
Scalable Web Data Extraction for Online Market
Intelligence

Robert Baumgartner
Lixto Software GmbH

Vienna, Austria
baumgartner@lixto.com

Georg Gottlob
∗

Oxford University
Oxford, UK

gottlob@comlab.ox.ac.uk

Marcus Herzog
Lixto Software GmbH

Vienna, Austria
herzog@lixto.com

ABSTRACT
Online market intelligence (OMI), in particular competitive
intelligence for product pricing, is a very important applica-
tion area for Web data extraction. However, OMI presents
non-trivial challenges to data extraction technology. Sophis-
ticated and highly parameterized navigation and extraction
tasks are required. On-the-fly data cleansing is necessary in
order two identify identical products from different suppli-
ers. It must be possible to smoothly define data flow sce-
narios that merge and filter streams of extracted data stem-
ming from several Web sites and store the resulting data
into a data warehouse, where the data is subjected to mar-
ket intelligence analytics. Finally, the system must be highly
scalable, in order to be able to extract and process massive
amounts of data in a short time. Lixto (www.lixto.com),
a company offering data extraction tools and services, has
been providing OMI solutions for several customers. In this
paper we show how Lixto has tackled each of the above chal-
lenges by improving and extending its original data extrac-
tion software. Most importantly, we show how high scala-
bility is achieved through cloud computing. This paper also
features a case study from the computers and electronics
market.

1. INTRODUCTION
This paper deals with Web data extraction technology ap-

plied to online market intelligence (OMI). More specifically,
we report about how the Lixto Web data extraction technol-
ogy [4] has been improved over the last few years in response
to scalability and efficiency challenges posed by customers
for which the Lixto company (lixto.com) has been carrying
out advanced online market intelligence projects.

Online market intelligence. According to [21], “Mar-
ket Intelligence (MI) is the information relevant to a com-
pany’s markets, gathered and analyzed specifically for the

∗Computing Laboratory and Oxford Man Institute of Quan-
titative Finance.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

purpose of accurate and confident decision-making in de-
termining market opportunity, market penetration strategy,
and market development metrics.” Market intelligence com-
prises as a special case competitive intelligence. Online mar-
ket intelligence (OMI) covers all aspects of MI that are re-
lated to online information sources, predominantly, to the
Web. Given that most information on pricing, product avail-
ability, store locations, and so on, is available on the Web,
OMI is becoming the most important form of market intel-
ligence. Currently, almost every large retail company has
OMI needs for marketing and pricing. Most, but not all ap-
plications of OMI are in the area of competitive intelligence.
Here are five examples of typical OMI needs. The first three
are in the area of competitive intelligence, while the last two
are not.

• An electronics retailer would like to get a comprehen-
sive overview of the market in the form of a dashboard
displaying daily information on price developments in-
cluding shipping costs, pricing trends, and product
mix changes by segment, product, geographical region,
or competitor.

• A supermarket chain wishes to be continually informed
about their competitors’ product prices. Moreover,
they want to be immediately informed in case a com-
peting supermarket chain issues a special offer or pro-
motion. They need to react very quickly to price changes
or new special discounts in order to maintain their
competitive position. They also want to be informed
as soon as new products show up on the market.

• An online travel agency offering a best price guarantee
needs to know at which prices the packages they offer
are sold over the Web by competing travel agencies.
Moreover, they wish to be informed about the average
market price of each travel product they feature.

• A road construction corporation would like to be in-
formed about new public tenders in a dozen of different
countries or states.

• Once a week, the house price index (reflecting the av-
erage prices for various property types) of a country
is updated on the Web site of the country’s national
statistics agency. Variations of this house price index
immediately trigger changes in the value of shares of
various industries related to the real estate market. A
hedge fund wishes to anticipate the house price vari-
ations by one day. To achieve this, the hedge fund

needs to obtain online market intelligence by aggre-
gating data such as asking price, number of listings
and average time on market, from the web pages of
real-estate agents.

What all these applications have in common is that they
require massive amounts of Web data from a relatively lim-
ited number of sources and that they are rather time critical.
Moreover, in several cases aggregate data rather than raw
data it needed.

OMI and Web data extraction. It is quite obvious
that the main approach for solving OMI problems such as
those mentioned is the use of Web data extraction technol-
ogy [5]. Moreover, given that the relevant sources are usually
known, and that the OMI applications require a complete
coverage of the sources and a very high level of data preci-
sion, manual or semi-automatic wrapper generators for the
relevant sources are preferable to generic Web harvesting
tools. The latter may be used as additional tools, for exam-
ple, in order to discover new sources. In the present paper
we focus on the former type of technology. The principles of
(manual and semi-automatic) Web data extraction technol-
ogy and wrapper generation are described in [5]. A survey
of various wrapper generation tools, that still covers most
existing tools can be found in [15, 20].

However, standard data extraction technology alone does
not suffice for addressing advanced OMI needs such as: (i)
the possibility of defining sophisticated and highly parame-
terized navigation and extraction tasks; (ii) the possibility
of performing data cleansing tasks, e.g. to identify identical
products from different suppliers; (iii) features for smoothly
defining data flow scenarios that merge and filter streams of
extracted data stemming from several Web sites and store
the resulting data into a data warehouse; (iv) means for car-
rying out market intelligence analytics and for presenting the
results in form of appropriate dashboards to the users; (v)
features enabling the highly scalable extraction and further
processing of massive amounts of data in a short time.

Lixto (www.lixto.com), a company offering data extrac-
tion tools and services, has been providing OMI solutions
for several customers. In this paper we show how Lixto has
tackled each of the above challenges by improving and ex-
tending its data extraction software whose first version was
presented at VLDB 2001. The resulting new software prod-
uct Lixto OMI is based upon the company’s web data extrac-
tion technology that has been designed to access, augment
and deliver content and data from web applications that
utilize client-side processing techniques such as JavaScript,
AJAX and dynamic HTML. This allows for fast reactions
to changes in the online channels. On top of the data store,
Lixto uses enterprise-class reporting infrastructure to pro-
vide all necessary reports and analytics to enable an effi-
cient identification of market opportunities that are most
relevant for day-to-day business. Important market events
are highlighted and reports customized to show exactly the
data items that are of most interest to individual users. This
latest version of the Lixto OMI solution utilizes the power
of Internet Cloud Computing to improve the scalability and
processing power of the companys SaaS and on-premise web
intelligence solution that will allow Lixto’s customers to ex-
tract even more data from the Internet for analysis in real-
time.

To achieve this virtually infinite scaling of its solution,
Lixto has introduced a new software architecture into the

latest Version 5 solution for its server-side products that sup-
ports a grid-based scaling (or Cloud Computing) approach.
This allows for linear scaling in relation to the number of
processing units available in a cluster of servers. The soft-
ware supports the use of Cloud Computing resources such as
Amazon Elastic Compute Cloud (EC2). The new server ar-
chitecture also introduces intelligent load-distribution amongst
the available processing units resulting in more efficient re-
source utilization and reduced management overhead.

Structure of the paper. The rest of the paper is struc-
tured as follows. In Section 2, we briefly describe the four
major OMI application components. In Section 3 we survey
the processes of creating a wrapper, of defining the applica-
tion data flow, and of data cleansing. The overall process
is referred to as Web ETL, i.e., extraction, transformation,
and loading of Web data. In Section 4 we describe how ex-
treme scalability is achieved through a cluster architecture
and through cloud computing. Section 5 presents a case
study of an application in the computers and electronics
market. Finally, some brief concluding remarks are given in
Section 6.

2. OMI APPLICATION COMPONENTS
In online market intelligence, the web data extraction

toolkit is used to set up an analytic practice for an in-depth
analysis of online markets. Typical web sources such as on-
line shops and other sorts of online distribution channels
are used to extract relevant product information including
product configurations and prices. This information is sub-
sequently fed into the analysis platform to provide a struc-
tured view of the market. Online market intelligence helps
market participants achieve a better understanding of im-
portant market events directly from the source.

Online market intelligence applications comprise the fol-
lowing components: First, a web data extraction unit to ac-
cess the relevant online market data. This component needs
to query web sites and transform the returned unstructured
data format, i.e. a web page, into a structured format that
can be used for automatic data processing (refer to [9, 15,
16, 17, 19] for an overview of academic, commercial and
open-source wrapper-generation software). In the context
of online market intelligence, this component needs to scale
out well for processing a high number of pages typically in
the range of few hundred thousand per day. We call such
a component a Web Connector and will detail the specifics
later on.

Secondly, a data cleansing component that performs data
cleansing and record linkage between data sets from differ-
ent web sources. This is necessary as data from the web
is usually not in a homogeneous format, e.g., naming and
formatting of both names and values of data objects will
differ substantially. However, to compare data from differ-
ent sources a common standard needs to be implemented.
This is achieved by providing mapping rules that map the
input data set onto a common output data model.

Thirdly, an analytics package for digging into the data
and for setting up reports and dashboards that enable users
to experience the value hidden in the data. The data is thus
loaded into a data warehouse and existing business intelli-
gence toolkits can be used to perform further analysis. The
real challenge of this part is to understand the domain and
the benefits associated with certain analytics.

Fourthly, to use the dataset in other enterprise applica-

tions such as yield management, pricing, or revenue man-
agement, connectors to these systems are required. Directly
importing the market data into these applications provides
additional value beyond the mere analytical aspect and al-
lows for closing the loop, i.e., market data can drive the
pricing process which sets prices for offerings on the market.
Without market data, pricing has to rely on insufficient in-
formation leaving out an important aspect - the market.

3. WEB ETL MODELLING
In this section we describe the creation of Web Connec-

tors. A Web Connector comprises means to extract data
from Web applications, transform and clean the extracted
data, and load the data via a staging database to a data
warehouse (DWH). Hence, in DWH notation using a Web
connector can be referred to as an ETL process. Lixto pro-
vides visual and interactive tools for the creation of Web
ETL connectors.

In particular, the Lixto Visual Developer is used for cre-
ating an extraction program (“wrapper”) that understands
the logic of the Web application and extracts facts from it.
The Lixto Transformation Server is used for configuration
of OMI scenarios that extract data from various Web sites,
iterating over Web forms and managing extraction jobs. Fi-
nally, the Lixto Retail Solution harmonizes extracted data,
performs product matching and provides the analytic data
structure on which reports are created.

3.1 Wrapper Creation

3.1.1 Architecture
With the Lixto Visual Developer (VD), wrappers are cre-

ated in an entirely visual and interactive fashion. Figure 1
sketches the architecture of VD and its runtime components.

The VD is an Eclipse-based visual integrated development
environment (IDE). It embeds the Mozilla browser and in-
teracts with it on various levels, e.g. for highlighting web
objects, interpreting mouse clicks or interacting with the
document object model (DOM). Usually, the application de-
signer creates or imports a data model as a first step. The
data model is an XML schema-based representation of the
application domain. In the retail case, this comprises prod-
uct names, prices, EAN numbers and several product prop-
erties. Such a data model is a shared entity throughout a
project. It ensures on the one hand smooth collaborative
work and on the other hand a number of used robustness
algorithms rely on properties of the data model.

Figure 2 shows a screenshot of the GUI of the Visual De-
veloper. On the left-hand side, the project overview and the
outline view of the currently active wrapper are illustrated.
In the center, the embedded browser is shown, and on the
right hand side the DOM tree of the currently active page
is displayed. At the bottom, in the Property View, naviga-
tion and extraction actions can be inspected and configured.
Moreover, in the right corner the network traffic is shown.

During wrapper creation, the application designer visually
creates deep web navigations (e.g. form filling), logical ele-
ments (e.g. click if exists), and extraction rules. The system
supports this process with automatic recording, immedi-
ate feedback mechanisms, generalization heuristics, domain-
independent and retail-specific templates. The application
designer creates the wrapper based on samples, both in the

Lixto TS

Application
Designer

Web Applications

Visual Developer

Application
Logic

Wrapper
Creation

Eclipse IDEMozilla

Data Model Wrapper

Wrapper

Runtime
Parameters

Lixto Hydra (Thread
Pool of VD runtimes)

VD
Runtime

VD
Runtime

VD
Runtime

Figure 1: Visual Developer Architecture

case of navigation steps (e.g. use a particular product cate-
gory) and in the case of extraction steps.

The internal extraction language Elog [3, 11], the web
object detections based on XPath2, token grammars and
regular expressions are part of the application logic. More-
over, the application logic comprises deep Web navigation
and workflow elements for understanding Web processes, as
well as technical aspects such as authorization and dialogue
handling.

Wrappers and data models are uploaded to the server. In
the retail scenario, the OMI Edition of the Lixto Transfor-
mation Server (TS) is used (rf. to Section 3.2.1 below). In
the SOA-oriented architecture of Lixto, servers such as the
TS access the VD Runtimes via Web Service or Java RMI.
The simple variant is to use one machine with a pool of
runtime components, as depicted in Figure 1. In Section 4,
the highly scalable Extraction Cluster is presented. Each
request provides information about the wrapper to be ex-
ecuted and the runtime parameters (e.g. values for filling
forms).

At wrapper execution time, each VD runtime, a.k.a. VD
head, runs as its own process, using its own browser instance
(during such executions the browser GUI is irrelevant and
suppressed). Lixto Hydra spawns a number of VD heads
and communicates results back to the server. Additionally,
since Web applications can act unreliably, Hydra is capable
of terminating and creating new heads to retry the wrapper
if necessary. This architecture leverages Web extraction to
a very stable and reliable process – browser instances of
parallel executions do not interfere with each other, and
in case of any problems with Web sites, parts of wrapper
executions are retried in a new head.

3.1.2 Web Processes and Deep Web Navigation
One important aspect of data extraction from the Web,

often neglected in academic work (except e.g. in [1]), is how
to reach pages where data is extracted from. Today’s Web
portals are no longer a collection of linked pages, but are
rich internet applications (RIA) with a complex application
logic. Therefore, Lixto VD is capable to:

• support deep Web navigation;

Figure 2: Visual Developer GUI

• behave like a human user and issue clicks on web ob-
jects instead of simple request-response tracking;

• understand the application logic of the Web site and
model possible cases, using a process flow language;

• support pages that use asynchronous requests (Ajax),
in particular support to freeze the current state of a
page to do data extraction upon.

The navigation and process flow language of the VD was
first described in [2]. In VD, a wrapper comprises a list
of page classes. A page class is a template that contains a
procedure of actions and default responses. Two primitive
actions are Mouse Actions and Key Actions. Mouse actions
include mouse move and mouse click elements, whereas key
actions enter textual data in fields. Usually, both actions
identify Web objects using XPath statements (rf. to Section
3.1.4 for explanations how these are generated in a robust
way).

VD offers two variants of executing these actions.

• Visually: On replay at execution time, the web object
referred by the given XPath is fetched and its associ-
ated coordinates in the view are computed. In conse-
quence, a mouse click is performed on this element (by
default in the center, except for image maps, where the
click is executed at precisely the same location within
the image at which it was recorded during wrapper
generation).

• Event-based: The corresponding DOM Events are trig-
gered.

The first approach has the advantage that the wrapper be-
haves exactly like a human user, as it leaves all the logic of
interpreting the clicks to the browser. Based on these prim-
itive actions, various Web objects are supported by tailor-
made actions, such as: Buttons, Single and Multiple Select
Boxes, Dropdown List Boxes, Checkboxes, Radio Button
Groups, and Text Boxes. Each action supports an individ-
ual set of operations.

As example, consider the Text Box Action, which sup-
ports the following operations: Click, Click if exists, Submit,
SetValue, AppendValue, and GetValue. GetValue stores the
current value in a variable, and SetValue sets a value given
by the application designer or an external parameter. An-
other example are Drop Down Actions. These actions con-
catenate mouse clicks to select the list plus the actual value
selection. Figure 2 illustrates the definition of such an action
in the GUI of the VD.

VD supports automatic recording of deep Web naviga-
tion sequences by offering buttons to record, pause and stop
recording. During a recording process, all browser inter-
actions of wrapper designers are stored by the system and
the respective actions are created. As well as mouse and
key interactions, this includes switching to popups and cre-
ating default answers to prompt dialogues (e.g. passwords
for basic authentication). During the recording process, the
system generalizes how Web objects will be detected during
replay (as discussed in Section 3.1.4).

Popups are treated like new browser tabs, and in the
Switch Action, a wrapper designer can decide to switch to
the first or last opened one, or to identify a tab by name,

PageClass start

Actions
 Parameter (int count, count=0)
 URL (Load)
 TextBox (SetValue)
 DropDown (Select) [pricerange]
 DropDown (Select) [cpurange]
 Button (Submit)
 Call (bestfit overview|details)
Dialog Defaults
 AlertReply(Ok)
Used Parameters
 pricerange (string)
 cpurange (string)
 count (int)

PageClass overview

Actions
 Mouse (ClickIfExists)
 Data Extractor (retailmodel)
 root

record
 detaillink (Click, details)
 nextlink (Click, overview)

PageClass details

Actions
 Parameter (c+1)
 if (c==100)
 exit
 else
 Data Extractor (retailmodel)
 root

manufacturer
option (Do nothing, options)

Used Parameters
count (int)

1

n

1

PageClass options

Actions
 DropDown (Select) [current_option]
 Data Extractor (retailmodel)
 root

details [current_option]
price
cpu
memory

Used Parameters
current_option (int) (from pc details)

Used Parameters
count (int)

n

Input Model:

pricerange (string)
cpurange (string)

Output Model (retailmodel):

record{+} sequence
manufacturer{1,1} string
option{+} sequence

details{1,1} string
price{1,1} europrice
cpu{1,1} string
memory{1,1} string

Figure 3: Page Class Concept and Input/Output Model

title or an occurring object. Prompt replies such as basic
authentication fields, JavaScript alerts, proxy password dia-
logues and similar are managed separately to actions. They
are not applied at one particular step, but instead default
responses are stored for each page class. This way, if an
alert occurs in a rather random fashion, the wrapper always
knows how to handle it. Download Actions store files in the
result XML or on disk.

Further actions enable the wrapper designer to execute
arbitrary JavaScripts on the current DOM tree, and to con-
figure all kind of browser settings. The latter includes set-
ting the user agent, turning images on/off, applying con-
tent policies (such as disable JavaScript or loading certain
URLs), and execution of external tools for special MIME
types.

In many Web applications it is necessary to understand
the application logic, and hence to distinguish cases that
can happen during navigation, to handle exceptions, and
to branch to a multitude of detail pages. Hence, the VD
supports the following process flow concepts:

• If andWhile Actions allow comparison based on com-
parisons in XPath or scripting languages.

• Call Actions give the possibility to explicitly jump to
a different page class.

• Return and Exit break a page class execution and re-
turn to the previous one resetting the previous browser
state, and exit the wrapper execution, respectively.

• Try-Catch-Finally blocks handle exceptional cases, e.g.
by carrying out special action in case a mouse action
on a Web object can not be performed.

• Page Class Recursions are a concept applied in data
extractors (described in the following section) to branch
to a new page and call it x times. A typical case is an
overview page where a number of items are described,
each featuring a detail link. The data extractor detects
all links and calls an appropriate page class for each of
these links. At the very end of page class execution,
the execution returns to the page class where it was
called.

• Parameter Actions create new or modify existing pa-
rameters. Parameters can be external input values,
created by actions, or populated by extracted values.
Each action can use parameter values at all places, e.g.
for filling textual values or XPath fragments.

• DB Loop Actions receive a list of values that are used
to execute further page classes with those values as
parameters.

Figure 3 gives a conceptual view on a wrapper, and illus-
trates some of the above process flow actions. It illustrates
the input parameters to a wrapper, the output model that
the data is mapped to, and the wrapper itself. This exam-
ple wrapper features four page classes. Page class “start” is
called from another process (such as the Lixto Server), pro-
viding values for the parameters given in the input model.
The actions to set a global counter and to select values from
Dropdown lists are executed sequentially. In case an alert
popups throughout, it is answered with the “Ok” button.
Finally, the Call Action jumps to the page class “overview”.
The first action here is to perform a mouse click in case
a particular advertisement page pops up. Next, data ex-
traction on the current page is applied. In particular, links
to detail pages and to the next page (if any) are extracted
by invoking the data extractor (see Section 3.1.3), and fol-
lowed. This illustrates that navigation steps and extraction
steps are closely intermingled with each other rather than
being two separate processes.

For all detail links, the detail page class is called. In this
class, a counter is used to ensure that no more than 100
items are extracted, and manufacturer data is grabbed. In
this case, several options/configurations for each item exist,
and a further branching to the page class “Options” iterates
through all of them. A parameter for the currently selected
configuration is passed on to perform an option selection in
the new page class.

In the page class “start”, the Call Action does not ex-
plicitly refer to a page class, but jumps to the best fitting
one. To perform this, the system creates a fingerprint of how
typical entry pages look like for each page class. During ex-
ecution, based on the properties, the best fit is chosen. The
fingerprint contains both structural and syntactical proper-
ties, and can easily distinguish between typical overview list
pages and detail pages with one item.

Wrappers can be executed fully or partially, in run or de-
bug mode. The system highlights selections and offers a
step-by-step walk-through, using breakpoints, and inspec-
tion of parameter states.

3.1.3 Web Data Extraction
A data extractor is a special action applied during the nav-

igation flow. It freezes the DOM tree, and applies rules for
extracting a nested data structure. Each wrapper comprises

a hierarchical structure of patterns. Each pattern matches
one kind of information on a Web page (e.g. prices). Pat-
terns are structured hierarchically, and usually the extrac-
tion is created top-down. The application designer can de-
cide to create patterns on the fly, or refer to existing model
patterns; the being latter especially useful in case many
wrappers have to map to the same data structure. On
the right-hand side of Figure 3, an output model and its
constraints are specified; in the data extractors of Figure 3
model patterns are underlined; by default only model pat-
tern instances are reflected in the output.

The constraints given in the output model are used to ver-
ify if a data extractor is still extracting correctly; in case of
deviations, alerts are sent to the operator of the application.

Each pattern comprises a set of filters. Application de-
signers create filters in a visual and example-based way.
Usually, first one example is selected directly in the browser,
and generalized by the system. In the next step a wrapper
designer can decide to impose further conditions, e.g. that
particular attributes need to be present and match a regu-
lar expression, something is directly before, or an image is
contained.

The Lixto data extraction process uses internally a declar-
ative extraction language called Elog (described in more de-
tail in [3, 4]), which relies on a datalog syntax and semantics
and is completely hidden from the wrapper designer. It is
ideally suited for representing and successively incrementing
the knowledge about patterns described by designers. This
knowledge is generated in an interactive process consisting
of successive narrowing (logical and) and broadening (logical
or) steps. Elog is flexible, intuitive and extensible. More-
over, the language is very expressive: In [11], the expressive
power of a kernel fragment of Elog has been studied, and it
has been shown that it captures monadic second order logic,
hence is very expressive while at the same time easy to use
due to visual specification. The Elog language operates on
Web objects that are HTML elements, lists of HTML ele-
ments, and texts. Web objects can be identified based on
internal, contextual, and range conditions and are extracted
as so-called “pattern instances”. Conditions are realized as
predicates that occur in the Elog rule body. The usage of a
declarative extraction language helps to reduce maintenance
efforts and ensures better robustness, as usually only single
patterns need to be exchanged in case of page changes.

One sample Elog rule (the one used in the data extractor
in page class “overview” shown in Figure 3) is illustrated
here:

record(X0, X1) :-

root(_, X0), subelem(X0,

(/html/body/div[3]/lixto:nearest(table)/tr,

[("class", "midCol", substring)]), X1),

before(X1, ../tr/td[2], [("text",

"^Search.*", regexp)]), 0, 100, X2, X3).

The “record” predicate used in the head of the rule eval-
uates to true for all assignments X1 where the body holds
true. In the “subelem” predicate, for each assignment of X0

(matches of the “root” pattern) assignments for the result of
the XPath generation are stored in X1. The “before” predi-
cate refers to instances of X1, its results could be referenced
by further predicates. The numerical values reflect distance
settings.

Elog uses various means to detect web objects. In the

productive system, XPath 2 and regular expressions are sup-
ported. In research prototypes, web objects can also be iden-
tified based on their visual rendition [10]. Further predicates
can be used in an Elog rule to support semantic concepts,
for instance to express that a value x is extracted only if
also the “isCity(X)” predicate holds true for this value, and
“isCapital(X,)”, i.e. a city is a capital of any country, is
true.

Lixto VD offers an integration with GATE [8]: Wrapper
designers can create tokenization patterns. These patterns
use natural language processing techniques offered in the
Information Extraction Module ANNIE of GATE. Wrap-
per designers select the concepts that are to be detected in
a free-text block. For instance, the system extracts price
values into the pattern “price” and creates child patterns
“amount” and “currency” putting in the attribute values of
this annotation.

On the extracted values, output rules can be applied to
reformat values to standard formats and provide a first data
normalization. A number of pre-defined output rules is of-
fered: clean white-spaces, create checksums, store HTML
fragment, map to standard date format, and replace char-
acters, to name a few of them.

Although Lixto is primarily designed for data extraction
from HTML, connectors to other data formats are supported.
Wrapper designers can choose to call document converters
for particular MIME types. This way, Excel, Word, CSV
and PDF documents are supported. With PDF documents,
our own document understanding techniques are applied to
create an HTML document that is not optimized in display,
but in structure [13]. For instance, PDF tables are under-
stood and converted to HTML tables. Elog Rules operate
on the generated HTML tables.

Extraction programs can communicate with databases,
for instance, to check whether a description for a partic-
ular product is already available in the database or should
be added during extraction.

3.1.4 Templates and Heuristics
One of the most important aspects of a data extractor is

whether it can be trusted. Trust is earned by reliability, i.e.
by being resilient against changes in Web applications. One
way to reach this is to generate a robust XPath or regular ex-
pression, interactively and supported by the system. During
wrapper generation, in many cases only one labelled example
object is available, especially in automatically recorded deep
Web navigation sequences. In such cases, efficient heuristics
in XPath generation and fallback strategies during replay,
are required. Typical heuristics during recording for identi-
fying such single Web objects include:

• Generalization of a chosen XPath by using form prop-
erties, element properties, textual properties and for-
matting properties.

• DOM Structural Generalization – starting from the
full path several generalized paths are created, using
only characteristic elements and characteristic element
sequences. A number of stable anchor points are stored
from which relative paths to this object are created.

• Positional information is considered if the structurally
generalized paths identify more than one element.

• Attributes and properties of elements are taken into
account, in particular the element of choice, but we
also consider ancestor attributes if the element attributes
are not sufficient.

• Attributes that make an element unique are preferred,
i.e. similar elements are checked for distinguishing cri-
teria.

• Attribute Values are considered if attribute names are
not sufficient. Attribute Value Fragments are consid-
ered if attribute values are not sufficient (using regular
expressions)

• The ID attributes are used as far as possible. If an ID
is unique and meaningful for characterizing an element
it is considered in the fallback strategies with a high
weight.

• Textual information and label information is used only
if explicitly turned on (since this might fail in case of
a language switch).

The output of the heuristic step is a set of XPath ex-
pressions, each identifying a particular web object. The
heuristics are prioritized and are only used in the fallback
strategies. The Fallback Strategy Algorithm runs through a
number of steps to identify the best suited web object:

1. Depending on the type of element, an optimal XPath
expression is chosen, relying on certain predefined prop-
erties to be used for a particular web element. For
some web objects the identification is straightforward,
and it is e.g. clear to first try the id, and if the id fails
a structural generalization.

2. In case there are no or multiple matches for this XPath
expression, further adaptations are considered. The
system tries other heuristics generated during record-
ing time, and searches for a single match. If this fails,
the current XPath expression is used to generate new
expressions (by invoking alternative choices according
to Step 1).

3. The algorithm makes use of additional attributes and
consider fragments of stored attribute values.

4. The algorithm chooses the Web object that matches
most relative paths from the anchor points determined
during recording.

In addition, for data extraction, machine learning tech-
niques for learning Lixto extraction rules based on multiple
labelled examples can be used. This compound filter learn-
ing strategy is described in [7].

Another aspect of robustness are changes in the applica-
tion logic of a Web site. Due to the different operations (such
as ClickIfExist), the conditional actions and the page class
concept, this kind of robustness can be efficiently modelled
by a wrapper designer.

Another advanced aspect of wrapper generation is the us-
age of templates that further optimize the time for wrap-
per generation and maintenance. Lixto VD supports both
domain-independent and domain-specific templates. Domain-
independent templates include wizards for tabular data and
pre-defined page class structures for typical page types (overview

OMI 1

OMI 2 H

E1

E2

En

End Users

Administrator

Lixto Retail Solution Lixto TS OMI
Cluster

Extraction
Layer

Service Designer

Hydrant
Reporting

End Users

Job
Management

BI

DB

Hydrant
Extraction

Cluster

Reporting

I

Introspection

Service Manager

Figure 4: Lixto OMI Cluster

pages with multiple records, detail pages with single records).
Domain-specific templates extend this by using pre-defined
models, such as for the retail domain. Additionally, gram-
mars for retail-specific vocabularies have been generated.
This domain knowledge is used to propose automatically
created extraction rules, mainly based on tokenization pat-
terns.

3.2 Data Flow Creation

3.2.1 Iteration Process Definition
Lixto Transformation Server [14] is an enterprise-class ex-

ecution environment for Web data extractors, based on Java
Application Server technology. It is specifically designed
to run Web data extraction services that need to perform
sophisticated data transformation and process integration
tasks. By utilizing a visual data-flow language, XML-based
data streams can be set up in a short amount of time. Vi-
sually created mappings generate XSLT and XQuery code.

The Lixto Transformation Server OMI Edition is geared
towards large online market intelligence scenarios. The focus
of this edition is on extensive data collection efforts which
need sophisticated control and monitoring capabilities. Data
are continuously gathered and stored in databases. Figure
5 illustrates the architecture of a Lixto OMI Cluster.

Usually, the extraction job is generated by the Job Man-
agement Panel of the Lixto Retail Solution, either as a reg-
ularly scheduled job or as ad hoc job defined by an end user.
Based on the given selection parameters, the system gener-
ates a list of tuples. Each tuple contains a set of parameters
that is passed on to each or some of the wrappers. For ex-
ample, when extracting data from the sites of a PC retailer,
a tuple could include lower price limit, upper price limit,
available memory and CPU type.

Lixto TS offers a Web-based GUI to create and configure
OMI scenarios. The ingredients of an OMI scenario are

• a list of parameterizable wrappers;

• dataflows transformating results and mapping results
to a database

• an extraction job containing a list of input tuples;

Lixto OMI Server – Current JobsLixto OMI Server – Current Jobs

Running Jobs

Travel Site
CEG 1

Retail Scenario 1

Job Name

325
542

1241
232

Open Tuples

54
56
32
32

Workers Finished in

75min to go
432min to go

2342
25 min to goMy Wrapper

Status Failed Tuples

523
12
75

253

Packages
Retail OMI
Retail OMI

Test
Job Group

Resume

Pause

Start Job

Reset and Retry

Server SettingsJob Monitoring

Previous Job RunsCurrent Jobs Schedule Overview Reports

Job Management

Status
Number of default workers: 12

Tuples within the last hour: 12

Open tuples: 2340

Stop Job

Figure 5: Lixto Introspection Console

• an extraction plan.

As a first step in the configuration, the application de-
signer maps the input tuples to the appropriate sources.
This includes parameter transformation, merging and split-
ting of parameters. Consider the wrapper given in Figure 2.
For this, the parameters lower price limit and upper price
limit are concatenated so that in the wrapper a particular
price range is chosen in the Web form.

As a second step, the dataflow is generated. The default
dataflow offered by the system performs no further data
transformation and generates a default mapping to the re-
sult database. Application designers can choose to override
the selection and create their own mappings.

Finally, the application designer creates the extraction
plan. In particular, the designer defines the harvest cycle
time, the number of tuples to expect, an initial average esti-
mate about the processing time for each tuple, and a range
of parallel workers processing the tuples. Furthermore, s/he
defines when to apply retries and notification alerts.

The state of the iteration process is persisted, and can be
inspected via the Introspection Console. Figure 5 sketches
the Lixto Introspection Console. An overview on running
jobs and processed tuples is given.

During execution, the system adapts the number of work-
ers based on the average processing time, on job priority,
and on the chosen cycle time. Due to interaction with the
scalable Lixto HydraNT server, new resources for perform-
ing data extractions can be added on the fly (as described
in Section 4).

3.2.2 Data Cleansing Steps
A number of data cleansing steps are already configured

in the extraction process (e.g. in the output formatting func-
tions of VD), especially with respect to normalization and
tokenization to generate a canonical data representation.
The Lixto Retail Solution supports configuration of domain-
specific cleansing and record linkage. Record Linkage is the
process of identifying that two record entries describe the
same entity. In this context, record linkage is often referred
to as product matching. Overviews on several techniques
applied in data cleansing can be found in [6, 12].

The ETL process is shown in Figure 7. The Retail So-
lution operates on three databases: The result database is
populated with Web data by Lixto TS. The retail database
contains the harmonized and matched canonical data. Fi-
nally, data is leveraged to a data warehouse cube for conve-
nient reporting. The data warehouse and the BI Reporting
on top is described in Section 5.

Figure 6: Data Cleansing Steps

The data cleansing steps are depicted in Figure 6. Mostly
rule-based approaches are exploited. Configuration param-
eters of these steps can be derived beforehand by processing
labelled sample data.

• Normalization and Tokenization (not depicted): Func-
tions such as turn to lower case or resolve acronyms
can be applied on attributes of records. As output,
normalized records are returned.

• Pre-Partitioning: This phase is a preparation for the
record linkage process. Data is grouped into partitions.
Records within the same partition do not need to be
compared if they denote the same entity (for instance,
usually there are no duplicates within one portal).

• Blocking: Possible candidate pairs are created using
efficient algorithms. This step outputs candidate pairs
that are analyzed more closely in the next steps. The
blocking phase reduces the quadratic complexity of
having to compare each record to every other. We
use a multi-pass sorted neighborhood algorithm: Sev-
eral keys are created for sorting the data and moving a
sliding window over the records. If the similarity of a
scanned record is below the threshold of the previous
one, a new block is created. After multiple passes, two
records form a candidate pair if they occur together
within at least one block.

• Similarities of fields: In this step, the similarity of data
fields within compared records is computed. Either
domain-specific comparisons or domain-independent
string similarity metrics can be applied. In the training
phase, application designers can find out which string
distance metrics and thresholds are ideally suited, based
on provided training data.

• Weighting the similarities: Based on a priori knowl-
edge about the average rate of duplicates, the attributes

Result Data DWH

Data Warehouse
(Retail Offers)

Product MatchingStaging (ETL)
Database

20%
20%

20%20%
20%

1 2 3 4 5

Pricing ManagerReporting ApplicationRetail
Portals

Web
Connectors

Canonical
Data

Retail DB

Figure 7: ETL Process and Product Matching

can be weighted to compute a value describing record
similarity.

• The final step decides which records describe the same
entities and data is fused together based on the paradigm
that as little data as possible is lost during this process.

In some scenarios, it is not necessary to run the full pro-
cess. For instance, the unique EAN number is often present
as part of the product description and can be used as a reli-
able matching criterion. Over time, a list of synonyms (e.g.
for describing a processor) is created by the system, based
on previous runs, and is used in future normalization and
similarity checking steps.

4. LARGE SCALE EXTRACTION

4.1 Architecture
In OMI scenarios, a large amount of data is extracted

regularly to obtain an in-depth daily picture of the market.
Therefore, it is crucial to be on the one hand very perfor-
mant, and on the other hand to provide means for extreme
scalability, especially in cases with a high peak load at cer-
tain times.

The Lixto Retail Solution offers end users the ability to
schedule extraction jobs on demand. Lixto TS creates an
extraction plan based on the regularly scheduled jobs and
the on-demand jobs. Data extractions are executed via the
HydraNT Extraction Cluster. TS uses HydraNT as direc-
tory service, asking for a free VD runtime head to be used
in the next execution. HydraNT queues the request and as-
signs the best suited head, based on the weights described
below. As depicted in Figure 8 machines can be registered
on HydraNT and inform HydraNT about the number of
running VD heads and the machine parameters. HydraNT
distributes the load and, as described in the next section,
can add machines if the load gets too high and the extrac-
tion plan can not be finished in the required time.

4.2 Cloud Usage
In Cloud Computing, dynamically scalable and often vir-

tualized resources are accessed as service. Cloud Services
provide an agile infrastructure and scalability on demand.
Cloud Services can be used to transfer heavy computations
to an external service that is usually paid by usage time or

Figure 8: Extraction Cluster Architecture

processed data. Cloud Services are advantageous if at cer-
tain times high computation load is expected, or the load
can not be estimated beforehand and varies a lot, or a com-
putation is only needed at certain times. Refer for instance
to [18] for using cloud services in SaaS applications.

In the Lixto OMI scenario, computations are Web ex-
tractions. Cloud clients receive a wrapper and extraction
parameters, and pass back reports and data. No data is
persisted on cloud instances. Even if cloud reliability might
be lower than a traditional server center, the provision of a
retry mechanism ensures that all data is processed success-
fully.

One of the most advanced cloud services is provided by
Amazon Web Services1 (AWS). Instances are controlled via
Web Services. User-defined images can be created, based
on various operating systems. Required software is either
pre-installed or loaded on the fly from the Amazon storage

1http://aws.amazon.com

Figure 9: Hydrant Usage Overview

service S3 when an instance of this image is started. On
starting an instance, user defined parameters are given. In
our case, these parameters include the number of VD heads,
which VD version to use, and on which HydraNT the cloud
machine registers.

4.3 Extraction Cluster
Figure 9 illustrates the management GUI of HydraNT.

It shows all registered instances, both in the server center
and in the AWS Cloud. Each registered machine regularly
broadcasts its status, including machine properties and cur-
rent execution statistics. These settings, such as the number
of used VD heads, free RAM and CPU load are shown and
used for deciding which machine to use for the next incoming
request.

Application managers can decide on the weight of all pa-
rameters, e.g. assigning the free heads parameter a higher
weight. The total score of each machine is given in the
overview; the machine with the highest score is picked next.
Requests first go to a global queue if they can not be as-
signed to a machine immediately.

As well as configurable weights, application managers cre-
ate rules when to start new machines or shut down existing
ones. Typical rules comprise:

• Start an instance if no instance is currently running.

• Start an instance if the average request load over X
minutes is higher than Y.

• Shut down an instance in case there are no waiting
tasks for Y minutes.

Shutdown can be initiated immediately or after a full con-
sumption hour. In the latter case, the chance of the instance
to get selected decreases as the shut down time approaches.
In case a new machine will be restarted in the meanwhile,
one of these instances is revived first.

HydraNT’s Inspection Panel provides overview statistics
of number of document loads, wrapper execution requests,
retries and similar, for each client that accesses the extrac-
tion cluster.

5. CASE STUDY
In the following case study, we will give an example of

an existing business application in the domain of computers

Figure 11: Number of price changes over time

Figure 12: Number of new products introduced

and electronics consumer goods. This example application
covers the main aspects of an online market intelligence solu-
tion, starting from web data extraction, data cleansing and
rectification, and moving to data analysis and data visual-
ization.

5.1 The Requirements in the Computers and
Electronics Market

In the computers and electronics market we can observe
a large number of online sales channels such as online stores
and online distributors. For computers and electronic con-
sumer goods it is important, when comparing products of
different suppliers, to compare apples to apples, i.e., to truly
understand the configuration of individual products and to
provide a feature based comparison matrix. It is therefore a
strong requirement that the web data extraction process is
able to identify and extract objects on web pages including
detailed features of those objects. In the context of com-

Figure 10: Comparison of prices

puters and electronic consumer goods, such an object could
be e.g. a notebook computer, including all detailed features
of these product such as available memory, hard disk, CPU,
graphics, and screen size.

Once the data is collected and stored in a structured
format, it is necessary to match the values of all product
features against a standardized product feature database.
Without this data cleansing, step values of product features
would not be comparable, e.g., the hard disk size could be
stated as ”HD 160GB” or ”hard disk size 160gb”. This
needs to be harmonized to be comparable and requires to
give a canonical description such as name: size, value: 160,
unit:GB (as described in Section 3.2.2).

End users such as pricing managers will typically use an
analytics framework to dig into the aggregated data. What
users require to see is how their own offering performs in
comparison to the offering from competitors. Comparison
can take several dimensions into account: first, the pricing,
i.e., what are the prices and how do these prices develop over
time; second, the inventory, i.e., which products are offered
and and how is the change rate of offered products; third,
promotions and other sales campaigns, i.e., which products
are specifically featured or advertised for sale.

5.2 Sample Reports and Dashboards
To investigate the market situation, we provide a num-

ber of pre-configured reports and dashboards that provide
a standardized view on the aggregated market data. Fig-
ure 10 shows such a sample report that is very popular with
pricing managers. On this grid view, the user can see the
current price according to the own pricing versus the com-
petitive pricing for each product that is offered on the mar-
ket. Moreover, certain statistics and key performance indi-
cators help the user to immediately relate their own pricing
to the current market pricing. A filter allows to select only
certain products that should be part of the comparison ma-
trix. This helps category managers to examine exactly the

products for which they are responsible.
Statistics and key performance indicators that are calcu-

lated are

• Min Price: This measure gives the minimal price ob-
served among all offerings of the same product.

• Max Price: This measure gives the maximal price ob-
served among all offerings of the same product.

• Average Price: This measure gives the average of all
prices observed on the market.

• Price Difference: This measure shows the difference
of the own price versus the cheapest available offer on
the market, both as an absolute currency value and as
a relative percentage value.

• Meet Beat Ratio: This measure defines the number
of competitive offers that are more expensive than the
own offering, e.g., if two out of three competitive prices
would be more expensive than the own price for the
same product, we observe a meet beat ratio of 67%.

This grid view can also be used to spot important market
events that call for action, e.g. setting a new price that bet-
ter reflects the current market situation. In such a case, we
restrict the view to show only products that are clearly out
of the observed market price band. Products can be either
much too cheap – in which case we lose margin, because we
could price higher without losing market share – or much
to expensive. In this case we will suffer from reduced de-
mand because the same product can be bought at a more
attractive price from one of our competitors.

Whereas reports on the market situation show only a
snapshot at a certain point in time, market trend reports
highlight the market development over time. Typical dia-
grams are shown in Figure 11 and Figure 12. Figure 11

shows the volatility of the market in terms of price changes
on each observed sales channel over time. This graph helps
to identify those competitors that are very agile and often
reconsider their pricing. Figure 12 shows the number of
newly introduced products per week. This shows the rate
of change in inventory of competitors. It helps the market
manager to better understand the product dynamics that
are given in certain product categories for a specific sales
channel.

All of these reports and data visualizations are based on
a data warehouse that enables drilling into the market data
and slicing and dicing the data according to the user’s spe-
cific needs. This data warehouse gives the flexibility to pro-
vide individual reports according to the user needs.

6. CONCLUSION
In this paper we have given an overview of the new Lixto

OMI software and have discussed some aspects in depth.
This software is a unique combination of leading data ex-
traction technology with features specifically designed and
developed for online market intelligence applications. By
using Lixto OMI, such applications can be implemented
quickly and efficiently. Moreover, the special features en-
abling the usage of extraction clusters and cloud comput-
ing make Lixto OMI highly scalable, which is an essential
requirement in cases where massive amounts of Web data
need to be extracted.

This scalability has already proven beneficial not only to
Lixto’s customers but also to the Lixto company itself. In
fact, Lixto provides OMI services to various clients, espe-
cially in the areas of retail and tourism. In order to obtain
consistent pricing data in these areas, it is essential to gather
large amounts of data in a very short time, a requirement
that can only be fulfilled through the parallelization of ex-
traction tasks. The local solution would be to maintain an
server farm with hundreds of servers. This would require,
in addition, an Internet connection with an unusually high
bandwidth. This is of course a very costly solution. The
servers would be idle between successive runs but would re-
quire maintenance. Cloud computing is therefore the ideal
solution, especially for peaks, and has helped us and our
clients save costs.

To the best of our knowledge, Lixto is the first company to
offer a comprehensive solution to online market intelligence
requirements. We think that Web ETL for OMI will soon
become a very hot topic for the Fortune 1000 companies,
as well as many smaller enterprises. Lixto is therefore not
only looking for further customers, but also for partners who
recognize and appreciate the tremendous potential of the
technology reported in the present paper.

7. REFERENCES
[1] V. Anupam, J. Freire, B. Kumar, and D. Lieuwen.

Automating Web navigation with the WebVCR.
Computer Networks, 33(1–6):503–517, 2000.

[2] R. Baumgartner, M. Ceresna, and G. Ledermüller.
Deep web navigation in web data extraction. In Proc.
of IAWTIC, 2005.

[3] R. Baumgartner, S. Flesca, and G. Gottlob.
Declarative Information Extraction, Web Crawling
and Recursive Wrapping with Lixto. In Proc. of
LPNMR, 2001.

[4] R. Baumgartner, S. Flesca, and G. Gottlob. Visual
Web Information Extraction with Lixto. In Proc. of
VLDB, 2001.

[5] R. Baumgartner, W. Gatterbauer, and G. Gottlob.
Web Data Extraction System. In Encyclopedia of
Database Systems (to appear). Springer-Verlag New
York, Inc., 2009.

[6] R. Baxter, P. Christen, and T. Churches. A
comparison of fast blocking methods for record
linkage. In Proceedings of the ACM Workshop on Data
Cleaning, Record Linkage and Object Identification,
2003.

[7] J. Carme, M. Ceresna, and M. Goebel. Web wrapper
specification using compound filter learning. In
Proceedings of the IADIS International Conference
WWW/Internet 2006, 2006.

[8] H. Cunningham, K. Bontcheva, and Y. Li. Knowledge
Management and Human Language: Crossing the
Chasm. J. of Knowledge Management, 9(5), 2005.

[9] S. Flesca, G. Manco, E. Masciari, E. Rende, and
A. Tagarelli. Web wrapper induction: a brief survey.
AI Communications Vol.17/2, 2004.

[10] W. Gatterbauer, P. Bohunsky, M. Herzog, B. Krüpl,
and B. Pollak. Towards domain-independent
information extraction from web tables. In Proc. of
WWW, May 8–12, 2007.

[11] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for Web Information
Extraction. In Proc. of PODS, 2002.

[12] L. Gu, R. Baxter, D. Vickers, and C. Rainsford.
Record linkage: Current practice and future
directions. Technical report, CSIRO Mathematical
and Information Sciences, 2003.

[13] T. Hassan and R. Baumgartner. Table recognition and
understanding from pdf files. In Proc. of ICDAR,
2007.

[14] M. Herzog and G. Gottlob. InfoPipes: A flexible
framework for M-Commerce applications. In Proc. of
TES workshop at VLDB, 2001.

[15] S. Kuhlins and R. Tredwell. Toolkits for generating
wrappers. In Net.ObjectDays, 2002.

[16] A. H. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and
J. S. Teixeira. A brief survey of web data extraction
tools. In Sigmod Record 31/2, 2002.

[17] B. Liu. Web Content Mining. In Proc. of WWW,
Tutorial, 2005.

[18] R. Mietzner and F. Leymann. Towards provisioning
the cloud: On the usage of multi-granularity flows and
services to realize a unified provisioning infrastructure
for saas applications. In Proceedings of the
International Congress on Services, 2008.

[19] B. Ribeiro-Neto, A. H. F. Laender, and A. S. da Silva.
Extracting semi-structured data through examples. In
Proc. of CIKM, 1999.

[20] R. Tredwell and S. Kuhlins. Wrapper Generating
Tools, 2003. http://www.wifo.uni-
mannheim.de/ kuhlins/wrappertools/.

[21] Wikipedia. Entry: Market Intelligence, 2009. As of
April 15, 2009.

