
Microsoft CEP Server and Online Behavioral Targeting

ABSTRACT

In this demo, we present the Microsoft Complex Event

Processing (CEP) Server, Microsoft CEP for short. Microsoft

CEP is an event stream processing system featured by its

declarative query language and its multiple consistency levels of

stream query processing. Query composability, query fusing,

and operator sharing are key features in the Microsoft CEP

query processor. Moreover, the debugging and supportability

tools of Microsoft CEP provide visibility of system internals to

users.

Web click analysis has been crucial to behavior-based online

marketing. Streams of web click events provide a typical

workload for a CEP server. Meanwhile, a CEP server with its

processing capabilities plays a key role in web click analysis.

This demo highlights the features of Microsoft CEP under a

workload of web click events.

1. INTRODUCTION
The tremendous growth in event streaming applications, coupled

with the level of maturity achieved by research efforts in data

stream systems, have significantly influenced the vision and the

strategies of commercial database systems. Microsoft SQL

Server has been leveraging its query processing expertise to

handle streaming-oriented workloads. As a result, the design of

Microsoft Complex Event Processing (CEP) server has

incorporated state of the art research to meet the demands of

commercial workloads.

Microsoft CEP is based on the CEDR [1, 2] research project. In

CEDR, a data stream is modeled as a time-varying relation,

motivated by early work on temporal databases by Snodgrass et

al. [3]. In such a relation, events are represented as tuples which

include the event’s temporal semantics as two timestamps,

encoding a validity interval, or lifetime. The lifetime indicates

the range of time when the tuple is valid from the event

provider’s perspective. Microsoft CEP has several features that

include: automatic handling of compensations for out-of-order

events, speculative execution, support for modifying the

lifetimes of earlier events, and the ability to operate over a wide

range of consistency levels (as defined by tradeoffs between

output blocking and memory usage). Microsoft CEP uses

application time (as opposed to system time [4]) for specifying

and manipulating lifetimes, which contribute to precise

semantics and well-defined deterministic operator behavior.

A prominent domain with very challenging requirements is

Click Stream Analysis. Here, the online behavior of users in

terms of page visits is analyzed and processed. The insight

gained into the user’s actions can then be leveraged to adjust the

online experience accordingly, e.g., by tailoring the navigational

structure of the web site according to the anticipated click path

or by displaying targeted ads. This is what we call behavioral

targeting. For such dynamic experience to be meaningful and

efficient, the analysis of the user behavior has to be done in real-

time. Considering this low-latency demand and the expected

data rates, an in-memory CEP engine is far more suited to

accomplish this task than a traditional transactional database.

This paper demonstrates the basic features of Microsoft CEP in

the context of online behavioral targeting. We overview the

features of the Microsoft CEP server in Section 2, highlight the

online behavioral targeting scenarios and use cases in Section 3,

and describe the demo scenario in Section 4.

2. Features of Microsoft CEP Server

2.1 Declarative Query Language
The complex event processing paradigm departs from the

principles of traditional relational database systems with its

transient nature of event data. However, by creating a sound and

consistent query algebra for CEP, we are able to provide a fully

declarative query experience. The query algebra contains

operators from the relational world, such as select, project, and

join, with their semantics adapted to the processing of transient

time series. Yet, the new semantics never compromise the full

composability of the proposed operators: Each operator receives

as well as produces a stream of events.

On top of the streaming algebra, a suitable query language

exposes the operator functionality to the user. A good

declarative query language should be a concise, yet intuitive

interface to the underlying algebra. Several attempts have been

undertaken to adapt SQL to the CEP domain, enriching its

syntax by constructs to specify windows in time. We chose

Language Integrated Query (LINQ) [5] as our approach to

express CEP queries. LINQ is a uniform programming model

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commercial

advantage, the VLDB copyright notice and the title of the publication and its

date appear, and notice is given that copying is by permission of the Very

Large Database Endowment. To copy otherwise, or to republish, to post on

servers or to redistribute to lists, requires a fee and/or special permissions

from the publisher, ACM.

VLDB ’09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

M. H. Ali1, C. Gerea1, B. S. Raman1, B. Sezgin1, T. Tarnavski1, T. Verona1, P. Wang1, P. Zabback1, A. Ananthanarayan1, A. Kirilov1, M. Lu1, A. Raizman1,

R. Krishnan1, R. Schindlauer1, T. Grabs1, S. Bjeletich1, B. Chandramouli2, J. Goldstein2, S. Bhat3, Ying Li3, V. Di Nicola3, X. Wang3, David Maier4,

S. Grell5, O. Nano5, I. Santos5

1Microsoft SQL Server, {mali, cgerea, sethur, beysims, tihot, tomerv, pingwang, pzabback, asvina, antonk, milu, alexr,

ramkri, romans, torsteng, sharonbj}@microsoft.com

2Microsoft Research, {badrishc, jongold}@ microsoft.com

3 Microsoft Audience Intelligence, {sudinb, yingli, vidini, xfwang}@ microsoft.com

4Department of CS, Portland State University, {maier@cs.pdx.edu}

5 European Microsoft Innovation Center, {stgrell, onano, ivosan}@ microsoft.com

for any kind of data that introduces queries as first class citizens

in the Microsoft .NET framework.

2.2 Consistent Streaming through Time
In this subsection, we discuss some details about the various

unique properties of Microsoft CEP. The interested reader is

referred to [2] for more details.

2.2.1 Canonical History Table (CHT)
This is the logical representation of a stream. Each entry in a

CHT consists of a start time (Vs), an end time (Ve), and the

payload. All times are application times, as opposed to system

times. Table 1 shows an example CHT. This CHT could be

derived by actual physical events which could be either new

inserts or lifetime modifications of older events (e.g.,

retractions, where lifetime is shortened). For example, Table 2

shows one possible physical stream with an associated CHT

shown in Table 1. Note that a retraction event includes the new

valid end time of the modified event (Vnewe). Microsoft CEP

operators are well-behaved in terms of their effect on the CHT.

This makes our streaming algebra well-defined and

deterministic, even when data arrives out of order.

Table 1 – Example of a CHT

ID Vs Ve Payload

E0 1 5 P1

E1 4 9 P2

Table 2 – Example of a physical stream

ID Type Vs Ve Vnewe Payload

E0 Insertion 1 ∞ - P1

E0 Retraction 1 ∞ 10 P1

E0 Retraction 1 10 5 P1

E1 Insertion 4 9 - P2

2.2.2 Windowing Semantics
Microsoft CEP borrows heavily from SQL to define semantics

for each supported operator. One important difference from

existing streaming systems is that windows in Microsoft CEP

are associated with individual events instead of streams or

operators. This approach removes the constraint that all events

in a stream have the same lifetime. Each operator produces

events with a span-based representation that indicates its

lifetime. Windows are specified by a special stateless operator

called AlterLifetime, that (for a time-based window of w time

units) simply sets event end time (Ve) to be Vs+ w.

2.2.3 Navigating Consistency using Speculation
Two interesting aspects of processing can be varied:

 How long do we wait before providing a result based on an

incoming event (blocking)?

 How long do we remember input state both for blocking and

for providing necessary compensations once we unblock?

These variables lead to the spectrum of consistency levels

described in Figure 1. Briefly, the diagonal corresponds to the

line of zero speculation, which is supported by existing

streaming systems. CEDR allows us to navigate to the lower part

of the triangle, where we can reduce blocking by emitting

speculative output and potentially correcting wrong answers

later using lifetime changes and insertions.

Figure 1. Spectrum of possible consistency levels.

2.3 Query Reusability and Composability
In Microsoft CEP, queries are declared through query templates.

A query template is an XML representation of a query operator

tree with generic endpoints for the input and the output streams.

This XML representation is an intermediate format generated by

the LINQ language interface and is consumed by the CEP query

compiler. Query templates allow for flexible re-usability through

their generic endpoints. Endpoints get bound to input/output

adapters to connect event producers/consumers to the CEP

query. The same query template can be used to instantiate

multiple query instances. Each query instance has the same

operator tree as in the template, yet, is bound to different

streaming producers/consumers through different adapters.

Besides this re-use of templates, it is also possible to produce

more complex queries by composing query templates. This is

best explained using the intermediate XML representation of a

CEP query template. This intermediate format represents a tree

of individual operators (filters, projects, joins, etc) as nodes and

streams as links. One of these nodes can be a query template

reference. The CEP compiler expands this template reference

and replaces it with the XML representation of the referenced

query template (which in turn may contain other query template

references). This is a very powerful way to produce complex

data flow queries out of individually maintained (and testable)

components. A query template reference can appear anywhere in

the operator tree. The only requirement is that the input and

output schemas of the referenced query template’s endpoints

match the ones expected by the referencing template.

Query template reference is a compile time query composability

feature. However, the data-flow paradigm of CEP queries allows

it very naturally to compose (connect) queries during run-time.

The output stream of one query can serve as input to another

query. If multiple queries are consuming the output from one

producer query, the system will introduce a broadcast operator

to replicate an output event to all consuming inputs.

2.4 Query Fusing and Operator Sharing
By default, each operator in a query tree is implemented as an

independent task by the Microsoft CEP runtime. Tasks exchange

data (events) through streams (i.e., queues of events) between

tasks. This fine grained task model allows very flexible

assignment of execution units (tasks) to CPU cores. The data-

stream model also enables distributed parallel execution of

queries.

With an increasing number of operators and their intermediate

streams, it becomes prohibitive to deploy every operator in a

separate task. The overhead of task communication through

streams can easily dominate the cost of evaluating individual

operators. Microsoft CEP eliminates the communication

overhead by fusing operators together. Two types of operator

fusing are provided: vertical fusing and horizontal fusing.

Vertical operator fusing transparently replaces the stream

between operators by direct function calls. If the optimizer

decides to fuse a filter operator that is on top of another

operator, the stream enqueue operation is transformed into a

direct function call that evaluates the filter predicate directly.

Therefore, both operators will execute in the same task and

intermediate streams between the two operators are eliminated.

Since, this type of fusing allows operators that are on top of

each other to share execution tasks, it is referred to as vertical

fusing.

Horizontal operator fusing is also possible if there are multiple

queries that are based on the same query template. In this case,

Microsoft CEP can decide to map identical operators from

different queries to the same execution task. Whenever an

operator of a horizontally fused query is scheduled to execute,

the correct local operator state is associated with the task.

Horizontal fusing is a form of virtualization that is similar to

lightweight (fiber mode) scheduling.

Horizontal fusing can also be applied in cases where data

streams are partitioned and for each partition the same operators

are executed. In case of thousands or even millions of partitions

it would be prohibitive to create this large a number of

execution tasks. Instead, the compiler decides the number of

execution tasks based on hardware properties (number of cores)

and other cost-based criteria. Then, the compiler horizontally

fuses multiple partitions.

Operator fusing (both vertical and horizontal fusing) is a cost-

based compiler decision. It is even conceivable to dynamically

fuse/un-fuse operators during runtime when run-time statistics

and the number of outstanding queries suggest this is

advantageous.

2.5 Scalability
In Microsoft CEP, scalability is a two-fold problem: (1)

partitioning the incoming event streams as well as the standing

queries across multiple CEP instances and (2) managing these

instances. Partitioning introduces the opposite and

complementary direction of the query fusing approach

(presented in Section 2.4). While query fusing gathers many

light weight queries into a single query, partitioning divides

heavy workloads into smaller workloads for deployment on

several CEP instances. Microsoft CEP provides two approaches

for partitioning: stream partitioning and query partitioning.

Stream partitioning is achieved in Microsoft CEP through the

“group-and-apply” operator that has the ability clone a query

into multiple queries (of the same operator tree) such that each

query operates on a portion of the stream. Query partitioning

divides a query into multiple subqueries. Each subquery is

deployed on an instance of Microsoft CEP. Operators across

different CEP instances have the ability to communicate through

streams that span machine boundaries.

Managing multiple CEP instances addresses the creation and the

tear-down of an instance. Data replication and fail-over between

instances are critical instance manageability features that trade

off hardware cost versus high availability. Continuous load

balancing across instances is crucial to the system’s performance

and is achieved through stream repartitioning (in case of

partitioned streams) or operator migration across instances (in

case of partitioned queries).

2.6 Debuggability and Supportability
The nature of CEP queries brings new challenges to the

debugging and supportability of live production systems with

continuous queries. The uptime of continuous queries is very

long compared to queries in traditional database systems. Richer

support is needed to troubleshoot live systems where shutting

down a query may be expensive. Also, stream producers and

consumers are independent and work asynchronously. This

asynchronous behavior results in non-determinism in the order

of processing events. In such environments, traditional step-by-

step debugging is less useful and often not practical. The

extended uptime and the output non-determinism of CEP

queries call for non-intrusive automated monitoring and

diagnostics.

Microsoft CEP server exposes the state of the system through

both point in time snapshots and streams of manageability

events. Snapshots contain the per-query memory and CPU

usage, latency, throughput, and other runtime statistics. They are

used for ad-hoc troubleshooting and to gain instant visibility

into the system. Meanwhile, the engine generates manageability

streams of all noteworthy actions taken by the system – e.g., a

query start, a query failure, an event entering the system, an

event exiting from the system, stream overflow, etc. Reusing its

own infrastructure, the system issues “monitoring” queries

against manageability streams. These monitoring queries run

continuously at the background of the CEP engine or probably

on another CEP instance. The monitoring queries consume the

manageability streams to continuously monitor user-issued

queries for failures, performance problems, and other critical

conditions. Building on this infrastructure, Microsoft CEP

server provides a graphical tool for the inspection of event flow

in a query as a means of debugging and performing root cause

analysis of problems.

3. Online Behavioral Targeting
Behavioral Targeting allows advertisers to deliver highly

relevant ads to predefined sets of audience, resulting in

enhanced advertising effect and optimized return on investment.

It employs various user and content intelligence technologies to

classify online users into audience segments according to their

online activities. A critical factor for the relevance of an ad is

timeliness, and ideally, being in real-time – i.e., presenting the

ad while the user is in the process of a specific web experience

(e.g., searching for a place to eat, booking a ticket, looking for a

gift to purchase, and so on). The round-trip duration for this

classification varies in most ad platforms - from hours to days.

Figure 3. The Microsoft CEP Server debugging tool.

The CEP engine has helped the Microsoft Advertising platform

to reduce this time to seconds, enabling advertisements to be

displayed in the same user session.

Figure 2. The Microsoft Advertisement Platform.

The ad platform consists of the following parts (Figure 2). A

data collection system collects user's web clicks from various

forms of interactions (e.g., search URLs and page clicks),

formulates them as events, and pushes them into the Microsoft

CEP server’s input buffers. These tuples are streamed into a real

time scoring system, of which the CEP engine is the central

piece. The engine runs scoring queries against the tuples,

allowing different scoring algorithms to be integrated. Factors

that go into the scoring algorithm include user click rates at sites

of interest, "memory" of the user's interactions, and other

business logic embedded in the scoring model. The scoring

query classifies the user to belong in one or more “segments”

(e.g., auto researcher, Europe traveler, fast food customer).

Based on this real-time insight, advertisements pertaining to that

segment are immediately narrowcasted to the user’s browsing

session by a delivery platform.

This immediacy of results provided by CEP has demonstrably

proved (in a live Web deployment) to be highly successful at

improving the efficiency of campaigns, ad delivery and the

overall (marketing) lift from the application. The scoring system

handles 100s of millions of events per day, the system has

variable memory ranging from seconds to days, and the queries

have stringent requirements to return scoring results within

seconds or minutes.

4. Demo Description
The proposed demo scenario includes three parts. The first part

is an interactive user session with the www.msn.com website. A

user signs in with a dedicated demo account. The user navigates

through the MSN website searching for travel packages, car

dealers, fast food restaurants, etc. As the user builds up a search

context, targeted ads appear on the top banner. The choice of the

targeted ad is the outcome of a segmentation query (as described

in Section 3) running inside the CEP server to categorize the

user’s webclick events into segments of interest.

The second part of the demo exposes the internals of the CEP

engine. Using the Microsoft CEP debugger (Figure 3), the user

traces an event as it passes through the query pipeline, and

inspects output events from each operator as time advances.

The third part of the demo focuses on CEP adapters. The CEP

server receives events at its input buffers from various types of

input adapters, pushes these events through the query pipeline

and streams the resultant output events to output adapters. Input

and output adapter are the interfaces of the CEP server to the

outside world. The third part of this demo focuses on two

aspects of the adapters: (1) the presentation capabilities that

translate high rate input/output streams into visually and

programmatically inspectable information, and (2) the ability to

control the behavior of input/output streams through various

control knobs.

5. REFERENCES

[1] Roger S. Barga, Jonathan Goldstein, Mohamed H. Ali, and

Mingsheng Hong. Consistent Streaming Through Time: A

Vision for Event Stream Processing. In Proceedings of

CIDR, 412-422, 2007.

[2] Jonathan Goldstein, Mingsheng Hong, Mohamed Ali, and

Roger Barga. Consistency Sensitive Streaming Operators in

CEDR. Technical Report, MSR-TR-2007-158, Microsoft

Research, Dec 2007.

[3] C. Jensen and R. Snodgrass. Temporal Specialization. In

proceedings of ICDE, 594-603, 1992.

[4] Utkarsh Srivastava, Jennifer Widom. Flexible Time

Management in Data Stream Systems. In PODS, 263-274,

2004

[5] Paolo Pialorsi, Marco Russo. Programming Microsoft

LINQ, Microsoft Press, May 2008.

