
HAMSTER: Using Search Clicklogs for Schema and
Taxonomy Matching

Arnab Nandi∗
University of Michigan, Ann Arbor

arnab@umich.edu

Philip A. Bernstein
Microsoft Research

phil.bernstein@microsoft.com

ABSTRACT
We address the problem of unsupervised matching of schema
information from a large number of data sources into the
schema of a data warehouse. The matching process is the
first step of a framework to integrate data feeds from third-
party data providers into a structured-search engine’s data
warehouse. Our experiments show that traditional schema-
based and instance-based schema matching methods fall short.
We propose a new technique based on the search engine’s
clicklogs. Two schema elements are matched if the distri-
bution of keyword queries that cause click-throughs on their
instances are similar. We present experiments on large com-
mercial datasets that show the new technique has much bet-
ter accuracy than traditional techniques.

1. INTRODUCTION
In this paper, we address the problem of unsupervised

matching of schema information from a large number of data
sources into the schema of a data warehouse. The applica-
tion is the use of structured data sources to enhance the
results of keyword-based web search. For example, Google,
Yahoo and Live Search all provide shopping listings for the
query “digital camera” above their traditional web search re-
sults, presumably by augmenting their keyword index with
structured shopping data. This requires gathering a wide va-
riety of structured data sources into a data warehouse that
is indexed by the search engine for keyword queries. These
sources are typically provided by third-parties, though they
might also be obtained from web sites using information ex-
traction. The sources need to be integrated so that similar
data in the warehouse is indexed in the same way by the
search engine, thereby improving the relevance of the result
of keyword queries. The first step of the integration process
is to match incoming data source schemas to the warehouse
schema.

For example, suppose we are integrating data sources that
describe movies. Our data warehouse of integrated data has

∗Work done while at Microsoft Research.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Data
Integrator

Target Database
[warehouse]

Schema

Taxonomy

Source Database

Schema

Taxonomy

Query
Logs

Search
Engine

Schema
Correspondences

Taxonomy
Correspondences

Updated Target
[warehouse]

HAMSTER

Figure 1: HAMSTER System Architecture

a column called Rating, which describes the suitability of
the movie for certain audiences (e.g., G, PG-13, R). We
need to integrate a new data source which has an XML tag
<MPAA> that contains the rating. It is beneficial to map
<MPAA> to the column name Rating, so that instances
of <MPAA> in the new source are recognized in our index
as ratings. This enables the search engine to answer queries
about the rating of movies that appear only in this new data
source, such as a keyword query “rating Dark Knight”.

Some values in a data source are categorical. By “categori-
cal,” we mean the values come from a controlled vocabulary
and are organized into a taxonomy. For better indexing,
we need to map the data source’s taxonomy to the data
warehouse’s taxonomy. For example, product catalogs usu-
ally categorize each product within a taxonomy. An item
“netbook” might have an attribute “class” in a new data
source, whose value is the path computer . portable . econ-
omy . small in the data source’s taxonomy. But the data
warehouse may classify the item differently, such as laptop
. lightweight . inexpensive. To do a good job of answering
the query “netbook” over data feeds whose descriptions of
netbooks do not contain the word “netbook,” we need to
map the data feed’s class to the data warehouse’s class and
recognize “netbook” as a term for the latter class.

Our focus is how to generate the required schema and tax-

onomy mappings. In Fig. 1 we describe our system, HAM-
STER (Human Assisted Mapping of Schema & Taxonomies
to Enhance Relevance.) Our matching technique makes use
of the search engine’s query logs in addition to the usual
information about schema structure and instances. To sup-
port a structured-search engine, there are many other steps
to integrate the data, index it, and answer queries. The
details of these steps are beyond the scope of this paper.

There are two aspects of this matching problem that dif-
fer from conventional enterprise data integration scenarios.
First, it is important that little or no human intervention
is required, so we can scale up to integrate a large number
of data sources, with new ones arriving all the time. Sec-
ond, we do not need or expect a perfect match. Although
an imperfect match will degrade search quality, the search
results may still be acceptable, especially if the imperfec-
tion affects only a few search results. By the same token, a
schema matching result must be very accurate if it affects
the integration of data that shows up in many search results,
to avoid degrading search quality.

Despite these two differences, we can still apply conven-
tional schema matching techniques. We need to produce a
set of high confidence correspondences from the structure of
the incoming data to the canonical structure of the ware-
house, where each correspondence is a pair of elements, one
from each schema. This can be done by extracting “fea-
tures” from each of the data source’s schema elements, and
finding the data warehouse schema element whose features
are most similar to those of the source element. If the sim-
ilarity score of the most similar data warehouse element is
too low, then the schema matcher does not return any cor-
responding data warehouse element. Doing this for all ele-
ments in the data source results in a set of correspondences,
which is called a mapping.

There is a large body of work on schema matching that
utilizes schema-oriented and instance-oriented information
as hints [1, 4, 12, 18, 32]. However, applying these tech-
niques to our scenario is problematic.

Inconsistent labels and structure of the schemas are one
source of problems. Schema-oriented matching algorithms
work well when naming conventions are standardized and
there is a general consensus about how the data should be
organized. These properties often hold in enterprise scenar-
ios, but not for heterogeneous data sources gathered from
all over the world. The structure can be divergent for many
reasons, ranging from different regional and cultural con-
ventions, to different platforms and optimization goals, to
different applications for which the data sources were cre-
ated. For example, we may want to integrate data feeds
from a hardware manufacturing company in China with the
feeds from an online store front in the U.S.

Instance-oriented matching algorithms require that the in-
stances of the schemas to be matched have common features.
Here too, there are many stumbling blocks. The same data
can be represented in different units. For example, a lap-
top’s RAM capacity can be represented in megabytes in one
data source, and in gigabytes in another. Data conversion
is often hard and ambiguous; one gigabyte can mean either
1000 or 1024 megabytes, and there are different policies for
rounding off decimal places. Similarly, date and time units
have many different formatting conventions. Additionally,
data can come from different topic domains. For example
the meaning of “rating” in a hardware database has noth-

ing to do with the “rating” field from a review provider.
We record some of the real-world challenges we encountered
during our mapping task in Section 7.

Given these issues, we were not surprised that our exper-
iments generated unsatisfactory mappings using unsuper-
vised schema- and instance-oriented matching techniques.
While some initial success with semi-automated tuning has
been reported [34], the tuner still needs to be trained on a
manually-produced gold standard. So even if conventional
schema matching were satisfactory, a domain expert would
need to continually curate the mapping as new data sources
arrived.

2. USING CLICKLOGS TO MATCH
Since schema-oriented and instance-oriented techniques

did not perform well enough for our purposes, we needed
another source of information to drive the matching. We
therefore explored the use of query logs extracted from the
search engine. These logs contain click-through data that
indicates which search results a user clicked on.

A clicklog contains <q, u> pairs, each of which indicates
that a user clicked on URL u, which was one of the results
returned by the search in response to the user’s keyword
search query q. The intuition that drives our use of clicklogs
is this: if two items in a database are similar, then they
should be searched for using similar queries. To exploit this
intuition, for each schema element and taxonomy term, we
mine clicklogs to obtain the query distributions that led to
click-throughs on instances of that element or term. Then
for each schema element or taxonomy term S in the source,
we identify the schema element or taxonomy term in the
target whose query distribution is most similar to that of S.

For example, a user looking for small laptops may issue the
query “netbooks,” and then click on two of the URLs that
were returned, one for “eee pc” and one for “hp mininote.”
This establishes that “eee pc” and “hp mininote” are re-
lated. Hence, even though the “eee pc” is considered its own
product taxonomy term (“eee”) by Asus, it can be matched
with the “mininote” taxonomy term from HP, because the
respective items from both companies were clicked on when
searching for “netbooks,” “under 10-inch laptops” and “sub
notebooks”. If one were to consider all the queries that led
to categories from each source, we expect to see a high over-
lap between the queries of similar categories.

Clicklogs present unique advantages as a similarity metric.
First, they are generated by users, and are hence indepen-
dent of the data provider’s naming conventions with respect
to schema and taxonomy. Moreover, query information is
self-updating over time. Users automatically enrich the data
with new and diverse lexicons, capturing various colloqui-
alisms that come into use. For example, using conventional
approaches, to handle the recent popularity of new small
form factor laptops, a human would have to manually up-
date the search engine’s thesaurus to reflect that “netbooks”
and “sub notebooks” are synonyms. This would have to be
done for each language that the search engine supports—a
big expense that does not scale well. Additionally, clicklogs
provide a wealth of information for a wide variety of top-
ics. If there is user interest in a domain, then there will be
clicklog data that can be mined. Clicklogs are also more re-
silient to spamming attacks. Current systems can be tricked
by mislabeling an incoming feed causing data to be wrongly
integrated. By contrast, to influence a clicklog, a byzantine

data provider would have to issue a large number of search
queries and click on URLs, posing as different users or IPs
to achieve similar effect.

We outline the contributions made by this paper.

1. We introduce the problem of data integration for structured-
search engines and show how it differs from traditional
enterprise data integration scenarios (Section 1).

2. We introduce “query distributions” derived from search
engine clicklogs as a feature that can be used to deter-
mine the similarity of schema elements (Section 2).

3. We show how to reduce the problem of matching tax-
onomy paths that appear as data values into the prob-
lem of schema matching (Section 3).

4. We introduce new techniques for deriving query distri-
butions that are associated with schema elements and
taxonomy terms (Section 4).

5. We introduce the use of surrogate items to leverage
query distributions for items that do not appear in
clicklogs (Section 5).

6. We report on experiments that show the use of query
distributions improves schema matching results com-
pared to conventional schema-based and instance-based
techniques (Section 6).

7. We show how to integrate the query distribution tech-
nique into an existing schema matching framework (Sec-
tions 6.2 and 8).

3. COMBINING SCHEMA & TAXONOMIES
In this section, we describe how to reduce the taxonomy

mapping problem into the schema matching problem, and
hence re-use our schema-matching framework and concepts
to perform both operations.

First, we require our incoming data feed to be in XML
format, and the warehouse to be a collection of XML enti-
ties. Since XML data can be represented as a tree, we can
consider schema mapping to be a problem of mapping be-
tween nodes in two trees, one representing the data feed’s
XML structure and one representing the warehouse schema.

The mapping process first extracts a set of features from
the structure and content of the XML data. It then uses a
set of similarity metrics to select correspondences from the
tree representing the incoming data schema to the tree rep-
resenting the data warehouse schema. For example, consider
the following XML feed:

<feed>

<laptop>

<name>ASUS eeePC</name>

<class>Portables . Economy . Smallsize</class>

<market>Americas . USA</market>

</laptop>

</feed>

For the schema mapping task, the words “ASUS” and
“eeePC” are considered as features for the schema element
“name”. With instance-oriented matching, the warehouse
schema element whose instances contained many mentions
of “ASUS” would be selected to match “name”.

Taxonomy terms usually appear in data sources as data
values within entities, not as schema elements. We need to
map each of these data source values into the corresponding
warehouse taxonomy path. To do this, we use a “pivot”
operation that converts the categorical part of the XML
element into a virtual XML schema, including other fields as
needed. In the example, we can perform the pivot operation
first on the categorical field “class,” keeping “name” as a
feature. This converts the feed into:

<feed>

<laptop>

<Portables>

<Economy>

<Smallsize>ASUS eeePC</Smallsize>

</Economy>

</Portables>

</laptop>

</feed>

This virtual XML allows us to overload the schema mapping
operations to also perform taxonomy matching. This is done
for every categorical field we need to map (e.g. “market”),
resulting in a taxonomy tree with many leaf nodes. We focus
on mapping only the leaf nodes of each tree.

4. USING CLICKLOGS AS FEATURES
To drive the schema matching task, we aggregate the click-

log into a clicklog summary. Each entry is of the form <q,
n, u>, where n is the number of times that a user clicked on
URL u when it was presented as a result of search query q.
For example, an entry <laptop, 5, http://asus.com/eeepc>
means that for the query “laptop,” the search result with
URL http://asus.com/eeepc was clicked 5 times. All other
information, such as unique identifiers for the user and the
search session, is discarded for privacy reasons.

4.1 Generating Query Distributions
To match two schema elements or taxonomy terms, we

extract the query distribution across all clicklog entries that
correspond to each element. We then generate a correspon-
dence between the two elements if their query distributions
are sufficiently similar.

To do this we need to associate each schema or taxonomy
element with the set of clicklog entries whose URLs refer to
that element. We do this in two steps. In the first step,
we associate each element to be matched with the set of
entities that are instances of the element. These entities are
the values of the element that are found in the data feed. For
example, if an entry in a data feed associates the taxonomy
term “Computers . Laptop . Small Laptops” with the value
“HP MiniNote,” then we regard “HP MiniNote” as an entity
that is an instance of that taxonomy term.

In the second step, we associate each entity with the URL
in the clicklog summary that describes that entity. This
turns out to be an easy task, because most modern websites
are database driven. Since each website has to query the
database to generate a webpage for the requested URL, web-
sites typically embed a unique key value of the entity in the
URL itself and have a catalog that publishes the definition of
keys. For example, Amazon.com uses a unique “ASIN num-
ber” to identify each product in their inventory. This ASIN
number also appears as a part of each Amazon.com product
page URL. Thus, the URL “http://amazon.com/dp/B0006HU4OO”

is about the product with ASIN number B0006HU4OO, or
“Apple Macbook Pro” (similarly, in our clicklog example be-
low, “macbookpro” and “mininote” could be primary keys
to identify the corresponding items in the database). Hence,
to find the URL for an Amazon.com product item, we can
simply look up the product item’s ASIN number, and then
select all clicklogs entries whose URL contains this ASIN
number. This convention was found to be true for all major
database-driven website frameworks and almost all the top
shopping websites we inspected1.

The query distribution of an entity is the normal-
ized frequency distribution of keyword queries where the
query returned that entity and the user selected it (i.e.,
clicked on it). For example, according to the clicklog in
Table 1a, of the 25 queries that led to the click of the en-
tity “eeePC” (denoted by http://asus.com/eeepc), 5 were for
“laptop,” 15 for “netbook” and the remaining 5 for “cheap
notebook.” Hence, after normalization, the query distribu-
tion is {“laptop”:0.2, “netbook”:0.6, “cheap notebook”:0.2}.

An aggregate class is the set of entities that are instances
of a given schema element or taxonomy term. The query
distribution for an aggregate class is the normalized fre-
quency distribution of keyword queries that resulted in the
selection of any of the member instances. Table 1b presents
query distributions for 3 aggregate classes.

query freq url
laptop 70 http://searchengine.com/product/macbookpro
laptop 25 http://searchengine.com/product/mininote
laptop 5 http://asus.com/eeepc
netbook 5 http://searchengine.com/product/macbookpro
netbook 20 http://searchengine.com/product/mininote
netbook 15 http://asus.com/eeepc
cheap
netbook

5 http://asus.com/eeepc

Database: Aggregate class query distribution
Warehouse: “. . . . Small Laptops” {“laptop”: 25/45,

“netbook”:20/45}
Warehouse: “. . . . Professional Use” {“laptop”:70/75,

“netbook”:5/75}
Asus.com:“eee” {“laptop”:5/25,

“netbook”:15/25,
“cheap netbook”:5/25}

Table 1: (a) A sample clicklog. (b) Inferred query
distributions for 3 aggregate classes

4.2 Using Query Distributions
Given an incoming data source, we need to generate a

mapping between the aggregate classes (taxonomy and schema
elements) of the incoming data and those of the data ware-
house. To do this, we do a pairwise comparison between the
query distributions of each aggregate class of the incoming
and warehouse data sources. Similarity scores above a cer-
tain tunable threshold are considered to be valid candidate
correspondences.

To compare query distributions, we need a comparison
metric. For now, we use Jaccard similarity. We consider
other alternatives at the end of this section.

To revisit our previous example, suppose the warehouse
contains only one HP Mininote small laptop product item,

1
Alexa.com Top Shopping Sites

with the taxonomy term “Computers . Laptop . Small Lap-
tops”. Suppose the warehouse also contains the Apple Mac-
book Pro item, the only laptop that falls under “Computers
. Laptop . Professional Use”. Now, suppose Asus, another
laptop manufacturer, wishes to include its data in our index.
It uploads an XML feed to our system, as described previ-
ously. The “eee PC” item is assigned the taxonomy term
“eee” in the Asus feed, and our task is to map “eee” to the
appropriate warehouse taxonomy term.

To do this, we generate query distributions for the aggre-
gate classes representing each of the two warehouse cate-
gories, and then compare them with the query distribution
for the aggregate class representing the ASUS feed taxon-
omy term “eee”. We analyze our clicklogs in Table 1a and
observe that 100 people have searched (and clicked a result)
for the word “laptop”. Seventy of them clicked on the Ap-
ple Macbook Pro item, 25 on the HP MiniNote item, and 5
on the link for the Asus eee PC item in the incoming feed.
For the query “netbook,” we observe 40 queries, 5 of which
clicked on Macbook, 20 on the MiniNote product, and 15
on the eee PC. For the query “cheap netbook,” 5 out of 5
queries resulted in clicks to eeePC.

We count not only the number of clicks on the items in
the warehouse such as the Apple Macbook Pro, but also
clicks on the Asus items, since the search engine indexes the
Asus web site. In addition, we have a mapping of product
pages on asus.com to entities of the incoming feed, since
each page’s URL is constructed from the primary key of the
entity. So when someone clicks on an asus.com result, we
can translate it to a click to an Asus item.

Hence, the query distribution for the aggregate class rep-
resenting the data provider’s “eee” taxonomy term is {“laptop”:5,
“netbook”:15, “cheap netbook”:5}. For the aggregate class
representing the data warehouse’s “Computers . Laptop .
Small Laptops” taxonomy term, the distribution is {“laptop”:
25, “netbook”:20}, and for “Computers . Laptop . Profes-
sional Use,” the query distribution is {“laptop”:70, “net-
book”:5}. (For clarity, we have not normalized the query
distributions in this paragraph.)

After processing the clicklogs to generate query distribu-
tions of the aggregate classes, we can now compare each pair
(i.e., Warehouse class “Computers . Laptop . Small Lap-
tops” vs Asus.com class “eee” and Warehouse class “Com-
puters . Laptop . Professional Use” vs Asus.com class “eee”)
and generate correspondences as follows:

Generate-Correspondences(Classes WC, Classes IC)
1 for each class wc in WC
2 do for each query ic in IC
3 do Emit(wc, ic,Compare-Distributions(wc, ic))

Compare-Distributions(Distribution DH , Distribution DF)
1 score← 0
2 for each query qh in DH

3 do for each query qf in DF

4 do minFreq = lesser(DH [qh], DF [qf])
5 score← score + Jaccard(qh, qf) ∗minFreq
6 return score

Jaccard similarity Jaccard(q1, q2) of two queries q1, q2
is defined as:

Jaccard =
|Words(q1) ∩Words(q2)|
|Words(q1) ∪Words(q2)|

For example, consider comparing the query distributions
for the aggregate classes of ASUS taxonomy term “eee”
{“laptop”:0.2, “netbook”:0.6, “cheap netbook”:0.2} and the
warehouse taxonomy term “Small Laptops” {“laptop”:0.56,
“netbook”:0.44}. Comparing each combination of queries,
the score is (1× 0.2 + 1× 0.44 + 0.5× 0.2) = 0.74. On the
other hand, the score for comparing “eee” with the ware-
house taxonomy term “Professional Use” would be (1×0.2+
1 × 0.07 + 0.5 × 0.07) = 0.31, which is much less than the
previous similarity score. Clearly, “Computers . Laptop .
Small Laptops” is the recommended correspondence for in-
coming taxonomy term “eee”.

Jaccard similarity can be replaced by other functions, such
as WordDistance:

WordDistance(n) = Len(Words(q1) ∩Words(q2))n

Jaccard compensates for large phrases that are common,
looking at only the ratio of common vs. uncommon words.
WordDistance allows for exponential biasing of overlaps,
also considering the length of the common words. Another
alternative is simply to use the exact string comparison func-
tion, hence only counting the queries that are identical in
both distributions. We call this alternative the Min vari-
ant. It is significantly faster because it does not have to
do word-level text analysis. We compare and contrast these
functions in Section 6.4.

4.3 Remarks
In this section we offer three remarks about using clicklogs

and query distributions for schema matching. First, we of-
fer some intuition by comparing them to schema-based and
instance-based matching using join operations as an anal-
ogy. In schema-based matching, each warehouse class in the
set of classes WC is compared with each incoming provider
class in the set of classes IC, possibly generating a corre-
spondence. So in a sense, we are performing the join

WC 1SB IC

where the schema-based join operator 1SB generates corre-
spondences based on the text similarity of the left and right
sides. In instance-based matching, we add another join on
each side to map classes to their underlying entities, ItemsW

and ItemsI , and then do an instance-based join 1IB :

(WC 1 ItemsW) 1IB (ItemsI 1 IC)

In clicklog-based matching, we introduce a further query-
distribution-based join 1QD with the clicklog CL:

(WC 1 (ItemsW 1 CL)) 1QD ((CL 1 ItemsI) 1 IC)

This intuitive view highlights the fact that clicklog-based
schema matching is not competitive with schema-based or
instance-based methods. It simply adds another feature that
can be used to improve the result of other schema-matching
methods.

Second, we observe that query distributions are a gen-
eral feature of schemas that can be understood independent
of their use in schema matching. They have the following
properties, which might be useful in contexts beyond schema
matching, such as classification applications.

• The query distributions of similar entities are similar.
(E.g., if the Toshiba m500 and Toshiba x60 are simi-
lar items, then the query distributions for the Toshiba
m500 and Toshiba x60 are similar.)

• Query distributions of similar aggregate classes are
similar.

• The query distribution of a database item is closest to
the aggregate class it belongs to. (This allows us to
use query distributions for classification purposes.)

We verified these properties in experiments that are de-
scribed in Section 6.5.

Third, we observe that the fact that two entities have
similar query distributions depends on their ranking in the
results of search queries. Thus, our approach leverages the
search engine’s ability to identify related entities (i.e., URLs)
in response to a query. Indeed, one could argue that our
query-distribution method does only that. However, this
discounts the benefit provided by users, since they generate
search keywords and click on relevant items more than ir-
relevant ones. We are leveraging their vocabulary and judg-
ment, not just the search engine’s ranking.

We can test this claim by viewing simple search engine-
based clustering as a special case of instance-based match-
ing, with the content of the entities as features, and the
search engine’s ranking as a similarity function. As we will
see in Sec. 6.2, search-based clustering does not perform
as well as query distributions. One reason is the benefit
of user clicks; search queries provide high-quality human-
generated features for each URL (i.e., entity). Another is
that search engine results are not based solely on content
similarity. They are biased by popularity metrics such as
PageRank. Hence, the most similar item may rank below
a less similar but more popular item. Since query distribu-
tions span multiple queries, the association of two items due
to their overlapping query distributions is much stronger.

5. FINDING SURROGATES
The use of query distributions requires that data sources

have a web presence, so that their results show up in web
search results and are clicked on. Some data providers do
not satisfy this requirement. However, they are likely to
have established competitors with similar data, which do
have significant presence in the clicklogs. Thus, we propose a
method by which we identify surrogate clicklogs for any data
source without significant web presence. For each candidate
entity in the feed that does not have a significant presence in
the clicklogs (i.e. clicklog volume is less than a threshold),
we look for an entity in our collection of feeds that is most
similar to the candidate, and use its clicklog data to generate
a query distribution for the candidate object.

Get-Surrogate-ClickLog(Entity e)
1 query ← DB-String(e)
2 similarItems← Similar-Search(targetDB, query)
3 surrogateUrl← similarItems[0].url
4 return Get-ClickLog(surrogateUrl)

The functions DB-String and Similar-Search are user
implemented. For example, we use the surrogate method
for our third task in the following section. Since one of our
datasets, called the Whale dataset, does not have a web

presence, we use clicklog information from Amazon.com as
a substitute. For our purpose, given an instance in Whale,
the DB-String function returns the concatenation of the
entity’s “name” and “brandname” attributes as the query
string, i.e., return item.name + “ ” + item.brandname. For
the “Similar-Search” function, we used the Yahoo! Web
Search API with the “site:amazon.com inurl:/dp/” filter to
find the appropriate Amazon.com product item and url (ev-
ery Amazon.com item has a unique product page). This
lets Yahoo! search for pages only within the amazon.com
domain, which contain “/dp/” in their URL. In line 4, we
simply pick the top result among those returned, and use its
URL as our surrogate URL. The search engine’s clicklog is
then searched for this URL to generate a surrogate clicklog.
For this taxonomy mapping task, we first sample 100 items
per taxonomy term for the incoming Whale data.

For each of the 1500 categories in Whale, we sample 100
items from its inventory. Then, we search for them on Ama-
zon, and end up finding 3651 items representing 853 Whale
categories.

6. EXPERIMENTS AND EVALUATION
In this section, we compare the efficacy of our mapping

algorithm against other methods, and explore various other
facets of the process. We begin in Section 6.1.1 by describ-
ing our metrics and algorithms. We then describe the data
sets and mapping tasks in Section 6.1.2, and describe the
algorithms compared in Section 6.1.3. We also study the
effect of clicklog size on mapping quality in Section 6.3, and
evaluate the use of surrogate clicklogs. Then, in Section 6.4
we consider different functions for comparing query distri-
butions to pick the ideal one. We conclude by presenting
evidence in Section 6.5 that verifies our claims that query
distributions are a valid similarity metric.

6.1 Experimental Setup

6.1.1 Evaluation Metrics
In order to evaluate our mapping algorithm, we first need

to define the methods and metrics for evaluation. For each
of the integration tasks described in Section 6.1.2, we derive
or construct gold standards listing the correct mappings. A
mapping is a set of correspondences. Each correspondence
is a pair of elements, one from each schema (or taxonomy).

Each algorithm is then run, producing a set of correspon-
dences. For each set of correspondences, we compute recall
(i.e., the fraction of correct correspondences that we pro-
duced) and precision (i.e., the fraction of correspondences
in the produced set that are correct). Ideally, mapping al-
gorithms should have both high recall and high precision.
When this is not possible, we prefer to have high precision
at the cost of reduced recall. Since mappings produced are
used down the pipeline in automated and semi-automated
processes for the search engine, an erroneous mapping could
have an amplified impact in overall result quality. Thus it
is important to maintain high precision and minimize any
errors that we introduce into the system, even if it is at the
cost of reduced recall.

Recall and precision are defined using the notions of true(T)
and false(F) positives(P) and negatives(N), where Recall =
TP/(TP + FN) and Precision = TP/(TP + FP).

Generated correspondences that were wrong (whose left

side existed in the gold standard, but not the right side) or
didn’t exist (even the left side was not present) in the gold
standard are considered as false positives. Correspondences
whose left side existed in the gold standard, but matching
correspondences that did not exist in the test mapping were
counted as false negatives. Correspondences produced that
exist in the gold standard were marked true positives, while
true negatives are not considered.

Since a practical framework may contain more than one
algorithm to perform data integration, we are interested
in comparing the output of our Query-Distribution method
against other methods, namely Schema-based and Instance-
based methods, which will be described in the following
paragraphs. Differences and similarities of outputs give us
a deeper understanding of the strengths and weaknesses of
each method, which can then be used to come up with a com-
bined meta-mapping algorithm. We construct a Consensus
based algorithm in this light, and study its performance.

6.1.2 Datasets
To derive query distributions, we used a sample of query

log data from the Live.com web search engine, restricted to
only English U.S. queries. Blank queries, pornographic or
offensive keywords and navigational queries were removed
using blacklists. As expected, our query log displays prop-
erties similar to published studies on search query logs, and
follows Zipf’s law: many of the queries have a low frequency
of occurrence and a few of them are highly frequent. Click-
logs are attained by filtering those entries that lead to a valid
URL. Query distributions were then generated by mapping
URLs to entities. For example in Task B below, 1.8 million
search queries in our query log sample resulted in clicks to
pages with URLs starting with http://amazon.com and con-
tained a valid ASIN number. The URLs were then mapped
to an Amazon product using the ASIN id. Each product
had a query distribution averaging 13 unique (i.e., different)
search queries (min 1, max 181, stdev 22).

To study many different aspects of query-distribution based
mappings, we need to pose a variety of questions. How-
ever, we were unable to find a single real dataset that cap-
tures this variety. Instead, our experiments evaluate three
data integration tasks. Each task is an actual data inte-
gration challenge we encountered during the development of
our search engine, and each poses unique challenges typical
of real-world scenarios. Our first task is to integrate the
schema of an incoming data feed. The second task involves
the mapping of taxonomies. The third task evaluates the
use of surrogate clicklogs.

Task A. Schema Integration: Our data warehouse’s
Movie database contains movie and showtime information
gathered from a number of data sources. The warehouse
Movie schema contains 5 domains for movies, people, show-
times, series and companies, each with 4-5 schema elements.
For example, each item of the movies domain has the ele-
ments “Name,” “Runtime,” “Rating,” among others. We
consider the inclusion of an additional data provider (let
us call it XYZ Movies) which provides feeds called Movie
and Theatre. We focus on the mapping of schema elements
within the feed to schema elements in the warehouse. In
our case, we consider the mapping of the data warehouse’s
movies domain with the Movie from our data provider. The

warehouse movies domain contains 30 different XML ele-
ments and 16 attributes. The incoming Movie was origi-
nally in CSV format with 24 fields, converted to a flat XML
stream. A gold standard was hand-created for this. We use
a sample of 10,000 entities from the data warehouse, and a
sample of around 1400 entities for the incoming data.

Task B. Taxonomy Integration: The data warehouse’s
Shopping domain contains millions of computers and elec-
tronics items, each of which is assigned exactly one tax-
onomy term from about 6000 leaf categories. The incoming
Amazon.com dataset is a collection of 70,000 computers and
electronics items, each having multiple categories. We study
a sample of 258 products that existed in both catalogs. We
manually derive a gold standard by identifying the instances
in both catalogs, and then use the taxonomy term informa-
tion on each side (613 in Amazon, 43 in our warehouse) to
produce 901 correspondences we consider to be correct. The
taxonomy correspondences were observed to be consistent in
the following sense: If an item was assigned the “laptops”
taxonomy term in Amazon, and the same item was assigned
the taxonomy term “portables” in the warehouse, then all
other items under “laptops” were also assigned “portables”
in the warehouse. 93% of the Amazon categories consis-
tently mapped to the same warehouse taxonomy term.

Task C. Schema & Taxonomy Integration, Use of
surrogates: The Whale (name anonymized) database con-
tained a list of 2.6 million computers and electronics product
offers and discount information. Each offer was assigned ex-
actly one taxonomy term out of a taxonomy of around 1500
leaf categories. Other fields included product name, brand
name and various pricing options, of which we only used the
brand name and product name fields. We attempt to inte-
grate this with the warehouse Shopping database from the
previous task B. Unlike the previous task, we do not have
any instance information from the warehouse side. This is
because the Shopping database is split in an ad hoc manner
across multiple partitions, and sampling entities for each of
the 6000 categories is extremely expensive to compute. A
correspondence of each of the 1500 Whale leaf categories
to exactly one of the 6000 warehouse categories was done
manually to create the gold standard.

6.1.3 Algorithms
For each task, we compare our query distribution based

methods against two other methods. The first method uti-
lizes the “Schema-based” techniques of the matching algo-
rithm described in [32]. This method performs matching
based on lexical properties of labels, and the structure of
the schema tree (and in our case, also the taxonomy tree).
We call this method Schema-based mapping.

The second method, which we call the Instance-based method,
uses the content of the warehouse’s entities as features, and
schema elements and taxonomy terms as labels to be input
to a Naive Bayes classifier. A sample of the incoming data
is then classified using this model. The schema element or
taxonomy term of the incoming data sample and the output
label are considered as a correspondence, and all correspon-
dences above a certain score threshold are considered.

We also compare a consensus algorithm that combines the
correspondences generated from the Schema-based, Instance-
based, and query-distribution methods by summing the nor-

malized scores for each candidate correspondence. The con-
sensus based method is meant solely to understand the in-
teractions between the various algorithms. Our focus is the
impact of various features on mapping quality. More ad-
vanced “meta-mappers” listed in the related work section
can always be run using the mentioned mapping algorithms
as input, generating better results.

6.2 Evaluating Integration Quality
We now present recall and precision numbers for each task

and method. Each algorithm returned a set of correspon-
dences with a similarity “score,” signifying the algorithm’s
confidence that the correspondence was correct. The score
was thresholded at increasing levels to calculate the various
combinations of recall and precision.

Schema Integration: For Task A, the Schema-based
method was able to achieve 88% precision and 47% recall,
thanks to the use of standard names such as “Director” /
“director” and “Title” / “movie title” in the schema. The
Schema-based method was not able to map elements such
as “Genre” / “Category” or “MPAA” / “Rating”. The
Instance-based method was much better at this, since the
datasets contained identical or similar values for these fields.
Overall, the Instance-based method was able to get 71% pre-
cision with 73% recall. The combination of the two in the
consensus method, was able to correctly map all but five
elements. For each of these elements, the correct correspon-
dence was among the top-3 choices suggested.

While such high recall and precision is sometimes feasi-
ble with Schema-based and Instance-based methods, this
may not be achievable for incoming feeds whose data does
not overlap, or are in languages or formats different from
the warehouse. In this case, a non-instance based method
such as query distributions is needed. We thus attempt to
map the incoming XYZ Movies data stream, using surro-
gate clicklogs of imdb.com. Various parts of the data were
mapped to appropriate URLs. For example, the “awards”
field for the movie Titanic was linked to
http://www.imdb.com/title/tt0120338/awards. This method
produced 11 correspondences, 5 of which were correct. We
observed that query distribution worked well for the fre-
quently queried parts of the database. Schema elements that
are often part of user queries, such as “awards,” “category,”
“person,” and “movie title” were correctly mapped. Ele-
ments whose instances are not usually part of user queries,
such as “country code,” “MPAA,” and “runtime,” were mapped
incorrectly.

Taxonomy Integration: For Task B, we can see in
Fig. 2 that the query distribution method clearly outper-
forms the others, with 92% precision for 100% recall. Cor-
respondences are also of high confidence; for each taxonomy
term, the score for the top correspondence suggestion was
over five times the score of other suggestions on average.
Instance-based matching achieved a low 11% precision and
95% recall, because the classifier was using the name and
brand name as its input features, but products were named
differently in the warehouse and at Amazon. While the
names were different in the two sources, users still searched
for them using similar keywords, resulting in a successful
mapping by query distribution.

We now evaluate the use of the search engine for instance-

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec
is
io
n

Recall

Instance‐based

Query Distribu=on

Consensus

Schema‐based

Search‐based

Figure 2: Taxonomy Integration in Task B

based mapping, which was suggested in Section 4.3.
To match the Amazon.com and warehouse taxonomies, we

built a similarity matrix M whose rows are Amazon terms
and whose columns are warehouse terms, initializing all en-
tries to zero. We queried the search engine for each Ama-
zon.com item’s product name, restricting the result to pages
(and hence entity instances) from our warehouse’s website.
Let A be an Amazon item and W be a search result for A
from our warehouse. For each taxonomy term tA for A and
tW for W , we add one to M [tA, tW]. We match tA and tW if
M [tA, tW] exceeds a threshold, which was varied to get the
range of precision-recall points shown in Fig. 2 .

As we can see in the figure, recall for this method is
bounded to 40%, while precision is between that of the
Schema-based and Instance-based methods. When we per-
formed the experiment in reverse, searching for warehouse
objects restricting the result to Amazon.com pages, we found
that the precision again bordered around 50%, while the re-
call was even worse, tapering off at 33%.

We believe these numbers are a strong indicator of our
previous assertions. Query distribution is an important fea-
ture for schema matching. Queries and clicks from users
performed better than schema-based similarity of the ag-
gregate class, or instance-based similarity on the data. Not
only does it lend to increased precision, but it also increases
recall by creating a multitude of mappings, based on the
search queries by the user.

The high quality of query-distribution based matching is
primarily because we are looking at products with a lot of
clicklog data. We do not expect all of our data to have such
high-traffic clicklog information, and thus detailed query dis-
tributions. A study of the effect of clicklog size on quality is
presented in the next section. While all three methods con-
curred on 43 correct correspondences, query distributions
also correctly found 27 correspondences not discovered by
the Schema-based method. This shows that query distribu-
tions don’t just compete but complement the other meth-
ods, motivating the use of the Consensus algorithm, which
performs much better than the Schema-based method.

Although the consensus algorithm was not as good as
the query-distribution method, we believe this is due to our
naive meta-mapper that simply added the similarity scores.
A more sophisticated and well-tuned consensus algorithm
should perform no worse than the component matchers and
in most cases better than any of them, including the query-
distribution method.

Schema & Taxonomy Integration, Use of surro-
gates: With Task C, we inspect a slightly larger dataset,
where we achieve 61% precision and 53% recall with the
Schema-based method, and 40% precision and 10% recall
using a surrogate query distribution, using 100 items per
Whale taxonomy term. On a sample a tenth the size (10
items per taxonomy term), we got half the recall for the
same precision.

Note that the precision of the query-distribution method
will suffer while using surrogates, since there is an obvious
source of error introduced by looking for appropriate simi-
lar items on the web. Twenty of the correct correspondences
were common with the Schema-based method, while 58 (3%
of total correct correspondences) were those that Schema-
based got wrong or did not suggest. Thus, the query dis-
tribution method lent an extra 3% of recall that can be
leveraged. Upon combining the two methods using consen-
sus, we are able to achieve 56% precision and 60% recall,
demonstrating that we are able to extend the recall of the
correspondences using query information.

In mapping the schema for Task C, 26 elements in the
Whale schema were matched against 25 elements in the
warehouse schema. Fifteen were correctly mapped when
using the Schema-based method, while all of them were
mapped when using the Instance-based method, by using
2200 warehouse items and 150 Whale items.

6.3 Effect of Clicklog size
The efficacy of the query distribution methods is largely

impacted by the volume of the clicklogs. A large clicklog
sample covers a larger diversity of possibly common words.
We revisit Task B, varying the size of the clicklog by pro-
gressively halving it. In Fig. 3, we present the performance
of matching items and categories. The leftmost point repre-
sents the case of using 1/32 of the clicklog. The rightmost
point uses the full clicklog. From left to right, the points
in between represent 1/16, 1/8, 1/4, and 1/2. As we can
see, there is a sharp drop in recall as the clicklog shrinks.
Precision also drops, but much less dramatically than recall.

0.65
0.75
0.85
0.95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Pr
ec
is
io
n

Recall

Items

Categories

1/32

Full

Figure 3: Varying clicklog size : Recall decreases as
the size of the clicklog is decreased

6.4 Understanding Query Distributions
To use query distributions, we need a comparison function

that compares two distributions. We propose a variety of
functions, and study their effect on recall and precision by
varying the threshold score above which a correspondence is
considered a candidate.

Figures 4 and 5 show the behavior of these metrics for in-
tegrating the Task B dataset both at the document match-
ing level and at the taxonomy term level. We noticed that
there is not much difference between the different metrics.
We choose the Jaccard metric (a query similarity based met-
ric defined in Sec. 4.2) for most purposes due to its flexibility

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

Pr
ec
is
io
n

Recall

WordDistanceLinear

Jacqard

WordDistanceSquare

Min

Figure 4: Query Distribution Metrics : Task B cat-
egories

60

65

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90 100

Pr
ec
is
io
n

Recall

WordDistanceLinear

Jacqard

WordDistanceSquare

Min

Figure 5: Query Distribution Metrics : Task B items

across varying precision and recall levels, but it should be
noted that Min (metric that considers only identical queries,
also defined in Sec. 4.2) is much faster since it does not have
to do any string processing.

6.5 Claim Experiments
As described in Section 4.3, we first need to verify that

query distributions are good measures of similarity. To do
this, we pick the 40 categories from the data warehouse tax-
onomy whose products have the most clicks in our clicklog.
We pick 10 items for each taxonomy term, resulting in 400
products. We found 258 of these items also listed at Ama-
zon.com, representing a total of 613 categories (i.e., many
items had more than one taxonomy term).

Table 2 presents the comparison of “query distributions”
using the WordDistance metric. For each cell, query distri-
butions of the corresponding row and column headers were
compared, and the best match was picked. For example,
the cell for warehouse products vs. warehouse categories de-
notes the ability to classify each product to a taxonomy
term, by comparing the query distributions of the product
and the taxonomy term. Here, 383 of 400 (or 95.75%) items
were categorized correctly. Additionally, we calculated the
“confidence” of our choice; this is the ratio of the scores of
the top ranking item to the second ranking item, on aver-
age. The confidence numbers were observed to be high in
all cases, ranging from 2.9x when matching warehouse prod-
ucts against themselves, to 5.6x when mapping Amazon cat-
egories to the warehouse categories, to 21x when matching
Amazon products to themselves.

Amazon
products

Amazon
categories

Warehouse
Products

Warehouse
categories

Amazon
products

257/258
(99.6%)

241/258
(93.4%)

189/258
(73.3%)

226/258
(87.6%)

Amazon
categories

373/613
(60.8%)

204/400
(51%)

525/613
(85.6%)

Warehouse
Products

392/400
(98%)

383/400
(95.75%)

Warehouse
categories

40/40
(100%)

Table 2: Comparing Query Distributions

As we can see in Table 2, almost 100% of query distribu-
tions are unique to both products and categories with very
high confidence. An exception is the matching of Amazon
categories, since a product can have more than one taxon-
omy term. Hence two categories end up having identical
query distributions, and hence scores, in which case we ar-
bitrarily choose one of the categories that have the identical
top score. Also, the query distributions of products are clos-
est to that of their categories. Additionally, 85% of Amazon
categories map correctly to the right warehouse taxonomy
term, again with high confidence. Based on our observations
we consider our claims to be verified.

7. DATA IN THE REAL WORLD
While performing the tasks in the previous section, we

learned a fair bit about the challenges encountered when
dealing with real world data.

One of the primary challenges encountered was the het-
erogeneity of data models and conventions used. The data
sources were in a wide variety of data models, from XML
streams, to tab separated values, to SQL data dumps. Even
within each data model, there are numerous conventions
with regards to schema and data formats, such as:

Levels of normalization: Some data providers perform
heavy normalization resulting in a large number of relations
/ XML entity types. Others encapsulate all their data into
a single table / entity type with many optional fields.

In-band signaling: Many data values contain encodings
and special characters that are references and lookups to
various parts of the database. An example of this is to have
a “description” field from our running example for laptops,
where entity names are encoded into the text, such as “The
laptop is a charm to use, and is a clear winner when com-
pared to the $laptopid:1345$.” The field $laptopid:1345$ is
then replaced with a linked reference to another laptop by
the application layer.

Attributes vs. Elements: There is great variation in
XML data regarding the use of attribute values. Many
datasets did not contain any attribute values, while one
dataset was essentially a feed of a single entity type, which
contained a large number of attributes in it. Our approach
to this was to treat all attributes as subelements.

Partial Data: The data provided is often a “cutaway” of
the original source, where certain parts of the database are
missing for practical or privacy purposes. There are often
many dangling references and unusable columns.

Multiple levels of detail: Providers have varying levels
of granularity in categorical data. While one provider may
classify a laptop item as “computer,” another may file the
same laptop under “laptops . ultraportables . luxury”.

Provenance information: A large portion of the data is
unusable for search access. For example, some data encoun-
tered were provenance and bookkeeping, such as the cardi-
nality of other tables in the database and the time and date
of last updates.

Domain specific attributes: Often the data provider uses
a proprietary contraction whose translation is available only
in the application logic, for example “en-us” to signify a US
English keyboard.

Formatting choices: There is considerable variation in
format. This is not restricted to just date and time formats.
Providers invented their own formats, such as “56789:” in
the “decades active” field for a person’s biography, denoting
that the person was alive from the 1950s to present.

Unit conversion: Quantitative data is often expressed in
different interchangeable units, such as Fahrenheit vs. Cel-
sius, hours vs. minutes. Also, the number of significant
digits is variable. While one source can say 1.4GHz, the
other may mention 1.38Ghz. Approximation is extremely
sensitive to semantics. For example it cannot be applied to
the terms 802.11, 802.2 and 802.3, since they most probably
refer to networking protocols in the hardware domain.

Many of these are instance-level problems that can be
solved at the entity extraction and entity reconciliation stages
of the integration. However, before moving to the reconcil-
iation stage, we still need a general schema and taxonomy
alignment that can guide the following integration steps.

A possible solution to this is to have programmers on both
sides, the search engine (the warehouse) and the third party
data provider, to create standardized streams of data that
conform to a canonical schema. While there has been a lot
of work in developing universal semantic standards for data
feeds [21, 22, 29, 40], it is easy to see why such an approach
does not scale. Using a standards-based schema means that
we can consider only the data types and domains where
standards have been agreed upon. This restricts growth of
the schema or taxonomy; any addition or deletion to the
schema or taxonomy needs to be reflected in a new version
of the standard. If the universal standard is extensible by
independent data providers, then the extensions still have to
be integrated across providers. Schema and taxonomy evo-
lution are hard to cope with in a standardized environment,
and the burden shifts to the third party data provider to do
most of the heavy lifting required to conform to a standard.
Since a search engine provider would like to make the path
of adoption as easy as possible, it is critical to reduce the
time investment involved in submitting new data by using
automated methods such as ours.

8. RELATED AND FUTURE WORK
The problems of schema and taxonomy mapping are con-

sidered critical steps in the process of data integration [24]
and have been widely studied. [32, 36] document the large
body of work done towards mapping schemas, while [18,
31] discuss ontology mapping. In this paper, we inherit ap-
proaches from both sides, and propose a technique to solve
both problems with the same framework.

Existing approaches for schema mapping use structural
and linguistic similarities of the schema elements. Schema-
based matching has been performed using string match-
ing techniques [9], and has been combined with other ap-
proaches such as using synonym tables [8]. Learning ap-
proaches have been applied as well [12], using a semi-automatic
approach with classifiers, integrity constraints and user feed-
back. The GLUE system [14] employs relaxation labeling to
match ontologies. He and Chang [19] use a hidden genera-
tive model to interpret schemas in different websites. Sim-
ilarity Flooding [28] calculates similarity across nodes of a
graph (such as a schema graph) using a method inspired by
network packet flooding.

The heterogeneity of application scenarios and methods
makes it hard for schema mapping techniques to be applied
and compared consistently. In our case, we leverage aspects
of the data integration pipeline for a search engine. Unlike
typical enterprise scenarios [30, 37], we cannot always expect
to have well-documented schemas. Moreover, our schema
is often inferred from instance data in the incoming XML
feeds. Care must be taken to minimize human effort, keeping
the data ingestion pipeline as unsupervised as possible. Our
scenario is perhaps most similar to catalog integation [1]
and e-business domain [38], but is purely a one-way task,
integrating incoming data into the warehouse.

The heart of our schema matching technique is the use of
clicklogs extracted from search query logs. The idea of using
structured query logs to aid in schema matching was intro-
duced by Elmeleegy et al. in [16]. They used SQL query logs
as hints to indicate mapping of columns and a genetic algo-
rithm to find the best set of correspondences across multiple
matchers and features. They provide an excellent analysis
of how to use the structure of the SQL queries (such as
joins, group-bys, and aggregate functions) on two databases
as clues to infer correspondences. By contrast, unlike tradi-
tional SQL databases, our search engine is purely keyword
based; we cannot exploit any richness of query structure
here. Hence, we look at the content of the query itself, using
the similarity of keyword query phrases as clues for mapping.
Since SQL queries perform exact or partial string matching,
looking at the content of the queries would be identical to
performing conventional instance-based matching, without
the log. In contrast, web keyword queries are not always
partial string matches to the content of the database item.
For example, the word “netbook” may never be mentioned
on the ASUS eeePC page (either due to branding, or because
the page is in Spanish and uses the word subportátil instead),
but a search for “netbook” can still lead to the eeePC page
as a search result since other pages on the Web linked to
it using the anchor text “netbook”. Conversely, the eeePC
page contained many mentions of the word “laptop”. But
since it is not a popular full size laptop, it will not have con-
siderable presence in the clicklogs, despite showing up as a
top-10 result. These nuances are unique to web search click-
logs, and our query distribution method correctly captures
them to infer correspondences.

McCann et al. propose an intriguing technique of “crowd-
sourcing” the schema mapping task [27] to volunteer inte-
grators. We exploit user input too, but in a passive manner,
implicitly using the consumers of our integration for the ac-
tual integration task. Unlike their method, we do not require
explicit interaction with the user, hence avoiding such prob-
lems as adversarial behavior (i.e., spamming) and proper
incentivisation of user feedback. Both methods share the
burden of identifying users who can be treated as expert in-
tegrators, which can be done by clustering query and click
behavior of all users[5].

In [4] and [25], the concept of “reuse-oriented” matching
is presented. The current match operation is augmented
with information gleaned from established corpora and pre-
vious successful mappings. Such concepts can be extended
to query distributions as well; for example one can boost
query co-occurrences by computing statistics over query logs
for successful mappings or the entire search engine.

“Meta-mapping,” which combines the outputs of multi-
ple matchers, has been investigated in various scenarios.

Both LSD [12] and GLUE [14] use a multi-strategy approach
by combining the mappings from a set of learners using a
meta-learner. Unsupervised rank aggregation by maximiz-
ing ranker agreement [23] and using techniques from evi-
dential reasoning [20] have been discussed. COMA++[4,
17] proposes a variety of match strategies and provides ex-
haustive infrastructure to evaluate, compose and combine
matchers. Such methods can be used to combine Query-
Distribution mappings with other sources. In [10] the con-
tinual post-integration improvement of “mediated schemas”
is discussed to make them more amenable for future in-
tegration. We believe these techniques make for excellent
inputs towards building our overall data integration frame-
work, and would work very well in conjunction with the
ideas proposed in this paper.

As a solution to structured search, the construction of
an integrated warehouse is not novel. Google Base [21]
already indexes a large amount of data, integrated from
a variety of data providers. Data providers are encour-
aged to use Google’s attributes. While universal data stan-
dards exist [40, 22], we still expect a large number of data
providers to use proprietary schemas and taxonomies. This
forces data providers to manually write code to translate
from the proprietary formats to the standardized format for
the warehouse, an undesirable task. Alternative paradigms
include federated search over heterogeneous databases by
automatically discovering relationships across the multiple
databases [35] or using an A*-based search to execute queries
over a merged schema [11]. Both approaches, while differ-
ent from ours, are perfectly acceptable, and lead to mapping
problems similar to ours. Adapting our techniques for these
approaches as a suitable topic for future work.

While query log information has been exploited for rele-
vance ranking in search, HAMSTER is the first system to
our knowledge that uses keyword query distributions to map
schema and taxonomies. Literature on query distribution
from the image processing community concentrate on his-
tograms with numerical bins, while we are concerned with
query strings as bin labels. [33] proposes Earth Mover’s Dis-
tance as a similarity metric, which is the amount of work
required to transform one distribution to another. [7] com-
pares different methods to compare query log information
for web search by analyzing the overlap in query terms, re-
sult ranks and result contents. We leverage these ideas and
propose our own similarity metrics in Section 4.

9. CONCLUSION
With the continual growth of structured data available on

the web, it is increasingly important to be able to sift and
search through these mountains of structured data. Data
integration thus becomes a necessary step to provide a uni-
fied search interface. Mapping schema and taxonomy are
critical parts of the data integration pipeline, allowing the
search engine to effectively ingest large numbers of incoming
feeds in an unsupervised or semi-supervised manner.

In this paper, we explored the scenario of schema and tax-
onomy integration in the context of a keyword search engine.
We proposed a single framework to tackle both problems,
and presented the issues involved in building the framework.
We discovered that semi-supervised mapping is an achiev-
able goal for our tasks, automatically generating 40-60% of
the correspondences with a precision of above 70%. Keep-
ing our overall framework in mind, we looked into the use of

information previously unavailable in traditional mapping
scenarios. We proposed the use of click information from
the search engine’s query log as a feature in our mapping
framework. We discovered that clicklogs are a promising
source of features, generating correspondences that many
current methods cannot find. This is because current meth-
ods analyze only the content of the data, while we use in-
formation outside of the actual data, i.e., users’ queries, to
propose mappings. The clicklog method is ideal when the
data comes from disparate sources and has little overlap
with the contents of the warehouse, a common situation in
our experience. We observed that query distributions can
produce very high (nearly perfect) precision mappings, and
that the recall is proportional to the amount of the clicklog
information available.

Going forward, we foresee a multitude of directions where
advancements can be made. We currently require a few
hours to extract relevant clicklogs, and less than an hour
to produce the actual mappings. The former time could
be reduced drastically by properly indexing clicklog data
for our needs, while the latter can be reduced to near in-
stant time by proper optimization and parallelization (the
nature of our algorithm makes it especially amenable to a
Map-Reduce style adaptation). By reducing the mapping
generation time, we can provide the data providers with an
interactive experience, showing them how their data will be
integrated right when they upload their data. Additionally,
clicklogs are noisy, in that users often click through to URLs
that turn out to be irrelevant. Removing noise should im-
prove our results and would be worthwhile future work.

While we consider the keyword queries as structure-less
phrases, it may be possible to discover an ad hoc structure
in them. For example, the query “macbook pro prices” can
be translated to “[name] prices”. The unsupervised templa-
tization of keyword queries has been shown to be possible at
web scale [39]. We plan to incorporate this technique into
our framework, allowing us to analyze the (fairly limited)
structure of the queries as an additional input feature for the
mappers. Furthermore, the clustering of related queries [41,
6] can discover connections between query terms, allowing
us to generate even more input features. Another direction
to explore is mapper confidence. In the presence of multiple
mappers, how do we determine that the clicklog information
is the best source of mappings for a particular schema or
taxonomy element? A simple option is to threshold the ab-
solute score values. Another option is to look at the amount
and quality of the clicklog used to make the mapping pro-
posals, since we expect sections with a large number of users
whose clicks agree with each other to produce better map-
pings than sections with a few disagreeing users.

As documented by similar web-scale integration projects [26],
the integration pipeline is required to provide the best-effort
answers at all times, while continually improving itself by
incorporating feedback. An interesting source of feedback
information we possess is query log information, which can
be exploited to measure the search satisfaction of the user.
One possible idea is to use search satisfaction as an objective
function for mapping quality. To do this, one could lever-
age the method of sample testing, where a small fraction of
the search engine users are presented with a modified search
mechanism. Various aspects of their behavior, such as or-
der of clicks, session time, answers to polls or surveys, etc.
are used to measure the effectiveness of the modification.

While each mapping usually consists of the top correspon-
dence match for each entity, one could instead consider the
top-k correspondences for each item, resulting in multiple
possible mapping configurations. Each mapping configura-
tion is run as a sample test, and the mapping that results
in the most satisfactory user experience is then picked as
the final mapping answer. A method like this would be an
excellent complement to the work in this paper.

10. ACKNOWLEDGEMENTS
We thank Thomas Bergstraesser and Bert Casper for sug-

gesting the problem, Smitha Kalappurakkal for help with
the data and Sergey Melnik for many helpful discussions.

11. REFERENCES
[1] R. Agrawal and R. Srikant. On Integrating Catalogs.

WWW, 2001.

[2] S. Amer-Yahia. A Database Solution to Search 2.0
(keynote talk). WebDB, 2007.

[3] E. Amitay and A. Broder. Introduction to Special
issue on Query Log Analysis: Technology and Ethics.
TWEB, 2008.

[4] D. Aumueller, H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with COMA++.
SIGMOD, 2005.

[5] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
Recommendation using Query Logs in Search Engines.
International Workshop on Clustering Information
over the Web, 2004.

[6] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines.
EDBT Workshops, 2004.

[7] E. Balfe and B. Smyth. A Comparative Analysis of
Query Similarity Metrics for Community-Based Web
Search. LNCS, 2005.

[8] P. Bernstein, J. Madhavan, and E. Rahm. Generic
Schema Matching with Cupid. VLDB Journal, 2001.

[9] P. Bernstein, S. Melnik, and J. Churchill. Incremental
Schema Matching. VLDB, 2006.

[10] X. Chai, M. Sayyadian, A. Doan, A. Rosenthal, and
L. Seligman. Analyzing and Revising Data Integration
Schemas to improve their Matchability. VLDB, 2008.

[11] W. Cohen. Integration of Heterogeneous Databases
without Common Domains using Queries based on
Textual Similarity. SIGMOD Record, 1998.

[12] A. Doan, P. Domingos, and A. Halevy. Reconciling
Schemas of Disparate Data Sources: A
Machine-Learning Approach. SIGMOD Record, 2001.

[13] A. Doan and A. Halevy. Semantic Integration
Research in the Database Community: A Brief
Survey. AI Magazine, 2005.

[14] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Ontology Matching: A Machine Learning Approach.
Handbook on Ontologies in Information Systems, 2004.

[15] X. Dong, A. Halevy, and J. Madhavan. Reference
Reconciliation in Complex Information Spaces.
SIGMOD, 2005.

[16] H. Elmeleegy, M. Ouzzani, and A. Elmagarmid.
Usage-Based Schema Matching. ICDE, 2008.

[17] D. Engmann and S. Massmann. Instance matching
with COMA++. In BTW Workshop, 2007.

[18] J. Euzenat and P. Shvaiko. Ontology Matching.
Springer-Verlag, 2007.

[19] B. He and K. Chang. Statistical Schema Integration
across the Deep Web. SIGMOD, 2003.

[20] J. Hong, H. Zhongtian, and D. Bell. An Evidential
Approach to Query Interface Matching on the Deep
Web. VLDB, 2008.

[21] W. Hsieh, J. Madhavan, and R. Pike. Data
management projects at Google. SIGMOD, 2006.

[22] R. Khare and T. Çelik. Microformats: a Pragmatic
Path to the Semantic Web. WWW, 2006.

[23] A. Klementiev, D. Roth, and K. Small. An
Unsupervised Learning Algorithm for Rank
Aggregation. ECML, 2007.

[24] M. Lenzerini. Data Integration: a Theoretical
Perspective. PODS, 2002.

[25] J. Madhavan, P. Bernstein, A. Doan, and A. Halevy.
Corpus-based schema matching. In ICDE, 2005.

[26] J. Madhavan, S. Jeffery, S. Cohen, X. Dong, D. Ko,
C. Yu, and A. Halevy. Web-scale Data Integration:
You can only afford to Pay As You Go. CIDR, 2007.

[27] R. McCann, W. Shen, and A. Doan. Matching
Schemas in Online Communities: A Web 2.0
Approach. Proceedings of ICDE, 2008.

[28] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and
its Application to Schema Matching. ICDE, 2002.

[29] P. Mika. Microsearch: An Interface for Semantic
Search. Semantic Search, 2008.

[30] P. Mork, A. Rosenthal, L. Seligman, J. Korb, and
K. Samuel. Integration Workbench: Integrating
Schema Integration Tools. Workshop on Database
Interoperability at ICDE, 2006.

[31] N. Noy. Semantic Integration: A Survey of
Ontology-based Approaches. SIGMOD Record, 2004.

[32] E. Rahm and P. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal, 2001.

[33] Y. Rubner, C. Tomasi, and L. Guibas. The Earth
Mover’s Distance as a Metric for Image Retrieval.
International Journal of Computer Vision, 2000.

[34] M. Sayyadian, Y. Lee, A. Doan, and A. Rosenthal.
Tuning Schema matching Software using Synthetic
Scenarios. VLDB, 2005.

[35] M. Sayyadian, H. LeKhac, A. Doan, and L. Gravano.
Efficient Keyword Search across Heterogeneous
Relational Databases. ICDE, 2007.

[36] P. Shvaiko and J. Euzenat. A Survey of Schema-Based
Matching Approaches. LNCS, 2005.

[37] K. Smith, P. Mork, L. Seligman, A. Rosenthal,
M. Morse, D. Allen, and M. Li. The Role of Schema
Metching in Large Enterprises. CIDR, 2009.

[38] M. Stonebraker and J. Hellerstein. Content
Integration for e-business. SIGMOD, 2001.

[39] B. Tan and F. Peng. Unsupervised query
segmentation using generative language models and
wikipedia. WWW, 2008.

[40] S. Weibel, J. Kunze, C. Lagoze, and M. Wolf. Dublin
Core Metadata for Resource Discovery. Internet
Engineering Task Force RFC, 1998.

[41] J. Wen, J. Nie, and H. Zhang. Query clustering using
user logs. ACM TOIS, 2002.

