
Concise and Expressive Mappings with +Spicy

Giansalvatore Mecca1 Paolo Papotti2 Salvatore Raunich1 Marcello Buoncristiano1

1 Dipartimento di Matematica e Informatica – Università della Basilicata – Potenza, Italy
2 Dipartimento di Informatica e Automazione – Università Roma Tre – Roma, Italy

ABSTRACT

We introduce the +Spicy mapping system. The system is
based on a number of novel algorithms that contribute to in-
crease the quality and expressiveness of mappings. +Spicy
integrates the computation of core solutions in the mapping
generation process in a highly efficient way, based on a nat-
ural rewriting of the given mappings. This allows for an
efficient implementation of core computations using com-
mon runtime languages like SQL or XQuery and guarantees
very good performances, orders of magnitude better than
those of previous algorithms. The rewriting algorithm can
be applied both to mappings generated by the system, or
to pre-defined mappings provided as part of the input. To
do this, the system was enriched with a set of expressive
primitives, so that +Spicy is the first mapping system that
brings together a sophisticate and expressive mapping gen-
eration algorithm with an efficient strategy to compute core
solutions.

1. INTRODUCTION

The ability of modern information systems to exchange,
transform and integrate data is nowadays considered a cru-
cial requirement. A fundamental requirement for such data
integration applications is that of manipulating mappings
among data sources. Mappings, also called schema map-
pings, are executable transformations – say, SQL queries for
relational data or XQuery scripts for XML – that specify
how an instance of the source repository should be trans-
lated into an instance of the target repository.

Inspired by the seminal papers about the Clio system [8],
in the last years a rich body of research has studied algo-
rithms and tools for schema mapping generation. These
works have focused on the development of mapping systems
that, given a visual specification of the correspondences be-
tween the source and target schemas, generate the mappings
and then the executable scripts needed to perform the trans-
lation. However, despite several years of both system and
theory studies, the adoption of mapping systems in real-life

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 2428, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 0000000000000/00/00.

integration applications, such as ETL workflows or EII (En-
terprise Information Integration), is quite slow. This is due
to several factors.

One key factor is the quality of solutions produced by
mapping systems. It is well known that a mapping sce-
nario may have many different solutions. These solutions
may differ significantly in size, i.e., they may contain a vari-
able amount of redundant tuples. As shown in [5], for large
source instances the amount of redundancy in the target may
be very large, thus impairing the efficiency of the exchange
and the query answering process. A key contribution of
data exchange research was the formalization of the notion
of core [4], which was identified as an “optimal” solution.
Informally speaking, the core is irredundant, since it is the
smallest among the solutions that preserve the semantics
of the exchange, and provides a “good” semantics for an-
swering queries over the target database. Therefore, it can
be considered a crucial requirement for a schema mapping
system to generate executable scripts that materialize core
solutions for a mapping scenario.

Another factor is the expressibility of the mapping system.
A benchmark for mapping systems called STBenchmark [1]
has been recently proposed to evaluate research mapping
systems and commercial ones. None of the systems was able
to express all the mappings in the benchmark. It is also
known that previous mapping generation algorithms [8] can-
not express several natural mappings, like the ones discussed
in [2].

The +Spicy system [7] is an attempt at overcoming these
limitations. It is the first mapping system that brings to-
gether a set of expressive mapping generation primitives and
a mapping generation algorithm that generates core solu-
tions. In light of this, we believe +Spicy may contribute
towards the goal of integrating schema mapping concepts
into practical data integration tasks.

2. OVERVIEW

It is well known that translating data from a given source
database may bring to a certain amount of redundancy into
the target database. To see this, consider the mapping sce-
nario in Figure 1. A source instance is shown in Figure 2.

In this example, the source database contains tables about
books coming from three different data sources, namely the
Internet Book Database (IBD), the Library of Congress data-
base (LOC), and the Internet Book List (IBL). Based on
the correspondences, a constraint-driven mapping system as
Clio would generate for this scenario several mappings, un-
der the form of tuple-generating dependencies (tgds), like the



ones below.

Figure 1: Mapping Bibliographic References

m1. ∀t : IBDBook(t) → ∃N: Book(t, N)
m2. ∀t, p : LOC(t, p) → ∃I: Book(t, I) ∧ Publisher(I, p)
m3. ∀t, id : IBLBook(t, id) → Book(t, id)
m4. ∀id, p : IBLPublisher(id, p) → Publisher(id, p)

It can be seen how each source has a slightly different organi-
zation wrt the others. In particular, the IDB source contains
data about book titles only; mapping m1 copies titles to the
Book table in the target. The LOC source contains book
titles and publisher names in a single table; these are copied
to the target tables by mapping m2, which also “invents” a
value to correlate the key and the foreign key. Finally, the
IBL source contains data about books and their publishers
in separate tables; these data are copied to the target by
mappings m3, m4; note that in this case we don’t need to
invent any values. These expressions materialize the target

Figure 2: Instances for the References Scenario

instance in Figure 2, called a canonical universal instance.
While this instance satisfies the tgds, still it contains many
redundant tuples, those with a gray background. Consider
for example the tuple t1 = (The Hobbit, null); it can be
seen that the tuple is redundant since the target contains
another tuple t2 = (The Hobbit, 245) for the same book,
which in addition to the title also gives information about
the publisher. The fact that t1 is redundant with respect to
t2 can be formalized by saying that there is an homomor-
phism from t1 to t2. A homomorphism, in this context, is a
mapping of values that transforms t1 into t2. A similar argu-
ment holds for the tuple (The Lord of the Rings, null), and
for tuples (The Catcher in the Rye, I2) and (I2, LB Books),
where I2 is the value invented by executing tgd m2. The
presence of such homomorphisms means that the solution in
Figure 2 has an endomorphism, i.e., a homomorphism into a

sub-instance – the one obtained by removing all redundant
tuples.

The fact that tgds produced by a schema mapping algo-
rithm may generate redundancy in the target is well known
and has motivated several practical proposals (e.g. [5]) to-
wards the goal of removing such redundant data. Unfortu-
nately, these proposals are applicable only in some cases and
do not represent a general solution to the problem. In [4]
the notion of core solutions has been introduced as a “more
desirable” solution than the one in Figure 2. The core is
the smallest among the solutions for a given source instance
that has homomorphisms into all other solutions. The core
of the solution in Figure 2 is in fact the portion of the target
tables with a white background.

A possible approach to the generation of the core for a re-
lational data exchange problem is to generate the canonical
solution, and then to apply a post-processing algorithm for
core identification. Several polynomial algorithms have been
identified to this end [4, 6]. These algorithms provide a very
general solution to the problem of computing core solutions
for a data exchange setting. Also, an implementation of the
core-computation algorithm in [6] has been developed [9],
thus making a significant step towards the goal of integrat-
ing core computations in schema mapping systems. How-
ever, experience with these algorithms shows that, although
polynomial, they require very high computing times since
they look for all possible endomorphisms among tuples in
the canonical solution. As a consequence, they hardly scale
to large mapping scenarios. Our goal is to introduce a core
computation algorithm that lends itself to a more efficient
implementation as an executable script and that scales well
to large databases. To this end, in the following sections
we introduce two key ideas: the notion of homomorphism
among formulas and the use of negation to rewrite tgds.

Formula Homomorphisms and Rewriting. The first intu-
ition is that it is possible to analyze the set of formulas in
order to recognize when two tgds may generate redundant
tuples in the target. This happens when it is possible to
find a homomorphism between the right-hand sides of the
two tgds. Consider tgds m1 and m3 above; it can be seen
that the conclusion Book(t, N) of m1 can be mapped into
the conclusion Book(t, id) of m3 by the following mapping
of variables: t → t, N → id; in this case, we say that m3

subsumes m1. This gives us a nice necessary condition to
intercept possible redundancy (i.e., possible endomorphisms
among tuples in the canonical solution). Note that the con-
dition is merely a necessary one, since the actual generation
of endomorphisms among facts depends on values coming
from the source. Note also that we are checking for the pres-
ence of homomorphisms among formulas, i.e., conclusions of
tgds, and not among instance tuples; since the number of
tgds is typically much smaller than the size of an instance,
this task can be carried out very quickly.

Based on these ideas, in our example we find all possible
homomorphisms among tgd conclusions; more specifically,
we look for variable mappings that transform atoms in the
conclusion of one tgd into atoms belonging to the conclu-
sions of other tgds, with the constraint that universal vari-
ables are mapped to universal variables. There are three
homomorphisms of this form: (i) from the right hand side
of m1 to the rhs of m3, as discussed above; (ii) from the rhs
of m1 to the rhs of m2 by the following mapping: t → t,



N → I, i.e., also m2 subsumes m1; (iii) from the rhs of m2

to the union of the conclusions of m3, m4, by the following
mapping: t → t, I → id, p → p; in this case we say that
m3, m4 cover m2.

A second important intuition is that, whenever we identify
two tgds m, m′ such that m subsumes m′, we may prevent
the generation of redundant tuples in the target instance by
executing them according to the following strategy: (a) gen-
erate target tuples for m, the “more informative” mapping;
(b) for m′, generate only those tuples that actually add some
new content to the target. In our example, we rewrite the
original tgds as follows (universally quantified variables are
omitted):

m3. IBLBook(t, id) → Book(t, id)
m4. IBLPublisher(id, p) → Publisher(id, p)
m′

2. LOC(t, p) ∧ ¬(IBLBook(t, id) ∧ IBLPublisher(id, p))
→ ∃I: Book(t, I) ∧ Publisher(I, p)

m′

1. IBDBook(t) ∧ ¬(IBLBook(t, id)) ∧ ¬(LOC(t, p))
→ ∃N: Book(t, N)

Once we have rewritten the original tgds in this form, we can
easily generate an executable transformation under the form
of relational algebra expressions. Here, negations become
difference operators. The algebraic expressions can be easily
implemented in an executable script, say in SQL or XQuery,
to be run in any database engine. As a consequence, there is
a noticeable gain in efficiency with respect to the algorithms
for core computation proposed in [4, 6, 9].1

Expressive Power. It can be seen that the rewriting al-
gorithm can be applied to any set of tgds, not necessarily
generated by the mapping system. To do this, one of our
goals was to extend the expressive power of the mapping
system with respect to previous ones.

Suppose we are given the following set of pre-defined tgds
that refer to a variant of the self-join example in STBench-
mark [1]. The target schema contains a single relation Gene
with attributes name, type and protein, which holds to-
gether primary genes and secondary genes, called “syno-
nyms”. A primary gene and its synonyms share the same
protein. In the source, we have genes organized in sepa-
rate tables PrimaryGene and Synonym, connected through
a key-foreign key constraint. In addition, we have a Pro-
tein table, from which we want to copy only tuples about
genes coming from the EMBL database. A key feature of
this example is the self-join of table Gene in the target on
the protein attribute.

m1. Protein(p, g, ‘EBML’ ) → Gene(g, p, ‘primary’ )
m2. PrimaryGene(i, n, p) → Gene(n, p, ‘primary’ )
m3. Synonym(n, i) ∧ PrimaryGene(i, n′, p)

→ Gene(n, p, ‘synonym’),Gene(n′, p, ‘primary’ )

Our goal is to generate a mapping scenario for these tgds,
and then rewrite them in order to generate core solutions.
In this case, +Spicy proposes to the user the scenario in
Figure 3. To handle arbitrary tgds of this form, we had to
enrich the set of primitives that can be used to specify a
mapping scenario. We extend these inputs in several ways:
(i) we introduce the possibility of duplicating sets in the
source and in the target; to handle tgd m3 above, we dupli-
cate the Gene table in the target; each duplication of a set
1We have recently learned that a similar approach has been in-
dependently undertaken in [10].

Figure 3: Inverse of Self Joins

R corresponds to adding to the data source a new set named
R k, for some k, that is an exact copy of R; (ii) we give users
full control over joins in the two data sources, in addition
to those corresponding to foreign key constraints; using this
feature, users can specify arbitrary join paths, like the self-
join on the protein attribute in m3; (iii) finally, we allow
users to express selection conditions on sets, like source =
’EMBL’ on the protein table in m1.

This richer set of primitives poses some challenges with re-
spect to the rewriting algorithm. In fact, duplications in the
target correspond to different ways of contributing tuples to
the same set. This makes the search for homomorphisms
more delicate, since there exist tgds that write more than
one tuple at a time in the same target table, and therefore
redundancy can be generated not only across different tgds,
but also by firing a single tgd. Our solution to this prob-
lem is to adopt a two-step process. First, we rewrite tgds
that populate the target with duplications. Then, we con-
struct a second exchange, in order to merge the content of
all duplications. We apply the rewriting to this exchange
as well in order to remove redundant tuples. The process is
sketched in Figure 4. Complex scenarios with self-joins will

Figure 4: The Double Exchange

be discussed during the demonstration.

3. SYSTEM DESCRIPTION

The +Spicy system is an evolution of the original Spicy
system [3]. It has been developed in Java using the NetBeans
Platform as a basis for the graphical user interface. A snap-
shot is shown in Figure 5. The system architecture is shown
in Figure 6. The system supports various usage scenarios,

Figure 5: A snapshot of the system



that will be shown during the demonstration. The typical
one is that in which a user provides to the system a mapping
specification using the GUI; in doing this, besides specifying
the source and target schema, users can rely on the prim-
itives offered by the system, namely: (i) a rich set of cor-
respondences that include traditional 1:1 correspondences
but also n:1 value correspondences with complex transfor-
mation functions, constant correspondences, and correspon-
dences with filters; (ii) the possibility of duplicating sets
in the two schemas; (iii) the possibility to define arbitrary
join-conditions in the sources; (iv) the possibility of specify-
ing selection conditions on sets in the source. The mapping
specification is handled by the mapping generation module,
which generates the tgds. As an alternative, a simple parser
is available to load a set of pre-defined tgds. The parser
will generate a scenario from the tgds, and show it to the
user so that s/he can visually inspect and possibly modify
it. At this point, the user has a set of tgds, either generated

Figure 6: Architecture of Spicy

internally or pre-defined and loaded by the parser. Before
moving to the actual query generation phase, the tgds are
rewritten by the rewriting engine in order to ensure that
core solutions are generated.

Based on these rewritten tgds, an executable query either
in SQL or in XQuery can be generated. The system inte-
grates interfaces to various popular SQL and XQuery en-
gines (like PostgreSQL and Saxon), so that the final query
can be executed against one or more source instances and
results can be inspected using the GUI. To simplify the de-
bugging of the mapping scenario and to reduce dependencies
wrt external systems, +Spicy also incorporates an internal
chase engine to execute the tgds and generate solutions in-
ternally. In our experience, this is more immediate than
sending a query to an external engine, and greatly helps
users during their work sessions.

The demonstration will be centered around the discussion
of various mapping scenarios, with the goal of showing the
expressiveness and the quality of solutions produced by the
system. We will demonstrate practical scenarios, scenarios
from the literature, and synthetic scenarios of large size.

In terms of expressiveness, we will show how +Spicy can
handle all of the mapping scenarios proposed in [1]. We will
also discuss how the system handles scenarios of the kind
discussed in [2] by allowing users to explicitly manipulate
join conditions. All scenarios will be run both using the
internal engine and by generating SQL or XQuery scripts for
external engines, to show how the internal engine guarantees
more immediacy but external engines are needed in order to

scale to large instances.
With respect to the quality of solutions, we will discuss

how tgds are rewritten in order to generate the core. To
better evaluate the quality of the core solutions generated
by the tgds after the rewriting, we will compare them to the
canonical universal instance generated by the original tgds.

Note that all algorithms discussed in the previous sections
are applicable to both flat and nested data. However, data
exchange research has so far concentrated on relational data
and there is still no formal definition of a data exchange
setting for nested data. Still, we compare the solutions pro-
duced by the system for nested scenarios with the ones gen-
erated by the basic [8] and the nested [5] mapping generation
algorithms, that we have reimplemented in our prototype.
We show that the rewriting algorithm invariably produces
smaller solutions, without losing informative content.

One final crucial issue is related to performance. In fact,
computing cores may be a challenging task. The polynomial-
time algorithm defined in [6] and implemented in [9] usually
requires several hours, even for instances of a few thousand
tuples. On the contrary, our scripts scale well, as shown
in [7]. To show this, we have prepared source databases of
varying sizes for the selected scenarios, from 100K to 1M
tuples. We will show how in practical cases the computa-
tion of the core solution is very efficient and scales well to
such large databases. Finally, synthetic scenarios with a
large number of tables and tgds will be used to show that
the rewriting algorithm performs well when the size of the
scenario increases.

4. REFERENCES

[1] B. Alexe, W. Tan, and Y. Velegrakis. Comparing and
Evaluating Mapping Systems with STBenchmark.
Proc. of the VLDB Endowment, 1(2):1468–1471, 2008.

[2] Y. An, A. Borgida, R. Miller, and J. Mylopoulos. A
Semantic Approach to Discovering Schema Mapping
Expressions. In Proc. of ICDE, pages 206–215, 2007.

[3] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich,
and G. Summa. Schema Mapping Verification: The
Spicy Way. In Proc. of EDBT, pages 85 – 96, 2008.

[4] R. Fagin, P. Kolaitis, and L. Popa. Data Exchange:
Getting to the Core. ACM TODS, 30(1):174–210,
2005.

[5] A. Fuxman, M. A. Hernández, C. T. Howard, R. J.
Miller, P. Papotti, and L. Popa. Nested Mappings:
Schema Mapping Reloaded. In Proc. of VLDB, pages
67–78, 2006.

[6] G. Gottlob and A. Nash. Efficient Core Computation
in Data Exchange. J. of the ACM, 55(2):1–49, 2008.

[7] G. Mecca, P. Papotti, and S. Raunich. Core Schema
Mappings. In Proc. of ACM SIGMOD, 2009.

[8] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez,
and R. Fagin. Translating Web Data. In Proc. of
VLDB, pages 598–609, 2002.

[9] V. Savenkov and R. Pichler. Towards practical
feasibility of core computation in data exchange. In
Proc. of LPAR, pages 62–78, 2008.

[10] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan.
Laconic Schema Mappings: Computing Core
Universal Solutions by Means of SQL Queries. In
Proc. of VLDB, 2009.


