
IBM UFO Repository
OBJECT-ORIENTED DATA INTEGRATION

Michael N. Gubanov1,2, Lucian Popa2, Howard Ho2, Hamid Pirahesh2,
Jeng-Yih Chang2,3, Shr-Chang Chen2,3

1University of Washington, 2IBM Almaden Research Center
3National Yang-Ming University

mgubanov@cs.washington.edu, {lucian, ho, pirahesh}@almaden.ibm.com
g39528020@ym.edu.tw, sinergy@ibms.sinica.edu.tw

1. INTRODUCTION
Currently, WWW, large enterprises, and desktop users

suffer from an inability to efficiently access and manage dif-
ferently structured data. The same data objects (e.g. Prod-
uct) stored by different databases, repositories, distributed
web storage systems, etc are named, referenced, and com-
bined internally into schemas or data structures differently.
This leads to structural mismatch of data that often consists
of the same semantic objects (e.g. EBay and Yahoo! online
auction offers).

Web 2.0 offered a multitude of mashups, microformats,
and tagged data without a convenient way to access, de-
ploy, and exchange them. Yahoo! Pipes, Microsoft Popfly,
Google mashup editor, IBM DAMIA [22], and other mashup
fabrics entered the arena here to bridge the gap between dif-
ferently structured heterogeneous data. Large enterprises,
having suffered for years from the Data Integration Curse 1,
could improve their situations with new data management
tools built with significant help from the research commu-
nity [15, 8, 7, 9, 10, 17, 22, 2, 11, 19, 14, 23, 26, 12, 3, 6, 13,
4, 24, 20, 5]. While this work represents significant progress
that surpasses WWW and Web 2.0, none of the solutions are
unsupervised yet, and they require significant human effort.

Finally, biological and medical domains have many public
and proprietary databases storing probably the most com-
plex and large structures (e.g. human anatomy) in the
world. All of them suffer from the same curse and are
a subject of significant body of ongoing research in Bio-
Informatics (e.g. [17, 18, 21]).

In all these domains the cornerstone of the problem is in
structural mismatch of data from different sources and insuf-
ficient data modularity to make it more accessible. Mono-
lithic data representation (e.g. one large XML file) with
abundance of low-level storage/representation details are hard

1inability to efficiently manage and integrate differently
structured data

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

to query or extract needed information, because understand-
ing their structure requires significant expert effort upfront.
As a general solution, we propose Object-oriented data in-
tegration that has a collection of Unified Famous Objects
(UFOs) as a cornerstone. Our proposed Object-oriented
data integration introduces a higher-level abstraction, the
Unified Famous Object (UFO), and leverages it to simplify
data management. In the same way that the Java Object
hides implementation details behind its interface, a Uni-
fied Famous Object conceals data representation differences.
Having a large collection of UFOs would significantly sim-
plify data access and exchange by automatically recognizing
objects in the incoming data feeds and offering a standard
query interface oblivious of the source schemas. Finally,
UFOs are more general and flexible than schemas in a sense
that they can be viewed as abstract building blocks for meta-
data oriented applications.

Similarly, when the use of object-oriented programming
was not widespread, large programs were quite hard to build
and maintain. They consisted of a large number (i.e. thou-
sands) of functions and data structures passed among these
functions. Debugging and modifying was quite challeng-
ing due to poor modularity. The object-oriented program-
ming paradigm changed programming practice, so that a
program became modular and therefore easier to implement
and maintain [25, 16]. It consists of a collection of well-
defined pieces (i.e. objects) and a sequence of interaction
between them. Objects by themselves deal with their own
implementation, which is hidden from a program that ma-
nipulates them as ‘black-box’ pieces.

Similarly, by introducing UFOs we bring modularity that
drastically simplifies data access and management. First,
the repository detects familiar objects inside the incoming
data feeds and, second, it offers object-oriented standardized
access.

For instance, by querying the standard UFO-Item, the
user can easily find the best offer among several electronics
stores without prior knowledge of original sources schemas.
Similarly she would be able to recompose incoming Web
2.0 mashups such as Products, Reviews, and Merchants to
put them on Google maps without prior knowledge of data
source schema. To keep it up, the repository offers tools to
enrich the UFOs collection from external sources.

In this paper we briefly describe the architecture, demo-
scenarios illustrated by implementation screenshots and re-
sult sets. We conclude by discussing some forward-looking

statements that were born as we worked on UFOs.

2. ARCHITECTURE
The UFO repository components are in Figure 1. The sys-

tem provides uniform access to data residing in a variety of
data sources ranging from Web 2.0 mashups, online auction
data feeds, to biological, medical, and enterprise structured
data. It accumulates and maintains a large collection of
UFOs; leverages it to automatically discover familiar objects
in incoming data feeds; offers standard querying interface
that is oblivious to the original data source representation.
This allows to rise the abstraction level and increase au-
tomation by hiding the specific object structure differences
under a standard UFO interface. The information is accessed
by querying a collection of standard UFOs; new data feeds are
imported by having the repository discover and map objects
similar to existing UFOs.

Neither data warehousing nor ETL [19, 11] attempt to in-
troduce a common abstraction (i.e. UFO) and leverage it to
raise automation level. In some sense, those approaches are
less general in that they put main efforts on the specifics of
data mapping and transformation and are built for specific
query languages, schema, and data formats. By contrast,
we try to crystallize higher-level abstractions that conceal
lower-level technological details to manipulate these abstrac-
tions instead.

Another approach would be federation [10] of incoming
data together with query reformulation to the original sources,
which is currently a subject of ongoing work. Next we de-
scribe the repository components in more detail.

Freebase

OAGISR NCBI ADFTD

SwissProtJSON
XSD XML XML

UFOs

Mashups

Enterprise
data

Bio/
medical

data

User

query

mashup

schema

XML

XML/RSS

CSV

XML

XML

UFO Factory

UFO Respository

Object discovery and
extraction

Object
unification

Data feed
conversion

U
F
O
s

Unified
data
feed

Query
processor

Figure 1: UFO repository architecture

Interface: Users and applications interact with the sys-
tem through UFOs currently in the system (shown in Figure
2). The collection includes UFOs such as U-Item, U-Genome,

U-Protein, etc. Currently, the repository uses a simple (i.e.
flat) model of UFOs, but there is a clear need of subclasses
and polymorphism (e.g. U-Truck is a subclass of U-Car).

Browsing: UFOs stored in the repository can be explored
using a GUI in Figure 2 that displays domain hierarchy on
the left and the UFO structure with relations to other UFOs

on the right. The demo also implements keyword-search over
UFOs.

Table 1 illustrates a fragment of U-Item. It is stored as
XML entity and has standardized entity/attribute names

Figure 2: UFO Browser

<e name=”Item” ufo name=”Item|Product|Catalog”>

<a name=”Price”

ufo name=”(BuyItNow|(Converted)?Current)?

Price(To|From)?” />

<a name=”URL”

ufo name=”(ViewItem)?URL(ForNaturalSearch)?)” />

<a name=”Title”

ufo name=”Title|(Product)?Name” />

...

</e>

Table 1: U-Item fragment in XML

(name field) that are queried by user and accumulated names
(ufo name field) that are invisible to user and used by object
discovery algorithm. For instance, Title attributes from
different Item representations encountered by the repository
are accumulated as regular expression T itle|(Product)?Name
that is used later on to match similar attributes.

By some means, the repository interface (a collection of
UFOs) it can be viewed as an extensible, standardized

mediated schema [17] over multiple data feeds. It is extensible,
because a collection grows when it accumulates new object
representations. The more representations are accumulated,
the easier it is to discover familiar objects inside the incom-
ing data feeds later on. It is standardized, because the
UFOs query interface is static in contrast to varying source
schemas and therefore easier to query. Whereas the reposi-
tory currently offers one generic UFO collection split by do-
main, we are considering ways to reuse UFOs across domains
by leveraging polymorphism.

Querying, mapping: UFOs in the repository represent an
interface that supports XQuery. We demonstrate this by
importing XML feeds from three online stores - eBay, Ya-
hoo!, NewEgg; discovering and unifying the objects present
in the feeds, and querying the integrated data through the
standardized U-Item UFO interface.

Table 2 illustrates two queries:

• against merged eBay, Yahoo!, and NewEgg offers via
U-Item UFO and

• against merged NCBI, AD&FTD, and SwissProt via
U-Sequence UFO.

The first query automatically returns the best offers for a
32” TV among the three stores. The second query takes the
sites from the patient’s genetic profile and makes automatic
disease diagnosis by querying mutation records for a specific
gene. Only standardized UFO attributes are queried by the
user, thereby lower level source differences are concealed.

Q1:
for $tv in db2-fn:xml(’UOFFERS.AUCTIONS’)/UFO/Item
where fn:contains($tv/Category, ”Television”)

and fn:contains($tv/Title, ”32”)
order by ($tv/Price)
return ($tv/url, $tv/Price, $tv/Title)[1];

Results: http://cgi.sandbox.ebay.com/ws/...; $878.00;
TV 32”LCD 1080P FULL HD

Q2:
for $y in db2-fn:xmlcolumn(’USEQUENCE.MUTATION’)/

MUTATION RECORD,
where $y/before mutation=’E’

and $y/after mutation=’G’
and $y/site=’280’

return ($y/disease, $y/description, $y/frequency,
$y/tissue specific);

Results:Alzheimer disease, Spastic Paraparesis;
Mean of onset Ages: 44.8y Mean of ages at Death: 58.3y;
AD3 is the most severe form of the disease, with complete
penetrance and an onset occurring as early as 30 years
of age. The second form is late-onset AD (LOAD), with
mean age of onset greater than 58 years. AD is an autoso-
mal dominant neurodegenerative disorder characterized
by progressive dementia, parkinsonism, and deposition
of fibrillar amyloid proteins as intraneuronal neurofib-
rillary tangles, extracellular amyloid plaques and vascu-
lar amyloid deposits. The major protein found within
these deposits is a small, insoluble and highly aggregat-
ing polypeptide, beta-amyloid protein (beta-APP42)...;
6; Expressed in a wide range of tissues including various
regions of the brain;

Table 2: Source-oblivious U-Item, U-Sequence
XQueries. Without UFOs, prior knowledge of all
sources’ structure (eBay, Yahoo!, NewEgg, NCBI,
Swissprot, AD&FTD) and multiple different queries
would be required to get the result set returned by
one UFO- query.

Object discovery and accumulation: Mappings gener-
ated by the Clio UFO Factory in Figure 3 can be used to
discover and unify objects into UFOs. Also, to extract ob-
jects from an XML data feed, it is parsed, traversed in in-
order and flattened to extract objects. Next, the objects are

matched against the repository and unified with the best
matching UFO.
Exporting: UFOs can be selected by the user and exported

to compose a schema. For instance, a user can export a
schema for Banking domain by selecting its properties like
cardinality of relationship between entities, level of detail,
and denormalization. Based on the user choices, the system
generates XQuery that produces the output XML Schema
shown in Figure 4.

Source object

UFO
Mapping

Figure 3: UFO Factory: Genome is discovered and
unified from the incoming NCBI XML feed.

Object sources: The main design premise of UFO Repos-
itory is that it should be able to import, unify, and stan-
dardize differently structured objects from wide variety of
sources:
Schemas: Clearly, an excellent source of object metadata

are (xml, relational) schemas. Here, the entities are discov-
ered, and unified with existing UFOs in the repository. For
instance, OAGIS [1] provides a large collection of schemas
for many domains that have objects in abundance.
HTML: Web contains many objects hidden within HTML,

which if appropriately wrapped however, can provide a rich
set of objects and instances. For instance, NCBI, AD&FTD2,
Swiss-prot (protein knowledgebase) are just a few of many
biological databases on the Web that provide online ac-
cess to their data. In one of our demo scenarios, we used
wrapped objects to create U-Protein, U-cDNA, U-Genome,

2Alzheimer Disease & Frontotemporal Dementia

Figure 4: UFO schema export

U-Sequence UFOs, and demonstrate automatic disease diag-
nosis.
Freebase [2] is a general-purpose collection of structured

data on a wide-variety of topics. The domains include mu-
sic, sport, publishing, etc. It is created manually by a huge
community effort and supports queries returning JSON re-
sults.
XML Mashups: Web 2.0 offers a wide variety of differently

structured mashups that poses many challenges for Informa-
tion Management Community. By leveraging already accu-
mulated UFOs the repository is able to automatically discover
objects inside incoming XML feeds; extract, and unify them
with the appropriate UFOs; convert the incoming XML feed
into unified XML where original objects are replaced with
standard UFOs.

UFO Factory: Since the metadata managed by the UFO

Repository is very heterogeneous and comes from many
sources it is crucial that the representation differences are
detected and reconciled seamlessly. Observe that reconcili-
ation is much more challenging in our context, because the
metadata is represented rather differently in all the sources.

Clio UFO Factory is a tool we developed on top of Clio to
offer GUI for semi-automatic object discovery [9]. Figure 3
illustrates semi-automatic discovery of Genome from NCBI
(on the left) and its unification into U-Genome (on the right).
After unification is done, the updated UFOs are used to
detect objects in incoming feeds and serve as standardized
interface for user queries.

Storage: The repository stores UFOs and data in IBM
DB2 pureXML. The UFOs and data instances are represented
in XML and can be queried with XQuery. Clio UFO Factory
(Figure 3) exports UFOs after discovery and unification is
done as well as loads existing UFOs to discover familiar ob-
jects (Figure 1).

3. FORWARD-LOOKING STATEMENTS
UFO Repository currently has two main applications. The

first is object-oriented data integration. It simplifies access
to information inside raw data hidden behind its different
representation barrier. The second is object-oriented data
exchange. Data objects in different sources can be mapped
and exchanged through UFOs easier. This is currently the
subject of ongoing work.

We believe UFO Repository is only a start on the way to
modular and fluid data world, where the problem to retrieve
and access needed data from multiple sources is significantly
alleviated or no longer exists.

4. REFERENCES
[1] Oagis: http://www.oasis-open.org.

[2] K. Bollacker and T. Sturge. Freebase: A
collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

[3] S. Ding, G. Cong, C.-Y. Lin, and X. Zhu. Extracting
question-context-answer triples from online forums. In
ACL, 2008.

[4] X. Dong and A. Halevy. Indexing dataspaces. In
SIGMOD, 2007.

[5] T. J. Green, G. Karvounarakis, N. E. Taylor, O. Biton,
Z. G. Ives, and V. Tannen. Orchestra: facilitating
collaborative data sharing. In SIGMOD, 2007.

[6] M. N. Gubanov. Distributed component architecture
and a library for web xml applications. In
TELEMATIKA, 2002.

[7] M. N. Gubanov and P. A. Bernstein. Structural text
search and comparison using automatically extracted
schema. In WebDB, 2006.

[8] M. N. Gubanov, P. A. Bernstein, and A. Moshchuk.
Model management engine for data integration with
reverse-engineering support. In ICDE, 2008.

[9] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and
M. Roth. Clio grows up: from research prototype to
industrial tool. In SIGMOD, 2005.

[10] L. M. Haas, E. T. Lin, and M. A. Roth. Data
integration through database federation. IBM Syst. J.,
41(4), 2002.

[11] M. Hernández, S. Dessloch, R. Wisnesky, A. Radwan,
and J. Zhou. Orchid: Integrating schema mapping and
etl. ICDE, 2008.

[12] L. Lim, H. Wang, and M. Wang. Semantic data
management: Towards querying data with their
meaning. 2007.

[13] L. Lim, H. Wang, and M. Wang. Unifying data and
domain knowledge using virtual views. In VLDB,
2007.

[14] J. Madhavan, P. A. Bernstein, K. Chen, A. Halevy,
and P. Shenoy. Corpus-based schema matching. In
IJCAI, 2003.

[15] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: a
programming platform for generic model management.
In SIGMOD, 2003.

[16] M. Mezini and K. Ostermann. Integrating
independent components with on-demand
remodularization. In OOPSLA, 2002.

[17] P. Mork, R. Shaker, and P. Tarczy-Hornoch. The
multiple roles of ontologies in the biomediator data
integration system. In DILS, 2005.

[18] C. Re, J. F. Brinkley, K. P. Hinshaw, and D. Suciu.
Distributed xquery. In IIWeb, 2004.

[19] M. Roth, M. A. Hernández, P. Coulthard, L. Yan,
L. Popa, H. C.-T. Ho, and C. C. Salter. Xml mapping
technology: making connections in an xml-centric
world. IBM Syst. J., 45(2), 2006.

[20] S. Sekine. On-demand information extraction. In
COLING/ACL, 2006.

[21] M. Shaw, L. T. Detwiler, J. F. Brinkley, and D. Suciu.
Generating application ontologies from reference
ontologies. In AMIA, 2008.

[22] D. Simmen, M. Altinel, V. Markl, S. Padmanabhan,
and A. Singh. Damia: Data mashups for intranet
applications. In SIGMOD, 2008.

[23] Y. Sismanis, B. Reinwald, and H. Pirahesh.
Document-centric olap in the schema-chaos world. In
BIRTE, 2006.

[24] O. Udrea, L. Getoor, and R. J. Miller. Leveraging
data and structure in ontology integration. In
SIGMOD, 2007.

[25] D. Ungar and R. B. Smith. Self: The power of
simplicity. In OOPSLA, 1987.

[26] C. Yu and H. V. Jagadish. Querying complex
structured databases. In VLDB, 2007.

