
AgreementMaker: Efficient Matching for Large Real-World

Schemas and Ontologies∗

Isabel F. Cruz
ADVIS Lab

Dept. of Computer Science
University of Illinois at Chicago

ifc@cs.uic.edu

Flavio Palandri Antonelli
ADVIS Lab

Dept. of Computer Science
University of Illinois at Chicago

flav@cs.uic.edu

Cosmin Stroe
ADVIS Lab

Dept. of Computer Science
University of Illinois at Chicago

cstroe1@cs.uic.edu

ABSTRACT
We present the AgreementMaker system for matching real-
world schemas and ontologies, which may consist of hun-
dreds or even thousands of concepts. The end users of the
system are sophisticated domain experts whose needs have
driven the design and implementation of the system: they
require a responsive, powerful, and extensible framework to
perform, evaluate, and compare matching methods. The
system comprises a wide range of matching methods ad-
dressing different levels of granularity of the components be-
ing matched (conceptual vs. structural), the amount of user
intervention that they require (manual vs. automatic), their
usage (stand-alone vs. composed), and the types of compo-
nents to consider (schema only or schema and instances).
Performance measurements (recall, precision, and runtime)
are supported by the system, along with the weighted com-
bination of the results provided by those methods. The
AgreementMaker has been used and tested in practical appli-
cations and in the Ontology Alignment Evaluation Initiative
(OAEI) competition. We report here on some of its most
advanced features, including its extensible architecture that
facilitates the integration and performance tuning of a va-
riety of matching methods, its capability to evaluate, com-
pare, and combine matching results, and its user interface
with a control panel that drives all the matching methods
and evaluation strategies.

1. INTRODUCTION
The issue of schema matching in databases [11], which

has been investigated since the early 80’s, is fundamental to
data integration, as is the closely-related issue of ontology
alignment or matching [12]. The matching problem consists
of defining mappings among schema or ontology elements
that are semantically related. Such mappings are typically
defined between two schemas or two ontologies at a time one
being called the source and the other being called the target.

∗This research was supported in part by NSF Awards ITR
IIS-0326284, IIS-0513553, and IIS-0812258.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

We have been developing the AgreementMaker1 matching
system, whose name takes after agreement, the encoding
of a mapping. The capabilities of our system have been
driven by the real-world problems of end users who are so-
phisticated domain experts. We have considered a variety
of domains and applications, including: geospatial [2], en-
vironmental [4], and biomedical [13]. The conceptual infor-
mation for these applications is stored in the form of on-
tologies. However, as demonstrated by others, the same
approach can be used for schema matching [1, 10]. To val-
idate our approach, we competed against seven other sys-
tems in the biomedical track of the 2007 Ontology Alignment
Evaluation Initiative (OAEI), to match ontologies describ-
ing the mouse adult anatomy of the Mouse Gene Expression
Database Project (2744 classes) and the human anatomy of
the National Cancer Institute (3304 classes). We came in
third in terms of accuracy (F-measure) [5].

The AgreementMaker, which is currently in its third ver-
sion, has been evolving to accommodate: (1) user require-
ments, as expressed by domain experts; (2) a wide range of
input (ontology) and output (agreement file) formats; (3) a
large choice of matching methods depending on the different
granularity of the set of components being matched (local
vs. global), on different features considered in the compari-
son (conceptual vs. structural), on the amount of interven-
tion that they require from users (manual vs. automatic), on
usage (stand-alone vs. composed), and on the types of com-
ponents to consider (schema only or schema and instances);
(4) improved performance, that is, accuracy (precision, re-
call, F-measure) and efficiency (execution time) for the au-
tomatic methods; (5) an extensible architecture to incorpo-
rate new methods easily and to tune their performance; (6)
the capability to evaluate, compare, and combine different
strategies and matching results; (7) a comprehensive user
interface supporting both advanced visualization techniques
and a control panel that drives all the matching methods
and evaluation strategies.

In this demo paper, we focus on the most recent devel-
opments of the system, which has been almost completely
redesigned in the last year. In particular, we describe: (1)
the user interface with particular emphasis on the control
panel and improved visualization and interaction capabili-
ties; (2) the automatic matching methods and execution ca-
pabilities; and (3) the evaluation strategies for determining
the efficiency of the matching methods and for performing
the combination of results.

1http://www.AgreementMaker.org

2. RELATED WORK
There are several notable systems related to ours, includ-

ing Clio [6], COMA++ [1], Falcon-AO [7], and RiMOM [14]
(just to mention a few). Clio stands apart because of its
single focus on database-specific constraints and operators
(e.g., foreign keys, joins) to infer the mappings whereas con-
straints in ontologies (as implemented in the other three sys-
tems and in AgreementMaker) are of a different nature [12].
This different emphasis also permeates the remaining com-
ponents of the various systems, as those that also support
ontology matching implement a rich tool box of string-
similarity and structural-based techniques and focus on per-
formance. Consequently, some of these systems do not focus
on user interaction: for example, Falcon-AO and RiMOM
provide simple interfaces that offer limited user interaction
(e.g., no manual manipulation of the ontologies). However,
what separates AgreementMaker from these other systems
(including from COMA++, which has a more sophisticated
user interface than the other two) is the degree to which it
integrates the evaluation of the quality of the obtained map-
pings with the graphical user interface and therefore with the
iterative matching process. This tight integration emerged
from our work with domain experts, who required that the
evaluation be an integral part of the matching process, not
an “add on” capability.

3. ARCHITECTURE
The AgreementMaker supports a wide variety of methods

or matchers. Our architecture (see Figure 1) allows for serial
and parallel composition where, respectively, the output of
one or more methods can be used as input to another one,
or several methods can be used on the same input and then
combined. A set of mappings may therefore be the result of
a sequence of steps, called layers.

Figure 1: System architecture.

The matching process of a generic matcher (see Figure 2),
can be divided into two main modules: (1) similarity com-
putation in which each concept of the source ontology is
compared with all the concepts of the target ontology, thus
producing two similarity matrices (one for classes and the
other one for properties), which contain a value for each
pair of concepts; (2) mappings selection in which the ma-
trix is scanned to select only the best mappings according
to a given threshold and to the cardinality of the correspon-
dences, for example, 1-1, 1-N, N-1, M-N.

Figure 2: Structure of a generic matcher.

First Layer
Matcher

Second
Layer

Matcher

Third Layer
Matcher

Is-a Is-a

improves

1

combines

2..N

Ontology
2 compares

Property
Hierarchy

Class
Hierarchy

contains contains

1 1

Similarity
Matrices

builds

2

Alignment
produces 1

contains

1

contains

1

Class
Mapping

set

Property
Mapping

set

Figure 3: Matchers’ schema.

To enable extensibility, we adopted the object-oriented
template pattern by defining the skeleton of the matching
process in a generic matcher, which defers only a few opera-
tions to the concrete matcher extensions (see Figure 3). This
abstraction minimizes development effort by completely de-
coupling the structure of a single method from the architec-
ture of the whole system, thus allowing reuse or any possible
composition of matching modules.

A first layer matcher produces the similarity matrices,
while the second and third layer matchers extend the first
layer matchers. In particular, a second layer matcher im-
proves on the results of a first layer matcher using conceptual
or structural information, depending on whether it considers
one concept alone or a concept and its neighbors. Finally,
a third layer matcher combines the results of two or more
matchers from the previous layers, in order to obtain a final
matching or alignment, that is, a set of mappings.

4. USER INTERFACE
The source and target ontologies (in XML, RDFS, OWL,

or N3) are visualized side by side using the familiar outline
tree paradigm (see Figure 4). Agreements can be exported
in different formats (e.g., XML, Excel). Because all the
matching operations and their results are managed by this
interface, we gave special consideration to its design [4]. We
describe next two new features of the interface: the con-
trol panel and the visualization of non-hierarchical ontolo-
gies (e.g., due to multiple inheritance in OWL). The latter
feature allows for specific subtrees to be visually duplicated.
Because we adopt the Model-View-Control pattern, this du-
plication does not affect the underlying data structures.
The control panel (see Figure 5) allows users to run and
manage matching methods and their results. Users can se-

Figure 5: Control panel.

Figure 4: Graphical User Interface.

lect parameters common to all methods (such as threshold
and cardinality) and method-specific parameters. When a
method has run, a new row is dynamically added to the table
that is part of the control panel at the same time that lines
depicting the mappings between the concepts are added (see
Figure 4). Each row is color coded and allows for its selec-
tion so that the corresponding mappings (of the same color)
can be compared visually. Each row also displays the perfor-
mance values for the associated methods, thus allowing for
the comparison with those of other rows. In addition, users
can modify at runtime the method parameters by changing
directly their values in the table or by selecting previously
calculated matchings as input to the methods to be applied
next. Multiple matchings can also be combined manually or
with an automatic combination matcher.

5. MATCHING METHODS
First layer matchers compare concept features (e.g., la-

bel, comments, annotations, and instances) and use a vari-
ety of methods including syntactic and lexical comparison
algorithms as well as the use of a lexicon like WordNet.
Of those methods some were proposed by others (e.g., edit
distance, Jaro-Winkler) and some devised by us, including
a substring-based comparison that favors the length of the
common substrings and a concept document-based compar-
ison containing a wide range of features. Those features are
represented as TF-IDF vectors and use a cosine similarity
metric (see Figure 6).

Second layer matchers use structural properties of the on-
tologies. Our own methods include the Descendant’s Simi-
larity Inheritance (DSI) and the Sibling’s Similarity Contri-
bution (SSC) matchers [3].

Finally, third layer matchers combine the results of two

normalizer

Source Concept
Document

TF/IDF
similarity

individuals

neighbors

concept’s
features

normalizer

Target Concept
Document neighbors

concept’s
features

individuals

final similarity

corpus of
documents

Figure 6: Concept document-based matcher.

matcher

M1

matcher

M2

matcher

M3

quality

evaluation

W1

W2

W3

Linear

Weighted

Combination

Figure 7: Linear Weighted Combination matcher.

or more matchers so as to obtain a unique final matching in
two steps. In the first step, a similarity matrix is built for
each pair of concepts, using our Linear Weighted Combina-
tion (LWC) matcher, which processes the weighted average
for the different similarity results (see Figure 7). Weights
can be assigned manually or automatically, the latter as-
signment being determined using our evaluation methods.
The second step uses that similarity matrix and takes into
account a threshold value and the desired cardinality. When
the cardinality is 1-1, we adopt the Shortest Augmenting
Path algorithm [9] to find the optimal solution for this opti-
mization problem (namely the assignment problem reduced
to the maximum weight matching in a bipartite graph) in
polynomial time.

6. EVALUATION
The design of optimal methods to find correct and com-

plete mappings between real-world ontologies is a hard task
for several reasons. First of all, an algorithm may be ef-
fective for a given scenario, but not for others. Even within
the same scenario, the use of different parameters can change
significantly the outcome. Moreover, in interviewing domain

experts in the geospatial domain, we discovered that they do
not trust automatic methods unless quality metrics are as-
sociated with the matching results. These observations have
motivated a variety of evaluation techniques, that determine
runtime and accuracy (precision, recall, and F-measure).

The most effective evaluation technique compares the map-
pings found by the system between the two ontologies with
a reference matching or “gold standard,” which is a set of
correct and complete mappings as built by domain experts.
When a reference matching is available, the AgreementMaker
can determine the quality of the found matching analytically
or visually. A reference matching can also be used to tune
algorithms by using a feedback mechanism provided by a
succession of runs.

When a gold standard is not available, “inherent” qual-
ity measures need to be considered. Quality measures can
be defined at two levels as associated with the two main
modules of a matcher (see Figure 2): similarity or selection
level. We can consider local quality as associated with a
correspondence at the similarity level (or mapping at the
selection level) or global quality as associated with all the
correspondences at the similarity level (or with all possible
mappings at the selection level). We have incorporated in
our system a global-selection quality measure proposed by
others [8] and a local-similarity quality measure that we have
devised. Experiments have shown that our quality measure
is usually effective in defining weights for the LWC matcher.

7. DEMONSTRATION
Our demo focuses on the matching methods and evalu-

ation strategies for determining the efficiency of ontology
matching methods. Due to the tight integration of the eval-
uation strategies with the graphical user interface, a unique
feature of our system, all the steps will be performed through
the interface. Users will start by uploading their own on-
tologies, load our own, or download ontologies from the web,
thus taking advantage of the several standard formats sup-
ported. Users can then explore the interface freely or fol-
low a walk-through, consisting of browsing the ontologies,
expanding and contracting nodes, and customizing the dis-
play. They have access to the information associated with
each concept to be aligned, including descriptions, annota-
tions, and (context) relations, and they can use them to
visually detect mappings.

The matching methods offer a brief description to help
users in their selection. Users can manually set parameters
like threshold or use default values. Once the mappings are
defined, they will be able to interact with the results ob-
tained, for example, to reduce the number of lines depicting
the mappings. They can also edit the mappings that are
automatically produced by the system, by adding, deleting,
and updating mappings. Several matchings can be viewed
and managed in parallel to directly detect overlaps and dif-
ferences visually. Tuning the performance of the algorithms
becomes an easy and quick task: for example, mappings
can be iteratively improved by running second layer match-
ers, such as DSI after one of the base similarity methods.
In the end, a final set of mappings can be obtained using
basic combination operations or an automatic quality com-
position of previous matchings. Users will also be able to
store and inspect the mappings thus defined. The system
also provides a powerful framework for developers. Each
matching method is implemented as a standard component,

which allows reuse and composition. A standard extensible
API is defined to let developers plug and test new matching
methods thus minimizing effort and maximizing reuse.

8. REFERENCES
[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.

Schema and Ontology Matching with COMA++. In
ACM SIGMOD International Conference on
Management of Data, pages 906–908, 2005.

[2] I. F. Cruz, A. Rajendran, W. Sunna, and N. Wiegand.
Handling Semantic Heterogeneities using Declarative
Agreements. In International ACM GIS Symposium,
pages 168–174, 2002.

[3] I. F. Cruz and W. Sunna. Structural Alignment
Methods with Applications to Geospatial Ontologies.
Transactions in GIS, Special Issue on Semantic
Similarity Measurement and Geospatial Applications,
12(6):683–711, December 2008.

[4] I. F. Cruz, W. Sunna, N. Makar, and S. Bathala. A
Visual Tool for Ontology Alignment to Enable
Geospatial Interoperability. Journal of Visual
Languages and Computing, 18(3):230–254, 2007.

[5] J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko,
H. Stuckenschmidt, O. Šváb, V. Svátek, W. R. van
Hage, and M. Yatskevich. Results of the Ontology
Evaluation Initiative 2007. In ISWC International
Workshop on Ontology Matching, volume 304, pages
96–132. CEUR-WS, 2007.

[6] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio:
A Semi-Automatic Tool For Schema Mapping (demo).
In ACM SIGMOD International Conference on
Management of Data, page 607, 2001.

[7] N. Jian, W. Hu, G. Cheng, and Y. Qu. Falcon-AO:
Aligning Ontologies with Falcon. In K-CAP 2005
Workshop on Integrating Ontologies. CEUR Workshop
Proceedings 156, 2005.

[8] C. Joslyn, A. Donaldson, and P. Paulson. Evaluating
the Structural Quality of Semantic Hierarchy
Alignments. In International Semantic Web
Conference (Posters & Demos), 2008.

[9] R. M. Karp. An Algorithm to Solve the m× n
Assignment Problem in Expected Time O(mn log n).
Networks, 10(2):143–152, 1980.

[10] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
Flooding: A Versatile Graph Matching Algorithm and
its Application to Schema Matching. In IEEE
International Conference on Data Engineering
(ICDE), pages 117–128, 2002.

[11] E. Rahm and P. A. Bernstein. A Survey of
Approaches to Automatic Schema Matching. VLDB
Journal, 10(4):334–350, 2001.

[12] P. Shvaiko and J. Euzenat. A Survey of Schema-Based
Matching Approaches. In Journal on Data Semantics
IV, volume 3730 of Lecture Notes in Computer
Science, pages 146–171. Springer, 2005.

[13] W. Sunna and I. F. Cruz. Using the AgreementMaker
to Align Ontologies for the OAEI Campaign 2007. In
ISWC International Workshop on Ontology Matching,
volume 304, pages 133–138. CEUR-WS, 2007.

[14] J. Tang, J. Li, B. Liang, X. Huang, Y. Li, and
K. Wang. Using Bayesian Decision for Ontology
Mapping. Journal of Web Semantics, 4(4):243–262,
2006.

