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ABSTRACT
Data imputation has been extensively explored to solve the missing

data problem. The dramatically rising volume of missing data makes

the training of imputation models computationally infeasible in

real-life scenarios. In this paper, we propose an efficient and effec-

tive data imputation system with influence functions, named EDIT,
which quickly trains a parametric imputation model with represen-

tative samples under imputation accuracy guarantees. EDITmainly

consists of two modules, i.e., an imputation influence evaluation (IIE)
module and a representative sample selection (RSS) module. IIE lever-

ages the influence functions to estimate the effect of (in)complete

samples on the prediction result of parametric imputation mod-

els. RSS builds a minimum set of the high-effect samples to satisfy

a user-specified imputation accuracy. Moreover, we introduce a

weighted loss function that drives the parametric imputation model

to pay more attention on the high-effect samples. Extensive experi-

ments upon ten state-of-the-art imputation methods demonstrate

that, EDIT adopts only about 5% samples to speed up the model

training by 4x in average with more than 11% accuracy gain.
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1 INTRODUCTION
Missing data is a pervasive problem in many applications [3, 26,

28, 33, 34, 37, 41], such as, medical logs, meteorology records, ad-

vertising data, etc. Data may be missing due to many reasons like

improper collection [40], lost records [3], or privacy concerns [31].

As a consequence, the missing data problem causes serious chal-

lenges for effective data analysis [21].

To handle the data missing problem, a substantial amount of

research [12, 24, 30, 45] on the data imputation has been carried

out, with the goal of imputing missing values using correct ones.

Earlier simple statistical imputation methods [1, 12, 18, 38] di-

rectly substitute missing values with statistics or the most similar

ones among the data. In contrast, the parametric imputation algo-

rithms [27, 36, 45, 46], using the machine learning or deep learning
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models with the gradient descent style algorithms [32] to learn the

observed data distribution, get better performance.

As data collection becomes the norm, the volume of missing

data dramatically increases. For example, a real-world COVID-19

community mobility datasetMobility [39] contains 2,268,105 incom-

plete samples with more than 5 million missing values. Although

existing parametric imputation methods achieve better imputation

performance than that of statistical ones, they consume extremely

high training cost over the massive missing data, especially on cal-

culating gradient over the entire dataset. Our experimental results

show that, almost all parametric imputation methods take more

than 10
5
seconds on training over the million-size incomplete data.

Moreover, some training samples (e.g., samples contain errors) may

have little or even negative effects on the parametric imputation

model prediction, incurring redundant training [20, 42]. In fact,

in many real-life scenarios, such as e-commerce, transportation

science, and health-care, the efficient and effective data imputation

over the massive missing data is necessary and indispensable.

As a result, in order to apply the parametric imputation methods

to specified real-life scenarios, two major challenges have to be

tackled: (i) How to evaluate the effect of incomplete samples on

the prediction of parametric imputation models. (ii) Is it possible to

build a minimum training set containing the high-effect samples to

speed up the imputation model training under accuracy guarantees.

Therefore, in this paper, we propose an efficient and effective

data imputation system EDIT. It evaluates the effect of incomplete

samples on parametric imputation models by using the influence

functions. It seeks the highest-effect incomplete samples for effi-

cient and accuracy-guaranteed imputation model training. EDIT
consists of the imputation influence evaluation (IIE) and representa-
tive sample selection (RSS) modules. In terms of the first challenge,

the IIE module of EDIT introduces a novel concept of influence
power that leverages the influence functions to evaluate the ef-

fect of (in)complete samples on the imputation model’s prediction.

Regarding the second challenge, EDIT designs the RSS module

to construct a minimum representative set with the highest influ-

ence power samples, to enable the trained model to satisfy a user-

specified imputation accuracy. Thus, EDIT employs a minimum

representative sample set to make parametric imputation models

efficient and scalable on massive missing data. EDIT also presents a

weighted imputation loss function that utilizes the influence power

of (in)complete samples to achieve higher imputation accuracy. In

summary, our contributions of this paper are described as follows.

• We propose an efficient and effective data imputation sys-

tem EDIT for fast parametric imputation model training

under accuracy guarantees. To the best of our knowledge,

this is the first proposal to accelerate imputation models.
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• The IIE module of EDIT employs the influence functions

to capture the influence power of the (in)complete sample

on the prediction result of imputation model when adding

(resp. deleting) samples into (resp. from) training data.

• The RSS module of EDIT is responsible for constructing a

minimum representative set, containing the high-influence
samples, to meet a user-specified imputation accuracy. It

thus significantly saves the model training cost. We develop

an effective imputation loss function for EDIT, which drives
the imputation model to focus more on the samples with

high influence powers.

• Extensive experiments over several datasets demonstrate

the performance enhancement of EDIT, compared with the

ten state-of-the-art parametric imputation methods.

The rest of the paper is organized as follows. We introduce the

background in Section 2. Section 3 gives an overview of the pro-

posed system EDIT. We elaborate the IIE and RSS modules in Sec-

tion 4 and Section 5, respectively. Section 6 reports the experimental

results and findings. Finally, we conclude this work in Section 7.

2 BACKGROUND
2.1 Existing Imputation Methods
Existing imputation algorithms can be categorized into two groups:

statistical ones and parametric ones. The statistical imputation

methods substitute missing values with the statistics [12], or the

most similar ones among training data [1, 38]. They ignore the data

distribution analysis, and thus have a limited ability to impute data.

In contrast, the parametric imputation solution is to train a para-

metric model [44, 47] (i.e., machine learning one or deep learning

one) to learn the data distribution from the observed data. This so-

lution employs the gradient descent techniques to estimate missing

values. It gets better imputation performance than the statistical

ones. On the one hand, themachine learning imputation approaches

calculate the model gradient over the entire dataset to estimate miss-

ing values, including decision tree models XGBoost imputation [7],

MissFI (MissForest imputation) [36], and Baran [23], and regression

models MICE (multivariate imputation by chained equations) [30]

and imputation via individual model [46]. However, the incomplete

dataset may be too large to fit in memory among these methods.

On the other hand, some deep learning models [11, 22] are lever-

aged to solve the data imputation problem, such as multi-layer

perceptron (MLP) [48], autoencoder (AE) [16], and generative ad-

versarial network (GAN) [2, 15]. In particular, the MLP-based impu-

tation ones include DataWig [4] and RRSI (round-robin Sinkhorn

imputation) [5]. The AE-based imputation ones contains MIDAE

(multiple imputation denoising AE) [14], VAEI (variational AE im-

putation) [25], HIVAE (heterogeneous incomplete VAE) [27], and

MIWAE (missing data importance-weighted AE) [6]. The GAN-
based imputation ones are composed of GINN (graph imputation

neural network) [35] and GAIN (generative adversarial imputation

network) [45]. The above methods can train the imputation mod-

els over the massive data, where the gradient is calculated over a

series of small random partitions of the dataset. However, both the

iteration times and training cost are dramatically increasing with

the rising volume of missing data.

Table 1: Symbols and description
Symbol Description
X an input incomplete dataset (stored in a matrix)

X𝑁
and H the training set and holdout set (stored in matrices)

X0
and X𝑐

the initial set and candidate set (stored in matrices)

x𝑖 the 𝑖-th sample in the incomplete dataset X
M the mask matrix w.r.t. X
ℳ an imputation model

X̄ and X̂ the reconstructed matrix and imputed matrix of X
ℐH (x𝑖 ) the influence power of the sample x𝑖

In summary, the parametric imputation algorithms outperform

the statistical ones. However, due to the high training cost, the

parametric imputation methods are faced with a big challenge to

deal with massive missing data imputation. Therefore, our proposed

EDIT system, with the ultimate goal of making imputation models

practical, aims to speed up the training of parametric imputation

models with representative samples under accuracy guarantees.

2.2 Problem Definition
The input incomplete dataset is stored in amatrixX = (x1, · · · , x𝑠 )⊤,
in which each data sample x𝑖 is in the form (𝑥𝑖1, · · · , 𝑥𝑖𝑑 ) within
a 𝑑-dimensional space. For encoding its missing information, we

define a mask matrixM = {m1, · · · ,m𝑠 }⊤, where each mask vector

m𝑖 = (𝑚𝑖1, · · · , 𝑚𝑖𝑑 ) corresponds to a data sample x𝑖 . In particular,

𝑚𝑖 𝑗 takes value in {0, 1}, 𝑖 = 1, · · · , 𝑠 , and 𝑗 = 1, · · · , 𝑑 ;𝑚𝑖 𝑗 = 1 (resp.

0) iff the 𝑗-th dimension is observed (resp. missing). Table 1 lists

the frequently used symbols throughout this paper.

We formalize the missing data imputation problem over the in-

complete dataset X with the mask matrix M in Definition 1.

Definition 1. (Missing data imputation). Given an incom-
plete dataset X with its mask matrix M, the missing data imputation
problem aims to build an imputation modelℳ to find appropriate
values for missing components in X, i.e., the imputed matrix

X̂ = M ⊙ X + (1 −M) ⊙ X̄ (1)

where ⊙ is the element-wise multiplication and X̄ = ℳ(X) is the
reconstructed matrix predicted byℳ over X. In this way, the imputa-
tion modelℳ, (i) makes X̂ as close to the real complete dataset (if it
exists) as possible, or (ii) helps downstream prediction tasks to achieve
better performance if adopting X̂ than that only with original one X.

In general, for a parametric imputation model ℳ with parame-

ters 𝜃 ∈ Θ, the imputation loss function can be defined as

ℒ(X,M, 𝜃 ) = 1

𝑠

𝑠∑︁
𝑖=1

| |m𝑖 ⊙ (x̄𝑖 − x𝑖 ) | |2
2

2| |m𝑖 | |2
2

(2)

where | | · | |2 is the two-norm function and x̄ in X̄ is predicted byℳ.

Thus, the loss minimizer is given by
ˆ𝜃
def

= argmin𝜃 ∈Θ ℒ (X,M, 𝜃 ).
As a result, the parametric model employs the model ℳ with

optimized
ˆ𝜃 to impute missing values in X via using Eq. 1.

Finally, our study mission in this paper is to empower the para-

metric imputation model ℳ in efficiency and effectiveness for the

massive missing data, such that for the optimized model ℳ∗
, (i)

the training cost is minimized, and (ii) the imputation accuracy is

at least as good as that derived from the original model ℳ.
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Figure 1: The architecture of EDIT

3 SYSTEM OVERVIEW
In this section, we present an overview of the proposed EDIT system.

It is mainly composed of an imputation influence evaluation (IIE)

module and a representative sample selection (RSS) module.

Figure 1 illustrates the workflow of the EDIT system. The inputs

of EDIT include a parametric imputation model ℳ and an incom-

plete dataset X. It outputs the optimized modelℳ∗
and the data X̂

imputed byℳ∗
. Specifically, EDIT first utilizes the IIE module to

estimate the influence power, denoted by ℐH (x), of the (in)complete

sample x over the holdout set H. Then, EDIT employs the RSS

module to build a minimum representative set X∗
containing the

samples with the highest influence powers for satisfying an impu-
tation accuracy. Finally, EDIT trains the imputation model with a

newly introduced loss function weighted by the influence power.

The pseudo-code for the EDIT system is given in Algorithm 1.

EDIT first randomly partitions the input dataset X ∈ R𝑠×𝑑 (with

its mask matrix M encoding the missing information in X) into an

initial setX0 ∈ R𝑛0×𝑑
(with the initial mask matrixM0

), a candidate

dataset X𝑐 ∈ R(𝑁−𝑛0)×𝑑
(with the candidate mask matrix M𝑐

), and

a holdout datasetH ∈ R(𝑠−𝑁 )×𝑑
(with the holdout maskmatrixMℎ

),

where the training dataset X𝑁 = X0 ∪ X𝑐
(with the training mask

matrixM𝑁 = M0 ∪M𝑐
). EDIT invokes the parametric imputation

modelℳ to train an initial modelℳ0
using X0

andM0
. Then, the

IIE module uses the influence functions to evaluate the influence

power of each (in)complete sample x ∈ X𝑁
on the imputation

prediction of ℳ0
for H (when adding/deleting x into/from X0

).

The details will be elaborated in Section 4 (lines 1-3).

Next, EDIT consults the RSS module to estimate the imputation

loss
ˆℒH (X𝑐 ) ofℳ0

overH, whenX𝑁
is used for training. The user-

specified imputation loss
ˆℒ𝛼
H (X

𝑐 ) is calculated by 1

𝛼 · ˆℒH (X𝑐 ). EDIT
chooses the samples from X𝑐

with the highest positive influence

powers to form a minimum representative sample set X∗
(with the

mask matrix M∗
) to satisfy the user-specified imputation loss. The

stop criterion of the sample selection is that, the newly estimated

imputation loss (via adding all chosen samples into the training set)

is exactly not worse than the user-specified loss
ˆℒ𝛼
H (X

𝑐 ). The RSS
module will be detailed in Section 5 (lines 4-5). Thereafter, EDIT
trainsℳ0

with a weighted imputation loss function using the data

X𝑓 (= X0∪X∗) and mask matrixM𝑓 (= M0∪M∗). Eventually, EDIT
returns the optimized model ℳ∗

and imputed data X̂ (lines 6-8).

4 IIE MODULE
In this section, we present how to estimate the influence power of
sample(s), i.e., the change in the imputation loss of the initial model.

Algorithm 1: The EDIT System

Input: an incomplete dataset X with its mask matrix M, an initial

sample size 𝑛0, a training sample size 𝑁 , a hype-parameter

𝛼 , and a parametric imputation model ℳ
Output: the trained imputation model ℳ∗

and imputed dataset X̂
1: divide X (with M) into an initial dataset X0

(with M0
), a candidate

dataset X𝑐
(with M𝑐

), and a holdout dataset H (with Mℎ
), i.e.,

X = X0 ∪ X𝑐 ∪ Xℎ
andM = M0 ∪M𝑐 ∪Mℎ

2: train the initial model ℳ0
with X0

and M0
to obtain parameters

ˆ𝜃0

/* Imputation influence evaluation */

3: calculate the influence power ℐH (x) for each x ∈ X𝑁 (= X0 ∪ X𝑐 )
/* Representative sample selection */

4: derive the user-specified imputation loss
ˆℒ𝛼
H (X

𝑐 ) over H
5: build a minimum representative sample set X∗

(with M∗
) via

selecting the samples from X𝑐
to satisfy

ˆℒ𝛼
H (X

𝑐 )
/* Training with weighted imputation loss function */

6: train ℳ0 with a weighted imputation loss function over

X𝑓 = X0 ∪ X∗
and M𝑓 = M0 ∪M∗

to obtain the optimized ℳ∗

7: estimate missing values by ℳ∗
to obtain the imputed matrix X̂

8: returnℳ∗
and X̂

Let us begin by employing the influence function, a classic tech-
nique from the robust statistics [20, 42], to evaluate the perturbation

in the parameters of the initial model ℳ0
when adding/deleting

one sample x ∈ X𝑁
into/from the initial set X0

. Specifically, in-

spired by the studies [20, 42], we formally define the influence

function for the parametric imputation models in Definition 2. It

evaluates the parameter perturbation, i.e.,
ˆ𝜃0 − ˆ𝜃±x, with ˆ𝜃±x =

argmin𝜃 ∈Θ ℒ({X0 ± {x}}, {M0 ± {m}}, 𝜃 ), when upweighting the

observed values in x by an infinitesimal amount. This estimation

method on parameter perturbation avoids retraining ℳ0
with pa-

rameters
ˆ𝜃0 (that is prohibitively expensive and unrealistic, espe-

cially when considering the massive missing data).

Definition 2. (Influence function). Given a sample x with its
mask vector m, the influence function ℐ𝜃 (x) is to compute the effect
of upweighting the observed values in x with some small 𝜖 (on the

parameters of an imputation model ℳ), getting parameters ˆ𝜃𝜖,x
def
=

argmin𝜃 ∈Θ ℒ
(
X0,M0, 𝜃

)
+ 𝜖ℒ ({x}, {m}, 𝜃 ). Formally, ℐ𝜃 (x), i.e.,

the parameter perturbation if x was upweighted by 𝜖 , is given by

ℐ𝜃 (x)
def
= −

𝑑 ˆ𝜃𝜖,x

𝑑𝜖

�����
𝜖=0

= [∇∇ℒ(X0,M0, ˆ𝜃0)]−1 · ∇ℒ({x}, {m}, ˆ𝜃0)

where ∇∇ℒ and ∇ℒ are the Hessian matrix and derivative of the
imputation loss function ℒ with respect to ˆ𝜃0, respectively.

In Definition 2, the derivative ∇ℒ({x}, {m}, ˆ𝜃0) is given by

∇ℒ({x}, {m}, ˆ𝜃0) =
m ⊙ (x̄ − x) ·𝒟(m) · ∇x̄

| |m| |2
2

where 𝒟(m) is to transform a vector m to a diagonal matrix, ∇x̄
indicates the derivative of the vector x̄with respect to ˆ𝜃0. In addition,
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we can write the Hessian matrix of ℒ(X0,M0, ˆ𝜃0) in the form

∇∇ℒ(X0,M0, ˆ𝜃0) =
1

𝑁

∑︁
x𝑖 ∈X0

[ 𝑑∑︁
𝑗=1

𝑚2

𝑖 𝑗

| |m𝑖 | |2
2

· (𝑥𝑖 𝑗 − 𝑥𝑖 𝑗 ) · ∇∇𝑥𝑖 𝑗

+ [𝒟(m𝑖 ) · ∇x̄𝑖 ]⊤ ·𝒟(m𝑖 ) · ∇x̄𝑖
| |m𝑖 | |2

2

]
=
1

𝑁

∑︁
x𝑖 ∈X0

[𝒟(m𝑖 ) · ∇x̄𝑖 ]⊤ ·𝒟(m𝑖 ) · ∇x̄𝑖
| |m𝑖 | |2

2

The second equation follows by ignoring the first term in the first

equation. The reason is that, the parametric imputation models

[5, 45] ensure that, the vector x̄𝑖 predicted by the trained ℳ0

happens to be very close to the observed values in x𝑖 ∈ X0
.

In addition, for parametric deep learning imputation methods,

the Hessianmatrix∇∇ℒ(X0,M0, ˆ𝜃0)may be singular and its inverse

does not exist in many cases. To this end, we add a simple term

𝜆I to ∇∇ℒ(X0,M0, ˆ𝜃0), where 𝜆 is a small positive quantity. Thus,

the IIE module actually finds the inverse of ∇∇ℒ(X0,M0, ˆ𝜃0) + 𝜆I,
which is completely invertible. In this way, ℐ𝜃 (x) is calculated by

ℐ𝜃 (x) = [∇∇ℒ(X0,M0, ˆ𝜃0) + 𝜆I]−1 · ∇ℒ({x}, {m}, ˆ𝜃0).
Then, we employ the chain rule [20] to approximate the change

in the imputation loss when adding/deleting x into/fromX0
, termed

as the influence power ℐH (x), as stated in Definition 3.

Definition 3. (Influence power). Given a sample x with its
mask vector m, the influence power of x, denoted by ℐH (x), indicates
the change in the imputation loss of ℳ0 for the holdout dataset H
when all observed values in x are upweighted. It can be formally
approximated by the chain rule.

ℐH (x)
def
= −

𝑑ℒ
(
H,Mℎ, ˆ𝜃𝜖,x

)
𝑑𝜖

�������
𝜖=0

= ∇ℒ
(
H,Mℎ, ˆ𝜃0

)⊤
· ℐ𝜃 (x)

In other words, the sample x with the positive influence power

has positive effect on the imputation model’s prediction, otherwise

x has negative effect. Besides, due to the additivity of the influence

function [19, 29], both the parameter perturbation and influence

power preserve the additive property. As a result, the parameter

perturbation or the influence power of a sample set X𝑛
is the sum

of the corresponding values of x ∈ X𝑛
, i.e., ℐ𝜃 (X𝑛) = ∑

x∈X𝑛 ℐ𝜃 (x)
and ℐH (X𝑛) = ∑

x∈X𝑛 ℐH (x).
The IIE module is finally depicted in Figure 2. It takes the initial

modelℳ0
and the training dataset X𝑁

as inputs, and outputs the

influence powers of samples x ∈ X𝑁
. Specifically, IIE first employs

the influence function to estimate the parameter perturbation by

upweighting the observed values in x with an infinitesimal amount,

when adding/deleting x into/from X0
. It then utilizes the chain rule

to further infer the change in the imputation loss ofℳ0
, i.e., the

x’s influence power. Moreover, for a sample set X𝑛
, its influence

power is the sum of the influence powers of all samples in X𝑛
.

5 RSS MODULE
In this section, we first explain how to estimate the imputation accu-
racy using the influence power. Then, we detail the construction of

a minimum representative set X∗
in RSS under accuracy guarantees.

We also present an effective weighted imputation loss function to

further boost the performance of parametric models.

5.1 Imputation Accuracy Estimation
The imputation accuracy estimation is an indispensable part of

the RSS module to select the most beneficial samples for training,

in order to satisfy imputation accuracy guarantee. It also helps to

avoid retraining the model, thus improves the efficiency.

Specifically, in the RSS module, based on the influence power

tailored to (in)complete samples, we can approximately estimate

the imputation loss (i.e., accuracy) of the initial model ℳ0
for the

holdout dataset H, when adding a sample set X𝑛 ⊆ X𝑐
into the

initial set X0
. In particular, the influence power ℐH (X𝑛) of X𝑛

indi-

cates the change in the imputation loss of ℳ0
for H, when adding

X𝑛
into X0

. In other words, with the imputation loss ℒ(H,Mℎ, ˆ𝜃0)
of ℳ0

for H determined by Eq. 2, we can analytically infer the

specific imputation loss of ℳ0
for H if adding X𝑛

into X0
.

To be more specific, adding X𝑛
into X0

is the same as upweight-

ingX𝑛
by 𝜖 = 1

𝑁
in

ˆ𝜃𝜖,x. Hence, according to Definition 2, we can lin-

early approximate the parameter perturbation for addingX𝑛
intoX0

by computing
ˆ𝜃0− ˆ𝜃+X𝑛 = 1

𝑁

∑
x∈X𝑛 ℐ𝜃 (x). With the chain rule, the

change in the imputation loss is given by ℒ(H,Mℎ, ˆ𝜃0) − ˆℒH (X𝑛) =
1

𝑁

∑
x∈X𝑛 ℐH (x). As a result, the imputation loss

ˆℒH (X𝑛) with
adding X𝑛

into X0
can be estimated by

ˆℒH (X𝑛) = ℒ(H,Mℎ, ˆ𝜃0) −
1

𝑁
ℐH (X𝑛) (3)

According to Eq. 3, one can directly derive the imputation loss/

accuracy after adding more training samplesX𝑛
, without retraining

the imputation model, where the imputation loss ℒ(H,Mℎ, ˆ𝜃0) of
ℳ0

for H can be known in advance, as well as the influence power

1

𝑁
ℐH (X𝑛). It is also easy to realize that, the imputation accuracy

estimation using Eq. 3 is accurate.
In addition, when we add the whole candidate dataset X𝑐

to X0
,

the imputation loss
ˆℒH (X𝑐 ) with the training datasetX𝑁 = X𝑐∪X0

can be estimated by
ˆℒH (X𝑐 ) = ℒ(H,Mℎ, ˆ𝜃0) − 1

𝑁

∑
x∈X𝑐 ℐH (x).

Moreover, we allow users to tolerate the imputation accuracy

with a user-specified hype-parameter𝛼 . Formally, the user-specified

imputation loss can be estimated by
ˆℒ𝛼
H (X

𝑐 ) def

= 1

𝛼 · ˆℒH (X𝑐 ). In
other words, for the imputation accuracy

ˆℒH (X𝑐 ) (i.e., the highest
accuracy that can be derived using the training dataX𝑁 = X𝑐 ∪X0

),

the users can flexibly set the value of 𝛼 , so as to get a satisfactory

imputation accuracy (over the holdout set H) that is not worse
than

1

𝛼 · ˆℒH (X𝑐 ). Note that, the smaller the 𝛼 value, the higher

the user-specified imputation loss
ˆℒ𝛼
H (X

𝑐 ), the fewer the training
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Figure 3: Illustration of the RSS module

samples requested for ensuring model accuracy, and thus the less

the imputation model training cost.

5.2 Sample Selection with Accuracy Guarantee
The RSS module is responsible for seeking the minimum represen-

tative sample set X∗
with the user-specific accuracy tolerance, i.e.,

the estimated imputation loss
ˆℒH (X∗) should not be worse than

the user-specified imputation loss
ˆℒ𝛼
H (X

𝑐 ).
First, it is obvious that, the higher the influence power of the

sample set X∗
, the smaller the estimated loss

ˆℒH (X∗), according to
Eq. 3. In other words, if samples with higher influence powers are

included in X∗
, the fewer samples (in X∗

) are requested for satisfy-

ing the user-specified imputation loss
ˆℒ𝛼
H (X

𝑐 ). To this end, we find
the highest influence power samples from X𝑐

to form the minimum

representative set X∗
for the user-specific accuracy tolerance.

Figure 3 illustrates the general procedure of the RSS module

to find the minimum representative sample set X∗
. Specifically,

we first get a refined candidate set X𝑝
containing the samples in

X𝑐
with the positive influence powers. We sort these samples in

X𝑝
in the non-ascending order of the influence power. Then, we

collect the samples from X𝑝
that have the highest influence powers

to form the minimum representative sample set X∗
. The collection

procedure terminates if the estimated loss
ˆℒH (X∗) is equal to or

smaller than
ˆℒ𝛼
H (X

𝑐 ) while ˆℒH (X𝑛∗−1) is higher than ˆℒ𝛼
H (X

𝑐 ), i.e.,
ˆℒH (X∗) ≤ ˆℒ𝛼

H (X
𝑐 ) < ˆℒH (X𝑛∗−1), where X𝑛∗−1

consists of the

samples with the top (𝑛∗ − 1) influence powers in X𝑐
. Otherwise,

all samples in X𝑝
are inserted in X∗

(i.e., X∗ = X𝑝
).

5.3 Training with Weighted Samples
We also leverage the concept of influence power to boost the para-

metric imputation model performance in the EDIT system.

In the standard training, the imputation model aims to minimize

the (basic) imputation loss function defined in Eq. 2, where each

training sample is equally weighted. Actually, different samples

have different influence powers on the imputation models, based

on Definition 3. The higher the influence power of the (in)complete

sample x, the stronger the effect of x on the prediction result of the

parametric imputation model when adding x to the training data.

In view of this, to obtain an optimized parametric imputation

modelℳ∗
by EDIT, we develop an effective weighted imputation

loss function ℒ𝑓 that weights the training samples with the influ-

ence power on top of the basic loss function in Eq. 2, i.e.,

ℒ𝑓 (X𝑓 ,M𝑓 , 𝜃 ) = 1

𝑛𝑓

𝑛𝑓∑︁
𝑖=1

ℐH (x𝑖 )
| |m𝑖 ⊙ (x̄𝑖 − x𝑖 ) | |2

2

2| |m𝑖 | |2
2

where X𝑓 = X0 ∪ X∗
,M𝑓 = M0 ∪M∗

, and 𝑛𝑓 = 𝑛0 + 𝑛∗. The new
loss functionℒ𝑓 drives the imputation model to pay more attention

on the samples with higher influence powers. One can observe that,

the RSS module eliminates or downweights the samples with the

low or even negative influence powers during model training via

the weighted imputation loss function. It thus facilitates the higher

robustness of imputation models against the dirty data.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our proposed system

EDIT with ten state-of-the-art parametric imputation methods. All

algorithms were implemented in Python. The experiments were

conducted on an Intel Core 2.80GHz server with TITAN Xp 12GiB

(GPU) and 192GB RAM, running Ubuntu 18.04 system.

Datasets. In the experiments, we use four real-world large-scale

datasets: (i) Power [13] contains 1,045,295 samples with 114 features

gathered in a house located in Sceaux between December 2006 and

November 2010. (ii) Gas [17] includes 4,178,504 chemical sensor

reading records exposed to gas mixtures at 56 concentration levels.

(iii) HIGGS [10] contains 11,000,000 samples with 28 features. Each

sample is a pair of physical properties of an environment and a

binary indicator of Higgs bosons production. (iv) Criteo [9] is a

click-through rates dataset with 45,840,616 samples and 39 features.

It is about display advertisement made publicly available by Criteo

Labs. For all datasets, we randomly choose 10% data as the test data,

1% data as the holdout data, and the rest as the training data.

Metrics. In the evaluation, we use the training time and root
mean square error (RMSE) to measure the efficiency and effective-

ness of imputation models. We also report the training sample rate
𝑅𝑡 (i.e., how many samples are used for training imputation model)

of imputation models. For EDIT, 𝑅𝑡 is
𝑛𝑓

𝑁
× 100%, and its training

time includes influence computation, sample selection, and model

training times. All metrics follow the rule that, the smaller the

metric value, the better efficiency or effectiveness the imputation

algorithms. To obtain the RMSE values, we remove 50% observed

values under the missing mechanisms. We use them as the ground-

truth to calculate the RMSE values during test. In our evaluation,

each value is reported by averaging five times of results under

different data random divisions.

Missing mechanisms. In the experiments, we inspect three

missing mechanisms, i.e., missing completely at random (MCAR),

missing at random (MAR), and missing not at random (MNAR).

First, the data missingness in MCAR [43] is unrelated to any

values. The missing values are randomly injected to X, in order to

simulate the default missing mechanism MCAR. The data missing-

ness in MAR is only related to the observed data. We follow the

methodology in [8] to simulate MAR. It first selects a numerical

attribute 𝑓𝑣 . For a sample x𝑖 , the value 𝑥𝑖 𝑗 in a feature 𝑓𝑗 is missing

at the probability of P𝑐 (𝑥𝑖 𝑗 ), which is calculated according to the

value (denoted by 𝑥𝑖𝑣) of x𝑖 on 𝑓𝑣 . Namely, P𝑐 (𝑥𝑖 𝑗 ) = Φ(𝑥𝑖𝑣 )∑𝑠
𝑖=1 Φ(𝑥𝑖𝑣 )

,

where Φ(𝑥𝑖𝑣) denotes the ranking of 𝑥𝑖𝑣 in 𝑓𝑣 . The smaller the value

in 𝑓𝑣 , the higher the ranking. By contrast, the data missingness in

MNAR is only related to the missing values themselves. Similar

as [37], to simulate MNAR, the value 𝑥𝑖𝑚 of a sample x𝑖 is missing

at the probability of P𝑚 (𝑥𝑖𝑚), i.e., P𝑚 (𝑥𝑖𝑚) = Φ(𝑥𝑖𝑚)∑𝑠
𝑖=1 Φ(𝑥𝑖𝑚) .

Imputation methods. In the experiments, the baseline impu-

tation methods include ten state-of-the-art parametric imputation

algorithms: three machine learning ones (i.e., MissF, Baran, and
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Table 2: Imputation performance comparison on Power
Method RMSE (Bias) Time (s) 𝑅𝑡 (%)

MissF

Original − − −
EDIT 0.240 (± 0.060) 34,362 15.63

Baran

Original − − −
EDIT 0.212 (± 0.022) 96,261 8.98

MICE

Original − − −
EDIT 0.233 (± 0.029) 28,046 14.90

DataWig

Original − − −
EDIT 0.182 (± 0.021) 24,231 6.87

RRSI

Original − − −
EDIT 0.158 (± 0.014) 18,123 2.12

MIDAE

Original − − −
EDIT 0.218 (± 0.041) 21,012 10.26

VAEI

Original − − −
EDIT 0.233 (± 0.015) 12,682 2.12

HIVAE

Original 0.119 (± 0.056) 3,504 100

EDIT 0.116 (± 0.024) 1,573 3.88

GINN

Original − − −
EDIT 0.220 (± 0.098) 22,621 5.34

GAIN

Original 0.183 (± 0.038) 2,909 100

EDIT 0.163 (± 0.042) 1,794 8.26

MICE) and seven deep learning ones (i.e., DataWig, RRSI, MIDAE,

VAEI, HIVAE, GINN, and GAIN). We evaluate the proposed EDIT
system on top of the ten models, compared with these basic para-

metric imputation algorithms (i.e., the original ones).
Implementation details. For all machine learning algorithms,

the learning rate is set to 0.3, and the number of iterations is set to

100. In particular, the number of decision trees in MissFI is set to 6.

Baran employs AdaBoost as the prediction model. The imputation

times in MICE are 20. For all deep learning imputation methods, the

learning rate is 0.001, the dropout rate is 0.5, the training epoch is 30,

and the batch size is 128. The ADAM algorithm is utilized to train

networks. MIDAE is a 2-layer with 128 units per layer network. For

VAEI, the encoder and decoder are fully connected networks with

two hidden layers, each with 20 neurons per layer, and the latent

space was 10-dimensional. HIVAE uses only one dense layer for all

the parameters of the encoder and decoder, each with 10 neurons

per layer. In GINN, the discriminator used is a simple 3-layer feed-

forward network trained 5 times for each optimization step of the

generator. In GAIN, both generator and discriminator are modeled

as 2-layer fully connected network. For EDIT, the hype-parameter

𝛼 is by default set to 1. The initial sample size 𝑛0 is 6,000 for Power,
10,000 for Gas, 20,000 for HIGGS, and 40,000 for Criteo.

6.1 Scalability Evaluation
The first set of experiments explores the performance of the pro-

posed EDIT system over existing parametric imputation methods.

The experimental results are reported in Table 2 and Table 3. Some

results are unavailable, since the corresponding methods are not

able to finish within 10
5
seconds.

One can observe that, compared to each original method, EDIT
takes less training time and samples (i.e., smaller training sample

rate 𝑅𝑡 ), while it achieves a higher imputation accuracy (i.e. smaller

RMSE value). This is because that, the RSS module with the rep-

resentative sample set minimizes the required training samples

of parametric models to satisfy the imputation accuracy expecta-

tion of users, and thereby saving the training time. In addition,

EDIT utilizes the influence power to present an effective weighted

imputation loss function for accuracy enhancement. Specifically,

EDIT spends only 48.06% of the training time required for original

models in average, and it decreases to 21.28% for HIVAE on Gas
dataset. Meanwhile, EDIT adopts only 6.56% of the training sam-

ples used for original models in average. The training sample rate

even decreases to 2.12% for VAEI and RRSI on Power dataset. In
terms of RMSE, EDIT exceeds the corresponding original methods

by 3.36% in average (even 11.62% for GAIN on Gas). Note that, in
the rest of experiments, we employ HIVAE and GAIN as baselines

to demonstrate the performance of EDIT, since they can get the

original imputation results and thus provide a clear comparison

benchmark to reflect the superiority of EDIT.
Moreover, we investigate the effectiveness of the weighted im-

putation loss function adopted in EDIT, as well as the strategy of

using the samples with the high positive influence powers. We

compare EDIT with three methods, i.e., noW-EDIT that trains the

final imputation model with original imputation loss function, i.e.,

Eq. 2, noW-EDIT- that selects top-𝑅𝑡 samples with negative influence
powers on top of noW-EDIT, and Random that randomly chooses

𝑅𝑡 samples to add the training data. The training sample rate 𝑅𝑡 is

determined by EDIT, as reported in Table 2 and Table 3.

The corresponding experimental results are shown in Table 4.

First, EDIT consistently gets the better imputation accuracy than

noW-EDIT over the four datasets. It is attributed to the effectiveness
of the weighted imputation loss function used in EDIT. noW-EDIT
exceeds Random and noW-EDIT- by 4.72% and 7.83% in average,

respectively. Random performs better than noW-EDIT- in all cases.

We can conclude that, the samples with positive/negative influ-

ence powers do have positive/negative effect on the imputation

model training. In other words, using the samples with the positive

influence powers indeed benefits the imputation model predictions.

6.2 Parameter Evaluation
Effect of missing rate. When varying the missing rate 𝑅𝑚 (i.e., how

many values in original observed data are dropped) from 10% to

90%, the corresponding results of the RMSE, training time, and 𝑅𝑡
are depicted in Figure 4. We also report the time cost of IIE, which

is the core module of EDIT. In Figure 4 and the rest of experiments,

the results of HIVAE and GAIN are unavailable over Criteo, since
they are not able to finish within 10

5
seconds.

We can find that, compared with original methods, EDIT takes

much less training time and samples to obtain a better imputation

accuracy in all cases. It is robust with the increasingmissing rate𝑅𝑚 ,

due to the slight drop in RMSE. In EDIT, the IIE module takes 84.26%

training time in average. It indicates that, calculating the influence

power of samples inX𝑁
takes the dominant cost. Furthermore, with

the growth of 𝑅𝑚 , the imputation accuracy descends consistently

for each algorithm. The reason is that, the data information turns

less with the increase of 𝑅𝑚 , resulting in a lower accuracy.

Effect of 𝛼 . With 𝛼 varying from 80% to 120%, Figure 5 plots the

corresponding experimental results, including the imputation loss

values over the holdout dataset H, the sample rate of the refined

candidate set X𝑝
(the minimum representative sample set X∗

), i.e.,
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Table 3: Imputation performance comparison on Gas, HIGGS, and Criteo

Method

Gas HIGGS Criteo
RMSE (Bias) Time (s) 𝑅𝑡 (%) RMSE (Bias) Time (s) 𝑅𝑡 (%) RMSE (Bias) Time (s) 𝑅𝑡 (%)

HIVAE

Original 0.182 (± 0.089) 32,291 100 0.404 (± 0.031) 54,721 100 − − −
EDIT 0.169 (± 0.067) 6,872 2.81 0.412 (± 0.063) 35,621 4.22 0.324 (± 0.063) 94,291 3.96

GAIN

Original 0.241 (± 0.037) 17,548 100 0.448 (± 0.092) 44,044 100 − − −
EDIT 0.213 (± 0.036) 6,199 2.43 0.423 (± 0.125) 29,443 2.91 0.366 (± 0.045) 85,683 4.22

Table 4: Imputation performance comparison (RMSE) of Random, noW-EDIT−, and noW-EDIT
Method Power Gas HIGGS Criteo

HIVAE

Random 0.141 (± 0.034) 0.187 (± 0.058) 0.433 (± 0.064) 0.345 (± 0.070)

noW-EDIT- 0.149 (± 0.042) 0.194 (± 0.067) 0.444 (± 0.058) 0.359 (± 0.061)

noW-EDIT 0.120 (± 0.024) 0.175 (± 0.060) 0.420 (± 0.063) 0.329 (± 0.063)

GAIN

Random 0.184 (± 0.038) 0.243 (± 0.045) 0.452 (± 0.094) 0.386 (± 0.032)

noW-EDIT- 0.192 (± 0.043) 0.252 (± 0.032) 0.460 (± 0.099) 0.397 (± 0.038)

noW-EDIT 0.173 (± 0.042) 0.221 (± 0.036) 0.425 (± 0.102) 0.375 (± 0.045)

Original model, RMSE EDIT, RMSE EDIT, Rt EDIT, Training timeOriginal model, Training time IIE, Time cost
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Figure 4: Imputation performance comparison under different missing rates

𝑅1 = 𝑛𝑝/𝑁 (𝑅2 = 𝑛∗/𝑁 ). The user-specified loss value is derived

by
1

𝛼 · ℒ(H, ˆ𝜃 ), where ℒ(H, ˆ𝜃 ) is the loss of EDIT trained on X𝑁
.

As inferred from the figure, the imputation loss values of EDIT
and noW-EDIT are smaller than (or approximate) the user-specified

loss in all cases. It means that, EDIT and noW-EDIT get at least as

a good accuracy as the user’s expectation, i.e., they indeed satisfy

the accuracy requirement of users. Besides, EDIT obtains the lower

imputation loss than noW-EDIT in each case. It confirms the power

of the newly presented weighted imputation loss function for EDIT.
Moreover, the loss values of EDIT and noW-EDIT decrease with

the growth of 𝛼 , while the sample rate 𝑅2 increases in most cases. It

is because, a larger value of 𝛼 signifies a smaller user-specified loss

(w.r.t. a higher accuracy expectation of users). Hence, more training

samples (i.e., a larger 𝑅2) are needed to satisfy the higher accuracy

requirement, resulting in the lower imputation loss. In addition, 𝑅1
is constant, since 𝛼 does not influence the number of samples in X𝑐

that have positive influence powers (i.e., the refined candidate set

X𝑝
is fixed for varying 𝛼). Especially, when 𝛼 is smaller than 100%,

the imputation loss of EDIT changes fast, while the sample rate𝑅2 is

the opposite.When𝛼 exceeds 100%,𝑅2 obviously increases to satisfy

the accuracy guarantee. When 𝛼 exceeds 110%, the imputation loss

of EDIT changes slightly, where the newly added samples in X∗
for

training are fully included in X𝑝
(containing the positive influence

power samples inX𝑐
). Thus, if users want to maximize the efficiency

of EDIT, they can choose the smaller 𝛼 value (e.g., less than 100%).

If they would like to maximize the effectiveness of EDIT, the large
𝛼 value (even greater than 100%) can be chosen.

Effect of missing mechanisms. We vary the data missing mecha-

nisms MCAR, MAR, and MNAR, and the corresponding experimen-

tal results are plotted in Figure 6.

We can observe that, the execution time of imputation algo-

rithms HIVAE, GAIN, and EDIT is insensitive to different missing

mechanisms for each dataset. The imputation algorithms in MNAR

mechanism achieve lower accuracy than that in other two missing

mechanisms. It partially attributes to the extreme biased simulation

of MNAR. In contrast, the performance of the biased missing case

in MAR is similar as that in MCAR. Thus, the study of missing

value distributions is more complicated than expected. It is worth

further exploration in the future. In addition, as expected, EDIT
consistently takes much less training time to obtain a better impu-

tation accuracy in each case. It spends 52.58%, 52.47%, and 56.83%

of the training time required for original models to achieve 5.14%,

3.55%, and 2.53% accuracy gain in average under MCAR, MAR, and

MNAR mechanisms, respectively.
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Figure 5: Imputation performance comparison under different values of 𝛼
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Figure 6: Comparison under different missing mechanisms

6.3 Prediction on Real-world Mobility Data
The last set of experiments verifies the superiority of EDIT to

original imputation methods on post-imputation prediction task.

We employ a real-world incomplete COVID-19 community mo-

bility (i.e., Mobility) dataset [39]. It shows how length of stay at

different places change compared to a baseline in a specific region

(totally 7,550 regions with 2,268,105 samples, taking 30.62% average

missing rate). The regression task is to predict the count of new

cases confirmed after a positive test. In particular, the imputation

methods are first employed to impute missing values in Mobility.
Then, a regression model is trained with three fully connected lay-

ers over the imputed data. The training epoch is 30 and the learning

rate is 0.005. The initial sample size in EDIT is 10,000.

First, the imputation performances of the training time and train-

ing sample rate 𝑅𝑡 over Mobility are presented in Table 5. We can

find that, the EDIT-based methods take only 71.26% training time

and 7.78% training samples required for original imputation models

in average. Thus, it further confirms the efficiency of the EDIT sys-

tem. Moreover, the post-imputation prediction results are depicted

in Table 6 overMobility. The smallermean absolute error (MAE) cor-

responds to the better prediction effect. We can further observe that,

the prediction performance under different imputation algorithms

is consistent with the imputation performance of these algorithms,

i.e., the EDIT ones have better imputation accuracy than original

Table 5: Imputation evaluation over Mobility
Metric HIVAE EDIT-HIVAE GAIN EDIT-GAIN
Time (s) 9,074 5,988 6,533 5,134
𝑅𝑡 (%) 100 5.14 100 10.42

Table 6: Post-imputation evaluation (MAE) over Mobility
HIVAE EDIT-HIVAE GAIN EDIT-GAIN

106.52(±12.26) 100.26(±8.89) 111.71(±13.45) 102.26(±12.02)

ones. In particular, EDIT exceeds the corresponding original method

by 6.96% in average, and it increases up to 8.46% for GAIN.

7 CONCLUSIONS
In this paper, we propose an efficient and effective data imputation

system EDIT with the influence functions. EDIT consists of an IIE

module and a RSS module. The RSS module finds a minimum repre-
sentative sample set using the concept of influence power introduced
by the IIE module, so that the model training theoretically satisfies

the user-specified imputation accuracy. We also present an effective

weighted imputation loss function to further boost imputation per-

formance. Extensive experiments over several real-world datasets

demonstrate that, EDIT is able to significantly accelerate the model

training while having the obvious accuracy gain, compared with

ten state-of-the-art parametric imputation methods.
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