
Efficient Label-Constrained Shortest Path Queries on Road
Networks: A Tree Decomposition Approach

Junhua Zhang

Nanjing University of Science and

Technology

University of Technology Sydney

junhua.zhang@student.uts.edu.au

Long Yuan
∗

Nanjing University of Science and

Technology

longyuan@njust.edu.cn

Wentao Li

University of Technology Sydney

wentao.li@uts.edu.au

Lu Qin

University of Technology Sydney

lu.qin@uts.edu.au

Ying Zhang

University of Technology Sydney

ying.zhang@uts.edu.au

ABSTRACT
Computing the shortest path between two vertices is a fundamental

problem in road networks. Most of the existing works assume that

the edges in the road networks have no labels, but in many real

applications, the edges have labels and label constraints may be

placed on the edges appearing on a valid shortest path. Hence, we

study the label-constrained shortest path queries in this paper. In

order to process such queries efficiently, we adopt an index-based

approach and propose a novel index structure, LSD-Index, based on
tree decomposition. With LSD-Index, we design an efficient query

processing algorithm with good performance guarantees. More-

over, we also propose an algorithm to construct LSD-Index and

further improve the efficiency of index construction by exploiting

the parallel computing techniques. We conduct extensive perfor-

mance studies using large real road networks including the whole

USA road network. Compared with the state-of-the-art approach,

the experimental results demonstrate that our algorithm not only

achieves up to 2 orders of magnitude speedup in query processing

time but also consumes much less index space. Meanwhile, the

indexing time is also competitive, especially that for the parallel

index construction algorithm.

PVLDB Reference Format:
Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, Ying Zhang. Efficient

Label-Constrained Shortest Path Queries on Road Networks: A Tree

Decomposition Approach. PVLDB, 15(3): 686-698, 2022.

doi:10.14778/3494124.3494148

1 INTRODUCTION
Computing the shortest path between two locations is one of the

fundamental problems in road networks [3, 8, 9, 12, 14, 20, 22, 28,

30, 34, 40]. In real road networks, not all roads are the same, for

example, highways allow faster travel, toll roads cost money, and

the transport of hazardous goods is forbidden on roads in water

∗
Long Yuan is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.

doi:10.14778/3494124.3494148

protection areas. Therefore, many applications place constraints on

the edges appearing on a valid shortest path when computing the

shortest path, which leads to the study of label-constrained shortest

path queries [10, 25]. Formally, given a road networkG where each

edge has a label, a source vertex s , a target vertex t , and an edge

label set L, a label-constrained shortest path query q = (s, t,L)
aims to compute the shortest path from s to t such that the labels

of edges on the shortest path are contained in L.

Label-constrained shortest path queries can be used in many

real application scenarios such as personal routine planing [25] and

emergency evacuation navigation [16]. For example, the shortest

path from Irvine, CA to Riverside, CA travels along State Route

261, which is a local toll road through this area. For a user who

does not wish to pay the toll fee, we can find the shortest path

from Irvine to Riverside that actually avoids all toll roads by a label-

constrained shortest path query q = (”Irvine”, ”Riverside”,L) in
which L does not contains the label representing toll road [25].

In China, new drivers who get the driver license in less than 12

months are not allowed to drive cars on expressway alone for

safety [31]. Therefore, the expressway should be avoided when

planning routines for these new drivers, which can be achieved

by the label-constrained shortest path queries where L does not

contain the label representing expressway. In emergency evacuation

navigation, the recommended evacuation route should avoid the

roads in dangerous areas [16], which can be achieved by the label-

constrained shortest path queries where L does not contain the

label representing roads in dangerous areas.

Motivation. A straightforward approach for label-constrained

shortest path queries is to use Dijkstra’s algorithm [7] by only

visiting the edges whose edge label is in L during the traversal.

Although this approach can compute the required shortest path,

as the road network is large in real applications, it cannot satisfy

the real-time requirements for the label-constrained shortest path

queries as it may traverse the whole road network when s and t
are far away from each other. As a result, researchers resort to

index-based techniques to accelerate the label-constrained shortest

path query processing [10, 25].

The state-of-the-art index-based approach is edge-disjoint parti-

tion (EDP) [10]. Intuitively, EDP partitions the road network based

on each edge label and caches the computed shortest path informa-

tion for processed queries in each partition as the index structure.

686

https://doi.org/10.14778/3494124.3494148
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494148

When a new query comes, the cached information is used to ac-

celerate the query processing. Obviously, the performance of EDP
heavily depends on the hit ratio of the index. However, there are

no theoretical guarantees on the hit ratio of EDP, as it just caches
the computed shortest path in each partition for the processed

queries, but the newly issued queries may distribute diversely and

the label-constrained shortest path for a specific query maybe in-

volve several partitions. Consequently, it is quite possible that the

hit ratio for a specific query is low and EDP degenerates into an

online search algorithm similar to direct usingDijikstra’s algorithm.

Even worse, the performance of EDP could be poorer than direct

using Dijikstra’s algorithm as more vertices may be visited due to

the introduction of the index.

Motivated by this, in this paper, we re-investigate the label-

constrained shortest path queries on road networks and aim to

design an efficient label-constrained shortest path query processing

algorithm with non-trivial theoretical performance guarantees.

Our approach.We also resort to index-based techniques to accom-

plish efficient label-constrained shortest path query processing. As

tree decomposition can decompose a road network into a tree-like

structure with small treeheight and treewidth, it achieves great suc-

cess in computing the shortest path on unlabelled road networks

recently [15, 21]. Inspired by this, we revisit the tree decomposition

based indexing techniques for shortest path problem.

We start from the shortest path queries on unlabelled road net-
works. Regarding this problem, the state-of-the-art tree decom-

position based indexing approach processes a query with time

complexity O(h · ω2), where h, ω is the treeheight, treewidth of

the tree decomposition, respectively [30]. By carefully analyzing

the properties of the tree decomposition, we present an algorithm

based on the tree decomposition for the shortest path queries, and

non-trivially prove that the time complexity of the algorithm to

process a query can be bounded byO(h ·ω), which reduces the time

complexity of [30] by a factorω (refer to Theorem 4.13). Since h and

ω are small for road networks, it means we can efficiently process

the shortest path queries on unlabelled road networks based on

tree decomposition with theoretical performance guarantees.

Based on the above findings, we explore the tree decomposition

based indexing solution for label-constrained shortest path queries.

A direct indexing solution is as follows: for each induced road net-

work by one possible combination of the edge label set in Σ, where
Σ is the finite alphabet used for the labels of edges in G, we treat
the induced road network as an unlabelled road network and build

the tree decomposition based index for it. Given a label-constrained

shortest path q = (s, t,L), we retrieve the corresponding index for

the edge label set L and compute the shortest path accordingly.

Clearly, this approach fully utilizes the efficiency of the tree de-

composition based indexing technique for shortest path queries on

unlabelled road networks. However, the total number of indices

constructed in this approach is 2
|Σ |
. It is prohibitive to construct

and maintain such a number of indices, which makes this approach

unscalable to handle large road networks in real applications.

Observing the indices constructed in the direct solution, we

find that lots of redundant information regarding label-constrained

shortest path computation are stored among different indices. Fol-

lowing this observation, we conceive of reducing the redundant

Table 1: List of Notations

Notation Description

G = (V , E) graph G with vertex set V and edge set E
ϕ(·), ℓ(·) weight and label of an edge/path

Σ alphabet of edge labels

G[Σs] Σs -induced subgraph of G

distLG (s, t) label-constrained shortest distance

TG tree decomposition of G
X , X (v) tree node

ω(TG)/ω,h(TG)/h treewidth and treeheight of TG
S, S(u,v) label-constrained shortest distance set(LSDS)

ρ the maximum size of LSDS
Gi label-constrained distance preserved graph

information among these 2
|Σ |

indices and integrating them into

a holistic compact index structure. To make our idea practically

applicable, the following issues need to be addressed: (1) how to

design such an index that the redundant information is reduced

while the efficiency of query processing is not compromised? (2)

how to efficiently construct the index for a road network, especially

when the road network is large?

Contribution. In this paper, we address the above issues and make

the following contributions:

(1) A new tighter bound on the shortest path query processing on unla-
belled road networks. We revisit the problem of tree decomposition

based indexing for shortest path queries on unlabelled road net-

works and present an algorithm for this problem. We prove the time

complexity of the algorithm is O(h · ω), while the state-of-the-art
tree decomposition based indexing approach is O(h · ω2).

(2) Efficient algorithms for label-constrained shortest path queries
with theoretical performance guarantees.We design a new tree de-

composition based index for the label-constrained shortest path

queries. Based on the index, we propose an algorithm to answer

the queries. We also design an algorithm to construct the index.

Moreover, considering the road networks in real applications could

be very large, we exploit parallel computing techniques to further

speed up the construction of the index.

(3) Extensive performance studies on real road networks.We conduct

extensive performance studies on eight real large road networks

including the whole road network of the USA. The experimental

results demonstrate the efficiency and effectiveness of our index.

Proofs and part of experimental results are omitted in this paper

due to limited space, they can be found in our technical report [39].

2 PRELIMINARIES
Let G = (V , E,ϕ, ℓ, Σ) be a labelled road network, where V (G) is a
set of vertices, E(G) is a set of edges, ϕ : E(G) → R+ is a function
that assigns each edge e ∈ E(G) a positive number ϕ(e,G) as its
weight, Σ is a finite alphabet of edge labels, and ℓ : E(G) → Σ is

a function assigns each edge e ∈ E(G) a label ℓ(e,G) ∈ Σ. We use

n = |V (G)| (resp. m = |E(G)|) to denote the number of vertices

(resp. edges) in G. For each vertex v ∈ V (G), the neighbors of v ,
denoted by nbr(v,G), is defined as nbr(v,G) = {u |(u,v) ∈ E(G)}.
The degree of a vertex v is the number of neighbors of v . Given

687

3, g

3
, r

2, r

3
, g

1, r

2
, b

2
, g

5, g 2, b

4
, b

3
, b

6
, b

(a) Road network G (b) G[r]

v1 v2

v3v4v5 v6

v9 v8 v11 v7

v12v10

3
, r

2, r

1, r
v1 v2

v3v4 v6

Figure 1: A Road Network and Label-induced Subgraph

a subset of labels Σs ⊆ Σ, the Σs -induced subgraph of G, denoted
by G[Σs], is the subgraph contains all edges in G with labels in Σs .
A path p in G is a sequence of vertices p = (v0,v1,v2...vk), where
(vi ,vi+1) ∈ E(G) for each 0 ≤ i ≤ k − 1. We use P(s, t,G) to denote

all paths from s to t . The weight of the path, denoted by ϕ(p,G),
is defined as ϕ(p,G) =

∑
0≤i≤k−1 ϕ(vi ,vi+1). Given two vertices

s and t , the shortest path from s to t is the path with minimum

weight in P(s, t,G). The shortest distance, denoted by distG (s, t), is
the weight of the shortest path between s and t . For a given path p
in G, the label of p, denoted by ℓ(p,G), is the union of edge labels

in p, i.e., ℓ(p,G) =
⋃
e ∈p ℓ(e,G). For simplicity, we omit G in the

notations if the context is self-evident. For ease of reference, we

summarize the frequently used notations in Table 1.

Definition 2.1. (Label-Constrained Path) Given two vertices

s , t in a road network G = (V , E,ϕ, ℓ, Σ) and a set of edge labels

L ⊆ Σ, a path from s to t is a label-constrained path regarding L if

ℓ(p) ⊆ L.

Definition 2.2. (Label-Constrained Shortest Path) Given two

vertices s , t in a road network G = (V , E,ϕ, ℓ, Σ) and a set of edge

labels L ⊆ Σ, the label-constrained shortest path from s to t is the
path with the minimum weight among the label-constrained paths

from s to t regarding L.

Problem statement. Given a road network G = (V , E,ϕ, ℓ, Σ), a
label-constrained shortest path query is defined as q = (s, t,L),
where s, t ∈ V (G), L ⊆ Σ, and the answer is the label-constrained

shortest path from s to t regarding L. In this paper, we aim to

develop effective indexing techniques to answer q efficiently.

For the ease of explanation, we first consider thatG is undirected,

and discuss how to handle directed road networks in Section 5.5.

Example 2.3. Consider the road network G in Figure 1 (a), the

weight and the label of each edge is shown beside the corresponding

edges. For example, ϕ((v1,v2)) = 1 and ℓ((v1,v2)) = r . For an edge

label set {r }, the {r }-induced subgraph G[r] is shown in Figure 1

(b), which consists of edges with label r . Given vertices v5,v6 and
a label set {b,д}, there are two label-constrained paths between v5
and v6: {(v5,v1,v4,v8,v11,v7,v6), (v5,v9,v8,v11,v7,v6)} and the

second one is the label-constrained shortest path with weight 16.

3 EXISTING SOLUTION
Edge-disjoint partitioning (EDP) [10] is the state-of-the-art solution
for the label-constrained shortest path queries. EDP is an index-

based approach consisting of two components:

EDP indexing. Given a road network G, EDP first partitions G by

the labels of edges. For each label l ∈ Σ, the partition Partl contains
the edges with label l , i.e., Partl = G[l]. It is clear that each edge

label uniquely corresponds to a partition, we use them interchange-

ably when the context is self-evident. Based on the partitions, a

vertex v in a partition Partli is a bridge vertex if there exists an

edge (v,u) ∈ Partlj , and li , lj . For a bridge vertex v ∈ Partli ,
its OtherHosts is other partitions containing v . When processing

queries, it computes the shortest paths in each partition. These com-

puted paths are all cached in the EDP index. As more queries are

processed, which leads to the index size exceeds a specified thresh-

old, EDP uses the least recently used (LRU) replacement strategy

to replace the old paths with new computed shortest paths.

Query processing. For a query q = (s, t,L), EDP adopts a greedy

traversal paradigm similar to Dijkstra′s algorithm to compute the

label-constrained shortest path. During the traversal, it maintains

a min-priority queue Q , each element of Q has three attributes:

(1) Part: the identifier of a partition, (2) v: a vertex id, and (3) d :
currently observed distance from s to v .Q is keyed by (Part,v) and
ordered by d . EDP initially inserts (Partls , s, 0) intoQ , where Partls
is the partition in which s resides. Then, EDP iteratively extracts

elements e ′ from Q , expands the traversal, and inserts frontier

discovered vertex into Q until t is reached or Q becomes empty.

During the expansion, EDP first computes the shortest distances

d from e ′.v to bridge vertices v ′ in e ′.Part, then, for each Part ∈
{L′ ∩ L}, where L′ represents the labels of v ′.OtherHosts in

e ′.Part, it inserts (Part,v ′,d + e ′.d) toQ (if t is in e ′.Part, the same

procedure is applied to t as well). When computing the distances

from e ′.v to a bridge verticesv ′ in a partition, EDP directly obtains it
if it is already cached in the index; Otherwise, it performsDijkstra′s
algorithm and caches the result in the index.

Drawbacks of EDP. EDP processes the label-constrained shortest

path queries correctly, but it has the following two drawbacks in

efficiency: (1) theoretically, there is no non-trivial tight bound on

its query processing time. The worst-case time complexity of EDP
is not better than the online search following Dijkstra’s algorithm.

(2) practically, EDP just caches the computed shortest paths in each

partition for the processed queries, but the newly issued queries

may distribute diversely and the label-constrained shortest path for

the query may involve several partitions, it is quite possible that

most of the needed information for a specific query is not cached. In

this case, EDP degenerates into an online traversal based algorithm

similar to the Dijikstra’s algorithm.

4 A NAIVE INDEXING APPROACH
4.1 Tree Decomposition
Tree decomposition [26] decomposes a graph into a tree-like struc-

ture to speed up solving graph problems, it is defined as:

Definition 4.1. (Tree Decomposition) Given a graph G, a tree
decomposition TG of G is a rooted tree with nodes {X1, · · · ,Xn },
where each node is a subset of V (G) (i.e., Xi ⊆ V (G)), such that:

(1)

⋃
X ∈V (TG) X = V (G);

(2) for each edge (u,v) ∈ E(G), there is a node X ∈ TG such that

u ∈ X and v ∈ X ;

(3) for each v ∈ V (G), the nodes containing v (i.e., {X |v ∈ X })
form a connected subtree of TG .

Definition 4.2. (Treewidth and Treeheight) Given a tree de-

composition TG of G, the treewidth of TG , denoted by ω(TG) is

688

one less than the maximum size of all nodes in TG , i.e., ω(TG) =
maxX ∈V (TG) |X | − 1. The treeheight ofTG , denoted by h(TG), is the
maximum depth (the depth of a node inTG is the distance from the

node to the root node of TG) of all nodes in TG .

For ease of presentation, we refer to v ∈ V (G) in G as a vertex

and refer to X ∈ V (TG) in TG as a node. We use ω and h to denote

the treewidth and treeheight of the tree decomposition TG if the

context is self-evident. The treewidth of a graph G is the minimum

treewidth over all possible tree decompositions of G.
To determine whether a given graph G has treewidth at most a

given variable is NP-Complete [2]. Existing techniques to compute

the optimal tree decomposition can only handle small graphs [13].

Thus, we adopt a suboptimal but practically effective algorithm,

MDE, to conduct the tree decomposition [35].

Minimumdegree elimination based tree decomposition.MDE
conducts the tree decomposition in two steps: (1) it iteratively elim-

inates a vertex v with the minimum degree in G, and then adds

edges between all neighbors of v , v’s neighbors form a clique in G.
Clearly, after the elimination of v , v’s neighbors become its neigh-

bor’s neighbor. It proceeds the elimination until G becomes empty.

For each elimination, the eliminated vertex v and its neighbors

nbr(v) form a node X (v) in TG . (2) After all the vertices are elimi-

nated, for each node X (v), X (u) is set as the parent of X (v) in TG ,
where X (u) is the node created by the first eliminated vertex u in

X (v)\{v}.

Sub-tree(v8)

X(v9)

X(v1)

v4

v3 v4

v8 v3 v4

v10 v5X(v5)

v11 v7 v8v6 v3 v7v9 v1 v8v2 v1 v3

v12 v6v5 v1 v9

v7 v3 v8v1 v3 v4 v8

Figure 2: A Tree Decomposition TG of G

Example 4.3. Figure 2 shows the tree decomposition TG of G
in Figure 1 (a) generated by MDE. TG has 12 nodes. The vertex

elimination order is v10, v12, v5, v2, v6, v11, v7, v9, v1, v8, v3, v4.
The elimination of a vertexv leads to a unique nodeX (v) inTG . For
example, the elimination of v5 creates node X (v5) = {v5,v1,v9}.
The nodes that contains v8 form a connected subtree of TG (the

green area). Since the nodes in TG contain at most 4 vertices, the

treewidth ω = 3, and treeheight h = 6.

4.2 A Naive Indexing Approach
Given G = (V , E,ϕ, ℓ, Σ), there are 2

|Σ |
possible edge label com-

binations. Therefore, we can build 2
|Σ |

indices and each index is

built upon the induced subgraph by one possible combination of

the edge label in Σ. As all the possible edge label combinations are

considered, for each index, we only need to treat the corresponding

induced subgraph as unlabelled and build the index following the

shortest path indexing technique for the unlabelled road networks.

To answer a queryq = (s, t,L), the index forL is utilized to retrieve

the shortest path. Following this idea, we present a naive indexing

approach based on tree decomposition.

Before presenting the naive indexing approach, we first introduce

the vertex cut property of the tree decomposition, this property is

the key to apply tree decomposition to shortest path queries.

Definition 4.4. (Vertex Cut)Given a graphG , a subset of vertices
C ⊂ V (G) is a vertex cut ofG if the deletion ofC fromG splitsG into

multiple connected components. Given two vertices s and t in G,
the vertex cut C is a s-t cut if the deletion of C from G disconnects

s and t , and we say C separates s and t .

Lemma 4.5. [27] Given a tree decomposition TG ofG , for any non-
root node Xc and its parent Xp , if exists s ∈ Xc \Xp and t ∈ Xp \Xc ,
then Xc ∩ Xp is a vertex cut of G and separates s and t .

Lemma 4.6. [5] Given a tree decomposition TG of G, for any two
vertices s and t in V (G), suppose X (s) is not an ancestor/decedent of
X (t) inTG , let Xlca be the lowest common ancestor (LCA) of X (s) and
X (t) in TG , then Xlca is a vertex cut of G and separates s and t .

Given a s-t cut C , it is obvious that every path from s to t passes
at least one vertex in C . Accordingly, we have:

Lemma 4.7. [21] Given two vertices s and t inG , let C be a s-t cut,
then dist(s, t) = minv ∈C {dist(s,v) + dist(v, t)}.

Example 4.8. Consider the tree decomposition TG of G shown

in Figure 2. For X (v9) and its parent node X (v1), X (v9) ∩ X (v1) =
{v1,v8} is a vertex cut of G, which separates v9 and v3. As shown
in Figure 2, for X (v10) and X (v12), their LCA is X (v8), we know
dist(v10,v3) = 12, dist(v10,v4) = 10, dist(v10,v8) = 8; dist(v12,v3) =
8, dist(v12,v4) = 12 and dist(v12,v8) = 14, the shortest distance

from v10 to v12 is dist(v10,v12) = min(12 + 8, 10 + 12, 8 + 14) = 20.

Since the label-constrained shortest path between two vertices

can be easily obtained if their label-constrained shortest distance is

determined with our algorithms, we focus on the computation of the
label-constrained shortest distance between two vertices hereafter

for clearness and discuss how to obtain the corresponding shortest

path in Section 5.4. For brevity, given two vertices u,v , and an edge

label set L ⊆ Σ, we use distLG (u,v) to denote the label-constrained

shortest distance from u to v regarding L in G.

The naive indexing approach. Based on the above lemmas, we

can devise a straightforward indexing approach to compute label-

constrained shortest distance between two vertices as follows:

• Indexing. For each possible edge label set Σs ⊆ Σ, we first retrieve
the Σs -induced subgraph G[Σs]. Based on G[Σs], we compute the

tree decomposition TG[Σs] withMDE. After that, for each X (v) ∈
TG[Σs], we compute the distG[Σs](v,u) for any u ∈ X (v) \ {v}
and store them in node X (v) using hash table. Note that we also

maintain the mapping from vertex v to node X (v) in the index for

the ease of query processing.

• Query Processing. Given a query q = (s, t,L), we can compute

distLG (s, t) based on the index TG[L] built on G[L]. The detailed
procedure is shown in Algorithm 1. It first computes the lowest

common ancestor Xlca of X (s) and X (t) in TG[L] (line 1). After

689

Algorithm 1: NaiveQuery (s, t,L,T)

1 Xlca ← find LCA of X (s) and X (t) in TG [L];
// compute shortest distance from s to vertices in Xlca

2 ds (·) ← ∞, ds (s) ← 0 ;

3 foreach w ∈ X (s)\{s } do
4 ds (w) ← distG [L](s ,w);
5 X ′s ← X (s);
6 while Xlca , X ′s do
7 Xp ← parent of X ′s in TG [L];
8 for u ∈ Xp \ X ′s do
9 for v ∈ Xp ∩ X ′s do
10 ds (u) = min{ds (u), ds (v) + distG [L](v , u)};
11 X ′s ← Xp ;
12 Repeat line 2-11 by replacing s with t ;
13 return minw∈Xlca {ds (w) + dt (w)};

3, g

3
, r

2, r

3
, g

4, r

1, r
v1 v2

v3v4 v6

v9 v8 v11
5, g

(a) G[{g, r}] (b) The Index of G[{g, r}]

v4

v1 v2 v4

1 3
v3 v2 v4

3 4

v8 v4

2

v9 v8

3
v11 v8

5

v6 v3

2

v2 v4

4

Figure 3: The Naive Indexing Approach
that, it computes the distance from s to vertices in Xlca. Based on

Lemma 4.5, for a node X ′s and its parent Xp , where X
′
s is an an-

cestor node of X (s), and assume that the shortest distances from

s to all vertices in X ′s are already computed, then the shortest

distances from s to vertices in u ∈ Xp \ X
′
s can be calculated

as distG[L](s,u) = minw ∈X ′s∩Xp {distG[L](s,w) + distG[L](w,u)},
where distG[L](w,u)} can be accessed by looking up the hash table

in X (w) or X (u). Hence, we can iteratively compute the shortest

distances from s to vertices in Xlca along the tree path from Xs
to Xlca (line 3-11). The distances from t to vertices in Xlca can be

computed similarly (line 12). Finally, distLG (s, t) is obtained via the

vertices in Xlca based on Lemma 4.6 and Lemma 4.7 (line 13).

Example 4.9. Reconsider the road network shown in Figure 1

(a). Figure 3 (a) shows the {д, r }-induced subgraph G[{д, r }]. Fig-
ure 3 (b) shows the corresponding indexTG[{д,r }] built onG[{д, r }].
For the node in TG[{д,r }], such as X (v1) = {v1,v2,v4}, we store
distG[{д,r }](v1,v2) = 1 and distG[{д,r }](v1,v4) = 3 in it. For a

query q = (v9,v6, {д, r }), the arrows in Figure 3 (b) demonstrate

the query processing procedure. The LCA of X (v9) and X (v6) is
X (v4). It iteratively computes the shortest distance from v9 and

v6 to the vertices in X (v4) following the arrows. For example,

when computing the shortest distances from v9 to v4 ∈ X (v8),
as X (v9) ∩X (v8) = v8, distG[{д,r }](v9,v4) = distG[{д,r }](v9,v8) +
distG[{д,r }](v8,v4) = 5. Similarly, it computes distG[{д,r }](v6,v4) =
6. Hence, distG[{д,r }](v9,v6) = distG[{д,r }](v9,v4)+distG[{д,r }](v6,
v4) = 11.

Theorem 4.10. Given a query q = (s, t,L), Algorithm 1 computes
distLG (s, t) correctly.

Lemma 4.11. Given a tree decomposition TG of G generated by
MDE, for a node X of TG , |X

⋃
Xa ∈A(X) Xa | ≤ h, where A(X) rep-

resents the ancestors of X in TG .

Lemma 4.12. Given a tree decomposition TG ofG , for a node X (v)
and a non-root ancestor node X (u) of X (v), let Xp (v) (resp. Xp (u)) be
the parent node of X (v) (resp. X (u)), then {Xp (v) \X (v)} ∩ {Xp (u) \
X (u)} = ∅.

Theorem 4.13. Given a query q = (s, t,L), Algorithm 1 computes
distLG (s, t) in O(h · ω).

Remark. TEDI [30], the state-of-the-art tree decomposition based

indexing approach for the shortest path queries on unlabelled road

networks, presents a query processing algorithm using a similar

idea as Algorithm 1 with time complexity O(h · ω2). As shown in

Theorem 4.13, our presented algorithm has a time complexity of

O(h · ω), which reduces that of TEDI by a factor ω.

5 OUR NEW INDEXING APPROACH
As shown in our experiments (Table 2),MDE generally generates a

tree decomposition with small treeheighth and treewidthω for road

networks. For example, h and ω for the whole USA road network is

2, 886 and 579, respectively. Hence, Algorithm 1 permits an efficient

query processing regarding a label-constrained query. However, the

naive approach needs to construct 2
|Σ |

separate indices. Obviously,

it is prohibitive to construct and maintain such 2
|Σ |

separate indices.

In this section, we exploit the dominance relationships between

edge-labelled paths and present a new index based on the tree

decomposition. The new index can overcome the problem of the

naive index with little additional cost for the query processing.

5.1 A New Index Structure
Reconsider the road network G in Figure 1, due to the existence

of path {v1,v2,v3,v6}, the shortest distance between v1 and v6
in {b,д, r }-induced subgraph is 5. Meanwhile, in {b, r }, {д, r } and
{r } induced subgraphs, the shortest distance between v1 to v6
is 5 as well. In this case, if we have already stored the shortest

distance 5 betweenv1 andv6 in the index constructed onG[{r }], it is
redundant to store the same information in the indices constructed

on G[{b, r }], G[{д, r }], and G[{b,д, r }]. Based on this observation,

instead of considering all the possible edge label sets regarding Σ
separately, we can treat these possible edge label sets as a whole

and design a holistic compact index that covers all the shortest

distance information without storing any redundant information.

Following this idea, we have the following lemma:

Lemma 5.1. Given two vertices u,v inG , let p be a path between u
and v in G, then u can reach v in distance d regarding a label set L
if ℓ(p) ⊆ L, ϕ(p) ≤ d .

Following Lemma 5.1, we define the label-constrained shortest

distance set between two vertices as follows:

Definition 5.2. (Label-constrained ShortestDistance Set)Given
a road networkG and two verticesu andv inG , the label-constrained
shortest distance set (LSDS) of u,v , denoted by S(u,v), is a set of
label-distance pairs {(L1,d1), (L2,d2), . . . } such that:

(1) For each (Li ,di) ∈ S(u,v), there exists a path p from u to v
with Li = ℓ(p) and di = ϕ(p).

690

v2 :(r,3)v3
:(r,1)v1 v9 :(g,3)v8

:(b,7),(g,8)v1

v7 :({b,g},7)v8
:({b,r},6)v3

v6 :(b,4)v7
:(r,2)v3

v12 :(b,6)v6

v11 :(g,5)v8
:(b,2)v7

v5 :(b,2)v9
:(b,5)v1

v10 :(b,3)v5

v1
:(r,4)v3

:(g,5)v8
:(g,3),(r,8)v4

v8 :(g,2)v4
:({g,r},6)v3

v3 :(r,4)v4

v4

Figure 4: The LSD-Index

(2) For any path p from u to v , there exists a (Li ,di) ∈ S(u,v),
Li ⊆ ℓ(p) and di ≤ ϕ(p);

(3) For any path p from u to v and (Li ,di) ∈ S(u,v), if ℓ(p) ⊂ Li ,
then di < ϕ(p); if ℓ(p) = Li , then di ≤ ϕ(p).

Condition (1) ensures that each label-distance pair corresponds to

a path inG . Condition (2) guarantees thatS(u,v) covers all possible
label-constrained shortest distances between u and v . Condition
(3) ensures that the set is minimum and there is no redundancy

label-distance pair regarding label-constrained shortest distance

according to Lemma 5.1. Based on Definition 5.2, for a given G
and its tree decomposition TG , we construct the label-constrained
shortest distance index as follows:

Definition 5.3. (Label-constrained Shortest Distance Index)
Given a road networkG , letTG be its tree decomposition, the label-

constrained shortest distance index of G, denoted by LSD-Index,
is built on TG . For each node X (v) ∈ V (TG), the label-constrained
shortest distance sets from v to other vertices u ∈ X (v) \ {v} are
precomputed and stored.

Example 5.4. Figure 4 shows the LSD-Index of G in Figure 1

(a). Each node stores the corresponding LSDS. Take S(v1,v4) as
an example. S(v1,v4) = {(д, 3), (r , 8)} because (1) (д, 3) and (r , 8)
correspond to path (v1,v4) and path (v1,v2,v3,v4) between v1 and
v4, respectively, (2) any other paths between v1 and v4, such as

(v1,v5,v9,v8,v4), can be covered by these two paths, and (3) there

is no redundancy in {(д, 3), (r , 8)}.

5.2 Query Processing by LSD-Index
With LSD-Index, we can easily obtain a query processing algorithm

similar to Algorithm 1. The details are shown in Algorithm 2. Given

a queryq = (s, t,L), Algorithm 2 first computes the lowest common

ancestor Xlca of X (s) and X (t) (line 1). Then, it computes the label-

constrained distance from s (resp. t) to the vertices inXlca along the

tree path similarly to Algorithm 1 (line 3-11). Finally, it computes

the label-constrained shortest distance by iterating over vertices

in Xlca (line 13). Procedure dist computes the label-constrained

shortest distance between u and v regarding an edge label set L,
it iterates the label-distance pair (L′,d ′) in S(u,v) (line 15) and

returns the shortest distance d ′ such that L′ ⊆ L (line 16-17).

Algorithm 2: LSD-Index-Query (s, t,L, LSD-Index T)

1 Xlca ← find LCA of X (s) and X (t) in T ;
// compute LSD from s to vertices in Xlca

2 dLs (·) ← ∞, d
L
s (s) ← 0;

3 foreach w ∈ X (s)\{s } do
4 dLs (w) ← dist(s ,w , L);

5 X ′s ← X (s);
6 while Xlca , X ′s do
7 Xp ← parent of X ′s in T ;
8 for u ∈ Xp \ X ′s do
9 for v ∈ Xp ∩ X ′s do
10 dLs (u) ← min(dLs (u), ds (v) + dist(v , u , L));
11 X ′s ← Xp ;
12 Repeat line 2-11 by replacing s with t ;
13 return minw∈Xlca (d

L
s (w) + d

L
t (w));

14 Procedure dist(u , v , L)
// assume S(u , v) is ordered by distance

15 for (L′, d ′) ∈ S(u , v) do
16 if L′ ⊆ L then
17 return d ′;

Example 5.5. Reconsider the query q = (v9,v6, {д, r }), the ar-

rows in Figure 4 demonstrate the query process. The LCA of X (v9)

and X (v6) is X (v8). For v9, dist
{д,r }
G (v9,v1) = 8, as S(v9,v1) con-

tains (д, 8). Similarly, dist{д,r }G (v9,v8) = 3. Following the arrow,

X (v9) ∩ X (v1) = {v1,v8} and X (v1) \ X (v9) = {v3,v4}. Hence

dist{д,r }G (v9,v3) = min{dist{д,r }G (v9,v1)+dist
{д,r }
G (v1,v3), dist

{д,r }
G

(v9,v8)+dist
{д,r }
G (v8,v3)} = 9. Similarly, dist{д,r }G (v9,v4) = 5. For

v6, dist
{д,r }
G (v6,v3) = 2, dist{д,r }G (v6,v4) = 6, and dist{д,r }G (v6,v8) =

8 can be computed similarly. Then, dist{д,r }G (v9,v6) = minw ∈{v3,v4,v8 }

{dist{д,r }G (v9,w) + dist
{д,r }
G (w,v6)} = 11.

Theorem 5.6. Given a road network G , the size of the LSD-Index
is O(n · ω · ρ), where ρ represents the maximum size of LSDS stored
in LSD-Index.

Theorem 5.7. Given a query q = (s, t,L), Algorithm 2 computes
distLG (s, t) in O(h · ω · ρ).

Remark. Compared with the naive approach, an additional factor

ρ is introduced in the time complexity of Algorithm 2. However, as

shown in our experiments (Table 2), ρ is very small in practice. On

the other hand, due to LSD-Index, our approach avoids constructing
and maintaining 2

|Σ |
separate indices in the naive approach.

5.3 LSD-Index Construction
To construct the LSD-Index, a direct solution is based on Defini-

tion 5.3 as follows: we first conduct the tree decomposition on G,
and then compute the LSDS for the vertices in each node according

to Definition 5.2. In this approach, the time complexity for the LSDS
computation is O(n · ω · ((2 |Σ |)2 + 2 |Σ | · (m + n logn))). Obviously,
the cost of this part is prohibitive, which consequently makes this

approach impractical.

To address this problem, we propose a new index construction

algorithm. Instead of dividing the construction into two indepen-

dent procedures, the new algorithm progressively maintains partial

691

Algorithm 3: LSDS Operators

1 Procedure LSDSJoin(S′p , S′′p)
2 Sp ← ∅;

3 foreach (L′, d ′) ∈ S′p do
4 foreach (L′′, d ′′) ∈ S′′p do
5 Sp ← Sp ∪ {(L′ ∪ L′′, d ′ + d ′′)};
6 return Sp ;

7 Procedure LSDSPrune(Sp)
8 foreach (L, d) ∈ Sp do
9 foreach (L′, d ′) ∈ Sp do
10 if L ⊆ L′ and d ≤ d ′ then
11 Sp ← Sp \ {(L′c , d

′
c)};

12 return Sp ;

LSDS by coordinating the procedures of the tree decomposition and

LSDS computation. Based on the partial LSDS, the new algorithm

computes the complete LSDS in a top-down manner in which the

computed complete LSDS can be re-used to accelerate the computa-

tion for those not-yet-computed complete LSDS. Before presenting
the algorithm, we first introduce two operators on LSDS that are
used in the index construction algorithm:

Definition 5.8. (Operator LSDSJoin) Given two LSDS S′p and

S′′p , operator LSDSJoin generates a new LSDS by joining the enti-

ties in S′p and S′′p , i.e., LSDSJoin(S
′
p ,S

′′
p) = {(L

′ ∪ L′′,d ′ + d ′′) |

∀(L′,d ′) ∈ S′p ∧ (L
′′,d ′′) ∈ S′′p }

Definition 5.9. (Operator LSDSPrune) Given a LSDS Sp , oper-
ator LSDSPrune removes (Li ,di) from Sp , if ∃ (Lj ,dj) ∈ Sp such

that Lj ⊆ Li ∧ dj ≤ di , where i , j.

Algorithm.With the above operators, our new index construction

algorithm is shown in Algorithm 4. It contains two phases: in phase

1, it conducts tree decomposition in which partial LSDS are com-

puted for vertex pairs incident to the involved edges (line 1-18);

in phase 2, it computes the complete LSDS in a top-down manner

based on the partial LSDS of phase 1 (line 19-24).

• Phase 1: Partial LSDS maintained tree decomposition. In phase 1,

it conducts the tree decomposition following MDE and maintains

the partial LSDS for the vertex pairs incident to edges involved in

the decomposition. Specifically, it first initializes G0 as G and T as

an empty tree (line 1). For each edge (u,v), Sp (u,v) is initialized
as {(ℓ((u,v)),ϕ((u,v)))}, where Sp (u,v) is used to store the partial

LSDS (line 2-3). After that, it performs vertex elimination iteratively

following the procedure of MDE (line 4-14). In the ith iteration,

it eliminates the vertex v with minimum degree from Gi−1 and

assigns its π (·) as i , where π (·) records the elimination order (line

5-6). Then, for each vertex pair u,w in the nbr(v,Gi−1), it first

joins Sp (v,u) and Sp (v,w) by LSDSJoin and obtains S′ (line 8). If

Gi−1 does not contain an edge (u,w), it adds an edge (u,w) intoGi
and assigns Sp (v,w) as the result of LSDSPrune on S′ (line 9-11);
Otherwise, the Sp (u,w) is updated as the result of LSDSPrune on
Sp (u,w) ∪S

′
(line 13). In Algorithm 4, we assume π (u) < π (w) for

the clearness of the presentation. After the elimination of v , it adds
a nodeX (v) containingv and its neighbors nbr(v,Gi−1) intoT (line

14). After all vertices are eliminated, the parent-child relationships

between nodes are generated (line 15-18). For a non-root vertex v ,

Algorithm 4: LSD-Index-Cons(G)
// phase 1

1 G0 ← G ; T ← ∅ ;
2 foreach (u , v) ∈ G do
3 Sp (u , v) ← {(ℓ((u , v)), ϕ((u , v)))};
4 for i ← 1 to n do
5 v ← vertex in Gi−1 with minimum degree;

6 π (v) ← i ; Gi ← Gi−1 \ v ;
7 foreach u ,w ∈ nbr(v ,Gi−1) do
8 S′ ← LSDSJoin(Sp (v , u), Sp (v ,w));
9 if (u ,w) < Gi−1 then
10 add an edge (u ,w) into Gi ;

11 Sp (u ,w) ← LSDSPrune(S′);
12 else
13 Sp (u ,w) ← LSDSPrune(Sp (u ,w) ∪ S′);
14 X (v) ← {v } ∪ nbr(v ,Gi−1);

15 foreach X (v) ∈ T do
16 if π (v) < n then
17 u ← the vertex in X (v)\{v } with smallest π (·) ;
18 add X (v) as the child of X (u);

// phase 2

19 for i ← n − 1 to 1 do
20 v ← vertex with π (·) = i ;
21 for u ∈ X (v) \ {v } do
22 for w ∈ X (v) \ {v , u } do
23 S′ ← LSDSJoin(Sp (v ,w), Sp (u ,w));
24 Sp (v , u) ← LSDSPrune(Sp (v , u) ∪ S′);

it selects the vertex u ∈ X (v) \ {v} with smallest π (·) value (line
17) and sets X (u) as the parent node of X (v) (line 18).

Before presenting phase 2, we first introduce the label-constrained

shortest distance (LSD) preserved graph Gi whose properties form

the theoretical foundation of phase 2 and are also used for the proof

of Algorithm 4.

Definition 5.10. (LSD Preserved Graph) Given a graph Gi gen-

erated in phase 1, the LSD preserved graph ofGi , denoted by Gi , is

a labelled multigraph such that (1) V (Gi) = V (Gi); (2) if there is an

edge e = (u,v) in Gi , then, for each entity (L,d) ∈ Sp (u,v), there
is an edge e ′ = (u,v) with ℓ(e ′) = L and ϕ(e ′) = d in Gi .

Lemma 5.11. Given two vertices u,v in Gi , for any edge label set
L, distL

Gi
(u,v) = distLG (u,v).

According to Lemma 5.11, the label-constrained shortest distance

between any two vertices in Gi is preserved in Gi . Moreover, we

have the following lemma:

Lemma 5.12. Given a vertex v ∈ V (Gπ (v)−1), for any edge label
set L, the label-constrained shortest path from v to u ∈ X (v) \ {v}
regarding L in Gπ (v)−1 only contains v and u, or passes a vertex in
X (v) \ {v,u}.

Therefore, for a vertexv , if we have already known the complete

LSDS S(u,w) for any two vertices u,w ∈ X (v) \ {v}, to compute

the complete LSDS S(v,u), according to Definition 5.2, Lemma 5.11

and Lemma 5.12, we only need to join the partial LSDS Sp (v,w)
with the completeS(u,w) for eachw ∈ X (v)\{v,u}with LSDSJoin,
add the result to Sp (v,u) and remove redundant label-distance pair

with LSDSPrune. Moreover, we can apply the above procedure

692

X(v1)

update LSDS
ajacent to v1

G8G7

X(v1)

G9

eliminate v9 eliminate v1

g,
 2

v4

v8

r, 4
v3

g,
 2

g, 3

v4

{b
,g

},
10

v1

v8

r, 4
v3

g,
 2

g, 3

g, 3

v4

v8

v1

v9

v3
g,

 2

(g,3)(r,8)
v4g,

 5

v1

v8

r, 4 v3

g,
 2

g, 3

v4

{b
,g

},
10

v1

v8

r, 4 v3

Figure 5: Procedure of Index Construction
recursively to compute the complete LSDS S(u,w). Following this

idea, we can compute the complete LSDS in a top-down manner

based on tree decomposition and use the computed complete LSDS
to accelerate the computation of not-yet-computed complete LSDS.
• Phase 2: Top-down complete LSDS computation. The phase 2 of
the construction algorithm is shown in line 19-24 of Algorithm 4.

It processes the vertices in the decreasing order of their π (·) value
(line 19). For each vertexv , to compute the complete LSDS ofv and

u, where u ∈ X (v) \ {v}, it iterates the vertices w ∈ X (v) \ {v,u},
computes S′ by LSDSJoin on Sp (v,w) and Sp (u,w), and removes

the redundancy in Sp (v,u) ∪S
′) with LSDSPrune (line 22-24). The

construction finishes when all the vertices are processed.

Example 5.13. In Figure 5, the upper (resp. lower) part illustrate

some of key steps of phase 1 (resp. phase 2) during the construc-

tion of LSD-Index for G in Figure 1 (a), where the LSDS is shown
near each edge. For example, in phase 1, when eliminating v9 from
G7, a new edge (v1,v8) is added, and Sp (v1,v8) = {({b,д}, 10)}
is obtained by joining Sp (v9,v8) and Sp (v9,v1)). In phase 2, for

S(v1,v8), since LSDSJoin(Sp (v1,v4),S(v8,v4)) = {({д}, 5), ({д, r },
10)}, ({д, r }, 10) and ({b,д}, 10) ∈ Sp (v1,v8) are redundant be-

cause of ({д}, 5), thus, Sp (v1,v8) is updated to {({д}, 5)}. Similarly,

S(v1,v4) is updated to {({д}, 3), ({r }, 8)}.

Theorem 5.14. Given a road network G, the time complexity of
Algorithm 4 to construct the index is O(n · ω2 · ρ2).

5.4 Shortest Path Restoration
The algorithms described in the previous section focus on comput-

ing the label-constrained shortest distance. By slightly modifying

the index structure and query processing algorithm, we can easily

retrieve the corresponding label-constrained shortest path.

Augmented LSD-Index. According to Definition 5.2, each entity

(L,d) ∈ S(u,v) in LSD-Index corresponds to a path p(u,v) in G.
To restore the shortest path for a query, we first need to restore

the path represented by (L,d). Revisiting the construction proce-

dures of LSD-Index shown in Algorithm 4, there are two cases in

which (L,d) ∈ S(u,v) is generated: (1) the original edge (u,v) in
G; (2) operator LSDSJoin is applied on Sp (w,u) and Sp (w,v) (line
8 or line 23). For case (1), we do not store any additional informa-

tion in S(u,v). For case (2), we store (w, idu , idv) besides (L,d) in
S(u,v), where idu (resp. idv) is the identification of (Lu ,du) (resp.
(Lv ,dv)) in S(w,u) (resp. S(w,v)) that leads to the generation of

(L,d). With this additional information, we can restore the path

p(u,v) represented by (L,d) in S(u,v) as follows: (1) p(u,v) is the
original edge (u,v) in G; or (2) p(u,v) can be obtained by concate-

nating p(u,w) and p(w,v) represented by (Lu ,du) in S(w,u) and
(Lv ,dv) in S(w,v), respectively, while p(u,w) and p(w,v) can be

obtained recursively in the same way. Clearly, as the size of added

information for each entity is constant, the space complexity of the

augmented LSD-Index and the time complexity of the correspond-

ing construction algorithm keep the same as that for LSD-Index.
Query processing. For query processing, the general framework

is similar to Algorithm 2 but with additional path information.

Specifically, we keep the shortest paths p (resp. p′) from s (resp. t)
to the vertices inXlca by storing the vertexv and the corresponding

(L,d) ∈ S(v,u) leading to the final dLs (u) in line 4 and line 10 of

Algorithm 2, and concatenate p and p′ through w ∈ Xlca which

leads to the final shortest distance in line 11 of Algorithm 2. For the

edges in p (resp. p′) that are not the original edges ofG (represents

by (L,d) ∈ S(v,u)), they can be restored by the method as discussed

above. Given a q = (s, t,L), if the returned shortest path p has τ
edges, then, the extra time complexity to restore the path can be

bounded by O(τ). Since the lower bound to answer q is Ω(τ) and τ
is generally very small compared with h ·ω · ρ, the time complexity

of the query processing is the same as that of Algorithm 2.

5.5 Extension for Directed Road Networks
In previous sections, we assume the road networks are undirected .

Our techniques can be extended to support directed road networks.

Indexing. For the index structure, the LSD-Index for directed road
networks is similar to that for undirected road network with two

differences: (1) for the tree decomposition, we extend MDE for the

directed road networks as follows: it iteratively eliminates the vertex

v with the minimum degree and connects any pairu,w ofv’s neigh-
bors with directed edges after the elimination of v , and the other

parts are the same. (2) for LSDS stored in each nodeTG , we trivially
extend the label-constrained distances defined in Definition 5.2 for

directed road networks by using the paths with direction. And for

each node X (v), we pre-compute and store S<v,u> and S<u,v>
for anyu ∈ X (v) \ {v}. Here, we use S<v,u> to represent the LSDS
from v to u extended for directed road networks for distinction.

For the index construction algorithm, the whole framework is the

same as Algorithm 4 except the directions of edges/paths need to

be considered.

Query processing. The query processing procedure for directed

road networks is similar to Algorithm 2. Given a query q = (s, t,L),
we first compute the lowest common ancestorXlca ofX (s) andX (t).
After that, we compute the label-constrained shortest distances

from s to vertices in Xlca and from these vertices to t . Finally, we
can obtain the label-constrained shortest distance from s to t and
consequently restore the label-constrained shortest path from s to
t in the same way as discussed for the undirected road networks.

5.6 Handling Large Σ
Although our indexing techniques can significantly reduce the

index size, Σ might be very large in some scenarios, which makes

the index size still very large. In this section, we introduce how to

extend our techniques to address this issue.

693

It has been widely observed that the labels in real-life graphs

usually follows the power-law distribution [24]. Therefore, we treat

the high frequent labels and low frequent labels in different ways.

Let Σf be the set of high frequent labels in G. We create a set of

virtual labels Σv by evenly partitioning the labels in Σ\Σf into |Σv |
groups and each virtual label represents the labels in each group,

where |Σf |+ |Σv |≪ |Σ|. InG , we replace the real low frequent label

for each edge with the corresponding virtual label and construct

the LSD-Index regarding Σf ∪ Σv .
Given a query q = (s, t,L), if L ⊆ Σf , we use Algorithm 2

to answer the query directly. Otherwise, let Lf be the label set

L ∩ Σf and Lv be the virtual label set representing labels in

L ∩ {Σ \ Σf }. We compute dist
Lf
G (s, t) and dist

Lf ∪Lv

G (s, t) fol-

lowing Algorithm 2 based on the index. Clearly, dist
Lf
G (s, t) ≥

distLG (s, t) and dist
L
G (s, t) ≥ dist

Lf ∪Lv

G (s, t). Thus, if dist
Lf
G (s, t) =

dist
Lf ∪Lv

G (s, t), we obtain distLG (s, t). Otherwise, the shortest path
may involve some edges with virtual labels in Lv but real labels

not in L. In this case, for index entries (Lv ,dv) ∈ S(u,v) that

are used for obtaining dist
Lf ∪Lv

G (s, t) and contain virtual labels,

we need to further check whether dv = distLG (u,v), this can be

achieved by exploring the neighborsw of u connected with labels

in L and recursively computing distLG (w,v). If dv , distLG (u,v),

we use the refined distLG (u,v) instead and the correct final result

can be obtained.

6 PARALLEL INDEX CONSTRUCTION
Although Algorithm 4 significantly reduces the time cost to con-

struct LSD-Index compared with building the index directly based

on the definition, it is still expensive for large road networks due

to the inevitable LSDSJoin and LSDSPrune operations during the
LSDS computation. In this section, we further improve the con-

struction efficiency by parallelizing the LSDS computation.

Recall that the computation of LSDS contains the partial LSDS
maintenance in phase 1 and top-down complete LSDS computation

in phase 2. For the partial LSDSmaintenance in phase 1, the compu-

tation of Sp (v,u) in X (v) only depends on Sp (w,v) and Sp (w,u)
in X (w), where X (w) is a descendant of X (v) in the tree decompo-

sition. For the top-down complete LSDS computation in phase 2,

the computation of Sp (v,u) in X (v) only depends on Sp (v,w) and
Sp (w,u) in X (w), where X (w) is an ancestor of X (v) in the tree

decomposition. Hence, we define:

Definition 6.1. (Tree Decomposition Level) Given a tree de-

composition T of G, for a node X (v), the tree decomposition level

of X (v), denoted by l(X (v)), is defined as l(X (v)) ={
min{l(X (u))|X (u) ∈ X (v).children} + 1, X (v).children , ∅

1, X (v).children = ∅

where X (v).children represents the children of X (v) in T .

As discussed above, if we compute the LSDS level by level based

on Definition 6.1 (from bottom level to top level in phase 1 while

from top level to bottom level in phase 2), then the LSDS computa-

tions related to the nodes at the same level has no dependence with

Algorithm 5: LSD-Index-ParCons(G)
1 G0 ← G ; T ← ∅;
2 for i ← 1 to n do
3 line 5-6 of Algorithm 4;

4 foreach u ,w ∈ nbr(v ,Gi−1) do
5 insert v into D(u ,w);
6 line 9-10 of Algorithm 4;

7 X (v) ← {v } ∪ nbr(v ,Gi−1);

8 line 15-18 of Algorithm 4;

9 for i ← 1 to n do
10 v ←vertex with π (·) = i ;
11 if X (v).children = ∅ then l (X (v)) ← 1;

12 else l (X (v)) ← minX (u)∈X (v).children l (X (u)) + 1 ;
13 lmax ← maxX (v)∈T l (X (v));

// Partial LSDS computation

14 for i ← 1 to lmax do
15 for X (v) ∈ T with l (X (v)) = i in parallel do
16 for u ∈ X (v) in parallel do
17 if (v , u) ∈ G then
18 Sp (v , u) ← {(ℓ((v , u)), ϕ((v , u)))};
19 else Sp (v , u) ← ∅ ;
20 for w ∈ D(v , u) do
21 S′ ← LSDSJoin(Sp (w , v), Sp (w , u));
22 Sp (v , u) ← LSDSPrune(Sp (v , u) ∪ S′);

// Complete LSDS computation

23 for i ← lmax to 1 do
24 for X (v) ∈ T with l (X (v)) = i in parallel do
25 for u ∈ X (v) \ {v } in parallel do
26 for w ∈ X (v) \ {v , u } do
27 S′ ← LSDSJoin(Sp (v ,w), Sp (w , u));
28 Sp (v , u) ← LSDSPrune(S′ ∪ Sp (v , u));

each other, which means we can process the computations related

to these nodes simultaneously with any extra costs.

Algorithm. Following the above idea, the parallel construction al-

gorithm, LSD-Index-ParCons, is shown in Algorithm 5. LSD-Index-
ParCons follows a similar framework to Algorithm 4. It first con-

ducts the tree decomposition following MDE (line 1-8). During the

decomposition, instead of maintaining the partial LSDS, it only
records the vertex v leading to the update of Sp (u,w) in D(u,w)
(line 5). After finishing the tree decomposition, it computes the tree

decomposition level for each nodes following Definition 6.1 (line

9-13). Then, it conducts partial LSDS computation in a bottom-up

manner (line 14-22) and the complete LSDS computation in a top-

down manner (line 23-28). For the nodes at a specific level, they

are processed simultaneously (line 15-16, line 24-25). When the

algorithm finishes, LSD-Index is correctly constructed, which can

be proved similar to Algorithm 4.

7 EXPERIMENTS
In this section, we compare our algorithms with the state-of-the-art

methods for label-constrained shortest path queries. All experi-

ments are conducted on a machine with an Intel Xeon 2.5GHz CPU

(40 cores) and 256 GB main memory running Linux.

694

Table 2: Datasets used in Experiments

Dataset Description n m |Σ| h ω ρ ρavg Indexing Time (S) Indexing Time (P) Index Size

NY New York City 264,346 733,846 10 717 126 28 1.29 36.74s 6.97s 34.52 MB

COL Colorado 435,666 1,057,066 10 477 133 32 1.12 24.27s 4.81s 36.45 MB

FLA Florida 1,070,376 2,712,798 10 643 82 38 1.19 34.03s 5.76s 95.91 MB

CAL California 1,890,815 4,657,742 10 834 177 31 1.11 92.04s 15.93s 161.21 MB

EST Eastern USA 3,598,623 8,778,114 10 1,366 240 28 1.17 258.63s 39.79s 327.17 MB

WST Western USA 6,262,104 15,248,146 10 1,450 299 35 1.11 343.51s 45.18s 546.95 MB

CTR Central USA 14,081,816 34,292,496 10 2,342 540 94 1.31 5,959.00s 741.12s 1.45 GB

USA Full USA 23,947,347 58,333,344 10 2,886 570 136 1.27 7,152.18s 903.94s 2.37 GB

Datasets. We use eight publicly available real road networks from

DIMACS
1
. In each road network, vertices represent intersections

between roads, edges correspond to roads or road segments, the

weight of an edge is the physical distance between two vertices,

and the label of an edge represents its road types. The road types

of these road networks can be divided into four main categories:

(1) A1, Primary Highway With Limited Access; (2) A2, Primary

Road Without Limited Access; (3) A3, Secondary and Connecting

Road; (4) A4, Local, Neighborhood, and Rural Road. The road types

follows the power-law distribution. Since different datasets contain

different number of labels (from 18∼ 32), in our experiments (except

Exp-6), for the purpose of controlling variables and keeping the

distribution of labels as same as possible, we refine the labels of each

dataset and make each dataset contain 10 labels using the following

method: for the labels in each main category, we sort the labels in

the increasing order of their frequency and merge two labels with

similar frequency as one, we continue this process until only 10

labels remains. Table 2 provides the details about these datasets.

Table 2 shows the value of h and ω of the tree decomposition for

each road network and it is clear that h and ω are small in practice.

Table 2 also shows the value of ρ and ρavg of LSD-Index for each
road network, where ρavg represents the average size of LCDS in
LSD-Index. It is clear that ρ and ρavg are much smaller than h and

ω in practice.

Algorithms.We compare the following algorithms. All the algo-

rithms are implemented in C++ and compiled in GCC 8.3.1 with

-O3 flag. We adopt OpenMP to implement our parallel algorithm.

• Dijkstra: direct online search algorithm using the Dijkstra’s al-
gorithm following the edges with labels in given L.

• EDP: The state-of-the-art algorithm for label-constrained short-

est path queries, which is introduced in Section 3.

• LSD-Index: Our proposed algorithms include query processing

algorithm (Algorithm 2), index construction algorithm (Algo-

rithm 4), and parallel index construction algorithm (Algorithm 5).

For EDP, we implement all the optimization techniques men-

tioned in [10]. Since EDP builds its index gradually during the query

processing, for fairness, we generate random queries to warm up

EDP as [10] until its cache size becomes stable or reaches the mem-

ory limit (20GB) before our experiments.

1
http://users.diag.uniroma1.it/challenge9/download.shtml

Exp-1: Efficiency when varying query distance. In this experi-

ment, we evaluate the query efficiency of the algorithms by varying

the label-constrained shortest distance between the source vertex

and target vertex in the query. We randomly generate 10 groups

of queries Q1, . . . ,Q10 and each group contains 1000 queries. For

each query q = (s, t,L) in group i , the label-constrained distance

between s and t regarding L ranging from (δ
1 km
)
i−1
10 to (δ

1 km
)
i
10

kilometers, where δ is the longest distance between any two ver-

tices in the road network. And L is set as minimum edge label

set which can make the label-constrained distance between s and
t satisfy the above condition. Figure 6 shows the average query

processing time for queries in each group on four datasets.

As shown in Figure 6, the query processing time of all the al-

gorithms increases when the distance increases. This is because

as the distance between s and t increases, more vertices or nodes

have to be explored. Moreover, EDP is always faster than Dijkstra
while LSD-Index is much faster than EDP and the performance gap

enlarges as the distance increases. The reasons are Dijkstra and

EDP have to explore many vertices in the road networks while

LSD-Index only needs to visit vertices in the nodes along the tree

decomposition, which is much less than that of Dijkstra and EDP.
Exp-2: Efficiency when varying |L|. In this experiment, we eval-

uate the query efficiency of the algorithms by varying |L| of the

queries. To do this, we randomly generate 10 groups of queries and

each group contains 1, 000 queries. For each query q = (s, t,L) in
group i , L is set as an edge label set with |L| = i such that s can
reach t following the edges with edge label in L. We record the

average query processing time for queries in each group and the

results for the four large datasets is demonstrated in Figure 7, the

results on the remaining datasets show similar trends.

Based on the results, we can observe that: (1) LSD-Index always
outperforms Dijkstra and EDP by at least an order of magnitude.

The reasons are the same as discussed in Exp-1. (2) the average

processing time of all the algorithms keeps stable when we vary

|L|. For Dijkstra and EDP, when |L| is small, the label-constrained

shortest distance between s and t regarding L is large generally,

which implies that the traversal on the road network is long. As |L|

increases, the label-constrained shortest distance between s and t
regardingL becomes small, but the number of edges with edge label

in L increases as well. As a result, the number of explored vertices

and edges during the query processing keep similar. For LSD-Index,

695

 Dijkstra EDP LSD-Index

10-1

100

101

102

103

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(a) EST

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(b) WST

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(c) CTR

10-1

100

101

102

103

104

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Query Time (ms)

(d) USA

Figure 6: Query Processing Time (Varying Query Distance)
 Dijkstra EDP LSD-Index

10-1

100

101

102

103

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(a) EST

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(b) WST

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(c) CTR

10-1

100

101

102

103

104

1 2 3 4 5 6 7 8 9 10

Query Time (ms)

(d) USA

Figure 7: Query Processing Time (Varying |L|)

LSD-Index processes the queries based on the tree decomposition,

and thus the processing is nearly independent with L.

Exp-3: Indexing time. Table 2 presents the time to construct LSD-
Index for each dataset, including the sequential construction al-

gorithm and the parallel construction algorithm (running with 32

threads). For the first six road networks, the index can be con-

structed within 6 minutes even for the sequential construction

algorithm. However, the sequential construction algorithm needs

1.5–2 hours to complete the index construction for CTR and USA.

Considering the size of these two datasets, the indexing time is

acceptable but not highly satisfactory. On the other hand, for the

parallel construction algorithm, it takes less than 60 seconds to con-

struct the index for the first six datasets and less than 1, 000 seconds

to construct the index for the USA dataset. As shown in the results,

our proposed algorithms can efficiently construct LSD-Index in

practice, especially the parallel construction algorithm.

Exp-4: Index size. The size of LSD-Index for each road network

is shown in Table 2. As shown in Table 2, the index sizes of the

first six road networks are within 1 GB, and even for the whole

USA road network, the index size is only 2.37 GB. Considering USA

dataset is around 0.8 GB in size, 2.37 GB is still small. We omit the

index size of EDP because its index size varies by different cache

strategies. In our experimental setting, we set the index size limit

for EDP to 20 GB and the index sizes for most of the large road

networks (WST, CTR, USA) in our setting are beyond 10 GB. From

the results, it is clear that LSD-Index is a compact index structure.

Exp-5: Case Study. Figure 8 demonstrates a real-world example

of label-constrained shortest path queries. In Sydney, we can briefly

divide the roads into three categories: toll road (T), main road

(M), and local road (L). Assume that the students from UNSW

plan to go to Tarango Zoo by car at weekends. If they only want

to get to the zoo as fast as possible, then, they can obtain their

route by the query q = ("UNSW", "Tarango Zoo", ”TML”), which
returns p1 with 15.52km. On the other hand, if they want to get

t

s

Toll Roads

Urban Local
Roads

Figure 8: Case Study

to the zoo as fast as possible, but are not willing to pass the toll

roads or local roads, they can obtain their route by the query

q = ("UNSW", "Tarango Zoo", ”M”), which return p2 with 16.43km.

From this example, we can see that label-constrained shortest path

queries can satisfy different users’ requirements in route planning.

Exp-6: Index size when varying |Σ|. In this experiments, we

evaluate the index size when varying |Σ|. For each datasets, we set

the number of labels from ⌈
|Σ |
5
⌉ to |Σ|. For the smaller label set,

we generate them using the similar method mentioned before: we

sort the original labels in each main category according to their

frequency and merge label labels with similar frequency until the

number of labels reach the required size. Figure 9 shows the results.

Figure 9 shows that the index sizes increases as |Σ| increases.
This is because that the larger |Σ| is, the more information needs to

be stored in the index. However, even for the largest road network

USA, the largest index size is 8.6GB when |Σ| = 32, which is only

696

 0

 100

 200

 300

 400

 500

 600

 700

6 13 19 26 32

Index Size (MB)

(a) EST

 0

 200

 400

 600

 800

 1000

 1200

6 12 19 25 31

Index Size (MB)

(b) WST

 0

 1000

 2000

 3000

 4000

 5000

 6000

6 12 18 24 30

Index Size (MB)

(c) CTR

 0

 2000

 4000

 6000

 8000

 10000

6 13 19 26 32

Index Size (MB)

(d) USA

Figure 9: Index Size (Varying |Σ|)
10 times the size of the dataset (around 0.8GB). The experimental

results confirm that LSD-Index is a compact index structure.

8 RELATED WORK
Label-constrained shortest path query.With the proliferation

of graph applications, research efforts have been devoted to many

fundamental problems in managing and analyzing graph data [6,

18, 19, 23, 33, 36–38]. Among them, label-constrained shortest path

query has received considerable attention recently. [25] proposes

is a method named CHLR to answer the queries based on CH [8].

EDP [10] is the state-of-the-art algorithm for this problem. The

experimental results in [10] show that the performance of EDP is

much better than that of CHLR. Therefore, we choose EDP as our

baseline. Besides, [4] studies the approximate approaches for label-

constrained shorted path queries. As [4] only finds approximate

results, the techniques can not be applied to address the problem

studied in this paper.

Label-constrained reachability query. Label-constrained reach-
ability query is also studied in the literature. Given a query q =
(s, t,L), label-constrained reachability query asks whether s can
reach t following edges with label in L. [11] is the first to study

this problem. [24, 29, 41] further improve the efficiency of query

processing. Since label-constrained reachability queries do not need

to consider the specific distance/path information, these techniques

are unpromising to be adapted to label-constrained shortest path

query problem studied in this paper.

Shortest path/distance query on unlabelled graphs. In the lit-

erature, a plethora of indexing techniques have been proposed to

answer the shortest path/distance queries on unlabelled graphs,

such as [1, 8, 12, 21, 30, 40]. [32] and [17] evaluate the practical per-

formance of the representative algorithms. However, as discussed

in Section 4, since these methods do not consider the edge labels,

direct extending these methods to address the label-constrained

shortest path will lead to exponential number of index structures,

which makes this approach inapplicable in practice.

It is noteworthy that the success of H2H [21] inspires us to

revisit the tree decomposition for the label-constrained shortest

path query problem. H2H is designed for shortest distance queries

on unlabeled road networks and it also builds its index based on the

tree decomposition. For each tree node (or corresponding vertex),

H2H pre-computes and stores a distance array for the vertices in

its ancestors. H2H answers a distance query by iterating distances

from the source/destination vertices to the vertices in LCA, and the
query processing time can be bounded by O(ω).

Although the high level idea of H2H seems similar to ours, H2H

is significantly different from our proposed algorithm in Section 4

(Algorithm 1) in the following four aspects: (1) H2H cannot be

easily adapted to answer the shortest path queries on unlabeled

road networks, not to mention the label-constrained path queries

studied in this paper. Since H2H is tailored for fast shortest distance

query, the path information is reduced as much as possible in H2H.

Consequently, it is very hard for H2H to restore the corresponding

path based on the computed shortest distance. However, our index

natively supports shortest path queries. (2) The query processing

algorithm of H2H is also different from ours. H2H answers a dis-

tance query by first locating the LCA of the nodes representing

the source and destination vertices and then joining the distances

from source/destination vertices to vertices in LCA, while our ap-
proach have to iterate up along the tree from nodes representing

the source and destination vertices to their LCA. (3) We cannot

directly prove that the query processing time of Algorithm 1 can be

bounded O(h · ω) (Theorem 4.13) based on the theoretical results

of H2H. The proof of Theorem 4.13 is based on Lemma 4.11 and

Lemma 4.12. For Lemma 4.11, we can easily obtain a similar conclu-

sion from H2H with Property 2 and Definition 5.1 in [21]. However,

for Lemma 4.12, no similar conclusion can be easily derived ac-

cording to the theoretical results of [21]. Since Lemma 4.12 is the

most essential lemma for the proof of Theorem 4.13, our theoretical

findings cannot be easily obtained based on [21]. (4) The index size

of H2H is much larger than ours. In each tree node, H2H stores

distances to the vertices representing by all its ancestor nodes, the

size of the index could be very large. As shown in the experiment

of [21], the H2H index size for USA road network is over 100GB,

which is much larger than ours.

9 CONCLUSION
In this paper, we study the label-constrained shortest path query

problem on road networks.We devise a novel index structure named

LSD-Index based on the tree decomposition. With LSD-Index, we
propose an efficient query processing algorithm to answer the

queries. Moreover, we also present efficient index construction

algorithms. The experimental results demonstrate the efficiency

of our proposed algorithms. For future work, we are interested in

extending our work to dynamic graphs by devising efficient index

maintenance algorithm for graph label/vertex/edge updates.

ACKNOWLEDGMENTS
Long Yuan is supported by NSFC61902184, NSF of Jiangsu Province

BK20190453, and Science and Technology on Information Systems

Engineering LaboratoryWDZC20205250411. LuQin is supported by

ARC FT200100787 and ARC DP210101347. Ying Zhang is supported

by ARC FT170100128 and ARC DP210101393.

697

REFERENCES
[1] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata. 2014.

Fast shortest-path distance queries on road networks by pruned highway labeling.

In Proceedings ALENEX. SIAM, 147–154.

[2] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. 1987. Complexity

of finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods 8,
2 (1987), 277–284.

[3] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,

Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. 2016.

Route Planning in Transportation Networks. In Algorithm Engineering - Selected
Results and Surveys. Lecture Notes in Computer Science, Vol. 9220. 19–80. https:

//doi.org/10.1007/978-3-319-49487-6_2

[4] Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Antti Ukkonen. 2014.

Distance oracles in edge-labeled graphs. In Proceedings of EDBT. OpenProceed-
ings.org, 547–558. https://doi.org/10.5441/002/edbt.2014.49

[5] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. 2012. The

exact distance to destination in undirected world. VLDB J. 21, 6 (2012), 869–888.
https://doi.org/10.1007/s00778-012-0274-x

[6] Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang. 2020. Efficient

Maximal Balanced Clique Enumeration in Signed Networks. In Proceedings of
The Web Conference 2020. 339–349.

[7] EW Djikstra. 1959. A note on two problems in connection with graphs. Numer.
Math. 1 (1959), 269–271.

[8] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. 2008.

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Net-

works. In Proceedings of WEA. 319–333.
[9] Andrew V Goldberg and Chris Harrelson. 2005. Computing the shortest path: A

search meets graph theory. In Proceedings of SODA. 156–165.
[10] Mohamed S. Hassan, Walid G. Aref, and Ahmed M. Aly. 2016. Graph Indexing

for Shortest-Path Finding over Dynamic Sub-Graphs. In Proceedings of SIGMOD.
ACM, 1183–1197. https://doi.org/10.1145/2882903.2882933

[11] Ruoming Jin, Hui Hong, Haixun Wang, Ning Ruan, and Yang Xiang. 2010. Com-

puting label-constraint reachability in graph databases. In Proceedings of SIGMOD.
ACM, 123–134. https://doi.org/10.1145/1807167.1807183

[12] Sungwon Jung and Sakti Pramanik. 2002. An Efficient Path Computation Model

for Hierarchically Structured Topographical Road Maps. IEEE TKDE 14, 5 (2002),

1029–1046.

[13] Arie M. C. A. Koster, Hans L. Bodlaender, and Stan P. M. van Hoesel. 2001.

Treewidth: Computational Experiments. Electron. Notes Discret. Math. 8 (2001),
54–57. https://doi.org/10.1016/S1571-0653(05)80078-2

[14] Huayu Li, Yong Ge, Richang Hong, and Hengshu Zhu. 2016. Point-of-Interest

Recommendations: Learning Potential Check-ins from Friends. In Proceedings of
SIGKDD. ACM, 975–984. https://doi.org/10.1145/2939672.2939767

[15] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2020.

Scaling Up Distance Labeling on Graphs with Core-Periphery Properties. In Pro-
ceedings of SIGMOD. ACM, 1367–1381. https://doi.org/10.1145/3318464.3389748

[16] YiRu Li, Sarah George, Craig Apfelbeck, Abdeltawab M. Hendawi, David Hazel,

Ankur Teredesai, and Mohamed H. Ali. 2014. Routing service with real world

severe weather. In Proceedings of the 22nd ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, Dallas/Fort Worth, TX,
USA, November 4-7, 2014, Yan Huang, Markus Schneider, Michael Gertz, John

Krumm, and Jagan Sankaranarayanan (Eds.). ACM, 585–588. https://doi.org/10.

1145/2666310.2666375

[17] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An Experimental

Study on Hub Labeling based Shortest Path Algorithms. Proc. VLDB Endow. 11, 4
(2017), 445–457. https://doi.org/10.1145/3186728.3164141

[18] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2019.

Efficient (α , β)-core computation: An index-based approach. In The World Wide
Web Conference. 1130–1141.

[19] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2020.

Efficient (α , β)-core computation in bipartite graphs. The VLDB Journal 29, 5
(2020), 1075–1099.

[20] Yiding Liu, Tuan-Anh Pham, Gao Cong, and Quan Yuan. 2017. An Experimental

Evaluation of Point-of-interest Recommendation in Location-based Social Net-

works. Proc. VLDB Endow. 10, 10 (2017), 1010–1021. https://doi.org/10.14778/

3115404.3115407

[21] Dian Ouyang, Lu Qin, Lijun Chang, Xuemin Lin, Ying Zhang, and Qing Zhu. 2018.

When Hierarchy Meets 2-Hop-Labeling: Efficient Shortest Distance Queries on

Road Networks. In Proceedings of SIGMOD. ACM, 709–724. https://doi.org/10.

1145/3183713.3196913

[22] Dian Ouyang, Long Yuan, Lu Qin, Lijun Chang, Ying Zhang, and Xuemin Lin.

2020. Efficient Shortest Path Index Maintenance on Dynamic Road Networks

with Theoretical Guarantees. Proc. VLDB Endow. 13, 5 (2020), 602–615. https:

//doi.org/10.14778/3377369.3377371

[23] Dian Ouyang, Long Yuan, Fan Zhang, Lu Qin, and Xuemin Lin. 2018. Towards effi-

cient path skyline computation in bicriteria networks. In International Conference
on Database Systems for Advanced Applications. Springer, 239–254.

[24] You Peng, Ying Zhang, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2020. Answering

Billion-Scale Label-Constrained Reachability Queries within Microsecond. Proc.
VLDB Endow. 13, 6 (2020), 812–825. https://doi.org/10.14778/3380750.3380753

[25] Michael N. Rice and Vassilis J. Tsotras. 2010. Graph Indexing of Road Networks

for Shortest Path Queries with Label Restrictions. Proc. VLDB Endow. 4, 2 (2010),
69–80. https://doi.org/10.14778/1921071.1921074

[26] Neil Robertson and Paul D. Seymour. 1984. Graph minors. III. Planar tree-width.

J. Comb. Theory, Ser. B 36, 1 (1984), 49–64. https://doi.org/10.1016/0095-8956(84)

90013-3

[27] Neil Robertson and Paul D. Seymour. 1986. Graph Minors. II. Algorithmic Aspects

of Tree-Width. J. Algorithms 7, 3 (1986), 309–322. https://doi.org/10.1016/0196-

6774(86)90023-4

[28] Peter Sanders and Dominik Schultes. 2005. Highway Hierarchies Hasten Exact

Shortest Path Queries. In Proceedings of ESA. 568–579.
[29] Lucien D. J. Valstar, George H. L. Fletcher, and Yuichi Yoshida. 2017. Landmark

Indexing for Evaluation of Label-Constrained Reachability Queries. In Proceedings
of SIGMOD. ACM, 345–358. https://doi.org/10.1145/3035918.3035955

[30] Fang Wei. 2010. TEDI: efficient shortest path query answering on graphs. In

Proceedings of SIGMOD. ACM, 99–110. https://doi.org/10.1145/1807167.1807181

[31] Wikipedia. 2021. Expressways of China. https://en.wikipedia.org/wiki/

Expressways_of_China

[32] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen Zhu, and

Shuigeng Zhou. 2012. Shortest Path and Distance Queries on Road Networks:

An Experimental Evaluation. Proc. VLDB Endow. 5, 5 (2012), 406–417. https:

//doi.org/10.14778/2140436.2140438

[33] Xudong Wu, Long Yuan, Xuemin Lin, Shiyu Yang, and Wenjie Zhang. 2019.

Towards efficient k-tripeak decomposition on large graphs. In International Con-
ference on Database Systems for Advanced Applications. Springer, 604–621.

[34] Guochang Xu and Yan Xu. 2016. GPS: theory, algorithms and applications.
Springer.

[35] Jinbo Xu, Feng Jiao, and Bonnie Berger. 2005. A tree-decomposition approach to

protein structure prediction. In Proceedings of CSB. IEEE, 247–256.
[36] Long Yuan, LuQin, Xuemin Lin, Lijun Chang, andWenjie Zhang. 2016. Diversified

top-k clique search. The VLDB Journal 25, 2 (2016), 171–196.
[37] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. Effective

and efficient dynamic graph coloring. Proceedings of the VLDB Endowment 11, 3
(2017), 338–351.

[38] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-

based densest clique percolation community search in networks. IEEE Transac-
tions on Knowledge and Data Engineering 30, 5 (2017), 922–935.

[39] Junhua Zhang, Long Yuan, Wentao Li, Lu Qin, and Ying Zhang. 2021. Technical

Report. https://www.dropbox.com/sh/91ctwdxinybjyr9/AABfJJ8oUk-vjCwYz-

KIsJ0_a?dl=0

[40] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and Shuigeng

Zhou. 2013. Shortest path and distance queries on road networks: towards

bridging theory and practice. In Proceedings of SIGMOD. 857–868.
[41] Lei Zou, Kun Xu, Jeffrey Xu Yu, Lei Chen, Yanghua Xiao, and Dongyan Zhao.

2014. Efficient processing of label-constraint reachability queries in large graphs.

Inf. Syst. 40 (2014), 47–66. https://doi.org/10.1016/j.is.2013.10.003

698

https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.5441/002/edbt.2014.49
https://doi.org/10.1007/s00778-012-0274-x
https://doi.org/10.1145/2882903.2882933
https://doi.org/10.1145/1807167.1807183
https://doi.org/10.1016/S1571-0653(05)80078-2
https://doi.org/10.1145/2939672.2939767
https://doi.org/10.1145/3318464.3389748
https://doi.org/10.1145/2666310.2666375
https://doi.org/10.1145/2666310.2666375
https://doi.org/10.1145/3186728.3164141
https://doi.org/10.14778/3115404.3115407
https://doi.org/10.14778/3115404.3115407
https://doi.org/10.1145/3183713.3196913
https://doi.org/10.1145/3183713.3196913
https://doi.org/10.14778/3377369.3377371
https://doi.org/10.14778/3377369.3377371
https://doi.org/10.14778/3380750.3380753
https://doi.org/10.14778/1921071.1921074
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/3035918.3035955
https://doi.org/10.1145/1807167.1807181
https://en.wikipedia.org/wiki/Expressways_of_China
https://en.wikipedia.org/wiki/Expressways_of_China
https://doi.org/10.14778/2140436.2140438
https://doi.org/10.14778/2140436.2140438
https://www.dropbox.com/sh/91ctwdxinybjyr9/AABfJJ8oUk-vjCwYz-KIsJ0_a?dl=0
https://www.dropbox.com/sh/91ctwdxinybjyr9/AABfJJ8oUk-vjCwYz-KIsJ0_a?dl=0
https://doi.org/10.1016/j.is.2013.10.003

