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ABSTRACT

Exploratory data science largely happens in computational note-
books with dataframe APIs, such as pandas, that support flexible
means to transform, clean, and analyze data. Yet, visually exploring
data in dataframes remains tedious, requiring substantial program-
ming effort for visualization and mental effort to determine what
analysis to perform next. We propose Lux, an always-on framework
for accelerating visual insight discovery in dataframe workflows.
When users print a dataframe in their notebooks, Lux recommends
visualizations to provide a quick overview of the patterns and trends
and suggests promising analysis directions. Lux features a high-
level language for generating visualizations on demand to encour-
age rapid visual experimentation with data. We demonstrate that
through the use of a careful design and three system optimizations,
Lux adds no more than two seconds of overhead on top of pandas
for over 98% of datasets in the UCI repository. We evaluate Lux
in terms of usability via interviews with early adopters, finding
that Lux helps fulfill the needs of data scientists for visualization
support within their dataframe workflows. Lux has already been
embraced by data science practitioners, with over 3.1k stars on
Github.
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1 INTRODUCTION

Exploratory data science is an iterative, trial-and-error process,
involving many interleaved stages of data cleaning, transforma-
tion, analysis, and visualization. Data scientists typically use a
dataframe library [35, 53], such as pandas [65], which offers a
flexible and rich set of operators to transform, analyze, and clean
tabular datasets. They manipulate dataframes within a computa-
tional notebook such as Jupyter, which offers a flexible medium to
write and execute snippets of code; nearly 75% of data scientists use
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them everyday [12]. In between these dataframe transformation
operations, users visually inspect intermediate results, either by
printing the dataframe, or by using a visualization library to gener-
ate visual summaries. This visual inspection is essential to validate
whether the prior operations had their desired effect and determine
what needs to be done next. However, visualizing dataframes
is an unwieldy and error-prone process, adding substantial
friction to the fluid, iterative process of data science, for two
reasons: cumbersome boilerplate code and challenges in determin-
ing the next steps.

Cumbersome Boilerplate Code. Substantial boilerplate code is
necessary to simply generate a visualization from dataframes. In
a formative study, we analyzed a sample of 587 publicly-available
notebooks from Rule et al. [54] to understand current visualiza-
tion practices. A surprising number of notebooks apply a series of
data processing operations to wrangle the dataframe into a form
amenable to visualization, followed by a set of highly-templatized
visualization specification code snippets copy-and-pasted across
the notebook. Our findings echo a recent study of 6386 Github
notebooks [41], where visualization code was the most dominant
category of duplicated code (21%). On top of the high cognitive
cost when writing “glue code” to go from dataframes to visual-
izations [16, 69], users have to context-switch between thinking
about data operations and visual elements. These barriers hinder
exploratory visualizations and, as a result, users often only visualize
during the “late stages of [their] workflow” [17, 38], rather than for
experimenting with possible analyses—which is precisely when
visualization is likely to be most useful.

Challenges in Determining Next Steps. Beyond writing code
to generate a given visualization, there are challenges in determin-
ing which visualizations to generate in the first place. Dataframe
APIs support datasets with millions of records and hundreds of
attributes, leading to many combinations of visualizations that can
be generated. The many choices make it hard for the data scientist
to determine what visualization to generate to advance analysis,
and automated assistance is not provided.

Always-On Dataframe Visualizations with . To address
the above challenges, we introduce Lux, a seamless extension to
pandas that retains its convenient and powerful API, but enhances
the tabular outputs with automatically-generated visualizations
highlighting interesting patterns and suggesting next steps for
analysis. Lux has already been adopted by data scientists from a
diverse set of industries, and has gained traction in the open-source
community, with the number of monthly downloads around 9k
(with a total of 62k downloads), and over 3.1k stars on Github,
as of November 2021. Multiple industry users have created blog
posts or YouTube videos extolling the virtues of Lux [7–9, 25, 52, 71].
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Contributions. Our contributions are as follows.
First, we introduce a novel, always-on framework that provides

visualizations for the dataframe as it stands at any point in the work-
flow (§3). This is in contrast with existing visualization specification
libraries [33, 66, 70] that require users to write substantial code
to generate visualizations. This multi-tiered dataframe interaction
framework supports pandas’ 600+ operators without compromis-
ing the ease and flexibility of data transformation and analysis
(§4).
Second, we introduce an expressive and succinct intent language

powered by a formal, algebra that allows users to specify their fuzzy
intent at a high level. Compared to existing languages [46, 51, 61, 72],
the intent language in Lux not only allows users to create one
or more visualizations but also flexibly indicate their high-level
analysis interest, without worrying about how the data elements
map onto aspects of the visualization (§5).
Third, we introduce a novel recommendation system that uses

automatically extracted information about dataframes to implic-
itly infer the appropriate visualizations to recommend. This is in
contrast with most existing visualization recommendation systems,
which are situated in GUI-based charting tools, whereas Lux is
one of the first of such systems that is designed to fit into a pro-
grammatic dataframe workflow. In particular, we introduce two
novel classes of recommendations based on dataframe structure
and history specific to such workflows (§6).
Fourth, we identify opportunities wherein we can adapt tech-

niques from approximate query processing [22, 27], early prun-
ing [39, 47, 68], caching and reuse [29, 64], and asynchronous com-
putation [19, 76] to provide interactive feedback, which is critical
for usability; Lux adds no more than two seconds of overhead on
top of medium-to-large real-world datasets (§8).
Finally, we evaluate the interactive latency of Lux (§9) and us-

ability with early adopters (§10) that assess the effectiveness of this
lightweight, always-on approach to visualizing dataframes.

2 RELATEDWORK

Lux draws from work on visualization recommendation systems,
visualization specification, and visual dataframe tools.

VisualizationRecommendation (VisRec).To visualize data, data
scientists need to subselect the aspects of data, and then define a
mapping from data to graphical encodings. Interactive interfaces,
such as Tableau [3, 63] and PowerBI [11], offer easy-to-use inter-
faces for visualization construction. Some systems offer suggestions
on other possible visualizations for users to browse through, as
visualization recommendations. VisRec systems can either suggest
interesting portions of the data to visualize based on statistical
properties [23, 37, 43, 50, 61, 67, 68] or better ways to visualize at-
tributes that users have selected [31, 48, 49, 51, 72]. Similarly, there
has been research on recommending interesting attributes or filters
to avoid manual data exploration during OLAP [36, 42, 55–57, 74].
While interactive GUI-based tools have gained adoption among
business analysts, they are not as widely used by data scientists
with programming expertise, due to their lack of customizability
and integration with the rest of the data science workflow. Lux
draws on recommendation principles from this literature and ex-
plores how visualization recommendations can support a dataframe
workflow. Moreover, Figure 5 outlines a novel, multi-tiered frame-
work that Lux employs to support flexible visual and programmatic

interactions with a dataframe, overcoming the limitation in expres-
siveness of existing GUI-based VisRec tools.
Visualization Specification (VisSpec). VisSpec frameworks cod-
ify visualization design principles and best practices to simplify
the task of creating a visualization [20, 58, 59, 62, 70]. These frame-
works encompass a range of abstractions depending on the degree
to which users are required to specify low-level details associated
with the visualization definition. For example, imperative visual-
ization libraries, such as plotly [34], D3 [20], and matplotlib [33],
require users to manually compute the data associated with the
graphical elements (e.g., position or size of marks) before defin-
ing the visualization characteristics. Declarative visualization lan-
guages, such as Altair [66] and Vega-Lite [58], enable rapid specifi-
cation of visualizations by applying smart defaults to synthesize
low-level visualization details, so that users are not required to
specify common chart components, such as axes, ticks, and labels.
Lux is built on top of these imperative and declarative frameworks
and synthesizes visualization code to enable users to customize as
needed.
Partial specification languages, such as Draco [51] and Com-

passQL [72], commonly employed in VisRec systems, support rea-
soning based on a partial specification provided by the user and
design constraints encoded in the system. A partial specification
can be thought of as a “query”, with the system automatically rank-
ing a set of perceptually-effective visualizations that match the
query. As we will see in Section 5, the intent language in Lux is
more convenient to specify than these existing languages in that it
only requires users to specify data aspects of interest (or omit them
entirely), instead of having to worry about visualization encodings.
Lux is also more versatile in that it supports functionalities beyond
visualization creation for steering the recommendations generated.
That said, as a promising direction for future work, Lux could make
use of Draco’s sophisticated reasoning around visualization design
to improve which visualizations are displayed, going beyond the
rule-based heuristics in its current implementation.
Compared to imperative, declarative, and partial VisSpec frame-

works, Figure 6 illustrates how Lux’s intent language further re-
duces the specification burden on users, allowing them to provide
lightweight intent as opposed to writing long code fragments for
visualization; we will elaborate on this in Section 5.
Visual Data Exploration with Dataframes. Of late, dataframes
have become the de-facto framework for interactive data science.
The comprehensive, incremental set of operators make it easy to do
sophisticated data transformation, while also allowing validation af-
ter each step. However, exploring dataframes is challenging, requir-
ing substantial programming and analytical know-how. Many visu-
alization tools have been developed for dataframes [1, 5, 15, 26, 60].
These tools generate summaries, covering analyses spanning miss-
ing values, outliers, attribute-level visualizations, and associated
statistics. In addition, bamboolib [5] and pandasgui [15] offer a GUI
for constructing visualizations and data transformations. Unlike
these existing tools, Lux lowers the barrier to visualizing dataframes
by adopting an always-on approach so that dataframe visualizations
are always recommended to users at all times.

3 EXAMPLE WORKFOW

In this example workflow, we demonstrate how always-on visualiza-
tion support for dataframes accelerates exploration and discovery.
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We present a workflow of Alice, a public policy analyst, exploring
the relationship between world developmental indicators (such as
life expectancy, inequality, and wellbeing) and the country’s early
effort in COVID-19 response. A live demo of the example notebook
can be found at http://tinyurl.com/demo-lux.
Always-on dataframe visualization. Alice opens up a Jupyter
notebook and imports pandas and Lux. Using pandas’s read_csv
command, Alice loads the Happy Planet Index (HPI) [2] dataset
of country-level data on sustainability and well-being. To get an
overview, Alice prints1 the dataframe df and Lux displays the de-
fault pandas tabular view, as shown in Figure 1 (top, orange box).
By clicking on the toggle button, Alice switches to the Lux view that
displays a set of univariate and bivariate visualizations (bottom),
including scatterplots, bar charts, and maps, showing an overview
of the trends. Visualizations are organized into sets called actions,
displayed as tabs. The one displayed currently is the Geographic
action. By inspecting the Correlation tab in Figure 1 (not dis-
played here), she learns that there is a negative correlation between
AvrgLifeExpectancy and Inequality (same chart as Figure 2 left);
in other words, countries with higher levels of inequality also have
a lower average life expectancy. She also examines the other tabs,
which show the Distribution of quantitative attributes and the
Occurrence of categorical attributes.

df = pd.read_csv("hpi.csv")
df

import pandas as pd
import lux 

13

45
HappyPlanetIndex

Mean of HappyPlanetIndex across World

13

45
HappyPlanetIndex

Mean of HappyPlanetIndex across World
Show choropleth maps of geographic attributes

Geographic

49

83
AvrgLifeExpectancy

Mean of AvrgLifeExpectancy across World

49

83
AvrgLifeExpectancy

Mean of AvrgLifeExpectancy across World

Correlation   Distribution  Occurrence  

Toggle Pandas/Lux

Figure 1: By printing out the dataframe, the default pandas tabu-

lar view is displayed (orange box) and users can toggle to browse

through visualizations recommended by Lux.

Steering analysis with intent. Next, Alice wants to investigate
whether any country-level characteristics explain the observed
negative correlation between inequality and life expectancy. As
in Figure 2, she specifies her analysis intent to Lux as: df.intent =
["AvrgLifeExpectancy", "Inequality"]. On printing the dataframe
again, Lux employs the specified analysis intent to steer the recom-
mendations towards what Alice might be interested in. On the left,
Alice sees the visualization based on her specified intent. On the
right, Alice sees two sets of recommendations that add an additional
attribute (Enhance) or add an additional filter (Filter) to her intent.
By looking at the colored scatterplots in the Enhance action, she
learns that most G10 industrialized countries (Figure 2 center) are
on the upper left quadrant on the scatterplot (low inequality, high
life expectancy). In the breakdown by Region (Figure 2 right), she
finds countries in Sub-Saharan Africa (yellow points) tend to be on
the bottom right, with lower life expectancy and higher inequality.

1We refer to any operations that result in a dataframe in the output cell of a notebook as printing
the dataframe, not the literal ‘print (df)’.

df.intent = ["Inequality","AvrgLifeExpectancy"]
df
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Figure 2: Alice sets the intent based on the attribute

AvrgLifeExpectancy and Inequality, and Lux displays visual-

izations that are related to the intent.

Seamless integration with cleaning and transformation. Al-
ice is interested in how a country’s development indicators relate
to their early COVID-19 response as of March 11, 2020. To investi-
gate this, she imports a new dataset that characterizes how strict a
country’s response is, via stringency [30], a number from 0-100,
with 100 being the highest level of responses. As shown in Fig-
ure 3, (I) Alice loads and joins the newly-cleaned dataframe with
the earlier HPI dataset. (II) When she sets the intent on stringency,
she finds that China and Italy have the strictest measures (dark
blue on map Figure 3 center). She also learns that the histogram of
stringency is heavily right-skewed (Figure 3 left), revealing how
many countries had low levels of early pandemic response. (III) To
better discern country-level differences, Alice bins stringency val-
ues into a binary indicator, stringency_level, showing whether
a country had Low or High levels of early response. With the modi-
covid = pd.read_csv('covid-stringency.csv')
result = covid.merge(df,left_on=["Entity","Code"],right_on=["Country","iso3"]) (I) Load + Join
result.intent = ["stringency"]
result

result["stringency_level"]=pd.qcut(result["stringency"],2,labels=["Low","High"])  
result = result.drop(columns=["stringency"])

(II) Visualize

(III) Clean

Figure 3: Tabular operations (orange, steps I & III) to load, clean, and

transform the data, while visualizing with Lux (purple, step II).

fied dataframe, Alice revisits the negative correlation she observed
previously by setting the intent as average life expectancy and
inequality again. The resulting recommendations are similar to Fig-
ure 2, with one additional visualization showing the breakdown by
stringency_level (Figure 4 right). Alice finds a strong separation
showing how stricter countries (blue) corresponded to countries
with higher life expectancy and lower levels of inequality. This visu-
alization indicates that these countries have a more well-developed
public health infrastructure that promoted the early pandemic re-
sponse. However, we observe three outliers (red arrow on Figure 4
right) that seem to defy this trend. When she filters the dataframe
to learn more about these countries (Figure 4 left), she finds that
these correspond to Afghanistan, Pakistan, and Rwanda—countries
that were praised for their early pandemic response despite limited
resources [4, 6, 18]. She clicks on the visualization in the Luxwidget
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and the button to export the visualization from the widget to a
Vis object. Alice can access the exported Vis via the df.exported
property and print it as code, following which she can tweak the
plotting style before sharing Figure 4 (right) with her colleagues.
result[(result["Inequality"]>0.35)&(result["stringency_level"]=="High")]
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Figure 4: The scatterplot shows a separation between countries with

high and low stringency in their COVID response. By filtering the

dataframe (left), we see that Afghanistan, Pakistan, and Rwanda

correspond to the three outliers (red boxed) that defies the trend.

Overall, this example demonstrates the value of always-on visual-
ization support within a dataframe workflow: the tight integration
between Lux and dataframes enabled Alice to seamlessly perform
data cleaning via a familiar API and notebook environment.

4 INTERACTINGWITH DATAFRAMES

In this section, we propose a novel always-on framework for visual
interaction with dataframes as outlined in Figure 5. The example
workflow illustrated the many flexible ways users interact with
a dataframe to achieve their analytical goal. Here, we summarize
these ways and contrast it to existing visualization specification
approaches in dataframe workflows.
As shown in Figure 5, in both existing dataframeworkflows (a) and

the always-on framework (b), users can work with the dataframe
API and see the table view by default (grey). For creating visualiza-
tions in an existing workflow, as shown in Figure 5a, users would
typically need to explicitly write visualization specification code
in a language such as matplotlib or altair (orange) to create
individual visualizations (blue). In our always-on framework, as
shown in Figure 5b, users further inspect a dashboard of recom-
mended visualizations, as part of a multi-tiered framework (blue),
all of which is driven by a user- or system-specified intent (orange),
described below.
Intent: Users can indicate aspects of the dataframe that they are
interested in via a lightweight intent specification (§5). The intent
drives the visualizations, actions, and dashboard. In the example,
Alice indicated that she wants to learn about AvrgLifeExpectancy
and Inequality; Lux displayed visualizations related to these vari-
ables. Unlike existing visualization libraries, intent can also be
system-specified—meaning that the visual display will be always-
on, even if the user does not explicitly specify intent. We now
describe the different layers in our always-on framework, following
the notation in Figure 5.
A Visualization: Visualizations are created by applying the in-
tent to a given dataframe. Each visualization, i.e., Vis, is an intent
operating on a specific dataframe instance; a collection of visual-
izations is known as a VisList.
B Actions: Each action is an ordered collection of visualizations
(VisList), e.g., the Correlation action plots pairwise relationships
ranked by Pearson’s correlation.
C Dashboard: A dashboard is composed of one or more actions
that may be relevant to the user.
Users can either make changes to the dataframe or the intent in

order to fulfill different analytical needs. Dataframe operations are

exact, leveraging the expressiveness of the dataframe API. On the
other hand, the intent is a high-level specification of user interest,
either explicitly provided by the user or system-inferred, steering
Lux’s recommendations.
By working with both the intent and dataframe API, Lux sup-

ports a flexible and intuitive experience for interacting with data.
Next, we describe the intent grammar that underlies the always-on
framework of Lux.

Visualization Table View

Dataframe API Intent

Dashboard

(b) Always-on Framework(a) Existing Workflow

Dataframe API Vis Spec

{</>}

Table View

re
ad

w
ri
te

Action

Visualizations

B

A

C

Figure 5: Conceptual framework for dataframe interaction. Users

can make changes to anything below the dotted line (write), el-

ements displayed to the user are shown above the dotted line

(read). (a) In existing workflows, users write visualization specifica-

tion code to create one or more visualizations. (b) In Lux’s always-

on framework, users can optionally make changes to the intent,

which steers the recommended visualizations (Visualizations, Ac-

tion, Dashboard).

5 INTENT LANGUAGE FORMALIZATION

The intent language is a lightweight, succinct means for users to
declaratively specify their high-level interests. In this section, we
introduce this language and its underlying grammar, and how it
differs from existing approaches.

5.1 Intent Grammar

The intent grammar describes what the user is interested in within
a dataframe. The intent is composed of one or more clauses, each
of which is either an axis or a filter of interest.

⟨Intent ⟩ → ⟨Clause ⟩+

⟨Clause ⟩ → ⟨Axis ⟩ | ⟨F il ter ⟩
(1)

An axis defines one or more attribute(s), mapped appropriately to
a specific encoding or channel of the corresponding visualizations.

⟨Axis ⟩ → ⟨attr ibute ⟩∗ ⟨channel ⟩ ⟨aддr eдation ⟩ ⟨bin_size ⟩ (2)

For the axis, apart from the mandatory attribute(s), specified un-
der ⟨attribute⟩, the remaining properties are optional—and can be
automatically inferred.
Filters define a subset of data that the user is interested in. To

specify a filter, the attribute being filtered, the operation, and the
value, are required.

⟨F il ter ⟩ → ⟨attr ibute ⟩ [=><≤≥,] ⟨value ⟩ (3)

Consider the simple case when ⟨attribute⟩ refers to a single at-
tribute and ⟨value⟩ refers to a single value in Equations 2 and 3;
then, an intent with multiple clauses (axis or filter) represents a
user preference to see each of the axis attributes visualized, for the
subset of data corresponding to the conjunction of the filters.
In the more general case, ⟨attribute⟩ can correspond to a union

of attributes, or a special wildcard value ? (with an optional con-
straint to define the subset of attributes), while the ⟨value⟩ can
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refer to a union of values, or a special wildcard value ? .

⟨attr ibute ⟩ → attribute ∪ ⟨attr ibute ⟩∗ | ? ⟨constraint (4)

⟨value ⟩ → value ∪ ⟨value ⟩∗ | ? (5)

The use of unions in either case (as well as ? which implicitly is a
union of all alternatives) admits a disjunction of options for the axis
or filter clause. If there are ni ≥ 1 alternatives for the ith clause,
we can construct a collection of n1 × n2 × . . . × nk visualizations
by taking the cross-product of alternatives per clause.

5.2 Specifying Intent

Users can specify an intent indicating their analysis interests or
create desired visualizations by applying the intent to a specific
dataframe. We note that while the focus here is describing user-
specified intent, the same intent language is used by the system for
generating recommendations as will be described in Section 6.

5.2.1 Attaching an Intent to a Dataframe. Building on the grammar
described above, within Lux, a Clause can specify one or more
columns (i.e., Axis) or rows (i.e., Filter) of interest.
Q1. To set Age and Education as columns of interest for a given
dataframe df, one can state:

axis1 = lux.Clause(attribute="Age")
axis2 = lux.Clause(attribute="Education")
df.intent = [axis1,axis2]

Or one can also use the equivalent shortcut:
df.intent = ["Age", "Education"]

Once the intent is set, whenever df is printed, the Lux widget
will use the intent to determine what visualizations to show to the
user. Here, Lux would display visualizations related to attributes
Age and Education from df.
We can compose Axis and Filter together, as follows.

Q2. Explore the Ages for employees in the Sales Department.
axis = "Age"
filter = "Department=Sales"
df.intent = [axis, filter]

Based on the specified intent, Lux not only shows the Age distri-
bution filtered to the Sales department, but also displays a set of
related visualizations, such as visualizations involving one addi-
tional attribute or one additional filter.
In the following, we will showcase the Lux intent syntax as part

of Vis and VisList, but the syntax can also be used to simply set
intent as in df.intent above.

5.2.2 Constructing Visualizations Directly via Intent. Instead of
attaching an intent to a dataframe, one can use the Vis and VisList
keyword to directly generate specific visualizations.
Q3. Compare average Age across different Education levels.

axis1 = lux.Clause(attribute="Age")
axis2 = lux.Clause(attribute="Education")
Vis([axis1,axis2],df)

Query 3 is similar to Query 1, except that the intent is immediately
applied to the dataframe df to create a visualization via Vis, rather
than changing the intent associated with the dataframe (to be used
when the dataframe is eventually printed). Given that the intent
involves one measure (Age) and one dimension (Education), Lux
will display a bar chart. By default, average is the function used for
aggregation.

Aggregation is one of three optional properties for Axis (Equa-
tion 2); others are channel and binning. If any of these are explicitly
specified, they override Lux’s defaults, as in the following query.
Q4. Compare the variance of MonthlyIncome based on employee
Attrition.

axis1 = lux.Clause("MonthlyIncome", aggregation=numpy.var)
axis2 = "Attrition"
Vis([axis1,axis2],df)

To generatemultiple visualizations, one could either set df.intent
as in Section 5.2.1, which would generate a collection of visualiza-
tions related to the intent, or specify intent as an input to a VisList,
as in the following query.
Q5. Show how factors related to the rate of compensation differ for
employees with different EducationFields.

rates = ["HourlyRate","DailyRate","MonthlyRate"]
VisList(["EducationField",rates],df)

Here, there is one Vis corresponding to EducationField com-
binedwith each of HourlyRate, DailyRate, and MonthlyRate. The
wildcard character ? , when used as part of an Axis, can be used
to enumerate over all attributes in a dataframe; constaints may be
used to restrict them to a certain type.
Q6. Browse through relationships between any two quantitative
columns in the dataframe.

any = lux.Clause("?",data_type = "quantitative")
VisList([any, any],df)

This VisList corresponds to the search space for the Correlation
action; the Correlation action additionally ranks and sorts each
Vis in the VisList based on their Pearson’s correlation score.
Filter values can also be specified as a list or via wildcards across

all possible values for a fixed filter attribute.
Q7. Examine Age distributions across different Countries.

VisList(["Age", "Country=?"],df)

The generated VisList contains histograms of Age, one each for
individuals where Country is USA, Japan, Germany, and so on.

DracoVega-Lite

matplotlib

Lux

Imperative

Declarative

Partial

Intent

Field Type MarkData operationField NameData source
Required Specification

{
  "mark": "bar",
  "data":"{…},
  "encoding": {
    "x": {
      "type": "quantitative",
      "field": "Age",
      "aggregate": "average"
   },
    "y": {
      "type": "nominal",
      "field": "Education",
    }
  }
}

Vis(["Age", "Education"],df)
bar=df.groupby("Education").mean()["Age"]
y_pos=range(len(bar))

plt.barh(y_pos,bar,align='center')
plt.yticks(y_pos,list(bar.index))
plt.xlabel('Mean of Age')
plt.ylabel('Education')

data("…").
encoding(e0).
channel(e0,x).
type(e0,quantitative).
field(e0,"Age").
aggregate(e0,mean).
encoding(e1).
channel(e1,y).
type(e1,nominal).
field(e1,"Education").

Channel

Figure 6: Comparison between the level of specification required

from Lux versus other existing approaches for Query 3.

5.3 Rationale for Design Choices

Due to the heavy cognitive cost of writing glue code to visualize
their data [16, 69], users often opt to visualize in the later stages of
their workflow [17, 38]. Instead, our goal with Lux’s intent language
has been to support visualization to be used throughout; and for this,
users should not have to expend too much effort in thinking about
what and how to visualize. There are two key characteristics of our
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intent language that support this quick and flexible programmatic
specification, described next.
Versatility: Our intent language is versatile in that it serves both
as a mechanism for steering recommendations (Q1-2) and as a way
of directly creating visualizations on top of dataframes (Q3-7). This
is unlike existing specification approaches whose sole focus is the
creation of one or more visualizations. This versatility means that
whenever users specify their intent, they are not committing to a
pre-defined set of operations. Instead, the system leverages explicit
user input (in the form of intent), as well as implicit signals to
determine what to display to users.
Consider Q2, which demonstrates the versatility of intent beyond

the specification of a single visualization. Here, the user simply
specifies the data-specific aspects they are interested in, i.e., the
attribute Age, and the Sales Department filter; these are used
as cues by Lux to generate visualizations, including those that
wouldn’t ordinarily be picked if we were using a conventional
visualization specification framework (such as those with a different
filter). This versatility makes it easy for users to communicate their
analysis intent even when they do not have a specific visualization
in mind.
Convenience: Our intent language only requires specification of
data-oriented aspects, while existing approaches also require users
to specify visual encoding-oriented aspects to generate visualiza-
tions. Our minimalistic language design is intended to alleviate the
common challenge in exploratory analysis where users struggle
to translate their high-level data questions to exact visualization
specifications [28]. Lux supports convenient specification short-
hands and defaults and automatically infers the necessary details
to transform user-specified intent into complete specifications.
As shown in Q3-7, where the target is one or more specific vi-

sualizations, Lux enables users to visualize their data with only a
single line of code, effectively lowering the barrier to visual explo-
ration. In Figure 6, we outline the code required to create a single
visualization based on Query 3, and compare the key differences
in the required specification across various languages, including
Draco [51], matplotlib [33], and Vega-Lite [58]. Other languages
often require users to specify the field type, channel, and marks,
while Lux can reason over underspecified intent. This reduces the
effort required on the part of the user.

6 DATAFRAME RECOMMENDATIONS

In the previous section, we have seen how users can either attach
an intent to a dataframe, or this intent can be programmatically
generated as part of Lux’s recommendations. We discuss the latter
in this section. In Lux, an action describes a ranked list of visual-
ization recommendations based on a predefined search space. Lux
supports four major classes of actions. Metadata- and intent-based
ones are akin to those used in past visualization recommendation
systems [32, 44, 73]—see our technical report [45] for details. As
described in Section 2, most existing VisRecs are situated in GUI-
based charting tools; our key novelty is that Lux is one of the first
visualization recommendation systems that is designed to fit into a
programmatic dataframe workflow. Specifically, here, we introduce
two novel classes of recommendations specific to dataframe-based
workflows, based on dataframe structure and history.
Structure-based recommendations.Data scientists often reshape
their dataframes in ways that are more amenable to downstream

analysis, modeling, or presentation. One of our key insights is that
the dataframe “structure” reveals strong signals for what the users
subsequently choose to visualize, thus providing implicit informa-
tion on what recommendations to display automatically by Lux.
Index-based visualizations: Dataframe indexes provide a natural
way to order and label dataframe rows and columns. Indexes are
typically created as a result of grouping and aggregation through op-
erations such as groupby, pivot, crosstab. For any pre-aggregated
dataframe (i.e., dataframes resulting from an aggregation opera-
tion), Lux creates visualizations by grouping the values row or
column-wise. For example, Figure 7 displays the result of a pivot
operation, where each row is visualized as a time series line chart.
Series visualizations: Series are dataframes with a single column.
Lux leverages the same dataframe visualization mechanism for
Series, displaying univariate, metadata-based visualization, such as
a bar chart for categorical and histogram for quantitative Series.
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Figure 7: Row-wise index visualization displaying the normalized

percentage of COVID-19 cases across different States.

History-based recommendations. Apart from dataframe struc-
ture, another source of implicit information from the dataframe is
the historical set of operations performed by users. Lux displays
history-based recommendations based on whether the dataframe
has been filtered or aggregated in its recent history. For example,
when a filtering-based operation leads to a small dataframe (such
as when a head or tail is performed), Lux visualizes the previous
unfiltered dataframe since there are too few tuples for generating
recommendations in the filtered dataframe. Lux also uses history to
determine if an aggregation has been performed, helping identify
the structure-based recommendations described earlier.

7 SYSTEM DESCRIPTION

Lux employs a client-server model, leveraging computational note-
books as a frontend client. Once users import Lux, they can inter-
act with a LuxDataFrame instead of a regular pandas dataframe.
LuxDataFrame acts as a wrapper around pandas, and supports all
existing pandas operations, while storing additional information,
such as the intent, metadata, structure, and history, for generating
visual recommendations. As shown in Figure 8, the server side logic
is largely separated into two distinct layers: 1) the intent processing
layer is responsible for processing intent into executable instruc-
tions, and 2) the recommendation layer is responsible for generating
the displayed visualizations. To generate the visualization recom-
mendations, as well as compute metadata that is used in various
stages, the execution engine performs the required data process-
ing and optimization, either as a series of dataframe operations
in pandas or equivalently in SQL queries in relational databases
(§8). Finally, the system design is modular and extensible so that
alternatives can be swapped in at different layers, e.g., Altair and
Matplotlib visualization rendering libraries.
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Figure 8: System architecture for Lux

8 EXECUTION AND OPTIMIZATION

Lux’s execution engine performs two major tasks: 1) compute the
metadata required to generate candidate visualizations, and 2) ex-
tract the actual data for each visualization.
MetadataComputation:Themetadata computed includes attribute-
level statistics and data types. The statistics include the list of unique
values, cardinality, and min/max values for each attribute.
Visualization Processing: After the user or system-specified in-
tent has been transformed into one or more visualizations with a
complete specification, the execution engine translates each visu-
alization to queries responsible for processing the data required
for the visualizations. The engine applies any filters and projec-
tions on the data before performing different visualization-specific
operations, such as binning and aggregation. Computing meta-
data and processing data for visualizations can be time consum-
ing, even for a moderately-sized dataframe. Therefore, we adapt
optimizations from approximate query processing [22, 27], early
pruning [39, 47, 68], caching and reuse [29, 64], and asynchronous
computation [19, 76], to improve the interactivity of Lux.
Intelligent workflow-based optimizations (wflow): During
an analysis session, users constantlymodify and operate on dataframes,
which means that the metadata and associated recommendations
can change throughout a session, especially during reshaping and
type-modifying operations. Thus, unlike conventional visual an-
alytics, where metadata can be computed upfront and stays fixed
throughout, here, metadata needs to be constantly updated to en-
sure that recommendations are generated correctly. As a result, the
computation associated with keeping the metadata “fresh” after
each dataframe operation can be computationally expensive. We
propose two techniques to reduce this overhead: 1) lazily compute
the metadata and recommendations only when users explicitly
print dataframes; 2) cache and reuse results later on in the session.
Since users often intersperse dataframe printing with several

dataframe operations, it is likely that the computed metadata and
recommendations would be outdated before users see the results.
As a result, we can delay computation and compute the metadata
and recommendations only after the user has explicitly requested
to print a dataframe. Each LuxDataFrame keeps track of how fresh
the metadata and recommendations are and expires them when
an operation makes a change to the dataframe. In particular, we
leverage pandas’s internal functions that are triggered when:
• the dataframe is modified inplace instead of returning a new
dataframe, e.g., df.dropna(inplace=True)

• columns in the dataframe are updated, either through the bracket
or dot notation, e.g., df.Frac or df["val2"]=df["val"]/5

• the row or column labels are changed, e.g., df.rename(columns
="val":"value")

Additionally, recommendations are expired when the intent is mod-
ified. On printing the dataframe, Lux recomputes metadata and
generates the recommendations accordingly. This lazy strategy
ensures no overhead on any non-print operations.
Lux further memoizes the metadata and recommendations so that

any subsequent prints to an unmodified dataframe do not require re-
computation. Users frequently perform “non-committal” operations
that do not make changes to the dataframe to be used in subsequent
analyses, involving printing dataframes as intermediate results to
facilitate quick experimentation and debugging. For instance, users
may print a column, perform grouping and aggregation, or print
descriptive summaries, all without modifying the dataframe. In this
case, when the user revisits the original dataframe, the memoized
recommendations are immediately accessible to them.
While lazy computation and caching and reuse arewell-studied [29,

64, 75], identifying common dataframe usage patterns and deter-
mining when and how to expire metadata and recommendations
in a dataframe workflow are novel contributions.

Approximate, early pruning of search space (prune): As de-
scribed in Section 4, each visualization in an action is ranked based
on a scoring function, computed based on the data associated
with each visualization. Inspired by existing work in early prun-
ing [39, 47, 68], Lux estimates the visualization score to speed up
the retrieval of top-k visualizations for each action. We employ
approximate query processing to reduce the cost by estimating
the scores using sampled data. Specifically, Lux first performs a
preliminary pass over the VisList to approximate the score of each
visualization and then proceeds to recompute the top-k selected
visualizations in a second pass to process each of the displayed visu-
alizations exactly. Currently Lux leverages a cached sample of the
dataframe to approximate visualization scores (e.g., for a dataframe
with 1M rows, approximating correlation score by using only 30k
rows), although other approximate query processing methods could
be applied.
Table 1: Table summarizing the relational operations performed for

processing different visualizations.

Vis Type Relational Operation

Scatterplot Selection on 2 columns
Color Scatterplot Selection on 3 columns

Line/Bar Group-By Aggregation
Colored Line/Bar 2D Group-By Aggregation

Histogram Bin + Count
Heatmap 2D Bin + Count

Color Heatmap 2D Bin + Count + Group-By Aggregation
Given that the prune optimization performs two passes over the

VisList (first pass for pruning, followed by an exact recomputa-
tion for the top-k), the additional recomputation cost incurred can
be higher than doing a single pass over the VisList. For example,
dataframes that are wide or contain high-cardinality attributes can
often result in actions involving large visualization search spaces.
Therefore, this optimization should only be applied when the ap-
proximate savings are larger than the recomputation cost of the top
k visualizations:N×texact ≫ N×tapprox+k×texact , whereN rep-
resents the number of candidate visualizations, texact and tapprox
are the cost of computing the exact and approximate scores, respec-
tively. The cost of scoring a visualization, texact and tapprox , is
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determined by the relational operations for extracting the required
visualization data (as shown in Table 1).
Here, while the use of approximate samples to rank and identify

top-k visualizations is not new [47, 68], our use of approximation
in conjunction with a cost model to determine its potential inter-
estingness is a novel application of the technique.
Cost-based scheduling of actions (async): We find that users
generally spend an average of 28 seconds2 skimming through the
pandas table view before toggling to the Lux view. Leveraging past
work on asynchronous query execution [19, 76], recommendation
results can be streamed into the frontend widget as the computation
for each action completes to ensure interactive responses, with-
out having to wait for all of the actions to finish rendering. After
compiling the visualizations for each action, we estimate the cost
of the action as the sum of the visualization costs in the VisList,
using the cost model described in our technical report [45]. This
estimate is then used for scheduling the cheapest action to compute
first, followed by computing the remaining in the background. In
datasets where a few “laggard” actions dominate the overall rec-
ommendation generation (e.g., Correlation for a wide and highly
quantitative dataset), the async optimization provides users with
early results and returns interactive control back to the user, instead
of incurring a high wait time during their analysis session.
The idea of exploiting asynchronous execution during user wait-

time has been well-established [19, 76], but our work is the first to
apply this technique in a visualization recommendation context, by
leveraging cost estimates to prioritize cheaper-to-compute visual-
izations. Our cost model across different visualization types is an
independent valuable contribution.

9 PERFORMANCE EVALUATION

We evaluate Lux to measure its performance on large real-world
datasets and notebook sessions. We focus on evaluating the inter-
active latency in this section; we describe the usability evaluation
in the following section. Source code for experiments and analysis
are available online3.
Data: We use two real-world datasets to evaluate the performance
of Lux. The Airbnb dataset [24] contains 12 columns while the
Communities [40] dataset contains 128 columns. For both datasets,
we duplicated the dataset multiple times (up to 10M rows for Airbnb
and up to 100k rows for Communities) to investigate the effects
of scaling with the number of rows. After duplication, Airbnb
exemplifies datasets with a moderate number of columns and a
large number of rows, while Communities exemplifies those with
a large number of columns. The upper limits on the two datasets
cover around 98% of the datasets in the UCI repository [14].
Setup: All of our experiments were conducted on a Macbook Pro
with 32GB of RAM and an Intel Core i9 processor running macOS
10.15.6. The experiments were run using Python 3.7.7, pandas 1.2.1,
and a version of lux-api 0.2.3 adapted for purpose of the experi-
ments. We used papermill [10] to programmatically execute each
notebook cell. We set k for top k as 15 and apply prune for any
action where the number of visualizations exceeds k . For the sam-
pling policy, we used cached random samples capped at 30k rows

2Based on 514 collected logs of Lux usage, the time spent on the initial pandas table
follows a long-tail distribution, with a median of 2.8 seconds and standard deviation
of 183.4 seconds.
3https://github.com/lux-org/lux-benchmark

for approximating the visualization interestingness of dataframes
over 30k rows. For the runtimes reported, we exclude the frontend
drawing time for each visualization given that it is constant and
highly dependent on the chosen visualization library and frontend.

Conditions: Our experiment measures the time it takes to execute
every cell in the notebook across five different conditions:
• no-opt: Baseline condition with no optimization applied, rep-
resenting a naive implementation of Lux where the results are
explicitly computed at the end of every cell involving a reference
to the dataframe4.

• wflow: Condition with the wflow optimization applied.
• wflow+prune: Both wflow and prune applied.
• all-opt: All wflow, prune, and async applied, representing the
best achievable performance.

• pandas: Condition with only pandas andwithout using Lux, rep-
resenting the raw performance of dataframe workflows without
the benefits of always-on visualizations.

To evaluate the overall performance of Lux with a dataframe-based
workflow, we measured the runtime for executing an example note-
book involving pandas.
Workload: The workload is based on publicly available notebooks
on Kaggle for Airbnb and Communities. These notebooks follow
a typical exploratory analysis of a dataframe that includes load-
ing, transformation, cleaning, computing statistics, and machine
learning. We modified these notebooks to print out dataframes and
series at various points in the notebook akin to what a user would
typically do for validating the results of operations. In addition,
we label each cell in the notebook as either a print of a dataframe,
print of a series, or neither (i.e., any non-Lux Python command)
to separately measure the runtime for different cell types. Table 2
shows the breakdown of the two notebook workloads by different
cell types. We define overhead as the difference in runtime between
the all-opt and pandas condition, i.e., the additional time required
to support always-on visualizations via Lux.
Table 2: Table reports the number of cells for each type (N), the ad-

ditional time incurred on top of pandas for 10M Airbnb and 100k

Communities (overhead), and the relative shape of the runtime dis-

tribution similar to Figure 9,10, (Distr.).

Airbnb Communities

N overhead [s] N overhead [s] Distr.

Print df 14 21.18 14 1.41

Print Series 7 0.61 4 0.07

Non-Lux 17 0 25 0

Overall runtime: To understand the overall performance of Lux
on dataframes with varying sizes, we varied the dataframe size from
10k to 10M rows. Figure 9 displays the overall runtime averaged
over all cells in the notebook. We find that the best achievable
performance with Lux led to significant speedup with up to 11X
improvement in overall runtime for the Airbnb dataset (and up to
345X for Communities) compared to the no-optimization baseline.
Printing dataframes and series: We measure the performance
of each cell that prints a dataframe or series to understand the
overheads associated with Lux. Figure 10 shows the average time

4This condition is akin to the naive implementation in most visualization recommen-
dation systems, where results are updated whenever the dataset is operated on.
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Figure 9: Average runtime of a notebook cell across the workload

for different dataframe size and conditions.

it takes for printing a dataframe for Airbnb and Communities. In
particular, the overhead of Lux for each print can be determined
by comparing against the cost for a print in pandas. When the
dataframe contains fewer than 1M rows for Airbnb, each print in-
curs no more than 2 seconds in addition to pandas (in the 10M case,
each print incurred an overhead of 21 seconds). For Communities,
the overhead was no more than 1.5 seconds.
As shown in the sparkline visualization in Table 2 row 2, the

performance for printing series follows the same pattern as that of
the dataframe. However, since series only involves a single column,
it effectively avoids the costly procedure of traversing through a
large search space. The overhead on top of pandas is no more than
1 second for each series print even on the largest datasets.
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Figure 10: Average time for printing a single dataframe for different

dataframe size and conditions.

Non-Lux operations: Across all conditions except the baseline,
the runtime for non-Lux operations (Table 2 row 3) is the same—
demonstrating how Lux incurs zero overhead on any Python oper-
ations in a notebook session. When compared against the baseline,
Lux is over 100X faster for 10M Airbnb and over 650X faster for
100k Communities. The performance improvement for non-Lux
operations demonstrates how wflow’s lazy evaluation strategy
avoids unnecessary computation.

Additional experiments: Details of additional performance ex-
periments investigating how Lux performs on dataframes of vary-
ing sizes, as well as the recommendation accuracy for the prune
optimization can be found in the technical report [45].

10 POST-DEPLOYMENT EVALUATION

Lux was first released in October 2020 and gained substantial trac-
tion in the open-source community since then. In this section, we
report on a field study with existing users of Lux and lessons

learned from developing Lux. We summarize the key findings that
would potentially be informative to future tool designers. Details
of other post-deployment evaluations, including a first-use study,
can be found in the technical report [45].
Field Study Interviews From December 2020 to January 2021,
we conducted semi-structured interviews with participants who
used Lux in their data science work. We interviewed two indus-
try data scientists in an insurance (P1) and retail company (P3),
and a researcher in education (P2). Given that participants had
extended exposure to Lux, our questions largely focused on un-
derstanding how Lux fits into their existing workflows. Before the
interviews, participants used Lux over the span of 1-2 months in
their professional data science work. We performed a walk-through
of real-world notebooks in which participants had used Lux.
All three participants expressed that understanding their data

was a challenge during exploration. In fact, two of the participants
have developed their own homegrown solutions for past projects
(echoing findings from Alspaugh et al. [16]), ranging from for loops
across matplotlib charts in notebooks to VBA scripts that generate
plots in Excel. In their existing workflows, P1 and P2 visualized
their data programmatically via matplotlib, while P3 largely on
Tableau’s GUI for creating visualizations.
On dataframe visualizations: All three participants expressed that
they appreciated how the automatic visualizations provided by Lux
afforded them quick insight into their dataframes without the need
for code. P2 typically examines over 100 columns of data as part
of an educational course survey, and stated that Lux sped up the
amount of time for EDA by at least two-fold: “ it really helps speed

upmy exploratory analysis. If not, it will take me forever to go through

these many variables.” When asked about the scenarios for which
they would toggle to the Lux view versus the default pandas table,
most participants preferred seeing the Lux view for the purposes
of EDA. Participants described how they only use the pandas table
to quickly check if “the data looks okay” (P1) and rarely toggle back
to it unless they observe anomalous trends in the visualizations.
During the study, P2 adopted a workflow where they sampled a
single row to display the pandas table in one notebook cell, then
printed the Lux view in the cell below to check that the data falls
in the expected ranges as displayed in the visualizations.
On dataframe intents: Participants indicated that the concept of
intent was an intuitive way for steering the course of their analysis.
P1 and P2 leveraged intent as a way of systematically exploring
groups of variables they were interested in. To investigate their
research questions, P2 listed groups of independent and dependent
variables as their intent to explore each group one at a time. P1 and
P3 used intent as a way of exploring predictive variables of interest,
such as whether a customer purchased accessories alongside their
orders, to help inform feature engineering for downstream machine
learning. However, challenges in specification sometimes prevented
them from making use of intent fully. In particular, P2 and P3 both
described that they were interested in exploring alternative data
subsets for an attribute of interest (a query that is expressible in
Lux’s intent language); however, they were unaware that they could
specify filter intent with wildcards. Improving the API for intent
specification remains an important direction for future work.
On user-specified views: Somewhat surprisingly, the use of Vis and
VisListwere rarely brought up in the field study interviews. Possi-
ble explanations for their limited use include the unfamiliarity with
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these concepts and their usage of Lux in conjunction with other
visualization tools. All participants used an existing visualization
tool (e.g., matplolib or Tableau) while exploring their data with Lux.
As a result, they simply used their familiar tools for specific visu-
alizations when they knew exactly what to plot. To fully leverage
Vis and VisList in their work, participants often asked for ways
to extend or customize the visualization type for a user-specified
view. For example, P3 explained how market share data was best
visualized as a top-k pie chart, while P2 was interested in examining
overlaid histogram distribution of different measures for binary
variables, such as whether or not a course was open-ended. These
findings indicate that increased flexibility in the intent language
could afford the familiar visualization capabilities for users when
creating specified views.
Usage of Lux in data science workflows: All three participants de-
scribed using Lux explicitly in the exploration stage after data
loading and cleaning, but before advanced analysis or modeling.
P1 and P2 used Lux in conjunction with custom matplotlib code
that they repurposed for their analysis. When asked why partici-
pants did not print the dataframe for visualizations during the data
transformation and cleaning phase, P1 and P3 answered that since
the dataframe prints resulted in a few seconds of latency, they were
hesitant to do it until they were ready to “chuck in [their] data and

get the charts out” (P3). Participants also described how Lux needed
to be more robust in visualizing dirty or ill-formatted data.
Summary and Limitations: The average System Usability Scale
(SUS) [21] score across participants is 70/100. All three participants
were interested in continuing to use Lux in their data science work.
We learned that Vis and VisList are not as discoverable and easy
to use as always-on dataframe visualizations. Despite the enthu-
siasm around Lux, we find that participants are still attached to
their existing visualization tool for this functionality. They shared
concerns around customizability and the inability to express their
desired visualizations in Lux, pointing to the need for improving the
flexibility of the intent language. Furthermore, a controlled study
comparing Lux with a manual baseline approach would further
quantify the expected benefits of the tool.
Lessons from Developing Lux. We summarize the implemen-
tation challenges and lessons learned from the longitudinal open-
source deployment of Lux over 15 months, with over 62k down-
loads. Given that the nature of such engagement is largely organic,
ranging from feature requests stemming from Github Issues to
questions and discussions with users in our Slack community, these
observations and findings will remain qualitative.
Metadata Propagation: To preserve the comprehensive array of
convenient operators offered by the dataframe API, we aimed to
natively support any possible pandas operations. This led to our de-
sign of LuxDataFrame as a wrapper around the pandas dataframe.
However, dataframes can often get transformed to other intermedi-
ate data structures such as GroupBy, Series, or Index objects when
users are working with dataframes. To this end, we extended spe-
cific pandas functions and classes to ensure that the metadata and
associated information is propagated across a workflow, so that the
context does not get lost in intermediate operations.
Failproofing always-on dataframe display: One of the reasons why
dataframes have become popular is the ease and flexibility of being
able to work with the data in a schema-free manner [53]. However,
this can be problematic for generating recommendations, since

underlying operations for visualization recommendations can lead
to errors. For instance, dataframes can often be ill-formatted in a
way that is not amenable to visualizations. One example of this is
dataframeswithmissing values, or when dataframes containsmixed
datatypes (a common issue when loading in spreadsheets). To this
end, we provide pandas-consistent output behavior by safeguarding
Lux with informative warnings, and falling back to pandas upon
internal errors, to always ensure that Lux provides at least the
pandas table as the default display. To allow users to effectively
operate on their data, it is crucial that the system provides users
with the unmodified, consistent state of the dataframe. In other
words, Lux should not modify and change the user’s dataframe in
the process of visualization to maintain “What You See Is What You
Get” (WYSIWYG) behavior. As a result, all recommendations in
Lux are generated as views that are decoupled from the dataframe
content.
Integration with Downstream Reports: One common use case for
Lux is to get a quick overview of insights on a new dataset. We
found that users often wanted a way to share their findings in
their organization. Our initial use case for supporting downstream
reporting was to allow users to select one or more visualizations and
export it as matplotlib or altair code. However, this approach
quickly became unsustainable when users wanted to share many
visualizations from their dashboard at the same time. To support
presentation and collaboration, we implemented various options
for export, from static HTML reports to integration with popular
libraries for creating interactive “data apps”, such as Streamlit [13].
Given that many Lux users often share their findings with business
stakeholders without a Python development setup, future work
might include supporting exports to readily-accessible presentation
formats, such as PDF or Powerpoint.
Another lesson that we learned is that ease of initial installation

and setup is a primary driver impacting the adoption of tools like
Lux. In a similar vein, our user surveys and online discussions sug-
gest that the minimal API is attractive to many data practitioners.

11 CONCLUSION

We propose Lux, an always-on visualization framework for ex-
ploratory dataframe workflows. Lux is a lightweight wrapper that
reduces the barrier of visualizing data, enabling seamless explo-
ration and visual discovery in-situ. To provide better visualization
recommendations, we make use of user-provided intent and history,
as well as structural information and metadata. We extend and eval-
uate various optimization strategies that minimize the overhead
of Lux, including approximate query processing, lazy computa-
tion, and caching and reuse. Lux’s adoption over the last year and
success of user evaluation points to its importance for dataframe
workflows—steering users towards valuable insights as they ponder
what to do next with their data.
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