
Incremental Partitioning for Efficient Spatial Data Analytics
Tin Vu, Ahmed Eldawy, Vagelis Hristidis, Vassilis Tsotras

Department of Computer Science & Engineering

University of California, Riverside, USA

tin.vu@email.ucr.edu,{eldawy,vagelis,tsotras}@cs.ucr.edu

ABSTRACT
Big spatial data has become ubiquitous, from mobile applications

to satellite data. In most of these applications, data is continuously

growing to huge volumes. Existing systems for big spatial data or-

ganize records at either the record-level or block-level. Systems that

use record-level structures include key-value stores and LSM-Tree

stores, which support insert and delete operations and they are

optimized for highly-selective queries. On the other hand, systems

like GeoSpark that use block-level structures (e.g. 128 MB each) are

more efficient for analytical queries, but they cannot incrementally

maintain the partitioned data and do not support delete operations.

This paper proposes a general framework that enables block-level

systems to incrementallymaintain spatial partitions, in the presence

of bulk insertions and deletions, in distributed file system (DFS)

blocks. We first formally study the incremental spatial partitioning

problem for big data and demonstrate its NP-hardness. Then, we

propose a cost model to estimate the performance of queries on the

partitioned data and the effect of modifying it as the data grows.

After that, we provide three different implementations of the in-

cremental partitioning framework. Comprehensive experiments on

large real datasets show that our proposed partitioning algorithms

outperforms state-of-the-art spatial partitioning methods.

PVLDB Reference Format:
Tin Vu, Ahmed Eldawy, Vagelis Hristidis, Vassilis Tsotras. Incremental

Partitioning for Efficient Spatial Data Analytics. PVLDB, 15(3): 713-726,

2022.

doi:10.14778/3494124.3494150

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://bitbucket.org/tvu032/beast-tv/src/inc-update/beast-spark/src/main/

java/edu/ucr/cs/bdlab/beast/operations/update/ and UCR STAR [30].

1 INTRODUCTION
Spatial data is being produced at increasing rates from various

sources such as mobile applications and satellite data. For example,

there is an average of 500 million tweets sent every day [55] from

users at different spatial locations. NASA EOSDIS adds about 6.4 TB

of data to its archives every day [27]. In all these applications, data

is not only large in volume, but it is also continuously growing and

changing. These characteristics urged the research community and

industry to develop new systems for big spatial data [24, 59, 61].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.

doi:10.14778/3494124.3494150

When organizing spatial data, there are two main approaches,

depending on the query processing needs of the system. If the

focus is on highly selective queries (e.g. point look-up, top-k), the

data is indexed; in the first approach (termed record-level) every
record finds its exact position in the index structure (e.g., R-tree [31]

and quad-tree [51]) so that the highly selective query will access

a very few records using the index structure. While such queries

are fast, there is an overhead in maintaining the index. On the

other hand, if the focus is on analytical queries (e.g. aggregates,

spatial joins [50], kNN joins [40], polygon union [22], convex hull,

Voronoi diagram [37], DBSCAN [33], etc.), it is better to partition

the data at a coarser granularity. Here, the exact record position

is not important; rather records are organized in partitions (e.g.,

hash or range partitioning). After a record’s partition is identified,

its position within the partition is not important. This is because

an analytical query will read all records in each partition that it

accesses. As a result, the second approach (termed block-level) incurs
less overhead in creating and maintaining the partitions, compared

to the index maintenance of the record-level approach.

In order to support high ingestion or deletion rates while provid-

ing indexed access to files (record-level approach) systems use the

Log-Structured Merge-tree (LSM-Tree) data organization [4, 15, 48].

In an LSM-Tree, new records are inserted sequentially in (fast) main

memory to create a component file (also called memtable). After a

component file gets full, it is written sequentially to pages. Eventu-

ally component files in the pages are merged together and records

find their exact position in the index. Record-level approaches us-

ing the LSM-Tree include Apache HBase[32], Accumulo[1], As-

terixDB [5], MD-HBase [46], Parallel Secondo [38], BBoxDB [44],

and GeoMesa [35], among others. In these systems, a new record

is sent to one of the participating nodes and is then indexed by a

spatial index residing in that node. A highly selective query will run

in parallel on each node accessing only relevant records through

each node’s spatial index. While LSM-Tree allows such systems to

have high update rates, the amortized maintenance cost per record

remains high.

On the other hand, distributed query processing engines that

focus on analytical queries, such as Spark and Hadoop, follow the

block-level approach. Typically the block size is 128 MB, which is

much larger than a disk page (4-8KB) of the record-level storage en-
gines. Example systems that use this approach include Slalom [47],

for general purpose data analytics, and systems that are tailored

towards spatial data analytics (i.e. using spatial partitions) such as

SpatialHadoop [23], Simba [59], and GeoSpark [61], among oth-

ers [24]. Unfortunately, due to the sequential write limitation of DFS

(files are written sequentially to avoid expensive random writes),

like HDFS [52], Amazon S3 [8] and Microsoft Azure [10] Blob stor-

age, there is no mechanism that current block-level systems can

use to maintain their spatial partitions incrementally.

713

https://doi.org/10.14778/3494124.3494150
https://bitbucket.org/tvu032/beast-tv/src/inc-update/beast-spark/src/main/java/edu/ucr/cs/bdlab/beast/operations/update/
https://bitbucket.org/tvu032/beast-tv/src/inc-update/beast-spark/src/main/java/edu/ucr/cs/bdlab/beast/operations/update/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494150
https://www.acm.org/publications/policies/artifact-review-and-badging-current

U
p
d
a
t
e
r
a
t
e

H
e
a
v
y

GeoMesa [35], MD-

HBase [46], Aster-

ixDB [5]

Proposed work
L
i
g
h
t

PostGIS [49], Spatial-

Lite [53]

SpatialHadoop [23],

Beast [21], Simba [59],

GeoSpark [61]

Record-level Block-level

Data access granularity

Figure 1: Position of the proposed work in the context of
existing systems

The problem is exacerbated by the presence of updates. For exam-

ple, a Twitter analytics system must periodically delete bot tweets,

which are discovered by bot classifiers that run periodically on the

data. This requires efficiently handling batch updates, which are

currently not adequately handled by existing block-level platforms.

In this paper, we study how a system can combine both efficient
spatial analytic queries and high ingestion rates, as shown in Fig-
ure 1. Single-machine Spatial DBMS systems, e.g., PostGIS, provide

record-level indexing for relatively low ingestion rate that a sin-

gle machine can provide. Big-data Management Systems (BDMS)

and key-value stores, e.g., AsterixDB and GeoMesa, are able to

support very high ingestion rates for record-level indexes by us-

ing distributed LSM-Tree indexes. On the other hand, block-level

partitioning on big spatial data is supported by systems like Spa-

tialHadoop, GeoSpark and Simba but they can only support appli-

cations with low ingestion rates where the data can be occasionally

repartitioned. Furthermore, block-level systems naturally do not

support delete operation. The proposed framework in this paper

supports high insertion and deletion rates while incrementally par-

titioning the data in blocks. Hence, our proposed work can be viewed
as the LSM-equivalent for block-level spatial data, where the goal is
to avoid the high overhead of the record-level LSM merges.

This paper proposes a new framework that can efficiently sup-

port incremental big spatial datasets with batch ingestion, address-

ing the limitations of the state-of-the-art. We focus on ingestion/

deletion since for the applications we consider new data is con-

tinuously added, deleted, or updated. A first key property of the

proposed framework is to facilitate partitioning of data based on

their spatial attributes, so as to perform fewer accesses during

query time. The partitions are created and stored directly in DFS

which allows MapReduce and RDD programs to run directly on

the partitions. A second key property is to facilitate a pay-as-you-go

partition maintenance mechanism that can be optimized based on

the objectives of the application and the system workload.

To achieve these properties, the proposed framework has two

phases, namely, (i) data flushing, where new or deleted data is peri-

odically pushed to secondary storage, and (ii) partition optimization,
where the newly added/deleted data and the old partitions are

jointly maintained given cost budget constraints.

Initially, we formalize the partition optimization problem and

prove its NP-Hardness, which implies that building optimal par-

titions is non-trivial. Therefore, we break the problem into two

subproblems, namely: partition selection and partition reorganiza-
tion, which can be solved separately. The former gives us a set

of potential partitions to reorganize and the latter physically re-

organizes the records in the selected partitions. We focus on the

partition selection problem which is critical in the reorganization

process and has two key challenges. (a) how to formalize and esti-

mate the benefit of selecting a specific set of partitions to reorganize,

and (b) how to efficiently navigate the combinatorial search space

of partition subsets, given a reorganization budget. For that, we

introduce a novel block-based cost model for spatial partitioning

that estimates the processing cost for a range query, and propose

an algorithm to select a set of partitions to optimize this cost.

We implement three solutions to the partition selection problem,

termed, R*-Tree-Inspired Partitioning (R*P), LSM-Tree-Inspired Parti-
tioning (LSMP), and Cost Based Partitioning (CBP). R*P is inspired by

the node insert and node split algorithm in R*-tree. Similarly, LSMP

utilizes the idea of LSM-Tree merge policy to maintain its partitions.

Finally, CBP utilizes the proposed range query cost model so that it

can minimize the estimated query cost, given a limited reorganiza-

tion budget. The experimental results indicate that the proposed

cost model allows us to create a high performance incremental

partitioning scheme in terms of both partitioning time and query

throughput, as compared to our two straightforward solutions and

to state-of-the-art big spatial data systems.

In summary, the main contributions of this paper are:

• We introduce a comprehensive framework for incremental

spatial partitioning of large-scale spatial datasets.

• We formalize the partition optimization problem for incre-

mental spatial partitioning systems and prove its NP-Hardness.

• We propose three different implementations of the parti-

tioning frameworks, including an approximate algorithm to

solve partition optimization problem.

• We perform an extensive experimental evaluation on incre-

mental big spatial systems to measure their performance and

partitioning quality.

The rest of this paper is organized as follows: Section 2 reviews

related works. Section 3 gives an overview of the proposed frame-

work. Section 4 formalizes the partition optimization problem and

proves its NP-Hardness. Section 5 proposes a new cost model for

distributed spatial indexes. Section 6 shows the different incremen-

tal spatial partitioning techniques which implemented the proposed

framework. Section 7 shows experimental results to validate our

proposed work while Section 8 concludes the paper.

2 RELATEDWORK
The existing work for supporting big spatial data can be broadly

categorized into two categories, record-level systems and block-level
systems, as depicted in Figures 2(a) and 2(b).

Record-level Systems: Systems in this category address the

write limitation of DFS by utilizing the LSM-Tree [48] which con-

verts random writes to sequential writes and merges. This idea was

originally used to build key-value stores with a single-dimensional

index, e.g., BigTable [15], HBase [32], and Accumulo [1]. To extend

this idea to spatial data, some systems use space-filling-curves (SFC)

to convert the high-dimensional coordinates to a single dimension,

714

AsterixDB [5],

GeoMesa [29],

MD-HBase [46]

Distributed File Systems [8, 10, 52]

LSM Tree [48]
SpatialHadoop[23],

Beast [21], Simba[59],

GeoSpark[61]

Incremental Spatial

Partitioner

SpatialHadoop, Beast,

Simba, GeoSpark

(a) Record-level

with updates

(b) Block-level

with static data

(c) Proposed design,
block-level with

incremental updates

Figure 2: Architecture of big spatial data access methods

e.g., MD-HBase [46], MongoDB [43], and GeoMesa [35]. Alterna-

tively, AsterixDB [5, 9] hash-partitions the records based on their

IDs and then builds an R-tree index for each LSM component.

The drawback of this category is the huge overhead in processing

the records since records have to be retrieved one-by-one through

the index which makes this approach suitable for highly-selective

queries that returns only a few records but does not scale for ana-

lytic queries that tend to process most or all the records.

Block-level Systems: Figure 2(b) indicates how the existing

block level approach builds spatial partitions at the block level di-

rectly on top of a DFS. The work in this category is geared towards

analytical queries that process huge amounts of data. Instead of

organizing the data at a record level, these systems organize them

in large blocks of 128 MB each. Examples include MapReduce-

based systems like SpatialHadoop [23] or Spark RDD systems like

GeoSpark [61] and Simba [59], streaming-based systems like Tor-

nado [41], and data warehousing systems like Sphinx [26]. Some of

these systems, e.g., Kangaroo [6], account for query workload but

are still limited to static data, i.e., all data needs to be repartitioned.

The main limitation of all these systems is that they cannot incre-

mentally maintain the data in a spatially partitioned way.Whenever

new records are inserted or old records are deleted, the data has

to be fully repartitioned to reach the best performance. To address

this limitation, there are several techniques on adaptive spatial data

partitioning such as AQWA [7], Schism [17], and others [2, 19, 56].

However, none of these techniques address the problem of incre-

mental partitioning in a distributed file system. They are either

limited to traditional database systems [2, 17, 19, 56] or in-memory

partitioning [7],

Proposed Work: Figure 2(c) shows the proposed work which

introduces the incremental spatial partitioner into the block-level

approach to enable incremental partitioning on DFS. In analogy

with record-level systems, this work plays the same role that the

LSM-Tree did to enable record-level indexing on the limited DFS,

i.e., it enables block-level systems to incrementally maintain spatial

partitions of the data without the need to modify files in DFS.

3 A GENERIC INCREMENTAL SPATIAL
PARTITIONING FRAMEWORK

Figure 3 gives an overview of the proposed framework for incre-

mental partitioning of big spatial data. This is a generic framework

in the sense that its steps can be implemented differently to produce

Current
Partitions

New Data/
 Deletion markers

Flushing Intermediate
Partitions

Partition Optimization

Final
Partitions

Partition
Selection

Partition
Reorganization

Figure 3: Overview of the proposed framework

various types of incremental partitioning schemes. This paper pro-

vides three different implementations that follow this framework.

The framework consists of two phases, data flushing and partition
optimization. The data flushing phase ingests a set of new records

and deletion markers into an existing, initially empty, partition

structure. To adhere with HDFS limitations, this step can only ap-

pend to existing files or write new files to produce an intermediate

unoptimized partitioning.

The second partition optimization phase takes the intermediate

partitioning and partially reorganizes it to produce an optimized

final partitioning. This phase first identifies a subset of partitions,

then it reorganizes their contents into a new set of partitions. In

Section 4, we prove that the partition optimization problem is NP-

hard. As it is impractical to find an optimal solution, we break the

problem into two sub-problems, partition selection and partition
reorganization, solved separately as discussed below.

The partition selection step identifies a subset of bad partitions to
be reorganized. The second step, partition reorganization, processes
the selected partitions by reorganizing their contents into a set of

new partitions; old partitions are then deleted. Since HDFS does

not allow random updates, the modified files have to be completely

rewritten.

We proceed by first describing the layout of the partition on the

distributed file system; then we provide more details about the three

main steps of our framework (data flushing, partition selection, and

partition reorganization).

3.1 Partition layout
This paper focuses on block-level partitioning in which each par-

tition fits in one 128-MB HDFS block [52]. Local indexing can be

employed to determine the internal format of each 128 MB block.

However, this is outside the scope of this paper since we focus on

analytical queries which are only marginally improved by local

indexes [23]. Each partition is stored on disk as a separate file. Ad-

ditionally, a master file stores the metadata of the partitions which

consists of a partition ID, the minimum bounding rectangle (MBR)

of the partition, number of records, total size of records marked

for deletion, and total size of non-deleted records. The master file

acts like the global index of partitioned data. A spatial query starts

by examining the master file to decide which partitions to process,

e.g., the partitions that overlap the area of interest. Then, the se-

lected partitions are processed in parallel using MapReduce [18] or

RDD [62]. If multiple master files exist, the most recent one is used

to adhere with multiversion concurrency control schemes.

715

3.2 Data flushing phase
As shown in Figure 3, the data flushing phase takes a batch of new

data or deletion markers and ingests it to the partitioning. Typically,

systems that deal with big data, buffer these updates in memory

and trigger the flushing phase when the in-memory component

reaches a pre-specified threshold, e.g., 4GB. Since this phase is

triggered while the system is hot and accepting updates to the data,

it prioritizes the insertion time over the quality of the partition.

This allows the system to continue accepting new records at the

highest rate with minimal partition maintenance overhead. In this

proposed framework, we limit the flushing phase to appending to

existing files and writing new files. This limitation is driven by the

DFS limitation and also helps in reducing the amount of disk IO,

which is equal to the batch size. Themaster file is not changed until
the flushing phase is complete which makes all the changes hidden

to the query processing. Once the flushing process completes, all

the changes become visible by writing a new version of the master

file that reflects the updates.

This paper considers two flushing techniques, namely, append,
which appends records to existing partitions; and LSM flush, which
creates a new set of partitions (that logically form a new LSM

component). Both are described in detail in Section 6.

3.3 Partition selection
The partition selection step identifies target partitions that need
to be deleted and reorganized. We design this step to run under a

system constraint which limits the amount of disk IO in this process

(read + write). The goal is to choose a small subset of bad partitions,
e.g., overlapping partitions, that are lowering the quality of the

partitioning and reorganize them to boost its quality. For efficiency,

this step operates only on the partition metadata, e.g., MBR and

size, from the latest master file. Therefore, this step only takes a

fraction of a second which is negligible on the performance but its

result has a significant impact on the quality of the partition and

the overall reorganization time.

3.4 Partition reorganization
Given a list of target partitions from the previous step, the partition

reorganization step completes the partition optimization phase by

physically rewriting those partitions into highly-optimized parti-

tions, with the removal of records which are marked for deletion.

This step is generic and can use any existing static partition con-

struction algorithm for big spatial data. The cost of this step is linear

in the total size of selected partitions since it runs in one scan over

the repartitioned data.

4 PARTITION OPTIMIZATION PROBLEM
4.1 Preliminaries and problem definition
To formulate the problem, we first present the following definitions;

notations are summarized in Table 1:

• 𝑟 (𝑚𝑏𝑟, 𝑠𝑖𝑧𝑒, 𝑖𝑠_𝑑𝑒𝑙𝑒𝑡𝑒𝑑): a record 𝑟 is represented by its mini-

mum bounding rectangle (MBR) and size in bytes. In addition,

𝑖𝑠_𝑑𝑒𝑙𝑒𝑡𝑒𝑑 is a Boolean tombstone flag with value {0, 1} to
indicate whether this is a deleted record.

• 𝑏: default block size in the file system, e.g., 128 MB.

Table 1: Table of notations

Notation Description
𝑟 a record.

𝑏 default block size, e.g., 128 MB.

𝐷 a dataset 𝐷 is a set of records.

𝑀𝐵𝑅 (𝐷) the MBR of a set of records D.

𝑝𝑠𝑖𝑧𝑒 (𝐷) the physical size of D.

𝑐𝑠𝑖𝑧𝑒 (𝐷) the condensed size of D.

𝑝𝑏𝑙𝑜𝑐𝑘𝑠 (𝐷) the number of physical blocks of D.

𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝐷) the number of condensed blocks of D.

𝑃 A global partitioning (set of partitions)

𝑇 (𝑃, 𝑃 ′) The disk IO cost to transform 𝑃 to 𝑃 ′

𝐶 (𝑃) Function to compute query cost on 𝑃

• 𝐷 = {𝑟1, . . . , 𝑟𝑛}: a dataset 𝐷 is a set of records.

• 𝑀𝐵𝑅(𝐷) = ⋃𝑛
𝑖=1𝑚𝑏𝑟 (𝑟𝑖): the MBR of a set of records is the

minimum MBR that contains the MBRs of all its records.

• 𝑝𝑠𝑖𝑧𝑒 (𝐷) = ∑𝑛
𝑖=1 𝑠𝑖𝑧𝑒 (𝑟𝑖): the physical size of a set of records

is the sum of all record sizes. This indicates the disk space

needed to store these records.

• 𝑐𝑠𝑖𝑧𝑒 (𝐷) = ∑𝑛
𝑖=1 (1 − 2 · 𝑖𝑠_𝑑𝑒𝑙𝑒𝑡𝑒𝑑𝑖) · 𝑠𝑖𝑧𝑒 (𝑟𝑖): the condensed

size of a set of records is the size this set would occupy if

deleted records are removed. It is computed by subtracting

the size of deleted (tombstone) records.

• 𝑝𝑏𝑙𝑜𝑐𝑘𝑠 (𝐷) =
⌈
𝑝𝑠𝑖𝑧𝑒 (𝐷)

𝑏

⌉
: is the number of physical blocks

for a set of records.

• 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝐷) =
⌈
𝑐𝑠𝑖𝑧𝑒 (𝐷)

𝑏

⌉
: is the number of physical blocks D

will occupy if condensed..

• 𝑃 = {𝑝1, . . . , 𝑝𝑚}: A global partitioning state, hereafter will

be simply called a partitioning, of a dataset is a set of par-
titions 𝑝𝑖 , where each partition is a subset of the input 𝐷 .

Partitions satisfy the following three constraints, (1) 𝑝𝑖 ⊆ 𝐷 ,

(2) 𝑝𝑖 ∩ 𝑝 𝑗 = ∅,∀𝑖 ≠ 𝑗 , and (3)

⋃
𝑖 𝑝𝑖 = 𝐷 . Similar to the

dataset 𝐷 , we can also compute 𝑀𝐵𝑅, 𝑝𝑠𝑖𝑧𝑒 , 𝑐𝑠𝑖𝑧𝑒 , 𝑝𝑏𝑙𝑜𝑐𝑘𝑠

and 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 of every 𝑝𝑖 ∈ 𝑃 . In this work, we assume the

records inside a partition are not indexed (i.e., there is no

local index), but this decision is orthogonal to the reorganiza-

tion problem that we study. Previous work[23] showed that

local indexes have little impact on the overall performance

of analytical queries on big spatial data.

• 𝑇 (𝑃, 𝑃 ′): Given two partitions, 𝑃 and 𝑃 ′, the cost to transform
𝑃 to 𝑃 ′ is defined as the number of blocks to read from 𝑃 and

the cost of writing new condensed partitions in 𝑃 ′.

𝑇 (𝑃, 𝑃 ′) =
∑

𝑝𝑖 ∈𝑃\𝑃 ′
𝑝𝑏𝑙𝑜𝑐𝑘𝑠 (𝑝𝑖) +

∑
𝑝𝑖 ∈𝑃\𝑃 ′

𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝑝𝑖)

• 𝐶 (𝑃, 𝑠) is a function that measures the average cost of run-

ning a range query with size 𝑠 ×𝑠 on 𝑃 . This metric, formally

defined in Section 5.1, reflects how good the partitioning is

for spatial query processing.

Partition Optimization Problem Given a dataset 𝐷 with parti-
tioning 𝑃 , a fixed number of accessed blocks 𝐵 and a query size 𝑠 × 𝑠 ,
find a new partitioning 𝑃 ′ which can be transformed from 𝑃 where
𝑇 (𝑃, 𝑃 ′) ≤ 𝐵 and 𝐶 (𝑃 ′, 𝑠) is minimized.

716

4.2 The NP-Hardness of the problem
We proceed to prove that a simplified version of the partition opti-

mization problem is NP-Hard (and hence the partition optimization

problem is also NP-Hard). In particular, we show that if we have a

quality function that is defined independently for each partition,

the problem can be reduced from the well-known 0-1 Knapsack

problem.

(0-1 Knapsack) Given a set of n items numbered from 1 to 𝑛, each
with weight 𝑤𝑖 and value 𝑣𝑖 , and a maximum weight capacity𝑊 ,
find a vector 𝑋 = {𝑥1, . . . , 𝑥𝑛} that:

maximize

𝑛∑
𝑖=1

𝑣𝑖𝑥𝑖

subject to

𝑛∑
𝑖=1

𝑤𝑖𝑥𝑖 ≤𝑊 and 𝑥𝑖 ∈ {0, 1}

Reduction Algorithm:We transform the 0-1 Knapsack prob-

lem to the following partition optimization problem:

• Define 𝐷 as a set of 𝑛 records where the size of each record

𝑟𝑖 is𝑤𝑖 .

• The current partitioning 𝑃 contains 𝑛 partitions, where each

partition contains only one record, 𝑝𝑖 = {𝑟𝑖 }.
• The budget 𝐵 is equal to the weight capacity𝑊 , and the

block size 𝑏 = 1.

• The cost function for one partition 𝑐 (𝑝, 𝑠) is:

𝑐 (𝑝, 𝑠) =
{

0 𝑖 𝑓 |𝑝 | = 1∑
𝑟𝑖 ∈𝑃 𝑣𝑖 −

∑
𝑟𝑖 ∈𝑝 𝑣𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Finally, we define 𝐶 (𝑃, 𝑠) = ∑
𝑝𝑖 ∈𝑃 𝑐 (𝑝𝑖 , 𝑠). In particular, the

cost for a partitioning state 𝑃 is the total of cost for each

partition in 𝑃 .

To complete the proof, we need to show that (1) the optimal

answer can be mapped between the two problems, and (2) both the

problem reduction and the answer mapping require a polynomial

time.

(1) Assume that the optimal solution for the 0-1 Knapsack prob-

lem is 𝑋 = {𝑥1, . . . , 𝑥𝑛}. The set of items with 𝑥𝑖 = 1 correspond to

a subset of records 𝑅 = {𝑟𝑖 |𝑥𝑖 = 1}. In this case, there is an optimal

answer 𝑃 ′ where each item 𝑥𝑖 = 0 maps to a partition with one

record 𝑝𝑖 = {𝑟𝑖 }, and all the items with 𝑥𝑖 = 1 are combined in one

partition 𝑅. On the other hand, given an optimal answer 𝑃 ′ to the

partition optimization problem, we can map it to an optimal answer

to the 0-1 Knapsack as follows: Each record 𝑟𝑖 ∈ 𝑝 ′
𝑗
where |𝑝 ′

𝑗
| = 1

will be mapped to 𝑥𝑖 = 0, otherwise, if |𝑝 ′
𝑗
| ≥ 2, 𝑟𝑖 is mapped to

𝑥𝑖 = 1. The key idea is that all partitions selected to be modified by

the partition optimization problem as an optimal solution will have

a total cost equal to the weights of their records and the answer

will have a quality equal to the total value of those selected records.

(2) Both the reduction algorithm and the answer mapping above

require𝑂 (𝑛) time complexity, i.e., the reduction process is a polynomial-

time algorithm.□

5 COST-BENEFIT ANALYSIS OF THE
PARTITION SELECTION PROCESS

Given that the partition optimization problem is NP-hard, we break

it into two smaller sub-problems: partition selection, which selects a

subset of partitions to be reorganized, and partition reorganization,
which reorganizes the records in the selected partitions. Previous

work on static indexes for big spatial data [20, 23, 39, 57, 59] can

be used to solve the second problem while there has been little

attention to the first one. This section focuses on the first problem,

provides a theoretical analysis, and develops a cost model for it.

The key idea is to create an accurate cost model for range queries

and use it as a proxy for the quality of the partitions (Section 5.1).

We use range queries as they are the most fundamental operation

in spatial data analytics and it was shown to strongly predict the

performance of indexes for other queries [20, 34]; range query is

commonly used as the building block for other spatial operations

such as joins or aggregations, as we discuss below. Then, we define

a benefit function that uses the cost model to estimate the improve-

ment in the partition quality for any subset of selected partitions

(Section 5.2). The next section will show how to use this cost model

to solve the partition selection problem.

5.1 Range query cost model in HDFS
We build on previous research which showed that the cost of a

range query is a good proxy for the quality of a spatial partitioning

method (i.e., a partitioning state 𝑃) even for analytical queries such

as spatial join [20, 34]. Given a fixed range query of size 𝑠 × 𝑠 , our

cost model estimates the total number of blocks and total size of data

that it will process. This cost model allows us to maintain optimized

partitions without the awareness of query workload. Building an

adaptive spatial partitioning method is outside the scope of this

paper.

Traditional range query cost models [3, 12, 16, 54] focused on

estimating the number of disk pages required to answer the query

or the query size. This made sense for traditional DBMS algorithms

which access data from a regular disk with a relatively small disk

page, e.g., 8 KB. The assumption was that a disk page is the smallest

access unit to a disk which makes the cost uniform on all disk pages

regardless of how many actual records are in each page.

When transitioning to the distributed file system, the previous

assumptions no longer hold. In HDFS, data is stored in blocks

which can vastly vary in size from a few megabytes up-to 128 MB.

Therefore, the cost of accessing each block is no longer uniform. In

addition, we have an opportunity to build a more accurate estimate

as compared to traditional models. In traditional DBMS, the cost es-

timation is part of the query optimization which should take only a

few milliseconds. However, this work uses this cost model as part of

the index optimization step which can take tens or hundreds of sec-

onds so we have an opportunity to run a model that takes a second

or two without significantly hurting the overall performance.

Our analysis starts with an 𝑠 × 𝑠 square-shaped query and tries

to estimate its cost.This cost model considers square queries for the

sake of simplicity but it can be extended for general rectangular

range queries. 𝑠 is a system parameter that can be set to the most

common query size expected by the application. Assume that 𝑃 =

{𝑝1, . . . , 𝑝𝑚} is a partitioning state of a spatial dataset 𝐷 . Suppose
that 𝑤 (𝑝𝑖) and ℎ(𝑝𝑖) are the width and height of a partition 𝑝𝑖 ,

respectively. Figure 4 shows the two possible relationships of a

query 𝑞 to the partition 𝑝𝑖 . As shown in the figure, the query 𝑞1 is

disjoint with the partition 𝑝𝑖 which means that such query does

717

𝑠

𝑠/2

𝑠/2𝑤 (𝑝𝑖)

ℎ(𝑝𝑖)

𝑠

𝑠/2

𝑠/2

Query (𝑞2)

Query (𝑞1)
Partition (𝑝𝑖)

Buffer region (𝐵𝑖)

Input MBR (𝑃)

𝑞2 intersects 𝑝𝑖 𝑞1 is disjoint with 𝑝𝑖

Figure 4: Relationship of a range query with a partition

not have to process the partition 𝑝𝑖 . On the other hand, the query

𝑞2 overlaps 𝑝𝑖 and hence needs to process that partition to produce

the answer. We compute the probability of a query of size 𝑠 × 𝑠

being disjoint or overlapping with the partition 𝑝 . To do that, we

define a buffer region 𝐵𝑖 that expands 𝑝𝑖 with a buffer size of 𝑠/2 in
all directions. We can easily see that if the center of the query falls

inside the buffer region (e.g., 𝑞2), it overlaps the partition; otherwise,

it is disjoint. For a random square range query 𝑞𝑖 of size 𝑠 × 𝑠 with

its center in the domain space 𝑀𝐵𝑅(𝐷), the probability that the

center of 𝑞𝑖 falls inside the buffer region is the ratio of the area of

𝐵𝑖 over the area of the domain space 𝑀𝐵𝑅(𝐷). Thus the average
number of blocks that are contributed from 𝑝𝑖 for query 𝑞𝑖 is:

𝑐𝑏 (𝑝𝑖 , 𝑠) =
(𝑤 (𝑝𝑖) + 𝑠) (ℎ(𝑝𝑖) + 𝑠)

𝑤 (𝑃)ℎ(𝑃) · 𝑝𝑏𝑙𝑜𝑐𝑘𝑠 (𝑝𝑖) (1)

In addition, the average amount of data in bytes that is scanned

from 𝑝𝑖 for query 𝑞𝑖 is:

𝑐𝑠 (𝑝𝑖 , 𝑠) =
(𝑤 (𝑝𝑖) + 𝑠) (ℎ(𝑝𝑖) + 𝑠)

𝑤 (𝑃)ℎ(𝑃) · 𝑝𝑠𝑖𝑧𝑒 (𝑝𝑖) (2)

To process a query in HDFS, first, there is a fixed cost to locate

overlapping blocks, which correlates with number of partition’s

blocks. Second, there is a cost to scan the entire partition, which

correlates with partition size. Therefore, the total cost (running

time) to complete a square query with size 𝑠 × 𝑠 can be represented

as the following:

𝐶 (𝑝𝑖 , 𝑠) = 𝑘𝑏 · 𝑐𝑏 (𝑝𝑖 , 𝑠) + 𝑘𝑠 · 𝑐𝑠 (𝑝𝑖 , 𝑠) (3)

The hardware-specific coefficients 𝑘𝑏 and 𝑘𝑠 have units of sec-

onds/block and seconds/byte, respectively; together, they unify the

cost units to seconds. We determine these constants as the follows:

1) run a small number of range queries with varying number of

blocks and sizes, 2) collect 𝑐𝑏 , 𝑐𝑠 and 𝐶 , 3) fit these data points to

a linear regression model. Overall, the average processing time to

answer a query 𝑞𝑖 on the partitions of 𝑃 can be estimated as follows:

𝐶 (𝑃, 𝑠) =
∑
𝑝𝑖 ∈𝑃

𝐶 (𝑝𝑖 , 𝑠) = 𝑘𝑏 ·
∑
𝑝𝑖 ∈𝑃

𝑐𝑏 (𝑝𝑖 , 𝑠) + 𝑘𝑠 ·
∑
𝑝𝑖 ∈𝑃

𝑐𝑠 (𝑝𝑖 , 𝑠) (4)

5.2 Reorganization benefit
This section shows how to use the range query cost model de-

scribed above to estimate the benefit of the reorganization step. We

define the benefit as the reduction in the range query cost after

the reorganization process, i.e., cost after subtracted from the cost

before. To formalize the benefit calculation, suppose that the state

of partitioning at timestamp 𝑡 is 𝑃𝑡 (intermediate partitions) and

after reorganization it will be 𝑃𝑡+1 (final partitions) as presented in

Figure 3. Now, assume that the partition selection step has selected

a group of partitions 𝐺𝑡 = {𝑝1, . . . , 𝑝𝑛} ⊆ 𝑃𝑡 to be reorganized.

After these partitions are reorganized, they will produce a new set

of partitions𝐺𝑡+1 = {𝑝 ′
1
, . . . , 𝑝 ′𝑚} ⊆ 𝑃𝑡+1. We define the reorganiza-

tion benefit of𝐺𝑡 as the reduction of query cost when the partitions

are reorganized from 𝑃𝑡 to 𝑃𝑡+1.

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝐺𝑡 , 𝑠) = 𝐶 (𝑃𝑡 , 𝑠) −𝐶 (𝑃𝑡+1, 𝑠) (5)

We can rewrite 𝑃𝑡 as (𝑃𝑡 −𝐺𝑡) ∪𝐺𝑡 and similarly 𝑃𝑡+1.

𝐵𝑒𝑛𝑒𝑓 𝑖𝑡 (𝐺𝑡 ,𝑠)=𝐶 ((𝑃𝑡−𝐺𝑡)∪𝐺𝑡 ,𝑠)−𝐶 ((𝑃𝑡+1−𝐺𝑡+1)∪𝐺𝑡+1,𝑠) (6)

Since our cost function 𝐶 is linear, we can apply super position as

follows.

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝐺𝑡 , 𝑠) = 𝐶 (𝐺𝑡 , 𝑠) −𝐶 (𝐺𝑡+1, 𝑠)
+𝐶 (𝑃𝑡 −𝐺𝑡 , 𝑠) −𝐶 (𝑃𝑡+1 −𝐺𝑡+1, 𝑠)

(7)

But 𝑃𝑡 − 𝐺𝑡 ≡ 𝑃𝑡+1 − 𝐺𝑡+1, which are the set of non-selected

partitions. Their cost is the same which means that the benefit of

reorganizing 𝐺𝑡 is:

𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝐺𝑡 , 𝑠) = 𝐶 (𝐺𝑡 , 𝑠) −𝐶 (𝐺𝑡+1, 𝑠) (8)

Finally, we can utilize Equation 8 to compute the benefit of the

reorganization step that transforms 𝑃𝑡 to 𝑃𝑡+1. To understand the

key idea behind the computation of cost reduction, i.e., benefit,

Figure 5 illustrates three examples of partitions before and after

reorganization. For simplicity, we assume 𝑘𝑏 = 1 and 𝑘𝑠 = 0, then

the total cost in Equation 4 becomes 𝐶 (𝑃, 𝑠) = ∑
𝑝𝑖 ∈𝑃 𝑐𝑏 (𝑝𝑖 , 𝑠). In

all three examples, we assume that the area of data space is𝑤 (𝑃) ·
ℎ(𝑃) = 10 and query size 𝑠 = 0.5. In Figure 5(a), a single partition

𝑝1 with four blocks is reorganized into four single-block partitions.

According to the simplified cost model and Equation 1, 𝐶 (𝑝1, 𝑠) =
(2+0.5) (2+0.5)

10
·4 = 2.5 and

∑
𝑖=2...5𝐶 (𝑝𝑖 , 𝑠) = 4· (1+0.5) (1+0.5)

10
·1 = 0.9.

So, we say that the reduction in cost is 2.5 − 0.9 = 1.6. This value

means that if we reorganize 𝑝1 into 4 smaller partitions, we would

reduce 1.6 block accesses on average to answer a square query with

size 0.5 × 0.5. This case indicates that partitioning a multi-block

partition into several single-block partitions improves the cost.

The second case in Figure 5(b) gives an example of partition-

ing two overlapping partitions. According to our cost model the

cost before reorganizing is 𝐶 (𝑝1, 𝑠) + 𝐶 (𝑝2, 𝑠) = 2 · (2+0.5) (2+0.5
10

·
3 = 3.75 while the cost after reorganizing is

∑
𝑖=3...8𝐶 (𝑝𝑖 , 𝑠) =

6 · (1+0.5) (1+0.5)
10

· 1 = 1.35. The cost reduction is 2.4. This case indi-

cates that partitioning overlapping partitions provides additional

cost reduction.

Figure 5(c) shows an example of splitting one partition 𝑝1 with

empty regions into two blocks 𝑝2 and 𝑝3 while uncovering that

empty region. In this case, we can calculate the cost as 𝐶 (𝑝1, 𝑠) =
(2+0.5) (2+0.5)

10
·2 = 1.25 and𝐶 (𝑝2, 𝑠)+𝐶 (𝑝3, 𝑠) = 2 · (1+0.5) (1+0.5)

10
·1 =

0.45. The reduction in the cost is 0.8. Thus reorganizing a partition

that contains dead space reduces the cost.
In summary, the proposed benefit model favors the creation of

the smallest number of single-block partitions. This fits well with

718

p5p4

p3p2p1
4 blocks

1 block 1 block

1 block1 block

w=2

h
=
2

1

1 1

1

(a) Split a partition with uniform data

p1
3 blocks

p2
3 blocks

p3
1 block

p4
1 block

p5
1 block

p6
1 block

p7
1 block

p8
1 block

1 1 1

1

1

1

1 1 1

2

(b) Split overlapping partitions

p3

p2p1
2 blocks

1 block

1 block

2

2

1

1

1

1

(c) Uncover dead area by splitting skewed data

Figure 5: Different scenarios for reorganizing a group of partitions to reduce the estimated cost and improve the quality

the DFS design that will always split large files into single blocks

that are processed individually. Further, the overhead that we add

on each partition is minimal, i.e., MBR and size.

To estimate the benefit of a reorganization scheme (estimated

cost reduction), we would like to take these three cases into account.

Nevertheless, it would be hard to account for case 3 (Figure 5(c))

since it requires extra information about the data distribution inside

the partition which is not available in the master file. Therefore, our

benefit computation only accounts for the first two cases. The chal-

lenge here is we would not know how 𝐺𝑡+1 looks like to compute

the benefit in Equation 8 until we actually reorganize𝐺𝑡 . However,

our goal is to use that equation to select the best subset 𝐺𝑡 ⊆ 𝑃𝑡
in the partition selection process, which promises the maximum

benefit. Therefore, we need to be able to estimate 𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝐺𝑡 , 𝑠)
without physically reorganizing 𝐺𝑡 , i.e., without knowing 𝐺𝑡+1. To
resolve this issue, we compute a prediction 𝐺𝑡+1 of 𝐺𝑡+1 and use it

to calculate a prediction (estimate) of the benefit. In this case, 𝐺𝑡+1
is a set of partitions that we predict to produce after the reorga-

nization step runs. In order to estimate 𝐺𝑡+1, we assume that the

partition reorganization step will produce𝑚 = 𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝐺𝑡) single-
block, square-shaped, equi-sized, and non-overlapping partitions.

Since all the estimated resulting partitions are identical, their total

area is equal to the area of the selected partitions 𝐺𝑡 . Hence, the

estimated side length of each of the new partitions 𝑝 ′
𝑖
,∀𝑖 = 1 . . .𝑚

is calculated as:

𝑤̂ (𝑝 ′𝑖) = ˆℎ(𝑝 ′𝑖) =

√
𝑤 (𝐺𝑡) · ℎ(𝐺𝑡)
𝑐𝑏𝑙𝑜𝑐𝑘𝑠 (𝐺𝑡)

(9)

Although this is an ideal case that might not always happen, it

is a good indicator of how far the cost might go down. The actual

output of the reorganization step might have a higher cost (if the

partitions are overlapping and not square) or a lower cost (if a

dead space was uncovered). Finally, the estimated benefit when we

reorganize 𝐺𝑡 to 𝐺𝑡+1 is:

�𝐵𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝐺𝑡 , 𝑠) = 𝐶 (𝐺𝑡 , 𝑠) −𝐶 (𝐺𝑡+1, 𝑠) (10)

Because we can compute 𝐺𝑡 and 𝐺𝑡+1 before the partition reor-

ganization process, the estimated benefit in Equation 10 is a good

indicator to help us choose the partitions for reorganization with

maximum benefit, given a limited disk IO budget. We proved that

this is a NP-Hard problem. Therefore, we will use a greedy strategy

to solve this problem, which will be discussed in Section 6.3.

6 PROPOSED INCREMENTAL PARTITIONING
ALGORITHMS

This section presents three approaches to instantiate the incremen-

tal partitioning framework in Section 3. The first two approaches,

R*P and LSM-P, are inspired by the R*-tree [11] and LSM-tree [48],

respectively, to implement the three steps in Figure 3. The third

approach, Cost Based Partitioning (CBP), uses the proposed benefit

model to maximize the estimated benefit and lowers the cost of the

partitions.

Comparing the three approaches, R*P is designed to only split

overflowing partitions as they get larger but cannot merge small

partitions when they become partly empty. In contrast, LSMP only

merges partitions together based on its merging policy but cannot

split a single large partition. As a result, R*P and LSMP might not

performwell for the incremental datasets with spatially overlapping

insertion/deletion batches. This motivated us to design CBP, which

can overcome these limitations. In particular, CBP periodically

reorganizes the partitions, essentially both splitting and merging,

measuring the benefit using Equation 10. This strategy allows CBP

to behave well for a wider range of spatial ingestion workloads.

We use R*-Grove [58] as the spatial partitioning algorithm in all

approaches to guarantee a good partition load balance, but it could

be replaced by other spatial partitioning techniques such as Grid

File [45], Kd-tree [13], Quad-Tree [28, 51], or Hilbert R-Tree [36].

All of these techniques are sample-based partitioning [20], which

supports common spatial data type such as point, line, polygon,

circle, etc, with either disjoint or non-disjoint objects.

6.1 R*-Tree-inspired partitioning (R*P)
This section describes an adaptation of the traditional R*-tree in-

dex [11] to the incremental partitioning problem by implementing

the three steps of the partitioning framework: flushing, partition
selection, and partition reorganization. The general idea is to treat

each partition as a leaf node in the R*-tree. The details of the three

steps are described below.

Data Flushing: The flushing step uses the R*-tree insertion al-

gorithm to choose a partition for each record and append it, as

shown in Figure 6(a). The inputs to this flushing process are the cur-

rent partition and a non-partitioned batch of new or to-be-deleted

records. Based on the MBRs of the current partitions, the flushing

process scans the records in the non-partitioned batch and appends

each record to one of the partitions following the R*-tree Choos-

eSubtree method (i.e., choose the partition that requires the least

719

(a) R*P and CBP Flushing

P10

P8

P9

P1

P2

Component C1

P3

Component C2

P4

P5
P6

Component C3

Data Flushing

P7

P1

P2

Component C1

P3

Component C2

P4

P5
P6

P7

New Data

Current Partitions

Intermediate Partitions

(b) LSMP Flushing

Figure 6: Data flushing in different techniques

overlap enlargement as detailed in [11]). The output of this flush-

ing phase is a set of intermediate partitions which contains the

same number of partitions as the input but the contents of these

partitions include the new data records and the markers for deleted

records.

Partition Selection: After the flushing phase is complete, the

partition selection step identifies the partitions that need to be

reorganized. Following the standard R*-tree design, this step simply

selects all the overflow partitions that go beyond a maximum size𝑀 ,

in this case, 128 MB. For example, in Figure 7(a), partition 𝑝1, 𝑝3 is

selected for reorganization because theywent beyond themaximum

partition size. Notice that we cannot implement the forced reinsert

technique in R*-tree since random updates are not allowed in HDFS.

Partition Reorganization: This step reorganizes the partitions
selected by the previous step using the R*-Grove [58] partitioning

method. Overall, R*P is not suitable for datasets which require

a high rate of record deletion or update. In particular, R*P only

splits partitions into smaller partitions, while there is no merge

mechanism for partitions which contain deleted records. As a result,

there might be many small partitions when the datasets are updated

over time as shown in Figure 7(a).

6.2 LSM-tree-inspired partitioning (LSMP)
In the traditional LSM-Tree [48], each batch is flushed and indexed

as a separate LSM component. An LSM compaction policy merges

these components depending on their sizes and order of creation.

We adapt our generic partitioning framework to support an LSM

variation where each component is indexed by an R*-Tree.

Data Flushing: In the data flushing phase, the new batch is

partitioned as an R*-Tree, similar to [23]. Since the batch can be

bigger than an HDFS block, it might consist of multiple partitions.

(a) R*P partition reorganization

P1

P2

Component C1

P3

P1

P2

Component C1

P3

Component C4

Partition Optimization

Intermediate Partitions

P10

P8

P9

Component C3

Component C2

P4

P5
P6

P7

Final Partitions

(b) LSMP partition reorganization

(c) CBP partition reorganization

Figure 7: Partition optimization in different techniques

Figure 6(b) shows a data flushing process (termed as LSMP Flushing)

in which the new batch is partitioned into a new component 𝐶3,

besides the current components 𝐶1,𝐶2 of our LSM partition. In an

auxiliary component file, we store the component ID and creation

order for each component. LSMP flushing requires the same disk

IO as R*P Flushing, but it creates new partitions while the number

of partitions does not change in R*P.

Partition Selection: This step scans the components’ metadata,

i.e., creation order and size, from the master file and the auxil-

iary component file. The standard LSM compaction policy from

H-Base [32] is applied to the LSM components to identify the compo-

nents that need to be merged. If there is more than one component

to merge, all partitions in those components would be selected.

Partition Reorganization: In this step, a new partition com-

ponent is reconstructed from all the partitions in all the selected

components. This results in replacing all these components with

one component which is considered the new merged component.

Figure 7(b) shows how components 𝐶2 and 𝐶3 are reconstructed

into a new component 𝐶4.

The advantage of the LSM-tree-inspired partitioning is that it

contains highly optimized partition components. It also works well

for the datasets with update workloads, since the merging process

always produces the optimized partitions. Thus it will provide a

good query performance if the query range completely falls into

only one component. However its performance will be negatively

affected with large query ranges, when they require scanning mul-

tiple components. In order to address this drawback, the number

of components should be reduced by the compaction process, with

a trade-off of reconstructing time for multiple components.

720

Algorithm 1 Greedy Partition Selection Algorithm

1: function PartitionSelection(𝑃 = {𝑝1, . . . , 𝑝𝑚 }, 𝐵, s)
2: 𝐺 = {} ⊲ Set of selected partitions

3: while 𝑛𝑏𝑙𝑜𝑐𝑘𝑠 (𝐺) ≤ 𝐵 do
4: max-benefit = 0

5: for each 𝑝𝑖 ∈ 𝑃 do
6: 𝑏 = max{

�𝐵𝑒𝑛𝑒𝑓 𝑖𝑡 (𝐺 ∪ {𝑝𝑖 }, 𝑠),
7:

�𝐵𝑒𝑛𝑒𝑓 𝑖𝑡 (𝐺, 𝑠) + �𝐵𝑒𝑛𝑒𝑓 𝑖𝑡 (𝑝𝑖 , 𝑠)}
8: if 𝑏 > max-benefit then
9: max-benefit = 𝑏

10: 𝑝∗ = 𝑝𝑖 ⊲ Update selected partition

11: 𝐺 = 𝐺 ∪ {𝑝∗}
12: 𝑃 = 𝑃 − {𝑝∗}
13: return𝐶

6.3 Cost-based partitioning (CBP)
In this approach, after each flush, we reorganize the partitions given

a reorganization budget (we use a budget similar to the one spent

by R*P in our experiments). The cost model in Section 5.2 is used

to estimate the benefit of each candidate reorganzation.

Data Flushing: In general, the data flushing phase for CBP

partitioning works in a same way with R*P, which was described

in Section 6.1 and Figure 6(a).

Partition Selection: Based on Equation 10, we design a greedy

algorithm to select a group of partitions that will likely lead to high

benefit. We start with an empty set of selected partitions. Then,

we scan the set of available partitions and choose the one that

maximizes the benefit function if added to the selected group. We

repeat this until the allocated budget 𝐵 is used. Notice that once a

partition is selected, the benefit of all other partitions change so

the next iteration of the loop will have to recalculate all of them.

Algorithm 1 shows the pseudo code for the proposed partition

selection algorithm. The input parameters include the list of current

partitions, the budget of number of blocks 𝐵 and the desired size

𝑠 of range query. Line 2 initializes the set of selected partitions 𝐺

to the empty set. Then, the loop in Lines 5-12 iterates over all the

partitions in 𝑃 to compute the benefit of each one. Line 7 calculates

the benefit of each partition when added to the set of selected parti-

tions. In Equation 10, the benefit of a group is not necessarily equal

to the total benefit of its individual partitions. Therefore, we recom-

pute the group benefit in each iteration. This is acceptable because

the calculation of Equation 10 is not expensive. The partition that

results in the maximum benefit increase is chosen (Line 10). The

chosen partition 𝑝∗ is then added to the set of selected partitions𝐺

and removed from the set of available partitions 𝑃 . Notice that once

a partition is added to 𝐺 , the benefit of all other partitions might

change so the next iteration of the loop will recalculate all of them.

Once the total number of blocks in 𝐺 is larger than the budget 𝐵

the algorithm terminates and returns the set of selected partitions.

Partition Reorganization:When a large number of partitions

is selected for reorganization, we need to decide whether to con-

sider all of them in one group or we can split them into smaller

groups. If we consider all of them in one group and apply Equa-

tion 9, we assume that the resulting partitions cover the entire space

which might be inaccurate if there is a large gap between parti-

tions. Therefore, we first split the selected partitions into groups,

by adding all overlapping partitions in one group, and then parti-

tion each group independently. The reason that we reorganize the

partitions in groups is to minimize the overlapping of reorganized

partitions with existing partitions. This reduces the skewness of

selected partitions, then makes the estimated benefit being more

realistic. CBP might be able to create less reorganized partitions

than R*P as shown in Figure 7(c) since it can merge under-utilized

partitions into a single-block partition.

7 EXPERIMENTS
In this section, we perform a comprehensive experimental evalu-

ation to highlight the advantages of proposed work over existing

spatial data management systems. For record-level approaches,

we compare to two state-of-the-art baselines, namely, AsterixDB

0.9.6 [5] and GeoMesa 3.1.2 [35]. For block-level approaches, we use

Sedona 1.0.1 [60, 61] and Beast 0.9.1 [21], which are Spark-based

spatial data systems. These baselines are compared to one of the

three techniques that are proposed in this paper, namely, R*P, LSMP,

and CBP. These systems are evaluated based on the ingestion time,

partitioning quality, and query performance on the partitioned data.

We use range query and spatial join as query workloads.

Datasets: We use the following spatial datasets in our exper-

iments: (1) MS-Buildings dataset [42] with size 96 GB (751 mil-

lion polygons). This dataset is synthesized from the original MS-

Buildings dataset from UCR STAR, in which we extract the rectan-

gles of building’s geometries. In order to increase dataset size, new

records are created by randomly shifting the rectangles of existing

records. (2) OSM-All Objects dataset [63] with size 340GB. This

dataset contains all map objects in the OpenStreetMap datasets.

(3) OSM-Parks dataset [25] with size 8 GB (10 million polygons),

a real dataset which represents green areas all over the world.

This OSM-Parks dataset is only used in the spatial join perfor-

mance evaluation, in a combination with MS-Buildings dataset.

This combination makes the total processed data large enough for

an expensive operation like spatial join.

Workloads:We evaluate different systems using insertion, dele-

tion, and spatial analytical query workloads. For the insertion, we

split input datasets into batches and keep adding these batches to

the each of the systems. There are two type of deletion workloads:

delete by batch, which deletes an entire batch that was inserted

earlier, and delete by sample, which deletes a set of random records

from all inserted records. The analytical queries include both range

query and spatial join.

System specs: All experiments are executed on a cluster of one

head node and 12 worker nodes, each having 12 cores, 64 GB of

RAM, and a 10 TB HDD. They run CentOS 7, Oracle Java 1.8.0_131,

Hadoop 3.2.1 and Spark 3.0.0.

7.1 Cost model and benefit model validation
7.1.1 Cost model validation. The proposed cost model in Section 5

mainly estimates the average execution time of a square range

query. If the model is accurate, we expect that the estimated cost

(provided by the model) and the actual cost (the total time to run

the query) will have a high correlation. To verify the cost model, we

partitioned subsets of the MS-Buildings dataset of different sizes.

Then, we run square range queries of various sizes on all of them

and measure both the estimated cost and the actual running time.

721

30 40 50

30

40

50

Estimated time (seconds)

Actual time (seconds)

(a) Estimated/actual query time (s)

100 200 300 400 500

100

200

300

400

500

Estimated benefit

Actual benefit

(b) Estimated/actual benefit

Figure 8: Cost model and benefit model validation

Figure 8(a) shows the relationship between the estimated cost

and actual cost of range queries for various query size 𝑠 × 𝑠 . The

value of 𝑠 × 𝑠 varies from 0.0001×𝑀𝐵𝑅(𝐷) to 0.05×𝑀𝐵𝑅(𝐷), with
𝑀𝐵𝑅(𝐷) is the area of the input dataset. For each query, we compute

the estimated running time using Equation 4 and measure the actual
running time as we process the query on the partitioned data. Then,

we plot all those queries on a scatter plot with the estimated and

actual running time on the 𝑥 and 𝑦-axes, respectively. From the

trend lines, we observe that there is a linear correlation between

estimated cost and actual cost with the slope being very close to 1.0.

This observation indicates that our proposed cost model is accurate

in reality. The correlation between the two axes is nearly 94%. In

other words, the estimated cost can be used in the partitioning

optimization process in order to minimize the actual cost of range

query processing.

7.1.2 Reorganization benefit model validation. To verify the reor-

ganization benefit model, we record the actual benefit (Equation 8)

and estimated benefit (Equation 10) as we reorganize partitions

using the three proposed methods, R*P, LSMP, and CBP. Figure 8(b)

depicts a scatter plot with the estimated and actual benefits on the

𝑥 and 𝑦 axis, respectively. The correlation is 97% which indicates

that the proposed estimated benefit is reliable to be integrated into

our partition selection algorithm. This high correlation confirms

that the estimated benefit can be used for partition selection step

even with skewed datasets like MS-Buildings.

7.2 Performance of proposed partitioning
algorithms

In this experiment, we compare the performance of proposed tech-

niques in two workloads: insert-only and insert+delete. Figure 9

and 10 show the behavior of our proposed partitioning algorithms.

We execute the experiment on MS-Buildings dataset with the com-

parison in ingestion performance, quality metrics and range query

performance. To simulate the dataflow in Figure 3, we split the

original MS-Buildings into batches of 8GB. Each batch cover a sub-

area of the entire dataset. This step increases the skewness of the

data and guarantee that the distribution of the ingested data will be

changing overtime. Figure 9(a) and 10(a) show the ingestion time

for different partitioning techniques. One can observe that CBP

outperforms R*P and is slower than LSMP in terms of ingestion

time. By design, CBP and R*P have the same data flushing mecha-

nism, which appends the new records to existing partitions. The

difference lies the reorganization process where R*P splits each

overflowing partition independently while CBP can reorganize

many overlapping partitions together which reduces the number of

required reorganization jobs. On the other hand, LSMP is different

than CBP and R*P in both data flushing and reorganization pro-

cess. First, the LSMP flushing step partitions the flushed data and

writes it to a separate component on disk which is generally more

efficient than appending to many files. Second, the reorganization

process is triggered periodically based on the LSM merging policy

and it always consists of one job that reorganizes all the selected

components together. This explains why the update operation on

LSMP is generally faster than CBP and R*P, since sometimes there

is no merge operation triggered.

Figure 9(b) and 10(b) show the total area, as a quality measure,

of different partitioning techniques in the same set of MS-Buildings

batches. Since CBP is optimized for estimated range query cost, we

expect that it creates partitions with good quality. R*P keeps split-

ting partitions so the total area will keep increasing as new batches

coming. LSMP’s total area increases as new components are added,

and periodically drops when a compaction step is triggered which

increases the partitioning quality. Figure 9(c) shows the partition

load balance of the proposed techniques for the insert-only work-

load, which is the normalized standard deviation of partition size.

LSMP is better than CBP and R*P since all of its components are op-

timally partitioned. In addition, CBP and LSMP’s block utilization

will be better than R*P for insert+delete workload as shown in Fig-

ure 10(c), since R*P can only split partitions into smaller partitions,

but cannot merge them together when they become smaller after

deletion. Overall, the partition quality of LSMP is not stable due to

its merge policy. In particular, the partition quality will be good after

a merge operations but gets worse as new components are flushed.

To choose the best among all proposed partitioning techniques, we

execute several batches of range query with different query sizes

on the datasets partitioned by the proposed techniques. Figure 9(d)

shows that all the techniques perform well for the insert-only work-

load. However, for the insert+delete workload in Figure 10(d), CBP

is consistently better, especially for bigger data. Therefore, to keep

the remaining experiments simple, we will use CBP as a repre-

sentative of the three proposed techniques to compare with other

state-of-the-art spatial partitioning systems.

7.3 Comparison with state-of-the-art systems
This part compares the proposed CBP algorithm to existing record-

level and block-level systems for big spatial data based on both the

ingestion time and query execution time. We compare to GeoMesa

and AsterixDB as record-level systems and to Sedona and Beast

as block-level systems. GeoMesa is a geospatial database systems

that is built on top of distributed databases, which is expected to

work well with highly selective queries. We use XZ2-16bits [14] as

the index scheme for spatial objects in GeoMesa which allows each

partitioned file maintain a size of few KBs. AsterixDB is a big-data

management system that uses record-level indexing with an R-tree

implementation on-top of LSM components. Sedona and Beast only

work with static data so we must rebuild the entire index after

each batch. Similar to Sedona and Beast, the proposed methods is

implemented in Spark. To make the experiments fair, we use HDFS

as the storage layer for all systems, except AsterixDB, which comes

with its own storage layer.

722

50 60 70 80 90

0

500

1,000

1,500

2,000

Dataset size (GB)

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
) CBP

R*P

LSMP

(a) Ingestion performance

50 60 70 80 90

1,000

2,000

3,000

4,000

Dataset size (GB)

T
o
t
a
l
a
r
e
a

CBP

R*P

LSMP

(b) Total area

50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

Dataset size (GB)

P
a
r
t
i
t
i
o
n
s
i
z
e
’
s
s
t
a
n
d
a
r
d
d
e
v
i
a
t
i
o
n

CBP

R*P

LSMP

(c) Partition load balance

10
−4

5.10−4 10
−3

5.10−3 0.01 0.05 0.1

0

200

400

Range query selectivity

E
x
e
c
u
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

CBP

R*P

LSMP

(d) Range query performance

Figure 9: Performance of the three proposed implementations with insert-only workload

50 60 70 80 90

0

1,000

2,000

3,000

Dataset size (GB)

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
) CBP

R*P

LSMP

(a) Ingestion performance

50 60 70 80 90

0

2,000

4,000

Dataset size (GB)

T
o
t
a
l
a
r
e
a

CBP

R*P

LSMP

(b) Total area

50 60 70 80 90

0

0.2

0.4

0.6

0.8

1

Dataset size (GB)

B
l
o
c
k
u
t
i
l
i
z
a
t
i
o
n

CBP

R*P

LSMP

(c) Disk utilization

10
−4

5.10−4 10
−3

5.10−3 0.01 0.05 0.1

0

200

400

Range query selectivity

E
x
e
c
u
t
i
o
n
t
i
m
e

CBP

R*P

LSMP

(d) Range query performance

Figure 10: Performance of the three proposed implementations with insert-delete workload

50 60 70 80 90 100

0

2,000

4,000

6,000

8,000

Dataset size (GB)

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

CBP Beast

AsterixDB Sedona

GeoMesa

(a) Ingestion performance

310 320 330 340

500

1,000

1,500

2,000

Dataset size (GB)

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

CBP

AsterixDB

(b) Scalability of proposed system

10
−4

5.10−4 10
−3

5.10−3 0.01 0.02 0.05

0

200

400

600

Range query selectivity

E
x
e
c
u
t
i
o
n
t
i
m
e

CBP Beast

AsterixDB Sedona

(c) Range query performance

4 8 16 24 40 72

0

2,000

4,000

Join inputs size (GB)

E
x
e
c
u
t
i
o
n
t
i
m
e

CBP Beast

AsterixDB Sedona

(d) Spatial join performance

Figure 11: Performance comparison of CBP with existing techniques: AsterixDB, GeoMesa, Beast

5 10 15 20 25 30

0

200

400

600

Batch size (GB)

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
)

0

2,000

4,000

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Query time

Ingestion time

(a) Effect of batch size

100 200 300 400 500

0

200

400

HDFS block size (MB)

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
)

0

500

1,000

1,500

2,000

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Query time

Ingestion time

(b) Effect of HDFS block size

10
−4

10
−3

10
−20

200

400

Query ratio (𝑠2/𝑀𝐵𝑅(𝐷))

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
)

0

200

400

600

800

I
n
g
e
s
t
i
o
n
t
i
m
e
(
s
e
c
o
n
d
s
)

Query time

Ingestion time

(c) Effect of query size 𝑠

0 0.2 0.4 0.6 0.8
0

200

400

600

Saved cost ratio

Q
u
e
r
y
t
i
m
e
(
s
e
c
o
n
d
s
)

0

50

100

150

P
r
o
c
e
s
s
e
d
D
a
t
a
(
G
B
)

Query time

Processed Data

(d) Effect of saved cost ratio

Figure 12: Effect of different partitioning parameters in CBP

7.3.1 Ingestion performance. Figure 11(a) shows the ingestion per-

formance in different systems. To measure the steady state per-

formance when data is big, we start with a 48 GB data of the MS-

Buildings dataset and append batches of 4GB. We measure the

accumulated time to ingest these batches to the systems we are

comparing. We observe that CBP outperforms other systems in

terms of ingestion performance. Sedona and Beast are the slowest

systems since they repartition all the data for each new batch so the

ingestion time grows super linearly. On the other hand, AsterixDB

and GeoMesa only insert the new records but they suffer from

the overhead of record-level indexing where the index structure

must find the exact position of each single record. CBP reaches a

sweet spot since it adopts a block-level approach that has a lower

overhead, yet, it does not require a complete reorganization as in

Sedona and Beast. Since CBP and AsterixDB are clearly winners for

ingestion workloads, we run another experiment starting with 300

GB of OSM-All Objects dataset. Then we append several batches of

8 GB data to verify that they are able to work on very large datasets

723

as shown in Figure 11(b). We observe that CBP is still relatively

faster than AsterixDB at this scale.

7.3.2 Range query performance. Figure 11(c) shows the perfor-

mance of range query in different systems. In this experiment, we

ingest MS-Buildings dataset in CBP, Beast, AsterixDB and Sedona.

We omit the results of GeoMesa because it was way slower than

all other techniques. After the data is fully ingested, we execute a

batch of range queries with different query sizes and measure the

total running time in seconds. We observe that AsterixDB is bet-

ter than others with highly selective queries and the performance

significantly drops for large size queries. This is a direct result of

the record-level index scheme of AsterixDB which better supports

highly-selective queries where the index can quickly locate the

individual records in the result. As the query size increases, the cost

of accessing records individually becomes too high. On the other

hand, CBP and Beast show a reasonable performance for small

queries and much better than AsterixDB for large queries since

they can still use the partition information to reduce the number of

accessed partitions and then simply scan the matching partitions

in parallel which reduces the total processing time for range query.

7.3.3 Spatial join performance. In this experiment, we partition

different batches of data which are extracted from MS-Buildings

with size from 2GB to 64GB and OSM-Parks with size from 2GB

to 8GB. We execute the spatial join algorithm which finds all the

intersected pairs of two datasets. Figure 11(d) shows the spatial

join query performance in CBP, Beast, AsterixDB and Sedona. In

particular, we measure the total time to complete the query. We

can easily observe that CBP and Beast outperform AsterixDB and

Sedona in all join operations of large datasets, while AsterixDB is

only the winner in the join of small datasets. Sedona is slow due

to its design and implementation. The explanation is similar to

the range query performance. Since AsterixDB partitions size is

small, they will require more jobs to complete the same query when

compared to block-level partitioning techniques. We also observe

that Beast is only slightly faster than CBP because it always rebuilds

the entire index so it becomes highly optimized. However, CBP can

reach almost the same performance by smart selection of a few

partitions to reorganize after each batch.

7.4 Effects of partitioning parameters on CBP
7.4.1 Effect of batch size. Figure 12(a) shows the effect of batch size
on ingestion time and query performance in the CBP technique.

We ingest 96 GB of the MS-Buildings dataset using CBP while

varying the batch size from 4GB to 32GB. We use a set of 100 square

range queries with various query ratios from 0.0001 to 0.05 for this

and the following experiments. We observe that when the batch

size increases, the ingestion time is reduced because fewer flush

and reorganization steps are needed. At the same time, the query

performance is not significantly affected because CBP can adjust

the reorganization work to keep the index of high quality. However,

when the batch size is very large, the range query performance

starts to decrease because of the less frequent reorganization.

7.4.2 Effect of block size. This experiment measure the effect of

HDFS block size to the partitioning quality. We ingest the MS-

Buildings dataset with while varying the block size from 32 MB

up to 512 MB. Figure 12(b) shows that the ingestion time will be

high if the block size is too small or too large, while the range

query performance is slower for large block size, which is expected

since a query have to process more data in average. Based on this

observation, we would suggest to use the block size 128 MB or 256

MB for spatial partitioning techniques on HDFS.

7.4.3 Effect of query size in the cost model. This experiment studies

the effect of the parameter 𝑠 in the cost model which represents

the size of the square query range. We vary the parameter 𝑠 while

measuring the ingestion time and the query processing time for the

same set of range queries used in Section 7.4.1. In Figure 12(c), we

vary the query ratio (𝑠2/𝑀𝐵𝑅(𝐷)) from 10
−4

to 0.05where𝑀𝐵𝑅(𝐷)
is the area of the input MBR. As observed, both the ingestion time

and processing time are relatively stable which indicates that the

parameter 𝑠 is easy to tune. This makes sense since optimizing the

partitions for one query size is expected to make the partitions

work well for other query sizes a well.

7.4.4 Effect of saved cost ratio. This experiment highlights the

effect of changing the frequency of the reorganization step. In

particular, we introduce a parameter called saved cost ratio, where
CBP only triggers the reorganization process if the saved cost after

reorganization is greater than that ratio. Figure 12(d) shows the

query time and the amount of data being reorganized as the saved

cost ratio is increased from 0 (always reorganize) to 0.8. As the ratio

increases, the total amount of data being reorganized decreases

because of fewer reorganization. On the other hand, the query time

becomes significantly worse only for very high saved cost ratio.

This indicates that we can further reduce the reorganization time

while maintaining the same query performance and we plan to

further study this effect in the future.

8 CONCLUSION
This paper proposed a generic framework for incremental partition-

ing of big spatial data. We used this framework to implement three

incremental spatial partitioning techniques to show its feasibility.

Then, we provided a deeper study to the partition optimization

problem and proved its NP-hardness. Based on this, we split it into

two smaller problems, partition selection and partition reorganiza-

tion. We then showed that the partition selection problem is crucial

for the partition quality. To solve the partition selection problem,

we proposed a new range query cost model and used it to build an

approximate greedy algorithm for the partition selection problem.

Finally, we carried out an extensive experimental evaluation using

large scale real data to evaluate the efficiency of the proposed work.

The experiments showed that the proposed techniques minimize

the partition construction time while maintaining high quality par-

titions. The source code and datasets are made publicly available

for reproducibility. In the future, we can extend the proposed work

to be aware of the workload by using a workload-aware cost model

while reusing the benefit model and CBP algorithm.

ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation

(NSF) under grant IIS-1838222, IIS-2046236, IIS-1954644, IIS-1901379,

SES-1831615 and CNS-1924694.

724

REFERENCES
[1] accumulo [n.d.]. Apache Accumulo. https://accumulo.apache.org/. Visisted on

15-Sep-2021.

[2] Daniar Achakeev, Bernhard Seeger, and Peter Widmayer. 2012. Sort-based query-

adaptive loading of r-trees. In Proceedings of the 21st ACM international conference
on Information and knowledge management. 2080–2084.

[3] Swarup Acharya, Viswanath Poosala, and Sridhar Ramaswamy. 1999. Selectivity

Estimation in Spatial Databases. In SIGMOD 1999, Proceedings ACM SIGMOD
International Conference on Management of Data, June 1-3, 1999, Philadelphia,
Pennsylvania, USA. 13–24.

[4] Sattam Alsubaiee et al. 2014. Storage management in AsterixDB. Proceedings of
the VLDB Endowment 7, 10 (2014), 841–852.

[5] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak

Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram

Faraaz, et al. 2014. Asterixdb: A scalable, open source BDMS. Proceedings of the
VLDB Endowment 7, 14 (2014), 1905–1916.

[6] Ahmed M. Aly, Hazem Elmeleegy, Yan Qi, and Walid G. Aref. 2016. Kangaroo:

Workload-Aware Processing of Range Data and Range Queries in Hadoop. In

Proceedings of the Ninth ACM International Conference on Web Search and Data
Mining, San Francisco, CA, USA, February 22-25, 2016, Paul N. Bennett, Vanja
Josifovski, Jennifer Neville, and Filip Radlinski (Eds.). ACM, 397–406. https:

//doi.org/10.1145/2835776.2835841

[7] Ahmed M. Aly, Ahmed R. Mahmood, Mohamed S. Hassan, Walid G. Aref, Mourad

Ouzzani, Hazem Elmeleegy, and Thamir Qadah. 2015. AQWA: Adaptive Query-

Workload-Aware Partitioning of Big Spatial Data. Proc. VLDB Endow. 8, 13 (2015),
2062–2073. https://doi.org/10.14778/2831360.2831361

[8] amazons3 [n.d.]. Amazon S3. https://aws.amazon.com/s3/. Visisted on 15-Sep-

2021.

[9] asterixdb [n.d.]. Apache AsterixDB. https://asterixdb.apache.org. Visisted on

15-Sep-2021.

[10] azure [n.d.]. Microsoft Azure. https://azure.microsoft.com. Visisted on 15-Sep-

2021.

[11] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.

1990. The R*-tree: An Efficient and Robust Access Method for Points and Rect-

angles. In Proceedings of the 1990 ACM SIGMOD International Conference on
Management of Data (Atlantic City, New Jersey, USA) (SIGMOD ’90). 322–331.

[12] Alberto Belussi and Christos Faloutsos. 1995. Estimating the Selectivity of Spatial

Queries Using the ’Correlation’ Fractal Dimension. In VLDB’95, Proceedings of
21th International Conference on Very Large Data Bases, September 11-15, 1995,
Zurich, Switzerland. 299–310.

[13] Jon Louis Bentley. 1979. Multidimensional Binary Search Trees in Database

Applications. IEEE Trans. Software Eng. 5, 4 (1979), 333–340. https://doi.org/10.

1109/TSE.1979.234200

[14] Christian BÖxhm, Gerald Klump, and Hans-Peter Kriegel. 1999. Xz-ordering: A

space-filling curve for objects with spatial extension. In International Symposium
on Spatial Databases. Springer, 75–90.

[15] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.

Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 4.

[16] Yong-Jin Choi and Chin-Wan Chung. 2002. Selectivity estimation for spatio-

temporal queries to moving objects. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, Madison, Wisconsin, USA, June
3-6, 2002. 440–451.

[17] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel RMadden. 2010.

Schism: a workload-driven approach to database replication and partitioning.

(2010).

[18] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[19] Gisbert Dröge and Hans-Jörg Schek. 1993. Query-adaptive data space partition-

ing using variable-size storage clusters. In International Symposium on Spatial
Databases. Springer, 337–356.

[20] Ahmed Eldawy, Louai Alarabi, and Mohamed FMokbel. 2015. Spatial partitioning

techniques in SpatialHadoop. Proceedings of the VLDB Endowment 8, 12 (2015),
1602–1605.

[21] Ahmed Eldawy, Vagelis Hristidis, Saheli Ghosh, Majid Saeedan, Akil Sevim, A.B.

Siddique, Samriddhi Singla, Ganesh Sivaram, Tin Vu, and Yaming Zhang. 2021.

Beast: Scalable Exploratory Analytics on Spatio-temporal Data. In CIKM. ACM.

[22] Ahmed Eldawy, Yuan Li, Mohamed F Mokbel, and Ravi Janardan. 2013.

CG_Hadoop: computational geometry in MapReduce. In Proceedings of the 21st
ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems. ACM, 294–303.

[23] Ahmed Eldawy and Mohamed F Mokbel. 2015. Spatialhadoop: A mapreduce

framework for spatial data. In 2015 IEEE 31st International Conference on Data
Engineering. IEEE, 1352–1363.

[24] Ahmed Eldawy and Mohamed F. Mokbel. 2016. The Era of Big Spatial Data: A

Survey. Foundations and Trends in Databases 6, 3-4 (2016), 163–273.

[25] Ahmed Eldawy and Mohamed F. Mokbel. 2019. Boundaries of parks and green

areas from all over the world as extracted from OpenStreetMap. https://doi.

org/10.6086/N1RX994T#mbr=9qh2s0vm,9qhf060f Retrieved from UCR-STAR

https://star.cs.ucr.edu/?OSM2015/parks&d#mbr=9qh2s0vm,9qhf060f.

[26] Ahmed Eldawy, Ibrahim Sabek, Mostafa Elganainy, Ammar Bakeer, Ahmed

Abdelmotaleb, and Mohamed F. Mokbel. 2017. Sphinx: Empowering Impala for

Efficient Execution of SQL Queries on Big Spatial Data. Arlington, VA, 65–83.

[27] EOSDIS 2017. The Common Metadata Repository: The Foundation of NASA’s

Earth Observation Data. https://earthdata.nasa.gov/the-common-metadata-

repository.

[28] Raphael A. Finkel and Jon Louis Bentley. 1974. Quad Trees: A Data Structure for

Retrieval on Composite Keys. Acta Inf. 4 (1974), 1–9. https://doi.org/10.1007/

BF00288933

[29] Anthony Fox, Chris Eichelberger, James Hughes, and Skylar Lyon. 2013. Spatio-

temporal indexing in non-relational distributed databases. In Big Data, 2013 IEEE
International Conference on. IEEE, 291–299.

[30] Saheli Ghosh, Tin Vu, Mehrad Amin Eskandari, and Ahmed Eldawy. 2019. UCR-

STAR: The UCR spatio-temporal active repository. SIGSPATIAL Special 11, 2
(2019), 34–40.

[31] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[32] hbase [n.d.]. Apache HBase. http://hbase.apache.org/. Visisted on 15-Sep-2021.

[33] Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and

Jianping Fan. 2011. MR-DBSCAN: An Efficient Parallel Density-Based Clustering

Algorithm Using MapReduce. Tainan, Taiwan, 473–480.

[34] Erik G. Hoel and Hanan Samet. 1994. Performance of Data-Parallel Spatial

Operations. In VLDB’94, Proceedings of 20th International Conference on Very
Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. 156–167.

[35] James N Hughes, Andrew Annex, Christopher N Eichelberger, Anthony Fox,

AndrewHulbert, andMichael Ronquest. 2015. Geomesa: a distributed architecture

for spatio-temporal fusion. In SPIE Defense+ Security. International Society for

Optics and Photonics, 94730F–94730F.

[36] Ibrahim Kamel and Christos Faloutsos. 1994. Hilbert R-tree: An Improved R-

tree using Fractals. In VLDB’94, Proceedings of 20th International Conference on
Very Large Data Bases, September 12-15, 1994, Santiago de Chile, Chile. 500–509.
http://www.vldb.org/conf/1994/P500.PDF

[37] Yuan Li, Ahmed Eldawy, Jie Xue, Nadezda Knorozova, Mohamed F. Mokbel, and

Ravi Janardan. 2019. Scalable Computational Geometry in MapReduce. (16 Jan

2019). https://doi.org/10.1007/s00778-018-0534-5

[38] Jiamin Lu and Ralf Hartmut Guting. 2012. Parallel secondo: boosting database

engines with hadoop. In Parallel and Distributed Systems (ICPADS), 2012 IEEE
18th International Conference on. IEEE, 738–743.

[39] Peng Lu, Gang Chen, Beng Chin Ooi, Hoang TamVo, and SaiWu. 2014. ScalaGiST:

Scalable Generalized Search Trees for MapReduce Systems [Innovative Systems

Paper]. PVLDB 7, 14 (2014), 1797–1808.

[40] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. 2012. Efficient Processing of

k Nearest Neighbor Joins using MapReduce. 5, 10 (2012), 1016–1027.

[41] Ahmed R. Mahmood, Ahmed M. Aly, Thamir Qadah, El Kindi Rezig, Anas Daghis-

tani, AmgadMadkour, Ahmed S. Abdelhamid, Mohamed S. Hassan, Walid G. Aref,

and Saleh M. Basalamah. 2015. Tornado: A Distributed Spatio-Textual Stream

Processing System. 8, 12 (2015), 2020–2023.

[42] Microsoft. 2020. Computer generated building footprints in all 50 US states.

https://doi.org/10.6086/N1C24TGK Retrieved from UCR-STAR https://star.cs.ucr.

edu/?MSBuildings&d.

[43] mongodb [n.d.]. MongoDB. https://www.mongodb.com/. Visisted on 15-Sep-

2021.

[44] Jan Kristof Nidzwetzki and Ralf Hartmut Güting. 2018. BBoxDB-A Scalable Data

Store forMulti-Dimensional Big Data. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. ACM, 1867–1870.

[45] Jürg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File:

An Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9,
1 (1984), 38–71.

[46] Shoji Nishimura, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. 2013. MD-

HBase: design and implementation of an elastic data infrastructure for cloud-scale

location services. Distributed and Parallel Databases 31, 2 (2013), 289–319.
[47] Matthaios Olma,Manos Karpathiotakis, Ioannis Alagiannis, Manos Athanassoulis,

and Anastasia Ailamaki. 2017. Slalom: Coasting through raw data via adaptive

partitioning and indexing. Proceedings of the VLDB Endowment 10, 10 (2017),

1106–1117.

[48] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. 1996.

The Log-Structured Merge-Tree (LSM-Tree). Acta Inf. 33, 4 (1996), 351–385.
[49] postgis [n.d.]. PostGIS. https://postgis.net/. Visisted on 15-Sep-2021.

[50] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.

Redondo Beach, CA, 21:1–21:10.

[51] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data Structures.

ACM Comput. Surv. 16, 2 (1984), 187–260.

725

https://accumulo.apache.org/
https://doi.org/10.1145/2835776.2835841
https://doi.org/10.1145/2835776.2835841
https://doi.org/10.14778/2831360.2831361
https://aws.amazon.com/s3/
https://asterixdb.apache.org
https://azure.microsoft.com
https://doi.org/10.1109/TSE.1979.234200
https://doi.org/10.1109/TSE.1979.234200
https://doi.org/10.6086/N1RX994T#mbr=9qh2s0vm,9qhf060f
https://doi.org/10.6086/N1RX994T#mbr=9qh2s0vm,9qhf060f
https://star.cs.ucr.edu/?OSM2015/parks&d##mbr=9qh2s0vm,9qhf060f
https://earthdata.nasa.gov/the-common-metadata-repository
https://earthdata.nasa.gov/the-common-metadata-repository
https://doi.org/10.1007/BF00288933
https://doi.org/10.1007/BF00288933
http://hbase.apache.org/
http://www.vldb.org/conf/1994/P500.PDF
https://doi.org/10.1007/s00778-018-0534-5
https://doi.org/10.6086/N1C24TGK
https://star.cs.ucr.edu/?MSBuildings&d
https://star.cs.ucr.edu/?MSBuildings&d
https://www.mongodb.com/
https://postgis.net/

[52] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.

The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer

Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[53] spatiallite [n.d.]. SpatialLite. https://www.gaia-gis.it/fossil/libspatialite/index.

Visisted on 15-Sep-2021.

[54] Yannis Theodoridis and Timos Sellis. 1996. A model for the prediction of R-

tree performance. In Proceedings of the fifteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 161–171.

[55] twitterstatistic 2018. Twitter Usage Statistics. http://www.internetlivestats.com/

twitter-statistics/. Visisted on 15-Sep-2021.

[56] Kostas Tzoumas, Man Lung Yiu, and Christian S Jensen. 2009. Workload-aware

indexing of continuously moving objects. Proceedings of the VLDB Endowment 2,
1 (2009), 1186–1197.

[57] Tin Vu and Ahmed Eldawy. 2018. R-Grove: growing a family of R-trees in the big-

data forest. In Proceedings of the 26th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 532–535.

[58] Tin Vu and Ahmed Eldawy. 2020. R*-Grove: Balanced Spatial Partitioning for

Large-Scale Datasets. Frontiers in Big Data 3 (2020), 28. https://doi.org/10.3389/

fdata.2020.00028

[59] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. 2016. Simba:

Efficient In-Memory Spatial Analytics. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San Francisco, CA,
USA, June 26 - July 01, 2016. 1071–1085.

[60] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. Geospark: A cluster com-

puting framework for processing large-scale spatial data. In Proceedings of the
23rd SIGSPATIAL international conference on advances in geographic information
systems. 1–4.

[61] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2016. A demonstration of GeoSpark:

A cluster computing framework for processing big spatial data. In 32nd IEEE
International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May
16-20, 2016. 1410–1413.

[62] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-

silient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In NSDI. USENIX Association, 15–28.

[63] Yaming Zhang and Ahmed Eldawy. 2021. OpenStreetMap All Objects. Retrieved

from UCR-STAR https://star.cs.ucr.edu/?osm21/all_objects&d.

726

https://doi.org/10.1109/MSST.2010.5496972
https://www.gaia-gis.it/fossil/libspatialite/index
http://www.internetlivestats.com/twitter-statistics/
http://www.internetlivestats.com/twitter-statistics/
https://doi.org/10.3389/fdata.2020.00028
https://doi.org/10.3389/fdata.2020.00028
https://star.cs.ucr.edu/?osm21/all_objects&d

