random values in the corresponding attributes’
domains. More experiment parameters can be found in Table 1.

For each experiment, 10K aggregate queries are generated and
injected into the system. The average query response time is adopted
as the major metric.

7.1 Optimal Bucket Size
In DoA, linear hashing is applied to dynamically manage the

samples. If more samples are retrieved and maintained in the syn-
opsis, more processing nodes will get involved. Specifically, the
bucket size of the linear hash function determines the number of
processing nodes. In this paper, we have proposed a method to
compute the optimal bucket size based on previous work [26]. In
this experiment, we assume queries arrive to the system in a pois-
son distribution with rate λ. We set λ = 10 for Q1 and λ = 1
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Figure 7: Effect of Bucket Size

for Q2. In other words, on average, we issue 10 single-relational
queries or 1 multi-relational query to the system per second. The
average number of retrieved samples for Q1 and Q2 are approxi-
mately 33,380 and 120,000 for each table (with error rate less than
1% and confidence higher than 95%), respectively. Assume the
processing node can process 1000 tuples per-second. We can com-
pute that the optimal bucket size is about 4500 and 13000 for Q1
and Q2 respectively.

Figure 7 shows the effect of bucket size on the throughput (per
min). First, we observe that there is a certain optimal bucket size
for both types of queries. When the bucket size is small, it means
that more processing nodes are involved. This results in more con-
tention for resources (though each node may be doing lesser work).
On the other hand, when the bucket size is large, only very few
processing nodes are involved. These nodes process more data and
hence take a longer time to complete their processing. Second, we
observe that our estimated bucket size is almost optimal for both
query types. However, as Equation 1 is only an approximation for
the fork-join model and we use estimated values for the parameters,
our computed bucket size is not the exact optimal one. As shown
in Figure 7, Equation 3 can result in a good enough bucket size.

7.2 Effect of Data Size
We evaluate the performance of the system by varying the data

size. We increase the data size for each node group from TPC-H 1G
dataset to 5G dataset. In that way, each node hosts about 600K to
3000K tuples of lineitem or 150K to 750K tuples of orders. Here,
we compare four processing schemes. AQP with synopsis is the
approximate query processing strategy with samples maintained in
the synopsis. The synopsis is applied to process the future queries.
In AQP without synopsis, we will retrieve the samples for each
query on-the-fly. For both the above schemes, we simulate user
satisfaction such that the processing of the queries stop as soon as
the error bound of the aggregate is within 1% and a confidence in-
terval of 98%. We also look at the case when the precise answer is
returned. This is represented as the AQP with precise method. In
all the above 3 schemes, answers are returned and refined progres-
sively until the query is terminated. Finally, CQP processes the
query completely. CQP adopts different processing strategies for
Q1 and Q2. For Q1, CQP forwards the query to each node to com-
pute a partial result. And then the final result is generated based
on the partial results in the query coordinator and returned to the
user. For Q2, CQP generates two sub-queries, one for nodes stor-
ing lineitem and one for nodes storing orders, to retrieve the tuples
for join processing. After receiving the sub-query, the node will
process the sub-query and return the results to the query coordina-
tor. The coordinator collects all the result tuples and processes the
join operation.

Figure 8 and Figure 9 show the performances of different ap-
proaches for Q1 and Q2, respectively. Note that the figures are
shown in logarithmic scale. As expected, AQP with precise is
clearly unacceptable because of its long response time. The per-
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Figure 10: Processing Time of Varied Error
Bound
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Figure 11: Sample Size of Varied Error
Bound
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Figure 12: Processing Time of Varied Con-
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Figure 13: Sample Size of Varied Confi-
dence

formance of CQP degrades tremendously, especially for the multi-
relational query. The response time of AQP without synopsis also
increases for the larger dataset, as sampling for large datasets in-
curs more overheads. On the contrary, by reducing the number of
samples retrieved on the fly, AQP with synopsis is more scalable for
the large datasets.

7.3 Effect of Error Bound
In this experiment, we evaluate the approximate approaches by

changing the estimated error bound. For an error bound ϵ and ap-
proximate answer v, the precise result is estimated to be in the
range of [v − ϵ, v + ϵ] with high probability. A smaller ϵ indi-
cates a higher quality result and thus more samples are required. In
this paper, we set ϵ to be v × p

100
, where p ranges from 1 to 5. As

shown in Figure 10, when the approximate answer is prone to the
exact answer, the processing time improves exponentially. This can
be explained by Figure 11. Figure 11 shows the average number of
retrieved samples. To improve the estimated error rate from 2% to
1%, we need much more samples than the ones we retrieve for im-
proving error rate from 3% to 2%. If the user requires an answer
with 99.9% precision, AQP without synopsis may be even worse
than CQP.

To reduce the overheads of online sampling, AQP without syn-
opsis maintains the used samples in the synopsis. As the samples
are random tuples for the whole table, it can be employed to answer
the future queries as well. Figure 10 verifies that AQP with synopsis
has a better response time, even for high accuracy requirement.

7.4 Effect of Confidence c

Confidence is another indicator of how good the approximate re-
sult is. It gives a clue of the likelihood that the precise answer falls
in our estimated range. To guarantee a high confidence, more tu-
ples are retrieved from databases in the approximate query process-
ing strategies. In this experiment, by changing the estimated con-
fidence, we evaluate the performance of different strategies. The

error bound is set to 1% to provide a good enough result. As Fig-
ure 12 and Figure 13 show, the number of retrieved samples in-
creases linearly as the confidence improves, which result in a longer
processing time. Again, AQP with synopsis outperforms AQP with-
out synopsis by applying the synopsis to process queries.

7.5 Precision of Estimation
The central limit theorem (CLT) is applied to compute the es-

timated error bound and confidence. In our approach, we use the
variance computed based on the samples to simulate the precise
variance. In this experiment, we test how good the approximation
is. Suppose the result of AQP with synopsis and CQP is v and v′

respectively, the real error rate is calculated as |v−v′|
v′ . Figure 14

shows the difference between the estimated error bound and the
real error rate. As we can see, the estimation is quite accurate. The
real error rate is strictly bounded by the estimated one. For exam-
ple, for point (4, 1.2) in Q1, it means that DoA’s error bound of 4%
turns out to be only 1.2% in the actual answer.

7.6 Effect of Insertion
In this experiment, we test the performance of samples’ inser-

tion. We generate 10K to 50K insertions for each node group. In
Q1, insertions are evenly distributed over the lineitem tables. In Q2,
insertion happens with a same probability for each lineitem and or-
ders table. Figure 15 shows the average number of newly inserted
samples. Only a small number of samples need to be updated to
reflect the new data. Figure 16 shows the result’s error rate after
insertion. The estimated error bound is set to 1%. After updating,
the approximate result is still bounded by the error bound.

7.7 Load Balancing
In query processing, we generate a namespace for each query

and apply DHT protocols to balance the load among the nodes.
Figure 17 shows the query load distribution in the network. We use
the average number of tuples processed in each node as the metric.
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Figure 17: Load Distribution

As analyzed in [27], the ratio of maximal load to minimal load is
bounded by O(log N), where N is the number of nodes. Figure 17
verifies that DHT can effectively balance the load among the nodes.

8. CONCLUSIONS
In this paper, we have extended the online aggregation technique

to distributed systems and present a parallel query processing strat-
egy to improve the query performance. To facilitate the parallelism,
the nodes are organized in a DHT (Distributed Hash Table) net-
work. The samples are retrieved uniformly from the local databases
and disseminated to the processing nodes via linear hashing. The
query is processed in parallel based on the retrieved samples. A
statistic model is employed to compute the approximate result and
estimate the error bound. After the query is processed, its samples
are maintained as a precomputed synopsis to be used for future
queries. Extensive experiments conducted on PlanetLab showed
the effectiveness of the DoA framework.
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