
Demonstration of the TrajStore System

Eugene Wu
eugenewu@mit.edu

Philippe Cudre-Mauroux
pcm@csail.mit.edu

Samuel Madden
madden@csail.mit.edu

ABSTRACT
The proliferation of GPS devices has led to a sub-
stantial interest in location based services. In par-
ticular, modern vehicles can generate an incredible
amount of drive data. However, current storage
systems are not optimized for storing and query-
ing such large spatial-temporal data sets. In this
demonstration, we show the performance of the
TrajStore system, a dynamic storage system op-
timized for quickly accessing data in a particular
spatial-temporal region. In particular, TrajStore
uses a novel adaptive indexing technique that dy-
namically adjusts itself to co-locate spatially close
trajectories on disk, as well as a number of com-
pression techniques in the storage layer that sig-
nificantly reduce access time for a given index cell.
In this demonstration, we will store a set of real
world taxi cab drive traces in TrajStore, and users
will be able to query the data through a map based
interface.

1. INTRODUCTION
With the advent of cheap GPS and wireless de-

vices, there is increasing demand in applications
that support location based services. Such services
typically provide users with information related to
a geographical region, such as nearby stores, traffic
conditions, etc.

Over the past two years the Cartel project at
MIT has been collecting driving data from 30 taxi
cabs and 15 individuals’ cars throughout the Boston
Area. In this time we have gathered 245 million
GPS points from tens of thousands of drives, amount-
ing to over 68,000 hours of driving. Drives are cre-
ated after a driver stops the engine, or stays in
the same location for an extended period of time.
The types of queries we are interested in are ag-
gregate queries over large spatial-temporal regions

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

e.g., for counting how many cars drove through
downtown Cambridge along Massachussettes Ave
between 5PM and 6PM.

The classic approach to indexing drives is the
use of an Rtree [3, 4, 7, 6]. Rtrees are optimized
to access arbitrary multidimentional data by in-
dexing an object’s bounding rectangle. This does
not work well with long trajectories, which tend to
have large bounding rectangles and enclose many
trajectories. Furthermore, Rtrees only store rect-
angles and not data, so each matching bounding
box requires a separate IO. To address the prob-
lem with long trajectories, related work has pro-
posed segmenting trajectories in order to reduce
the overall area of the bounding box [6, 5]. These
systems assume one page access per segment, and
aim to split the trajectory in order to minimize the
number of page accesses. However, such systems
still required one seek per trajectory, limiting per-
formance over large, multi-trajectory datasets.

The second common approach uses a grid struc-
ture. Grid systems [2, 5] typically find an optimal
cell size, split the trajectory at the cell boundaries,
and store the segments in each cell together on
disk. Given a dataset and query size, this approach
works very well. The limitations, however, are that
the grid is statically defined and the cell size is
typically calculated offline. This means that this
scheme is not adaptable to variable query work-
loads nor continuous inserts into the system.

In light of these limitations, we have developed a
storage system that is optimized for spatial-temporal
queries over large sets of trajectory data. TrajStore
is designed to split trajectories into segments, and
co-locate segments that are geographically near each
other. It stores segments from each region in tem-
poral order, and then dense packs the data within
each region into pages on disk. We utilize an adap-
tive spatial index to find relevant regions for a
spatial query, and a sparse temporal index on the
pages to lookup trajectories by time. Using this
method, we are able to minimize the number of su-
perfluous pages that are read from disk and avoid
the large number of IOs in the RTree based ap-
proach. In fact, when compared to existing RTree [6]
or grid based approaches on real driving data, Traj-
Store performs more than 8 times faster.

In this demonstration we exhibit the performance

of the TrajStore system with an exploratory visu-
alization of taxi trajectories in the Boston area. In
particular, we show the enhanced performance of
using the adaptive index, and show how our stor-
age system can be used to answer interesting ag-
gregate queries. These aggregation techniques en-
able the visualization to accurately visualize mil-
lions of data points without loss of usability or per-
formance.

2. SYSTEM ARCHITECTURE
TrajStore is a storage system optimized for stor-

ing and querying trajectories. Trajectories consist
of a time ordered vector of (lat, lon, t) along with
metadata such as a trajectory id, a car id, accu-
racy measures and other values. A query defines
a spatial region r, and a temporal range t, and re-
turns the collection of trajectory segments. Each
segment is a sub-sequence of a trajectory that is
enclosed in r, and has one or more points in the
temporal predicate t.

1: The TrajStore Architecture

The basic architecture of TrajStore is shown in
Figure 1. When a trajectory is inserted, the spa-
tial index determines which cells the trajectory seg-
ments are stored in, and the storage manager effi-
ciently lays the segments on disk on a per cell basis.
Similarly, when a query is posed to the system, the
index looks up the intersecting cells, and reads the
segments in the data pages on each cell.

The indexer uses a new adaptive spatial indexing
technique that we have developed. The key insight
is to divide the space into a set of optimally sized
rectangles and store the segments in each rectangle
together on disk in order to minimize the number
of pages when reading a given spatial region. This
approach dynamically merges and splits the rect-
angles as new data enters the system, and as the
query workload changes.

TrajStore tries to reduce disk seeks and data
transfer by compactly co-locating neighboring tra-
jectory segments on the same disk page. Our pri-
mary structure is an adaptive quad tree index that
merges and splits cells in order to minimize the
number of disk transfers. The leaves of the quad
tree point to series of pages that store the data.

...

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

Spatial QuadTree

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

1: 2334
2: 312

3: 5345
4: 32423

Data Pages

1

3

2

2: Our index structure, which recursively splits
cells in four in order to minimize the number of
accesses to the storage layer.

Figure 2 shows the index of a few hundred trajec-
tories in the Boston area. On the left hand side,
point 1 shows an instance where the cells are split
to isolate a few segments. Point 2 shows a dense
area that is heavily split because accessing any re-
gion of space is costly and the overhead of load-
ing data from suplerfluous areas must be avoided.
Point 3 exhibits a scenerio in which there is a large
sparse area with a handful segments that fit on one
page. In this case, splitting is suboptimal because
it increases the number of disk pages.

As car data continuously arrives, we are con-
stantly inserting new trajectories into TrajStore.
In order to optimize disk accesses, the quad-tree
index automatically merges and splits cells accord-
ing to a cost function. The following function esti-
mates the cost of accessing data from a particular
cell, in terms of number of pages (hence the ceiling
operation):

Costcell(q) =
(cellw + qw)(cellh + qh)

area

⌈ ∑4
i=1 pi

pageSize

⌉
.

Where q is the query rectangle, p1...p4 are the
number of points in each of the 4 quadrants of the
cell, and pageSize is the size of a disk page. When
we insert a segment into a cell, the value of the up-
dated cost function determines which one of three
actions will occur:

• Split This occurs when the cost of a cell after
an insertion is greater than the cost if it were
replaced by its 4 child cells. In this case, the
cell will split, and the segments in the cell will
be segmented again to fit into the child cells.

• Merge A less common case is when the cost
of the parent cell is less than the sum of the
costs of the current cell’s siblings. In this case,
the current cell and its 3 siblings push their
data to their parent, and remove themselves
from the index. This scenerio typically occurs
in sparse regions, where it is cost effective to
group adjacent segments onto a single disk
page rather than maintaining multiple nearly
empty cells.

• Append By far the most common case, this
is when the cell capacity is stable and the seg-
ment is simply appended to the last page in
the cell.

Finally, after we identify the modified pages, we
update their temporal indices, which reflect the
smallest and largest timestamp for a given page.
This metadata is used to quickly search through
all the pages in a cell and locate segments that
satisfy the temporal component of a query.

We also provide mechanisms to support adapta-
tions to changes in the query workload by slightly
augmenting the cost function. Rather than as-
sume a static query size q, we use an exponentially
weighted moving average query size (QS) for each
cell. Whenever a cell is queried, we update the
dimensions of QS with respect to the query. In
practice, we don’t constantly update the QS used
by the cost function — it is updated when the cost
function of QS is more than epsilon different than
the QS maintained by the cell.

The second major component in TrajStore is the
Storage Manager, which utilizes two compression
techniques to reduce the number of pages to store
each cell. The first technique works on a single tra-
jectory basis, whereas the second exploits similar-
ities between trajectories. In both cases, the goal
is to eliminate as much redundancy in the data as
possible. Some of these techniques have a side ef-
fect of being very useful for aggregation queries, as
we will discuss later.

The first technique is a lossless delta compression
scheme to encode successive space and time coor-
dinates within a trajectory. Rather than storing
each latitude, longitude point, we simply store the
differences, or deltas, between each successive pair
of points. For the majority of the points, we can
store the delta in a single byte, while larger delta
values may require 2 or 3 bytes. We found a com-
pression factor of 4 when applying this technique
to real world data.

The second technique exploits the fact that within
a given area, many cars will drive along the same
route. We cluster nearly overlapping segments in
each cell into cluster groups, and store a single seg-
ment per group. This method is lossy because it
relies on storing summary segments. The user can
configure the clustering algorithm to keep errors
within epsilon meters. Because each car that pro-
duced a trajectory may travel along the route at
a different speed, we extrapolate and delta encode
the timestamp values for each segment. Applying
the previous delta compression technique along-
side this method results in a compression factor
of nearly 8.

An interesting side effect of this compression tech-
nique is that it effectively performs approximate
aggregation over the data. For most visualizations
that render trajectories across a very large area,
rendering a large number of routes that overlap
does not improve the utility of the visualization,
and even degrades the performance of the appli-
cation. Instead, returning summary segments for

3: Screenshot of main interface

each group of overlapping trajectories alongside the
size of the group is a faster, and equally as useful,
alternative. By materializing these aggregates in
advance, the system can avoid the cost of perform-
ing the grouping during runtime. This property is
an optimization that we highlight in our demon-
stration.

3. DEMONSTRATION OVERVIEW
In this demonstration, we exhibit the performance

of trajstore through an interactive demo. The demo
highlights TrajStore’s performance on a large real
world data set of taxi cab traces around the Boston
region. Users will be able to query the system
through a map based interface, and see interesting
statistics about the resulting data set and system
performance.

3.1 System Setup
We load TrajStore with 890MB of driving data

collected from various taxi cabs in the Boston area.
This data consists of 68,000 hours of driving, and
245 million GPS points from January 2007 to De-
cember 2008. In order to showcase the improve-
ments in our system, we store the data using 4 dif-
ferent configurations — two indexing methods and
two storage layouts. The indexing methods are a
grid based index, and the adaptive quad tree index
described in this paper. The two storage layouts
use either delta compression, or delta compression
along with trajectory clustering. From our inter-
face, the user can select any of the four configu-
rations and run queries over that particular data
store to compare performance across the schemes.

3.2 Demo Interface
The queries that we run in this demonstration

are spatial-temporal queries over the boston area.
When the user selects a rectangular region on the
map, and a region of time using sliders, the in-
terface dispatches the spatial-temporal query to

4: Screenshot of query performance interface

the selected TrajStore backend which evaluates the
query and returns a list of matching segments and
other metadata and statistics. The result set popu-
lates the interface in two ways. First, the cells that
intersect with the query rectangle and the result-
ing segments are overlayed on the map. Second,
the statistics and aggregate information are listed
and graphed in the right panel. The following are
a few example queries that lend themselves well to
our system:

1. “How many cars drove across the Harvard
bridge in the past year?”

2. “What does the density distribution of drives
look like in Harvard square over the past week?”

3. “How did the average speed in the MIT area
vary in the past month?”

4. “What is the average speed across a particular
segment of road?”. (Useful in [1])

5. “How long does it take to get from Logan Air-
port to the Back Bay?”. (Requested by the
Boston police)

Figure 3 is a screen shot of the proposed query
interface. In addition, there will be a screen that
displays the recent and average query performance
for each of the data store configurations. As par-
ticipants use the demo, the interface shown in Fig-
ure 4 updates the upper chart with the running av-
erage performance, while the lower chart displays
the most recent query’s performance.

4. REFERENCES
[1] M. G. Baik Hoh, R. Herring, J. Ban, D. Work,

J.-C. Herrera, A. Bayen, M. Annavaram, and
Q. Jacobson. Virtual trip lines for distributed
privacy-preserving traffic monitoring. In
MobiSys, 2008.

[2] V. Botea, D. Mallett, M. A. Nascimento, and
J. Sander. PIST: An Efficient and Practical
Indexing Technique for Historical
Spatio-Temporal Point Data. GeoInformatica,
12(2):143–168, 2008.

[3] A. Guttman. R-trees: a dynamic index
structure for spatial searching. In Proceedings
of SIGMOD, pages 47–57, 1984.

[4] D. Pfoser, C. S. Jensen, and Y. Theodoridis.
Novel approaches to the indexing of moving
object trajectories. In Proceedings of VLDB,
pages 395–406, 2000.

[5] V. Prasad, C. Adam, C. Everspaugh, and
J. M. Patel. Indexing Large Trajectory Data
Sets With SETI. In Proceedings of CIDR,
2003.

[6] S. Rasetic, J. Sander, J. Elding, and M. A.
Nascimento. A trajectory splitting model for
efficient spatio-temporal indexing. In
Proceedings of VLDB, pages 934–945, 2005.

[7] Z. Song and N. Roussopoulos. Seb-tree: An
approach to index continuously moving
objects. In Proceedings of MDM, pages
340–344, 2003.

