
FACE: A Normalizing Flow based Cardinality Estimator
Jiayi Wang

Tsinghua University, China
jiayi-wa20@mails.tsinghua.edu.cn

Chengliang Chai
Tsinghua University, China

ccl@tsinghua.edu.cn

Jiabin Liu
Tsinghua University, China

liujb19@mails.tsinghua.edu.cn

Guoliang Li
Tsinghua University, China
liguoliang@tsinghua.edu.cn

ABSTRACT
Cardinality estimation is one of the most important problems in
query optimization. Recently, machine learning based techniques
have been proposed to effectively estimate cardinality, which can
be broadly classified into query-driven and data-driven approaches.
Query-driven approaches learn a regression model from a query to
its cardinality; while data-driven approaches learn a distribution of
tuples, select some samples that satisfy a SQL query, and use the
data distributions of these selected tuples to estimate the cardinality
of the SQL query. As query-driven methods rely on training queries,
the estimation quality is not reliable when there are no high-quality
training queries; while data-driven methods have no such limitation
and have high adaptivity.

In this work, we focus on data-driven methods. A good data-
driven model should achieve three optimization goals. First, the
model needs to capture data dependencies between columns and
support large domain sizes (achieving high accuracy). Second, the
model should achieve high inference efficiency, because many data
samples are needed to estimate the cardinality (achieving low infer-
ence latency). Third, the model should not be too large (achieving
a small model size). However, existing data-driven methods cannot
simultaneously optimize the three goals. To address the limitations,
we propose a novel cardinality estimator FACE, which leverages the
Normalizing Flow based model to learn a continuous joint distribu-
tion for relational data. FACE can transform a complex distribution
over continuous random variables into a simple distribution (e.g.,
multivariate normal distribution), and use the probability density to
estimate the cardinality. First, we design a dequantization method
to make data more “continuous”. Second, we propose encoding
and indexing techniques to handle Like predicates for string data.
Third, we propose a Monte Carlo method to efficiently estimate
the cardinality. Experimental results show that our method sig-
nificantly outperforms existing approaches in terms of estimation
accuracy while keeping similar latency and model size.
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Figure 1: Performance comparison of CE methods.

1 INTRODUCTION
Cardinality estimation (CE) is a fundamental and significant prob-
lem that has been widely studied for many years. It aims to estimate
the number of records that satisfy a given query in a database. CE
has widespread applications in the database community, such as
query optimization, approximate query processing, etc. Especially,
a precise CE approach directly influences the quality of the op-
timized query plan, leading to orders of magnitude performance
improvement. Since traditional methods, e.g., histograms [35], sam-
pling [21, 47] or kernel density based methods [10, 15], cannot
capture the column correlations, recently machine learning (ML)
based CE methods [6, 11, 17, 23–27, 37–39, 41, 44–46, 48] have been
proposed, which can achieve superior performance, because they
have high representation capability and strong learning ability.

Generally speaking, a good learning-based CE model should
achieve the following optimization objectives.
High accuracy (O1): The estimated cardinality should be close to
the real cardinality, so as to obtain an optimized query plan, and
the generalization ability is also important.
Low latency (O2): During a query plan generation, the CE module
has to be triggered multiple times, so its latency is very important
to generate an optimized plan efficiently.
Lightweight model size (O3): Considering the memory limitation,
the model should not be large [44, 49], because a database has many
schemas and requires to train a model for each schema. Moreover,
a lightweight model can achieve high inference efficiency.

To achieve these optimization goals, query-driven and data-driven
learned models have been proposed. The former [17, 37] learns a re-
gression model that learns a mapping from a query to its cardinality.
However, this approach relies on training queries and has a limited
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generalization ability on query changes and data changes. For ex-
ample, if the training workload is different from the test workload,
the performance is not reliable. Data-driven [11, 44, 45] approaches
learn the joint distribution of data in a relational table without the
query workload, and use the distribution to infer the cardinality.
They do not need to know the query workload in advance and can
generalize to unseen queries, and thus the generalization ability of
data-driven methods is stronger than the query-driven ones.

However, existing data-driven methods suffer from the following
limitations. (1) Sum-product-network-based method [11] assumes
different levels of independence between columns, based on which
they recursively split rows and columns to learn the distribution, but
the accuracy is low due to the assumption (cannot achieveO1). Thus,
the first challenge is how to capture the dependencies between
different columns (C1). (2) Although Naru [44, 45] and DQM-D [9]
can leverage the auto-regressive model to capture dependencies
by factorizing the joint distribution into conditional probability
distributions, they cannot handle the table with a large domain
size well, where the large domain size means that in the table there
exist attributes with a large number of distinct cell values. Since the
number of model parameters scales with the domain size [9, 45],
it leads to high training cost and high storage overhead (cannot
achieve O3). Even if NeuroCard [44] can alleviate this problem
by dividing the column with the large domain size into multiple
sub-columns, it sacrifices the accuracy (cannot achieve O1).

Besides, existing data-driven methods cannot efficiently support
Like predicates on string data, because 𝑖) strings naturally have
large domain size, and 𝑖𝑖) for inference, it is slow to find strings
satisfying the predicates (cannot achieve O2). Hence, how to sup-
port large domain size (including string data) while keeping high
accuracy is the second challenge (C2). (3) In the inference step, for
range queries, most data-driven methods [9, 44, 45] need to sample
data points from the ranges, feed them into the trained model and
use the inferred results to estimate the cardinality. This step is in-
efficient because it has to trigger the model inference many times
for estimation (cannot achieve O2). Therefore, how to reduce the
latency of the inference step is the third challenge (C3).

To address these challenges, we propose a Normalizing Flow
based Cardinality Estimator, FACE, which approximates the joint
distribution using the Normalizing Flow (NF) model. NF is a gen-
erative model that learns the joint probability distribution of data
points. It [19, 30] consists of a sequence of invertible and differen-
tiable transforms and can transform a complex distribution over
continuous random variables into a simple distribution (e.g., mul-
tivariate normal distribution), and vice versa. So the probability
density of each tuple can be computed. Intuitively, the term “Flow”
refers to the trajectory that the data is gradually transformed by the
sequence of transformations. The term “normalizing” refers to the
fact that these data points are mapped into a simple distribution,
usually multivariate normal distribution. As shown in Fig. 1, FACE
shows superiority on all dimensions, and the reasons are as follows.

In general, since NF regards all columns in the table as a whole
without any decomposition during training and inference, it can
capture the dependencies of columns (addressing C1, for O1). First,
as NF is adequate for modeling continuous data, it naturally can
be utilized to handle large domain size data without expensive em-
beddings (addressing C2, for O3). Second, for discrete data (e.g.,

categorical data), we propose a dequantization technique to make
them more “continuous”, so as to fit the NF model and obtain accu-
rate estimation (for O1). Third, we propose an effective method to
encode string data, transform Like predicates to range ones and
efficiently search qualified strings (for O2). Finally, we propose to
leverage the query similarity to accelerate the inference (addressing
C3, for O2). In summary, we make the following contributions.

(1) We propose a Normalizing Flow based framework that can
efficiently and effectively address the CE problem.

(2) We propose a dequantization technique to handle discrete
data, and design a string data encoding method to support strings.

(3) We leverage the query similarity to accelerate the inference.
(4) Experimental results showed that our method significantly

outperformed existing approaches.

2 PRELIMINARY
2.1 Problem Definition
Consider a relation𝑇 with𝑁 tuples and𝑚 attributes {𝐴1, 𝐴2, · · ·𝐴𝑚}.
Each tuple 𝑡 ∈ 𝑇 is 𝑡 = (𝑎1, 𝑎2, · · · , 𝑎𝑚), where 𝑎𝑖 is a cell value
in 𝐴𝑖 , 𝑖 = 1, · · · ,𝑚. 𝑜 (𝑡) denotes the number of occurrences of 𝑡 .
The task of cardinality estimation (CE) is to estimate the result
size without actually executing the query. The predicate 𝜃 of the
query can be viewed as a function that takes as input 𝑡 , and outputs
𝜃 (𝑡) = 1 if 𝑡 satisfies the predicate, otherwise 𝜃 (𝑡) = 0. Hence, the
cardinality can be formally defined as 𝑐𝑎𝑟 (𝜃 ) = |{𝑡 ∈ 𝑇 : 𝜃 (𝑡) = 1}|,
and the selectivity of 𝜃 is denoted by 𝑠𝑒𝑙 (𝜃 ) = 𝑐𝑎𝑟 (𝜃 )/𝑁 .

Note that 𝑠𝑒𝑙 (𝜃 ) can be computed using the joint data distribution
over the attribute domains in 𝑇 [45]:

𝑠𝑒𝑙 (𝜃 ) =
∑︁

𝑡 ∈𝐴1×···×𝐴𝑚

𝜃 (𝑡) · 𝑃 (𝑡) (1)

where 𝑃 (𝑡) = 𝑜 (𝑡)/𝑛 denotes the probability of tuple 𝑡 . Thus one
can estimate 𝑐𝑎𝑟 (𝜃 ) by computing the probability distribution.
Supported Query Predicate. In this part, we show the predicates
of queries that we can support for CE. (1) Like previous works [9,
45], we support queries that are conjunctions of any number of
single-column predicates, while disjunctions can be transformed
to conjunctions using the inclusion-exclusion principle. (2) Any
single predicate for𝐴𝑖 can be an equality predicate (e.g.,𝐴 = 𝑎𝑖 ), an
open range predicate (e.g., 𝐴 ≥ 𝑙𝑖 ) or a close range predicate (e.g.,
𝑙𝑖 ≤ 𝐴 ≤ ℎ𝑖 ). Here, we use 𝑅𝑖 to denote the range if 𝐴𝑖 is a range
predicate. For instance, in the above examples, 𝑅𝑖 = [𝑙𝑖 , 𝐴𝑖 .max] or
𝑅𝑖 = [𝑙𝑖 , ℎ𝑖 ]. Since our method will transform the equality predicate
to range (see Section 3), we also abuse 𝑅𝑖 to represent the equality
predicate for ease of representation. (3) We also support LIKE for
matching the prefix, suffix or substring of string attributes, like ab%,
%tion and %tri% respectively. As we also transfer LIKE predicates
to ranges, Equation 1 can be written as:

𝑠𝑒𝑙 (𝜃 ) =
∑︁

𝑡 ∈𝑅1×···×𝑅𝑚
𝑃 (𝑡) (2)

2.2 Normalizing Flow-based Model
The joint data distribution is modeled via generative models, where
GAN [7], VAE [16], Autoregressive [5] andNormalizing Flow (NF) [2,
34] are typical models. However, GAN and VAE perform well on
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Figure 2: An Example of Coupling-based Flow models.

tasks like image generation, but cannot be applied to the CE prob-
lem. The reason is that these models do not explicitly output the
probability density, so it is intractable for them to estimate the car-
dinality. Although the autoregressive model [5] has been applied in
CE recently, it still suffers from the large domain size problem, as
discussed in Section 1. Therefore, we adopt the Normalizing Flow,
another representative generative model to solve the CE problem.

Generally speaking, NF provides a method for modeling flexi-
ble probability distributions over continuous random variables. It
can transform a complex probability distribution into a simpler
distribution (e.g., a standard normal) using a sequence of invertible
and differentiable transformations. These transformations can be
parameterized by neural networks. Formally, suppose x is an𝑚-
dimensional dataset that we want to learn a joint distribution. The
basic idea of NF is to represent x as the output of a sequence of trans-
formations (uniformly denoted by f ) of a real vector u sampled from
a simpler distribution 𝜋 (u), i.e., x = f (u) where u ∼ 𝜋 (u) [30].

Leveraging the transformation of the NF, the probability density
of x can be obtained using a change of variables,

𝑝 (x) = 𝜋 (f−1 (x)) |det( 𝜕f
−1

𝜕x
) |. (3)

For example, given a data point after pre-processing, e.g., x =

(−1.05, 2.31, 0.27), as the input of the NF model. It infers the esti-
mated probability density of this point, e.g., 𝑝 (x) = 3.18, based on
learned data distribution. Then the probability densities of multiple
data points can be utilized to compute the cardinality of a query.

Since we need to compute f−1 and its Jacobian matrix in the
above equation, f has to be invertible and differentiable. Intuitively,
the transformation not only maps between x and u, but also quan-
tifies the change of density by the Jacobian matrix. For efficiency,
𝜋 (u) is usually simple, e.g., standard normal distribution.

In NF, f should be carefully designed for invertible, differentiable
and efficient computation, so we adopt the coupling transforma-
tion [2, 28, 50] for f , which consists of a series of coupling layers,
denoted as a loop in Fig. 2. The number of layers 𝑐𝑝 is a hyper-
parameter, say 5. Each coupling layer has the same input/output
dimension, which is designed by the following steps:

• Divide input x into two equal parts: [x1:𝑑 , x𝑑+1:𝑚], 𝑑 = 𝑚
2 .

• Feed the former part into a lightweight neural network (e.g.,
MLP), 𝜃 =MLP(x1:𝑑 ).

• Set x′1:𝑑 = x1:𝑑 directly.
• Set x′𝑑+1:𝑚 = 𝑔𝜃 (x𝑑+1:𝑚), where 𝑔 is a differentiable and

invertible element-wise function parametrized by 𝜃 . Return
x′ = [x′1:𝑑 , x′𝑑+1:𝑚].

• x′ is permuted and fed into the next coupling layer. Note
that different coupling layers have different parameters for
capturing correlations of multiple columns.

Hence, f is invertible, i.e., given x′ in each layer, we can simply
restore x. The reason is that x1:𝑑 equals to x′1:𝑑 , and we can get
x𝑑+1:𝑚 from x′𝑑+1:𝑚 , x1:𝑑 and the invertible 𝑔. f is naturally differ-
entiable because 𝑔 is differentiable. It is efficient as each coupling
layer has lightweight network structures. From the above steps,
we can see that the Jacobian matrix 𝐽 of a coupling layer is lower
triangular, which means that the determinant of 𝐽 can be computed
efficiently in 𝑂 (𝑚) as the product of the diagonal elements.

For training the NF, given a dataset 𝐷 = {x(𝑖) }𝑁
𝑖=1, a flow is

trained to maximize the total log likelihood
∑
𝑖 log 𝑝 (x𝑖 ). The CE

problem can be solved by transforming each tuple 𝑡 to a data point
x(𝑖) and modeling the joint probability distribution.

2.3 Related Work
Query-driven learned CE methods. In the training step, they
collect a pool of queries with their real cardinalities as labels, and
then train a model to map a query to its cardinality. For inference,
query is encoded and then fed into the regression model. Different
models are used, including fully connected neural networks [3, 29],
CNN [18],RNN [29, 37]. In general, query-driven CE methods need
a large amount of training data, i.e., queries. If the query distribution
shifts, the model is likely to behave poorly. Therefore, query-driven
approaches are expensive and not generalizable enough.
Data-driven learned CE methods. They learn the joint data dis-
tribution with different models. When inference, they use the model
to infer the probability of tuples satisfying the query predicates.

(1) Sum-Product network [11]. The idea is to divide the table into
clusters of rows and columns recursively. Then it uses sum nodes to
combine different row clusters. For column clusters, it assumes that
they are independent and utilizes product nodes to combine them.
It is inaccurate because the independence assumption is made.

(2) Autoregressive models [9, 44, 45]. The autoregressive model
factorizes the joint distribution into conditional distributions using
the multiplication principle. However, the methods cannot handle
large domain size data well. Specifically, Naru [45] and DQM-D [9]
require to compute the embeddings of each data point, so a large
domain size column induces a large number of parameters, leading
to high training cost and large model size. Although NeuroCard [44]
can alleviate this problem by factorizing the column into several sub-
columns, it sacrifices accuracy. Thus existing data-driven methods
cannot capture dependencies between columns and cannot handle
large domain size, and thus FACE is proposed to address this issue.

3 FACE FRAMEWORK
We propose FACE, a cardinality estimation framework using the NF
model. In this section, we first introduce the basic idea of using
NF (Section 3.1), and then the overall architecture (Fig. 3) of FACE
(including training (Section 3.2) and inference (Section 3.3)).

3.1 NF for Cardinality Estimation
We first present the overall framework of FACE, discuss the advan-
tages and summarize the challenges.
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Figure 3: The Framework of FACE.

Overall Framework. FACE learns a continuous joint distribution of
the input data using NF. As Fig. 3 shows, it first takes as input the
original data. Then for different columns with different data types,
FACE encodes appropriately and generates the encoded data that
can be fed into the NF model (Section 3.2). After training, we can
compute the probability density using the NF model, i.e., 𝑝 (x).

For inference, as the learned joint distributions are continuous,
we use Equation 4 to estimate the cardinality on range predicates:

𝑠𝑒𝑙 (𝜃 ) =
∫
x∈𝑅1×···×𝑅𝑚

𝑝 (x) 𝑑x. (4)

Note that not all predicates are range predicates. Therefore, to
apply Equation 4, we transfer other predicates to ranges (see Sec-
tion 3.3). Then, as the inference part in Fig. 3 shows, we sample
some data points from these ranges (see Section 6), call NF model
to estimate the probability density of them and finally compute the
estimated cardinality using Monte Carlo (MC) integration [22].
Advantages. (1) FACE can capture the column dependencies be-
cause in each coupling layer as shown in Fig. 2, the former half part
of columns interact with the latter half part. Then the output is
permuted and the above step is repeated several times, and thus the
dependency between columns is likely to be fully captured. (2) NF
can naturally support continuous data well, which is a typical type
in large domain size data. It takes as input continuous data with
simple transformations (e.g., normalization) rather than embedding,
which leads to large model size and high training costs.
Challenges. (1) Besides continuous data, there are several common
data types in a relational table, and thus using NF to support them
is challenging. To address this, we propose an effective dequantiza-
tion method to make any type of data continuous (see Section 4)

and build an index to tackle Like predicates with string data (see
Section 5). (3) The repetitive sampling is time-consuming in the
inference step, so an acceleration method is proposed in Section 6.

3.2 Training
The upper part of Fig. 3 outlines the training process of FACE. It
first takes as input batches of tuples in𝑇 and encodes them in order
to make them be well modeled by NF. Then the model is trained
using NF with maximum likelihood estimation.

3.2.1 Encoding the Training Data. Generally, there are three com-
mon types of data in databases: numerical, categorical and string.
Since NF model naturally works on continuous data, we need to
conduct a preprocessing step on different types of data. As shown
in encoding outline of Fig. 3, numerical data can be classified into
continuous data and discrete data. The former one can be handled
directly by NF, and we propose a dequantization method to make
the discrete data continuous. For categorical data, we discretize
them as done by most existing works [9, 45], and then tackle them
as discrete data. For string data, we encode them using a tree index,
and use trie encoding to convert strings to discrete data. Next, we
introduce the above steps in detail using the example in Fig. 3.
Categorical data.We transform the categorical data into contin-
uous space. We first convert them into discrete data (𝐸 (𝑎𝑖 ) → 𝑤 ),
e.g., 𝐸 (𝐶𝑜𝑜𝑘) → 0. However, if we fit discrete data directly with a
continuous density model, it will produce a degenerate solution that
places all probability mass on the discrete data points. Therefore, we
use the dequantization [13, 40] method that adds noise to discrete
data over the width of each discrete bin. This method makes data
more continuous, and thus the probability of each discrete point can
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be converted to integration over a range. For the Name attribute in
the example, the values are encoded to {0, 1, 2}, and they have the
equal length of bins, i.e., 𝑏𝑖𝑛 = 1. Then for each discrete point with
value 𝑣 ∈ {0, 1, 2}, we add a noise that follows a certain distribution
in [0, 𝑏𝑖𝑛], say uniform distribution. Then 𝐸(Job)={0, 0, 0, 1, 2}
may become more continuous like {0.312, 0.668, 0.996, 1.123, 2.886},
which is fed into NF for training after normalizing. When we want
to predict 𝑃 (𝐽𝑜𝑏 = 𝐶𝑜𝑜𝑘), i.e., 𝑃 (0), hopefully, we can compute
it by integration over [0, 1], i.e.,

∫ 1
0 𝑝 (𝑥)𝑑𝑥 = 0.6, where 𝑝 (𝑥) is

learned by NF. The dequantization technique is significant in accu-
racy improvement for NF models, so in Section 4, we propose an
effective strategy considering the continuity of noised data.
Numerical data. As discussed above, we encode categorical data
to discrete data and then dequantize it. Therefore, for discrete data
in numerical data, we can directly dequantize it. For continuous data,
intuitively, we feed it into NFwith no processing. However, any data
in a computer is represented by a finite number of bits, so there is
no real sense of continuity. To make data more continuous, we also
apply dequantization on these seemingly “continuous” data, which
makes a probability density easier for NF to learn. For example, in
attribute Height, the length of bin is 1.78 − 1.73 = 0.05, so we add
noise in [0, 0.05]. Then the two 1.73 become 1.744 and 1.771.
String data. Like predicates are widely used for string data in
database queries. To handle this, for Like predicates with patterns
ab%, %tion and %tri%, we build a trie-based index to encode each
string to discrete data so that the Like predicates can be converted
to range ones. Then we can use the above method to further encode
these discrete data using dequantization and feed into NF. Specif-
ically, we initialize a global ID as 0, and then traverse the trie in
depth first search (DFS) order. For each leaf node (correspinding to a
full string), we assign the node with the current ID, and add ID by 1.
For example, the DFS order of Name in Fig. 3 is Amy.M→ Andy.G→
Ann→ Ann.S→ Tom.H, and they are encoded as [0, 1, 2, 3, 4].

Normalization is applied after all the above transformations to
get the final training data, which is sent to the NFmodel for training.
Flow-model Training. Data encoding transforms each tuple in
table 𝑇 to x with the same dimension. Then x is fed into NF model
for training iteratively using maximum likelihood estimation.

3.3 Inference
Given a model and a query, we show how to utilize the NF model
to estimate the cardinality of the query. First, we introduce how
to encode queries for inference. Second, considering the query
similarities, we illustrate how to accelerate the inference step.

3.3.1 Query Encoding. In this paper, we do not distinguish between
point and range queries, since we convert every equality predicate
into a range. The reason is that the equality predicate is applied on
categorical and discrete data that are modeled as continuous data by
NF. In fact, in our scenario, query encoding is equivalent to encode
the predicates of the query, i.e., how to transfer the predicates
(including equality and Like predicates) to range predicates.
Equality predicates.We first encode the equality predicate𝐴 = 𝑎𝑖

to a range. If 𝑎𝑖 is categorical, we encode it to the same discrete
value as the encoding in the training phase i.e., 𝐸 (𝑎𝑖 ) → 𝑤 . Then
the range is constructed by [𝑤,𝑤 +𝑏𝑖𝑛), where 𝑏𝑖𝑛 is the bin width

of 𝑤 . For example, the predicate Job = Cook is encoded as [0, 1).
Then the cardinality can be estimated by integration over the range.
If 𝑎𝑖 is a discrete value, we can directly construct the range.
Range predicates. For predicates with a close range, we can com-
pute integration straightforwardly over the range. For open ranges,
we will simply find the MAX/MIN of the attribute and construct the
range. For example, the predicate Height ≥ 1.6 is encoded as
[1.6, 2.0) because 2.0 is the MAX of the Height attribute.
Like predicates. We also convert Like predicates to ranges based
on the trie-based index. For a prefix Like predicate (e.g., An%), we
search An on the tree, and the node is associated with the range
corresponding to An%, i.e., [1, 3]. For suffix predicates (e.g., %on),
we search on a suffix-based Trie. For substrings (e.g., %on%), we
construct multiple ranges based on prefix-based Trie (see Section 5).

3.3.2 Similarity-based CEAcceleration. Given the trainedNFmodel,
we compute the probability density of each data point. Together
with the given ranges, ideally, we want to obtain the cardinality
by computing the integration over these ranges using Equation 4.
Unfortunately, the integration is infeasible to compute, because it
has no closed-form solution. Thus, MC integration [31] is applied to
approximate this. The basic idea is to sample a number of data points
from the range, compute the probability density of them using NF
and integrate the results to estimate the cardinality. Thus, sampling
largely determines the efficiency and accuracy of inference.
Adaptive importance sampling. A simple sampling strategy is
uniformly sampling from the range 𝑅𝑖 , but it degrades the accuracy
because data in 𝑅𝑖 may not be uniformly distributed. Therefore, we
adopt the adaptive importance sampling [22, 31] strategy as shown
in Fig. 3. It samples from the range adaptively according to the
data distribution, described by buckets for different attributes. At
the beginning, we initialize equi-width buckets (𝐵1 in the example)
as we know nothing about the distribution. Then we sample data
points from the buckets, use NF to compute the probability density
of them, and update the buckets. We repeat the above steps until
convergence, and use the buckets (𝐵𝑖 ) that can accurately describe
the distribution of range data to conduct the MC integration. We
can observe that although the method can capture the data distri-
bution, the repetitive sampling leads to inefficiency, so we propose
to accelerate this process based on query similarities.
Accelerate subsequent queries. In real scenarios, queries can ar-
rive at any time. For example, in Fig. 3, 𝑄 ′ comes after 𝑄 and they
seem to be similar. We can measure the similarity of queries by
comparing each pair of ranges of two queries. We observe that
ranges of similar queries are mostly overlapped, and thus their
sampled data follow similar distributions. Therefore, we initialize
the buckets of the new arrival query using that of the most similar
one (Initialize 𝐵′1 using 𝑄). In this way, we can obtain 𝐵′

𝑖
in much

fewer iterations, making the inference more efficient.
In Section 6, we introduce how to compute the query similarity.

We then illustrate how to accelerate the inference using buckets.

3.4 Joins
FACE can also support join queries in two ways: Single-Model and
Multi-models.

Single-Model follows existing solution [11, 44] that leverages
one estimator to learn the distribution of each table and joins of
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multiple tables in the schema. We first generate a full-join table
using full outer join, and then add some columns to the full table.
Note that it is expensive to generate all join tuples, we sample some
joined tuples [47]. Next, we train a single model for the full-join
table using our method and then uses the estimation method to
support both a single table and multiple tables (with join queries).
Note that the full-join table may contain duplicated tuples for a
query and NULL values. To address this issue, we add additional
columns and feed the table with additional columns into our model.
After training, given a query, we use the trained model to estimate
the cardinality. The difference is that we will further leverage the
values in additional columns to correct the probability densities
considering the join types, redundant tuples, and NULL values.

For the Single-model, the full-join table may be very sparse and
the trained model may not be effective for different queries. To
address this, we can train multiple models, i.e., training a model
for each possible join query, and then given a query, we use the
corresponding model to estimate the cardinality. However, it is
rather expensive to enumerate all possible joins and build a model
for each join. To alleviate this issue, we can generate all possible join
templates based on historical queries (a join template is a join query
by removing all predicates and only keeping the join structure),
train a model for each template, and then the number of models
to be trained can be reduced. To summarize, the advantage is that
it provides more fine-grained estimation than the Single-Model.
However, it needs additional join template information, and may
consume larger memory when the number of models is large.

4 DEQUANTIZATION
In this section, we will introduce the spline dequantization designed
by us for making data “more continuous”, which is inevitable if one
wants to encode data for feeding into NF. We first show the basic
idea of the dequantization and then how to implement it.
Basic Idea of dequantization.Webeginwith an example formod-
eling a continuous distribution of an attribute 𝐴𝑖 with 5 categories.
If we encode them to discrete data (Section 3.2.1) and use NF to
fit them, we will derive a probability density function (PDF) as
shown in Fig. 4 (a). This way has two limitations. On the one hand,
fitting a continuous model to discrete data will produce a degraded
solution [12] because all the probability mass is placed on discrete
data points. On the other hand, while inference, it is infeasible to
compute the probability of a category using 𝑝 because the integral
interval is unknown. Therefore, dequantization has to be applied.
Dequantization distribution. As discussed in Section 3.2.1, de-
quantization is utilized to add noise on discrete data so that NF can
learn the continuous probability distribution better. Formally, given
a discrete data point 𝑥 , the noise 𝑢 can be generated following a
dequantizing distribution 𝑞(𝑢 |𝑥), 𝑢 ∈ [0, 𝑏𝑖𝑛). Here 𝑏𝑖𝑛 is the width
of the discrete bin of 𝑥 , which is the difference between 𝑥 and the
smallest value bigger than 𝑥 in 𝐴𝑖 . After dequantizing all values
that equal to 𝑥 , these values will all lie in the bin [𝑥, 𝑥 +𝑏𝑖𝑛), so the
integration over the bin precisely captures the probability of 𝑥 .

Then the noise is generated based on 𝑞, and each discrete value
becomes dequantized 𝑣 = 𝑥+𝑢 (Note that for explicit representation,
we use 𝑣 to denote data after dequantization, while in other Sections,
𝑥 is still used to denote the data after all pre-processings). Recap
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Figure 4: Visualization of Dequantization Methods.

from Section 3 that NF learns the PDF 𝑝 based on these dequantized
data. Then the probability of any discrete point, 𝑃 (𝑥), can be com-
puted by integration. Ideally, we hope that 𝑃 (𝑥) =

∫ 𝑥+𝑏𝑖𝑛
𝑥

𝑝 (𝑣)𝑑𝑣 ,
but it cannot hold exactly in real case, which can be well approxi-
mated by a sophisticated dequantization distribution.
Motivation of spline dequantization. There exist many optional
dequantization distributions, and uniform dequantization [40] is a
representative one. Suppose that we use it to model 𝑞(𝑣 |𝑥), which
generates noise uniformly for each discrete point. In our example,
these data points have 𝑏𝑖𝑛 = 1. Fig. 4 (b) visualizes the distribution
(green rectangles) of dequantized data, i.e., 𝑞(𝑣) = E𝑥∼𝑃 [𝑞(𝑣 |𝑥)].
The objective of a well-performed dequantization method is to make
𝑝 learned by NF well fit the data dequantized by 𝑞. However, it is
hard for NF to fit the data dequantized by uniform dequantization.
The reason is that 𝑝 is a continuous distribution that we want to
learn, but it is naturally difficult to learn from data obtained by a
discontinuous distribution 𝑞. Also, other existing works [12, 13]
cannot guarantee the continuity property.

Therefore, we propose a spline dequantization technique that
utilizes spline interpolation to construct a continuous dequantizing
distribution for each attribute.
Implementation of Spline Dequantization.Nextwe discuss how
to dequantize discrete data using the continuous spline dequanti-
zation distribution. The general solution consists of two steps. (1)
Construct a cumulative distribution function (CDF) of each attribute
using spline interpolation. (2) Use the CDF to generate dequantized
data 𝑣 , which will be leveraged by NF for training. The basic idea of
the above steps is that, to derive a continuous dequantization dis-
tribution 𝑞, we construct a continuously differentiable CDF. Hence,
since 𝑞 is the derivation of the CDF, 𝑞 is naturally continuous.

For example, as shown in Fig. 4 (b), the CDF of the uniform
dequantization is not continuously differentiable, so 𝑞 is not contin-
uous and the generated dequantized data is hard to fit. Therefore,
it requires to construct a high-quality CDF.
CDF construction. Considering a discrete attribute 𝐴𝑖 with do-
main size 𝑠 = |𝐴𝑖 |, we abuse 𝑎 to denote the random variable that
𝐴𝑖 can take. For each 𝑥 𝑗 ∈ 𝐴𝑖 (𝑥 𝑗 denotes the 𝑗-th smallest value
in 𝐴𝑖 ), we can easily compute the probability that the attribute
will take a value less than 𝑥 𝑗 , i.e., 𝑃 (𝑎 < 𝑥 𝑗 ), which can be used
to construct a CDF. To be specific, first, we plot the points, i.e.,
(𝑥1 = 0, 𝑃 (𝑎 < 𝑥1)), (𝑥2 = 1, 𝑃 (𝑎 < 𝑥2)), ..., (𝑥 𝑗 , 𝑃 (𝑎 < 𝑥 𝑗 )),...,
(𝑥𝑠 + 𝑏𝑖𝑛, 1) on coordinates, as shown in Fig. 4 (c). Second, we use
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