
SMDM: Enhancing Enterprise-Wide Master Data
Management Using Semantic Web Technologies

Xiaoyuan Wang1 Xingzhi Sun1 Feng Cao1 Li Ma1 Nick Kanellos2 Kang Zhang3 Yue Pan1 Yong Yu3

1IBM China Research Lab, China {wangxyxy, sunxingz, caofeng, malli, panyue}@cn.ibm.com
2IBM Software Group, Canada kanellos@ca.ibm.com

3Shanghai Jiao Tong University, China jobo@apex.sjtu.edu.cn yyu@cs.sjtu.edu.cn

ABSTRACT
Motivated by evolving business requirements and novel en-
terprise applications, we propose and implement the Se-
mantic Master Data Management (SMDM), a semantics-
level enhancement to the existing MDM solutions. The
SMDM system publishes relational-based master data as vir-
tual RDF store, and injects instantaneous reasoning capabil-
ities into semantic queries. Two kinds of ontologies are intro-
duced to the system, the core MDM ontology and the exter-
nal imported domain ontology. SMDM enables data linking
among multi-domains, implicit relationship discovery, and
declarative definition and extension of business policies and
entities. Based on these functions, modern companies can
customize their applications and services on demand within
the MDM hub. In the demonstration, we build the system
environment based on IBM’s MDM solution, and run the
use cases on the master data of an insurance company.

1. INTRODUCTION
With increasing market competition and complex busi-

ness performance management, it is critically important for
modern companies to maintain a single group of core entities
across many systems within an enterprise to improve busi-
ness efficiency and customer satisfaction. There arises high
demand for master data [16], which refers to core business
entities a company uses repeatedly across many business
processes and systems, such as lists or hierarchies of cus-
tomers, suppliers, accounts, or organizational units. In re-
cent years, well-known data management solution providers,
such as IBM, Oracle and SAP, have released their master
data management (MDM) solutions [4, 6, 8], especially on
customer data integration (CDI) and product information
management (PIM).

Driven by evolving business requirements and novel appli-
cations, the simple management of master data is far from
satisfactory. A majority of modern companies need the se-
mantic analysis and extension for core business entities and
relationships, multi-domain collaboration and product reor-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

MDM Hub
Operational
Data stores

Operational
Data storesOperational

Data stores

Operational
Data stores

Pub/Sub
Ontology and 

Rules 

� Thing

� Contact

� Organization

�Person
Core MDM
Ontology

derived from MDM 
logical model

Ontology
to RDB

Mapping

SMDM Engine

RDF View of 
Master Data

Open Data

Ontology extension
User-defined rules

Domain ontology

Figure 1: An overview of SMDM

ganization, and valuable but implicit knowledge discovery in
rich relationships. All of these pose great challenges to mas-
ter data management. Motivated by this, we propose and
develop the Semantic Master Data Management (SMDM),
a semantics-level enhancement to the existing MDM solu-
tions. To fully utilize the formal expressivity capability, we
apply Semantic Web [9] technologies to the implementation
of SMDM. The value of Semantic Web technologies has been
witnessed by the emergence of open data applications, such
as Wikipedia, DBpedia [2], and Freebase [12].

Figure 1. illustrates the overview of SMDM. The SMDM
engine publishes the underlying relational MDM database
as virtual RDF store, which can link open data with master
data to support effective collaboration. Two types of ontolo-
gies are introduced to the whole environment, the core MDM
ontology and the external domain ontology. The former is
derived from the MDM logical model containing core busi-
ness entities and relationships, and the latter corresponds to
external domains to be linked. To support SPARQL [11] (a
query language for RDF data recommended by W3C), the
SMDM engine translates a SPARQL query into a SQL state-
ment, which will further be executed by the MDM relational
database engine.

The technical challenges are how to effectively support
query and analysis, and how to generate efficient SQLs for
the underlying MDM database. Some previous work on ex-
posing relational data as RDF data, such as D2RQ [1] and
Virtuoso [5], lack the capability of reasoning for analysis,
and pay little attention to the ”quality” of the generated
SQLs. Two aspects of technical highlights in SMDM should



be mentioned. First, instantaneous rule reasoning is injected
into query evaluation. With it, SMDM enables the capabil-
ity of hidden relationship discovery and enriches semantic
queries through the rule-based extension of SPARQL. Sec-
ond, SMDM embeds a novel SPARQL-to-SQL translator,
which generates one single SQL statement rather than mul-
tiple SQLs from a SPARQL query, and thus fully utilizes
well-developed SQL execution engines. From the perfor-
mance results we observe that the translator of the SMDM
system greatly outperforms that of D2R server [1] in terms
of execution time of the generated SQLs.

In this demonstration, with the IBM MDM model, we will
highlight three main features in the SMDM system.

1. Cross-domain data linking. Data linking can be
realized by 1) publishing various datasets as RDF data and
2) setting the links between the published data. Thus, by
exposing master data as virtual RDF data, SMDM can link
it with open data within an enterprise, and enables a unified
customer view and product reorganization under different
business domains.

2. Dynamic concept extension. The rich expressivity
and formal semantics of the SMDM ontology model provide
an explicit specification of conceptualization on business en-
tities. According to personalized applications, customers
can dynamically extend core concepts in master data by
user-defined rules or OWL expressions [7] and apply them
to business transactions.

3. Semantic query and implicit relationship dis-
covery. With embedding reasoning into query evaluation,
SMDM can discover hidden relationships between individu-
als in MDM. Semantic query integrates core MDM ontology,
customer extensions, imported domain ontology, and busi-
ness rules to derive new information from existing data.

In actual scenarios, it is usually easy for clients of SMDM
without knowledge of implementation details to issue se-
mantic queries and make declarative business definitions and
policies by user-defined rules.

2. A TOUR OF THE SMDM SYSTEM
Figure 2. illustrates the architecture of the SMDM sys-

tem. The extended SPARQL query is passed to the system
from frontend users, and the SPARQL pattern tree is the
key structure maintained by the SPARQL-to-SQL transla-
tor. We describe the details of four major components and
our technical contribution.

Mapping component. Given the core MDM ontology,
the system needs to build a RDB-to-ontology mapping over
the master data hub so that a SPARQL query can be seam-
lessly translated into an executable SQL. Here we leverage
the well-known D2RQ mapping language, a declarative map-
ping language for describing the relationship between an on-
tology model and a relational data model. With the D2RQ
mapping tool and captured specific characteristics of the
MDM relational model, we adopt a semi-automatic method
to generate the mapping file.

Datalog rule engine. The datalog rule engine embraces
its reasoning of two types: ontology reasoning and user-
defined rule reasoning. Ontology reasoning is performed for
finding implicit RDF triples within the ontology model. It
is fulfilled based on Description Logic Programmes (DLP)
[13], referring to a set of Datalog rules. For user-defined rule
reasoning, users can define a set of business rules on top of
ontology to enrich the semantics.

Extended SPARQL Query

SPARQL Pattern Tree

SPARQL-to-SQL 
Translator

Datalog Rule Engine

Expand and Update

Parser

D2RQ Mapping

Master Data
Temporary 
Tables

Database

Translated SQL Statement

Ontology
rules

Ontology and Rule 
Manager

Figure 2: Architecture of the SMDM system

Considering the large size of master data and its update
problem, it is not practical to materialize all the inferred re-
sults. We apply a runtime reasoning mechanism and follow
the semi-naive evaluation approach with Magic Sets opti-
mization [13] in the datalog evaluator.

One characteristic in the SMDM system is that instanta-
neous rule reasoning is injected into query evaluation. The
high-level idea behind it is to expand the SPARQL pattern
tree by the rule engine and update it if necessary. The rule
engine first receives the parsed pattern tree, checks whether
there are rule heads in pattern nodes and expands them by
rule conditions accordingly. If there is a recursive loop when
expanding a rule head, the datalog evaluator will evaluate
the corresponding pattern node and generate a temporary
table to store the inferred results. The rule engine then at-
taches the temporary table to the corresponding node and
updates the pattern tree. The modified pattern tree will
finally be translated into a SQL statement. The tempo-
rary tables, together with the underlying data tables, are
involved in the final SQL execution.

We propose a TreeExpansion algorithm in this process. It
constructs a dependency graph based on all the rules. In
the pattern tree, if a node corresponds to recursive rules,
it computes the strong connected subgraph it belongs to in
the dependency graph. Then the datalog evaluator is trig-
gered to compute fixpoints for all related rules in the strong
connected subgraph. Otherwise (rules are not recursive), it
simply expands the node as a subtree and recursively calls
the TreeExpansion procedure on it.

SPARQL-to-SQL translator. We use our previous
work [14] to express a SPARQL graph pattern as a node
pattern tree, which contains five types of nodes, AND node,
OR node, TRIPLE node, FILTER node, and N-ARY node.

Compared with the existing methods that translate a SPARQL
query into a SQL, such as D2RQ and Virtuoso, the SMDM
translator has the following highlights.

First, our method generates a single SQL statement rather
than multi-stage SQLs so that well-developed SQL optimiz-
ers can be fully utilized. Besides standalone execution, the
generated single SQL can also be directly embedded into
other MDM SQL executor as a sub-query, which provides an
easy way to seamlessly integrate normal MDM queries with
semantic queries. The single-SQL generation relies on our
Semi-SQL structure, which fills the gap between columns in



SQL and variables in SPARQL. Each pattern node is first
translated into a Semi-SQL structure. Then all the Semi-
SQL structures are flattened to reduce unnecessary joins and
further translated into one SQL statement as a whole.

Second, the translator supports both the horizontal schema
and the vertical schema1, and makes optimizations on them
respectively. A hybrid physical schema, including horizontal
one and vertical one, appears common in many applications.
To handle this, two additional components are added into
the translator. One is the SPARQL Dispatcher, which de-
composes the incoming query pattern into the horizontal
part and vertical part according to extracted mapping in-
formation. The other is the SQL Coordinator, which com-
bines generated intermediate SQLs from the horizontal part
and vertical part into a final statement. We present a two-
binding implementation in vertical translation, which uti-
lizes the pattern-level ID binding rather than the in-pattern
URI binding to greatly reduce join cost.

To examine the efficiency of the translator in the SMDM
system, we build a set of benchmark queries in the testbed,
which contain two kinds of queries, simple patterns and com-
plex patterns. The former includes different combinations
of variable/constant options on subject, predicate and ob-
ject position in a triple pattern. The latter indicates the
complex AND/OR patterns, which contain a number of dif-
ferent triple patterns. We conduct comparison on the re-
trieval time between the SPARQL-to-SQL translator of the
SMDM system and that of D2R server. From the results,
we observe that for simple patterns both of them have the
similar retrieval time, while for complex patterns the former
outperforms the latter with the retrieval time three to five
times faster.

Ontology and rule manager. We apply the persistent
mechanism to ontology and rule management. Two types of
ontologies, including the core ontology and imported domain
ontology, are stored in the SOR system we implemented [15],
and a separate set of tables are used for storing rules. In ex-
ecution, the translator and rule engine obtain the ontologies
and rules they need from the manager.

3. DEMONSTRATION

3.1 Demo Scenario and Use Cases
To build the MDM database, we use the relational schema

of Websphere Customer Center (WCC) [4], one of IBM’s
MDM products, and run the use cases on the data set of
an insurance company. A pre-built WCC ontology, which is
called the core MDM ontology, is loaded into the system be-
forehand and corresponds to key entities and relationships in
the WCC model. The main entities in the data set contain
1.9M Contract, 1.0M Claim, 2.0M Contact including Per-
son and Organization, and 3.2M Location Group. It also
contains 1.9M Contact-to-Contract relationships.

Motivated by actual market requirements, the insurance
company tries to realize the following business points based
on its existing capability.

1. The company wants to classify or reorganize their in-
surance products and services according to a formal stan-

1Conceptually, the vertical schema involves a table with
three columns (S, P, O), storing the values of subject, prop-
erty and object in one row, while the horizontal schema is a
general physical schema where a property corresponds to a
column name.

Figure 3: A snapshot of the SMDM GUI

dard in an external financial domain, which is different from
its own product line domain. (Cross-domain data linking)

2. To improve the quality of personalized services, the
company wants to introduce the concept of VIP customer,
construct its explicit or implicit relationship with entities in
the system, and finally identify a group of existing customers
as VIP customers based on their personal and historical in-
formation. (Dynamic concept extension)

3. For preserving these VIP customers, the company will
regularly provide them with special offers on its insurance
products. The eligibility of the special offer is determined
by sale promotion policies, which might involve some hidden
relationships and should be flexible and subject to change.
(Semantic query and implicit relationship discovery)

From the perspective of master data, the SMDM system
captures the semantics-level association and provides a nat-
ural solution to satisfy these requirements, which correspond
to the main features mentioned in Section 1.

Let’s see what will happen when the insurance company
follows the SMDM system. Firstly it imports an external
financial domain (a hierarchy of classes), which is called
the external domain ontology, to the system. With it the
company can establish the RDF links between the product
instances (in the form of RDF) and the imported domain
classes, to reorganize the products in another customized
line. We provide two ways to realize this from the user per-
spective. One is to select the instances by navigating to
them and manually insert them into the target class. The
other is to apply user-defined rules to virtually map a batch
of products to a class in the imported domain hierarchy.

Secondly, by the company strategy, the VIP customer is
defined as the one who either has the clientImportance label
set to highest or is recommended by another VIP customer.
We can see that this is a recursive definition and the data-
log rule engine will be invoked to retrieve results. According
to the existing core MDM ontology, business users without
knowledge of implementation details can easily define such
a concept VIP Customer using rules, as is shown below.

VIP Customer(?x):- wcc:hasClientImportance(?x, ’highest’).
VIP Customer(?x):- VIP Customer(?y), wcc:providedBy(?x, ?y).

Note that a concept can also be defined using OWL ex-
pressions by advanced users, which will further be translated
to datalog rules for evaluation.



Thirdly, the company defines the sale promotion policy as
follows: a VIP customer who purchased an insurance prod-
uct of class C and made less than 2 claims in previous years
can get 20% discount for purchasing any C -typed products
for the next year. Note that the policy implies a number
of transitive subClassOf relationships, which take C as the
root class and flow in the whole class hierarchy.

Users can construct rules to refine business concepts in a
bottom-up way, and build semantic queries based on SPARQL
extension. Take the imported class Automobile as an exam-
ple. Given a customer <personX> and an Automobile in-
surance product purchased, the goal is to check whether the
customer is eligible for the special offer. The corresponding
rule-based extended SPARQL is descried as follows.

SELECT ?customer ?numOfClaims
WHERE {Contract Owner(?customer, ?contract).

Contract Product Relationship(?contract, ?product).
?product rdf:type import:Automobile. }

OPTIONAL {Contract NumOfClaims(?contract, ?numOfClaims).}
FILTER {(?customer = <personX>)}

Contract Owner, Contract Product Relationship and Con-
tract NumOfClaims are three extended concepts by rules,
which define the contract owner relationship between a con-
tact and a contract, the relationship between a contract and
a product, and how to find a contract with the number of
claims made from it. We omit their details due to space
limitation.

Whether a customer is eligible for the special offer is ex-
amined in SMDM transactions. The special offer will go into
effect automatically when the SMDM system detects that a
VIP customer is eligible for it. In this example, if the result
set is not empty and the returned numOfClaims is less than
2, <personX> can have 20% discount on the Automobile
insurance product.

It should be mentioned that reasoning will be triggered
several times in this process, because 1) the subClassOf re-
lationship, implied in the policy, appears common in a class
hierarchy. If class Personal Automobile is a subclass of Au-
tomobile, a direct instance of Personal Automobile also be-
longs to the type of Automobile and will be involved in any
Automobile-related inference and evaluation through reason-
ing; 2) many extended concepts and relationships have to
be expressed by recursive definitions. In the above exam-
ple, Contract NumOfClaims depends on the Sub Contract
relationship, which is a recursive definition and involved in
runtime datalog evaluation.

3.2 User Interface Overview
We implement the SMDM graphical user interface using

Adobe Flex and Java Servlet, and run the SMDM system
on Apache Tomcat as a web service. As is illustrated in
Figure 3, it is divided into four parts: Ontology Explorer,
Semantic Query, Rule Management, and Mapping Manage-
ment. By clicking an instance under a certain ontology class
with tree-structured multi-level nagivation, users can contin-
uously view all the linked data that is related to the instance
under the star-style graph view mode. Users can also per-
form a series of flexible operations in the interface, such
as defining rules to map business instances to external do-
main concepts, loading semantic queries from pre-defined
templates and so on. Combined with the user interface, the
demonstration will tell a whole story based on the above
scenario and use cases in a straightforward way.

4. POTENTIAL APPLICATIONS
Recently we successfully applied the SMDM technology

to the healthcare domain. We have built a platform that al-
lows physicians to access clinical data through virtual RDF
store and supports semantic queries and analysis based on
the healthcare ontologies. The schema of clinical data is de-
rived from the standard HL7 RIM [3] model and we build
a general repository using IBM Clinical Genomics (CG) to
store clinical data in a relational database. HL7 RIM ontol-
ogy, considered as counterpart of the core MDM ontology in
SMDM, covers all the aspects of clinical data, including clin-
ical entities and rich relationships. By building the mapping
between the relational schema in CG and the RIM ontology,
we can expose the relational clinical data as virtual RDF
data. We also introduce SNOMED CT ontology [10], which
defines the formal semantics of clinical concepts and plays
the similar role as what the imported domain ontology does
in SMDM. By linking the clinical data (modeled by RIM)
with the clinical concepts (modeled by SNOMED CT), we
enrich the formal semantics of clinical data, and enable se-
mantic queries and user-defined rules on it. As a result,
implicit clinical information can be inferred and delivered
to end users.

In future work, we would like to improve the consumption
of the SMDM technologies, and integrate the SMDM system
into the existing MDM solutions, to enrich more enterprise-
wide applications.

5. REFERENCES
[1] D2RQ. http://www4.wiwiss.fu-berlin.de/bizer/d2rq/.

[2] DBpedia. http://dbpedia.org/About.

[3] HL7 RIM. http://www.hl7.org/Library/data-model/
RIM/modelpage mem.htm.

[4] IBM Websphere Customer Center. http://www-
01.ibm.com/software/data/masterdata/customer/.

[5] Mapping relational data to rdf in virtuoso.
http://virtuoso.openlinksw.com/wiki/main/main/vossqlrdf.

[6] Oracle Master Data Management Suite.
http://www.oracle.com/master-data-management.

[7] OWL. http://www.w3.org/2004/OWL/.

[8] SAP NetWeaver Master Data Management.
http://www.sap.com/platform/netweaver/components/mdm.

[9] Semantic Web. http://www.w3.org/2001/sw/.

[10] SNOMED CT. http://www.nlm.nih.gov/research/
umls/Snomed/snomed main.html.

[11] SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[12] K. Bollacker, C. Evans, P. Paritosh, and T. Sturge.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, 2008.

[13] S. Ceri, G. Gottlob, and L. Tanca. Logic programming
and databases. Springer-Verlag, 1990.

[14] J. Lu, F. Cao, L. Ma, Y. Yu, and Y. Pan. An effective
sparql support over relational databases. In VLDB
Joint ODBIS-SWDB workshop, 2007.

[15] J. Lu, L. Ma, L. Zhang, J. Brunner, C. Wang, Y. Pan,
and Y. Yu. Sor: A practical system for ontology
storage, reasoning and search. In VLDB, 2007.

[16] H. Morris and D. Vesset. Managing master data for
business performance management: the issues and
hyperion’s solution. IDC white paper, 2005.


