MT-Teavr: Evaluating and Augmenting Neural NLIDB on
Real-world Linguistic and Schema Variations

Pingchuan Ma
Hong Kong University of Science and Technology
Hong Kong SAR, China
pmaab@cse.ust.hk

ABSTRACT

Natural Language Interface to Database (NLIDB) translates human
utterances into SQL queries and enables database interactions for
non-expert users. Recently, neural network models have become a
major approach to implementing NLIDB. However, neural NLIDB
faces challenges due to variations in natural language and database
schema design. For instance, one user intent or database concep-
tual model can be expressed in various forms. However, existing
benchmarks, using hold-out datasets, cannot provide thorough un-
derstanding of how good neural NLIDBs really are in real-world
situations and its robustness against such variations. A key difficulty
is to annotate SQL queries for inputs under real-world variations,
requiring considerable manual effort and expert knowledge.

To systematically assess the robustness of neural NLIDBs without
extensive manual effort, we propose MT-TEQL, a unified framework
to benchmark NLIDBs against real-world language and schema
variations. Inspired by recent advances in DBMS metamorphic test-
ing, MT-TEQL implements semantics-preserving transformations on
utterances and database schemas to generate their variants. NLIDBs
can thus be examined for robustness utilizing utterances/schemas
and their variants without requiring manual intervention.

We benchmarked nine neural NLIDBs using 62,430 inputs and
identified 15,433 defects. We analyzed potential root causes of de-
fects and conducted a user study to show how MT-TEQL can assist
developers to systematically assess NLIDBs. We further show that
the transformed (error-triggering) inputs can be used to augment
popular NLIDBs and eliminate 46.5%(+5.0%) errors made by them
without compromising their accuracy on standard benchmarks. We
summarize lessons from this study that can provide insights to
select and design NLIDBs that fit particular usage scenarios.

PVLDB Reference Format:

Pingchuan Ma and Shuai Wang. MT-TEQL: Evaluating and Augmenting
Neural NLIDB on Real-world Linguistic and Schema Variations. PVLDB,
15(3): 569 - 582, 2022.

doi:10.14778/3494124.3494139

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/MTTeql/MT-Teql and http://bit.ly/MT-Teql-data.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494139

Corresponding author: Shuai Wang {shuaiw@cse.ust.hk}.

569

Shuai Wang
Hong Kong University of Science and Technology
Hong Kong SAR, China
shuaiw@cse.ust.hk

1 INTRODUCTION

Natural Language Interface to Database (NLIDB) aims to directly
retrieve data from relational databases using natural language utter-
ances. It is expected to provide a handy interface with which users
can access a database without knowledge of SQL grammar or how
data is stored in the database. Recent advances show the potential
of modern NLIDBs in synthesizing complex nested cross-domain
cross-table SQL queries [1, 4, 7, 14, 15, 31, 34, 42].

To date, neural NLIDB becomes a major research line in this
area, given the strong power of neural models on language com-
prehension and generation [16]. Despite the spectacular develop-
ment of neural NLIDB, however, recent advances [27] in the NLP
community have pointed out that only using hold-out datasets is
insufficient to faithfully benchmark NLP models. We hence suspect
that neural NLIDB, which is generally based on NLP primitives,
could face primary challenges due to the high flexibility of nat-
ural language utterances and database schemas in the wild. For
instance, one user’s intent can be expressed in multiple lexically
different utterances. Similarly, one conceptual model (in the form
of an entity-relationship diagram) can be implemented in multi-
ple structurally different schemas. Users adopt different normal
forms for diverse purposes or may leverage an inadequate albeit
functional database schema (e.g., lacking foreign key constraints).
Given semantically equivalent utterances or schemas in different
forms, neural NLIDB may yield inconsistent outputs. These errors
exhibit the weakness of current neural NLIDBs on generalization
ability and robustness in realistic noisy scenarios.

Despite the aforementioned concerns, datasets that can com-
prehensively benchmark the robustness of neural NLIDBs in the
wild have not been developed properly. Most benchmarks usu-
ally provide queries either on a single table or from one single
domain [8, 11, 15, 16, 44, 51, 54]. The authors in [16] point out vari-
ous implicit assumptions and limitations in different benchmarks.
For instance, WikiSQL [54] only contains single-table queries from
diverse domains. ATIS [8, 24] and GeoQuery [51] do not consider
grouping and ordering operations and focus on single-domains.
While MAS [17] contains a wider range of queries, including join-
ing and grouping, linguistic diversity of its utterances is limited, of
which all utterances start with “return me”. A recent benchmark,
Spider [50], covers the most commonly-used query types and makes
reasonable assumptions on utterances. Despite the progress made
by Spider, this study (Sec. 5) will show that it still does not suffice
for evaluating NLIDB systems under linguistic and schema design
variations and accuracy benchmarked by Spider often does not
align with users’ real preferences. Weir et al. [44] manually craft
a single-domain single-table benchmark, ParaphraseBench, which
particularly focuses on evaluating linguistic variations. In summary,

https://www.acm.org/publications/policies/artifact-review-and-badging-current

the above assumptions and limitations make existing benchmarks
insufficient to evaluate the NLIDB real-world performance.

As a complement to existing benchmarks, we aim to compre-
hensively benchmark neural NLIDBs in terms of robustness on
real-world linguistic and schema variations. With recent advances
in testing DBMS [28-30], software metamorphic testing-based ap-
proaches have become popular in assessing database systems. In
general, software metamorphic testing [33] is an invariant property-
based testing method that relies on mutation rules referred to as
metamorphic relations (MRs; see Sec. 2.2). Metamorphic testing al-
leviates the difficulty of determining the expected outputs of test in-
puts (which is often prohibitively expensive), by verifying the target
software’s behavior consistency under MR-mutated test inputs. As
aresult, software testing becomes substantially more flexible. As for
testing DBMS, existing methods design semantics-preserving MRs
to transform SQL queries and check output consistency w.r.t. orig-
inal and transformed queries. Similarly, (neural) NLIDB also has
its own query language (natural language utterances) and yields
SQL queries for given schemas. Hence, we envision that applying
semantics-preserving transformations and checking output consis-
tency can presumably assess NLIDBs without manual labeling.

However, adapting similar testing schemes to evaluate NLIDBs
is non-trivial, and the reasons are three-fold. First, transformation
schemes for SQL cannot be directly adapted to transforming natu-
ral language utterances. Designing tailored semantics-preserving
transformations for utterances, without loss of question clarity, is
challenging. Second, the problem of NL-SQL translation is generally
ill-posed, in the sense that some text inputs are not translatable
into SQL queries. Some existing methods, by substituting certain
words with synonyms or complex paraphrasing, can likely induce
such “unnatural” and “illegitimate” inputs which are undesirable in
assessing NLIDB performance in the wild [52] and fail to expose
realistic errors. According to our empirical observations on popular
NLP behavioral testing tools [27, 45], they are not fully qualified for
assessing neural NLIDBs, given that their transformation rules can
frequently break the semantics of utterances; see Sec. 6.2. Third,
modern neural NLIDBs usually take the joint representations of
user utterances and database schemas. Despite the fact that some
prior benchmarks, e.g., ParaphraseBench, have shed a light on man-
ually transforming utterances while preserving semantics, NLIDB
performance under diverse schemas is still under-explored.

In this paper, we propose MT-TEQL, a metamorphic testing (MT)-
based framework to extensively benchmark NLIDB without manual
effort. MT-TEQL transforms seed inputs (utterance-schema pairs)
via a comprehensive set of metamorphic relations (MRs), where
each MR specifies a semantics-preserving transformation scheme
toward either utterances or schemas. By comparing SQL queries
derived from the original and transformed inputs, we assess the
consistency of NLIDB outputs under test.

We extensively studied nine popular neural NLIDBs. We used
MT-TEQL to generate a large amount of transformed inputs to
extend the standard benchmark, Spider-dev, by 60x and enrich
distinct schemas by 113x. With synthetic inputs, we detected on
average 1,908(+390) errors from each NLIDB system, showing
that neural NLIDB generally suffers from relatively low robustness
w.r.t. real-world utterance and schema variants. We further summa-
rized NLIDB erroneous output patterns revealed in our study and

570

demonstrated how MT-TEQL can be used as assessment criteria to
help users select proper NLIDB that fits their particular usage sce-
narios. On the other hand, after augmentation, 46.5%(+5.0%) errors
could be eliminated without compromising benchmark accuracy.

Key Contributions. 1) We launch the first empirical and com-
prehensive study to benchmark the robustness of neural NLIDBs
on real-world linguistic and schema variations. 2) Inspired by re-
cent advances in DBMS testing, our framework, MT-TEQL, deliv-
ers model-agnostic testing toward (neural) NLIDBs by launching
semantics-preserving linguistic and schema transformations with-
out requiring manual efforts. 3) We show surprising findings that
popular neural NLIDB models notably suffer from low robustness,
which has never been systematically explored. Furthermore, they
generally manifest inconsistent robustness in front of MT-TEQL. We
conduct a user study to show how MT-TEQL can assist developers
to systematically assess NLIDBs. We also summarize lessons that
can be used to diagnose and improve models in real-life usage. 4)
We further show that the transformed (error-triggering) inputs can
be employed to extend the training dataset of neural NLIDBs and
effectively augment their performance.

Open Source. We release the source code of MT-TEQL at https:
//github.com/MTTeql. Models, experimental data and user study
are at http://bit.ly/MT-Teql-data.

2 PRELIMINARIES

2.1 Neural NLIDB

Natural Language Interface to Database (NLIDB) has been studied
by the database community and the natural language processing
community for decades. In the early stages of the area, rule-based
systems have been applied to translate natural language to query
language [1, 17, 23, 31, 43]. In addition, to date, neural models
have become the standard and dominant approach for NLIDB [3—
5, 14, 41, 42, 46, 47, 49, 50, 54]. The typical neural architecture
leverages a sequence-to-sequence model (Seq2Seq) to translate an
input natural language query (i.e., utterance) u into a target SQL
query q w.r.t. a schema s. The model generally consists of two
encoders of different functionalities and a decoder that generates
SQL queries (or domain-specific language for post-translation), each
of which extensively uses RNN (or its variants) as building blocks.
We now review primary design considerations for neural NLIDB.
Encoding Linguistic Feature. As shown in Fig. 1, the input of a
modern neural NLIDB is a human utterance with database schemas.
Usually, it first converts utterances and column/table names in
schemas into numerical vectors. In contrast, conventional methods,
such as NaLIR [17], ATHENA [31], and ATHENA++ [34], parse
utterances with pre-defined rules into tree-based representations.
More importantly, large-scale, pre-trained language models have
been employed in de facto models. For instance, RAT-SQL [42],
one state-of-the-art neural NLIDB, employs BERT to encode utter-
ances and table/column names into numerical values. This way,
the linguistic features of utterances and schema are obtained for
subsequent SQL query generation.

Encoding Structural Feature. In addition to learn linguistic fea-
tures, structural information also plays a vital role in generating
SQL queries. In general, the structural information consists of an
intrinsic schema structure and links between utterance tokens and

[what s ...2 |
/\schema linking

| Table 2
olumn 2 oo

[emma]]

Table 1

- Linguistic Feature
Encoder

Structural Feature
Encoder

Neural Model

SQL Query

b [y
—

DBMS

Figure 1: Workflow of modern neural NLIDBs.

schema entities. Schema structure generally includes relations be-
tween columns and tables, such as key constraints and column
ownership. Compared with schema structure which is explicitly
defined in inputs, schema linking is a major challenge to neural
NLIDBs due to the diversity and ambiguity of natural language,
which requires identifying associations between utterances and
database entities, such as a table, column or even row value, as
shown in Fig. 1. For a table or column, existing neural NLIDBs
generally link them with simple string matching or embedding
vector matching. To link a value in the database, i.e., an utterance
token instance of a column, knowledge graphs and heuristics are
employed to identify such relations. Different methods are used
for neural NLIDBs to encode structural information. RAT-SQL and
DuoRAT [32] leverage relation-aware transformers to learn differ-
ent relations. Some recent advances also explore the use of graph
neural network (GNN) models to learn these structural information,
by treating the schemas as a graph. In particular, GNN models can
help holistically encode schema entities, utterance questions, and
their relations [2, 3, 5, 35, 36].

Decoder. A straightforward way is to generate queries sequen-
tially from encoded representations by Seq2Seq models. However,
given that SQL queries have syntax constraints, generating queries
without controls would result in broken queries (e.g., incorrect
grammar). A mature neural NLIDB would take the syntax rules of
SQL queries into account. For instance, SyntaxSQLNet employs a
set of sub-models to generate different clauses of a query and uses
a super-model to coordinate these sub-models [49]. By doing so,
the syntactical correctness of output queries is guaranteed.

In addition, instead of directly generating an SQL query, some
methods opt to generate a succinct tree-based intermediate repre-
sentation, e.g., AST (abstract syntax tree), and then post-translate it
into a valid SQL query by pre-defined rules [14, 39]. These rules rely
on some heuristics to fill in missing information to the intermediate
representation and convert it into a well-formed SQL query, which
circumvents complex reasoning over schemas on neural models.
However, the heuristics could be tricky and do not always hold. For
instance, SemQL, an intermediate representation of IRNet [14], as-
sumes that table joining relies on the presence of an explicit foreign
key constraint. Therefore, in some noisy scenarios where foreign
keys are absent, these post-translations may not be able to provide
coherent queries, compared with non-noisy cases.

2.2 Metamorphic Testing (MT)

Determining the correctness of SQL queries generated by NLIDBs
for arbitrary utterance-schema pairs generally requires human-
annotated ground truth. In contrast, MT benchmarks testing targets

571

via metamorphic relations (MRs) without the need for ground-
truth [6, 33]. Each MR denotes a general and usually invariant
property of the testing targets. For instance, to test the implementa-
tion of sin(x), instead of knowing the expected output of arbitrary
floating-point input x (which requires considerable manual efforts),
we assert whether the MR sin(x) = sin(m — x) always holds when
arbitrarily mutating x. A bug in sin(x) is detected when input x
and its mutation (7 — x) induce inconsistent outputs. To date, MT
has achieved major success in detecting bugs in DBMS [28-30]
and NLP-related models [19, 27, 37]. To test DBMS with metamor-
phic relations, for instance, NoREC transforms a query into a non-
optimized form and compares whether the optimized query and
non-optimized query induce identical outputs [28]. These metamor-
phic testing-based methods detect considerable logic bugs on well-
tested DBMS, e.g., MySQL and SQLite. Likewise, metamorphic rela-
tions are applied to generate test cases for NLP-related models. The
evaluation results produced by metamorphic testing are deemed as
a useful complement to accuracy on hold-out datasets [27] and also
help identify considerable defects on commercial NLP software. Our
research further leverages MT to benchmark (neural) NLIDBs with-
out requiring manual effort. To this end, we define a comprehensive
set of MRs to conduct semantics-preserving transformations toward
natural language utterances and database schemas.

Algorithm 1: MT-TEQL
Input: NLIDB M : U X S — Q, seed utterance uy, seed schema s
Output: error-triggering inputs E = {(u1,s1), - - - }

1 T — MR, (uo,SO) u---u MRn(uo,So);

2 E« 0;

3 foreach (v/,s’) € T do

1 if M(u',s") # M(uy,so) then

5 ‘ E=EU{(,s")}

6 end

7 end
s return E;

3 ASSESSING MODEL WITH MT-TEQL

Alg. 1 depicts the overall workflow of MT-TEQL, where given seed
utterance ug and seed schema sy, MT-TEQL first generates a collec-
tion T of transformed utterances and schemas based on a set of
MRs (line 1). For each pair of transformed utterances and schemas
(u’,s"), MT-TEQL checks the consistency between queries derived
from (u’,s”) and queries derived from (u, s) (line 4). If the consis-
tency property is violated, (u’,s”) is marked as an error-triggering
input (line 5), which will be collected for subsequent augmentation.

In contrast to Alg. 1, standard benchmarks usually compare the
output of NLIDB with human-annotated ground truth. Inspired
by DBMS metamorphic testing, MT-TEQL asserts the consistency
between M(u,s) and M(u’,s”) (line 4), thus alleviating manual
labeling. In addition, considering modern neural NLIDBs typically
develop a joint understanding of utterances and schemas, MT-TEQL
transforms both utterances and schemas with semantics-preserving
MRs (line 1), while existing general-purpose NLP model testing
tools can likely neglect certain errors as they only focus on text [27].

Table 1: Metamorphic relations in MT-TEQL.

Target Metamorphic Relations (MRs)
Prefix Insertion
Prefix Removal

Prefix Substitution
Synonym Substitution
Normalization
Flattening
Opaque Key
Table Shuffle
Column Shuffle
Column Removal
Column Renaming
Column Insertion

Utterance

Schema

Table 2: Categorizations of frequently-used prefixes in typi-
cal NLIDB utterances.

Illustrative Examples
what is/are, which is/are
tell me, return, find, list
when, where, how many
count

Type

Common Interrogative Prefix
Common Declarative Prefix
Special Interrogative Prefix
Special Declarative Prefix

While Alg. 1illustrates the general workflow of MT-TEQL, design-
ing a comprehensive set of semantics-preserving mutation strate-
gies on utterances and schemas, while preserving the “legitimacy”
of synthetic inputs, is challenging. In contrast to previous works,
MT-TEQL does not mutate inputs from an adversarial perspective
(e.g., injecting typos or heavily paraphrasing), nor does MT-TEQL
break utterances/schemas into “untranslatable” forms [52]. As listed
in Table 1, we instantiate a total of 12 MRs to systematically explore
realistic defects from diverse assessment criteria.

3.1 Utterance Transformation

Usually, utterances from users start with prefixes (e.g., “what is” and
“tell me”) and are followed by the real query body. We categorize
frequently-used prefixes in utterances in Table 2. Here, common
prefixes do not contain user intent while special prefixes can implic-
itly indicate some user intent (e.g., desired columns or aggregate
functions). Observing that the choice or even the occurrence of
common prefixes usually does not affect user intent, we design four
MRs focusing on transforming prefixes in Table 2.

Prefix Insertion+Removal (PI/PR). In some cases, the occurrence
of prefixes does not affect user intent. When an utterance starts from
an explicit interrogative (either common or special) prefix, our first
MR specifies inserting a common declarative prefix at the beginning.
For example, “tell me what is the age of all singers?”. Second, we
observe that common prefixes do not give any information about
the output query. Thus, the second MR specifies removing common
prefixes. For example, “what-is the age of all singers?”

Prefix Substitution (PS). Likewise, the choice of common prefixes
before query body also does not affect user intents. Hence, we
implement an MR to replace the prefix in an utterance with another
prefix, e.g., “tell me what-is the age of all singers?”

572

While the above MRs are relatively easy for humans to com-
prehend utterances’ real intents, our experiments shows that they
impose considerable challenges to modern NLIDBs (see Sec. 5.1).

By observing how natural language denotes aggregate functions
via utterances, we further propose an MR focusing on replacing
certain tokens in an utterance with their synonyms.

Table 3: Illustrative mapping relations between aggregates
and textual indicators.

Aggregate Textual Indicator

MIN minimal, minimum, lowest, smallest
MAX maximal, maximum, highest, largest
COUNT the (total) {number, count, amount} of
SUM the (total) {sum, amount} of

AVG the {mean, average} of

Synonym Substitution (SS). The choice of natural language to
express an identical aggregate function should not change the corre-
sponding SQL queries. The MR manipulates synonyms that indicate
an identical aggregate function, e.g., “what is the number ameount of
singers?”. Compared with general-purpose synonym substitution,
our MR incorporates NLIDB domain knowledge to manipulate a
collection of specific synonyms tailored for SQL language.

Table 3 reports illustrative mapping rules for SS. Overall, one ag-
gregate function in the SQL language can be expressed in multiple
ways. For instance, the last row in Table 3 specifies that “the mean
of” can be replaced by “the average of” while retaining the derived
aggregate function AVG. Hence, by replacing tokens grouped to-
gether (e.g., “minimal” — “minimum”), the derived queries should
retain the same aggregate functions, i.e., MIN.

Different aggregate functions may be expressed in the same
form. For example, “the amount of” can denotes either COUNT or
SUM aggregates in SQL (rows 4th and 5th in Table 3), relying on
data type of corresponding columns. Thus, by replacing “the sum
of” with “the amount of”, NLIDBs need to consider the context to
infer the correct aggregate. As such implicit indicators widely exist
in practice, it is necessary to evaluate NLIDBs in this way.

IVENDOR ID‘ NAME ‘ COUNTRY ‘
/' VENDOR
l ID IVENDOR ID‘ YEAR ‘ WEIGHT ‘

CAR

Figure 2: Original Schema.

3.2 Schema Transformation

As aforementioned, existing works generally evaluate NLIDBs by
transforming natural language text [44]; nevertheless, given that
utterances and database schemas are learnt jointly by modern neu-
ral NLIDBs, we identify the need to further transform database
schemas to comprehensively explore potential defects.

Like MRs applied to natural language utterances, we strive to
leverage a set of MRs to conduct semantics-preserving transfor-
mations on schemas. We propose eight MRs, which are carefully

(-VENDOR 1 -toumv | | 10 | country mms\ (N (‘VENDOR D ‘ NAME ‘ COUNTRY ? (-\IENDOR b0 -NAME)
VENDOR COUNTRY ‘ D ‘ VENDOR ID ‘ ‘ VENDOR NAME | VENDOR COUNTRY ‘ VENDOR VENDOR
‘ 0] ‘ VENDOR ID ‘ YEAR ‘ WEIGHT ‘ ENGINE ID ‘ CAR b0 ‘VENDOR () ‘ WEIGHT ‘ YEAR ‘ ‘ b0 ‘\/ENDDR ID‘ YEAR ‘ WEIGHT ‘
CAR JAN J CAR CAR
Normalization Flattening Column Shuffle Column Removal
(N N I\
‘VENDOR ID‘ NAME ‘ COUNTRY ‘ ‘ ™ ‘VENDOR ™ ‘ YEAR ‘ WETGHT ‘ ‘\/ENDOR ™ ‘ NAME ‘ LOCATION ‘ ‘ VENDOR 1D ‘ NAME ‘ COUNTRY ‘
) 7 VENDOR / CAR VENDOR VENDOR
‘ pir) ‘VENI;OR ID ‘ YEAR ‘ WEIGHT ‘ ‘VENDOR 1D ‘ NAME ‘ COUNTRY ‘ p] ‘VENDOR D ‘ YEAR ‘ WEIGHT ‘ ‘ D ‘ VENDOR ID ‘ YEAR ‘ WEIGHT ‘ ENGINE ID ‘
_ CAR AN VENDOR AN CAR VAN CAR Y,
Opaque Key Table Shuffle Column Renaming Column Insertion

Figure 3: Illustrative examples of schema-oriented MRs.

designed to transform certain parts of schemas that do not change
ground-truth query executions, e.g., adding extra table joining.
Hence, NLIDBs are guaranteed to yield identical SQL queries.

We present illustrative examples of each schema-oriented MR in
Fig. 3 (and the original schema in Fig. 2). Our observations on real-
world schema variants show that users often decide to normalize
some inter-dependent columns or denormalize two tables to boost
performance. Also, users may not explicitly declare foreign key
or primary key constraints. Furthermore, it is well known that
tables/columns are stored in database without orders. Hence, the
way we serialize schemas (i.e., table/column orders) as NLIDB inputs
should not change outputs. However, changing orders generates
database schema variants, which, as observed in our empirical study,
can impose extra challenges on robustness of NLIDBs and stress the
structural feature encoders. We further design four schema-level
and four table-level semantics-preserving transformations.
Normalization (NO). Conducting normalization on columns that
are irrelevant to associated utterances should not change output
queries. In principle, it is feasible to employ well-established func-
tional dependency mining algorithms [21] on the raw table content
to pinpoint and normalize dependent columns. However, these al-
gorithms are usually costly when we are mutating a large amount
of tables to evaluate neural NLIDBs. Instead, as shown in Fig. 3,
MT-TEQL launches a lightweight approach to extracting one un-
used column each time to form a new table with two columns (one
original column and one linking column), and links the original
table to the reference table with an explicit foreign key.
Flattening (FL). As a dual operation to normalization, we imple-
ment an MR to flatten a table if there exists an explicit foreign key
constraint. To do so, MT-TEQL piggybacks a reference table to the
main table and drops the reference table. This way, we effectively
change schema structure while retaining high-level semantics.
Opaque Key (OK). Explicit foreign key constraints and primary
key constraints could give hints for models to perform table join-
ing. However, in practice, explicit key constraints are not always
available due to various reasons (e.g., performance considerations).
Though key constraints can be used as an indicator for table joining,
plausible NLIDBs are expected to make consistent inference no mat-
ter an explicit key constraint exists or not, as key constraints may
be absent in the real world. As shown in Fig. 3, the explicit foreign
key constraint between CAR. VENDOR_ID and VENDOR. VENDOR_ID is
removed and it is still feasible to infer their dependency based on
the linguistic feature of column names and table names.

573

Table Shuffle (TS). While tables are theoretically unordered in the
database systems, they need to be “serialized” by some orders before
being fed to NLIDBs [50]. Therefore, we check if the specific order
of tables in the NLIDB input would induce output changes to stress
the NLIDBs. In Fig. 3, MT-TEQL implements an MR to randomly
shuffle tables within a schema and assert query consistency.
Above MRs manifest holistic transformations on the entire schema.
We further design four MRs to perform table-level transformations.
Column Shuffle (CS). Like TS, how columns are fed to NLIDBs
should not induce inconsistent queries. MT-TEQL implements an
MR to randomly shuffle columns within a table.

Column Removal+Renaming (CRm/CRn). The name or occur-
rence of an irrelevant column should not incur inconsistent outputs.
If one column is not used in the ground-truth query, MT-TEQL im-
plements two MRs to change its name with some synonyms (e.g.,
“country” — “location” in the “Column Renaming” diagram in Fig. 3)
or simply drop that column.

Column Insertion (CI). By querying the knowledge graph [38],
we may know what attribute the object indicated by the table may
have. As shown in the “Column Insertion” diagram in Fig. 3, MT-
TEQL extends the schema by inserting an extra column named
ENGINE_ID in the CAR table, since the knowledge graph returns
a “has-a” edge between “car” and “engine”, denoting an owner
relationship. However, dependency on external knowledge graph
may result in unrealistic insertion. For instance, knowledge graph
may suggest a person has a head, while “head” is not likely to be
a column of a “person” table used in daily scenarios (e.g., for class
rosters). To practically enhance the realism of the mutated schemas,
we only consider “high-weight” edges in the knowledge graph to
extract highly-correlated items and allow users to cross-validate the
inserted column in other similar tables in the dataset. Nevertheless,
since this scheme is used to stress NLIDBs, we anticipate NLIDBs
should retain consistency even if an “unusual” column is inserted.

Discussion. Some transformations proposed in this section are
“semantics-preserving” only with respect to particular utterances.
For instance, to use the NO scheme for schema normalization, we
need to first decide columns that are irrelevant to a particular ut-
terance; mutating other utterance-related columns will presumably
lead to generating a different SQL query. Despite the potential lim-
its, we show that such transformations are sufficient to expose a
large volume of neural NLIDB inconsistencies.

Table 4: Information of our reproduced neural NLIDBs. Acc
is accuracy measured on Spider-dev.

NLIDB Linguistic Encoder Structural Encoder Acc
SyntaxSQLNet GloVe [22] Column Sequence 224
SyntaxSQLNet+aug GloVe [22] Column Sequence 25.8
IRNet GloVe Column Sequence+Linking | 52.8
GNN Bi-LSTM Schema Graph 45.0
Global GNN+Linking BERT-base [10] Schema Graph+Linking 54.9
RAT-SQL GloVe Relation Encoding+Linking | 53.5
DuoRAT (a) GloVe Relation Encoding+Linking | 52.5
DuoRAT (b) BERT-base Relation Encoding+Linking | 51.0
DuoRAT (c) BERT-large Relation Encoding+Linking | 63.2

4 AUGMENTATION

In the case of neural NLIDBs, it is generally acknowledged that test
cases for desired properties in machine learning models can be used
for retraining models to improve the desired properties [40]. Our
MRs can induce a large volume of synthetic utterances and schemas
(60x compared with the original dataset). We also confirm that these
generated synthetic inputs are well-formed and valid (see Sec. 5.1).
Nevertheless, despite the promising results, it would be extremely
time-consuming, if at all possible, for retraining neural NLIDBs
using such a large amount of synthetic input. Hence, this section
introduces two widely-used sampling methods and proposes an
error-aware sampling method to reduce computational overhead
and practically augment neural NLIDBs.

Random Sampling (RS). Suppose we have m synthetic test cases
derived from the training dataset of n samples (where m > n), the
random sampling (RS) scheme randomly picks n test cases from
those m synthetic data. We then extend the training set of n samples
with those n randomly picked samples. This way, the training cost
should not be notably increased by only doubling the size of the
training dataset.

Stratified Sampling (SS). To amplify MRs that are only applicable
to a small amount of data (see Table 6 in Sec. 5.1), Stratified Sampling
(SS) first samples min(m;, n/k) test cases using each MR, where m;
is #cases synthesized using this MR and k is #MRs we have (k is
12 according to Table 1). In case ;- ... ¢ min(m;, n/k) < n, Strati-
fied Sampling further randomly samples n— 3, ... x min(m;, n/k)
inputs from the remaining test cases.

Adaptive Sampling (AS). Given that NLIDBs can have errors,
one might wonder about the feasibility of using error-triggering
inputs for augmentation. However, we note that the total amount
of error-triggering inputs are not comparable to the size of the
standard training dataset, due to overfitting issues on the training
set. Hence, augmentation with only error-triggering inputs is not
realistic. Instead, we design Adaptive Sampling (AS), as a practical
error-aware sampling scheme. In particular, we first randomly split
the standard training set in ten folds forming a nine-fold training
set S; and a one-fold validation set S,. An NLIDB M is then trained
on S; using half of the standard training epochs. Then, we transform
test cases in S, using our MRs, and evaluate My in terms of its
error rate r; (see for Sec. 5 the definition of r;) using the synthetic
test cases generated by each MR. We then normalize r; to #; such
that) 7; 1. Then, similar to SS, we sample min(m;, in) test
cases from the synthetic data set generated by each MR and further
sample from the remaining test cases to obtain a total of n cases. We

574

re-train NLIDB M, with n original inputs and those n new inputs
sampled under the awareness of errors.

5 EXPERIMENTS

Sec. 5.1 assesses the quality of the MT-TEQL-generated utterance
and schema variants. These utterance/schema inputs are used to
evaluate neural NLIDBs in Sec. 5.2. We then investigate erroneous
cases found in Sec. 5.2, and summarize typical error patterns in
Sec. 5.3. To demonstrate the versatile usage of MT-TEQL outputs,
a user study in Sec. 5.4 shows that MT-TEQL can help developers
to differentiate and assess NLIDB models. Furthermore, Sec. 5.5
leverages MT-TEQL to extend the training dataset of neural NLIDBs
and enhance their robustness. In what follows, we first discuss the
experiment setup.

Dataset. While MT-TEQL is capable of testing NLIDBs with unla-
beled data, we synthesize our test cases from Spider-dev [50], which
is widely used in practice. In terms of augmentation, we synthesize
training data from Spider-train. Using the Spider dataset also allows
us to compare the accuracy of augmented NLIDBs.

NLIDBs under Testing. We follow the official instructions to re-
produce NLIDB implementations which are summarized in Table 4.
We reproduce nine NLIDBs [2, 3, 5, 14, 32, 42, 49] for evaluation,
which feature diverse natural language encoders and schema learn-
ing modules and, presumably, manifest distinct defects in front of
different MRs.

NLIDBs with Augmentation. We use techniques presented in
Sec. 3 for NLIDB augmentation with test cases synthesized from
Spider-train. Therefore, there is no overlap between test data (which
is derived from Spider-dev) and training data. We design three extra
groups (i.e., RS*, SS* and AS*) for a fair comparison that sample
more synthetic data and make the size of its augmented training
set equal to “SyntaxSQLNet+aug” [49].

Evaluation Metrics. Three metrics are used in our evaluation,
namely, naturalness, error rate, and accuracy. Naturalness is de-
fined as the fluency score of an utterance. It is constructed from
a large-scale human corpus and is useful to quantify grammati-
cal correctness and coherence of synthetic texts without manual

effort. We refer readers to [13] for the detailed definition. Error
2 Leval (M(1,5), Mt/ ,57))
S

Rate is defined as r; , where eval(-, -) checks
the equivalence of SQL queries yielded by M(u, s) and M(u’,s”);
and |S| denotes the size of transformed input. Aligned with pre-
vious works [50], we use exact set matching (EM) for equivalence
checking. We follow conventions to report NLIDB Accuracy on a
standard benchmark (i.e., Spider-dev in our experiment).

5.1 Comprehensiveness and Naturalness

As shown in Table 6, MT-TEQL synthesizes a considerable amount
of utterance-scheme pairs based on each MR. We also report that
Prefix Removal (PR) and Synonym Substitution (SS) are highly
subject to the structure of utterances, which result in a smaller
amount of generated utterance-scheme pairs.

Comprehensiveness. We report the statistics of popular NLIDB
benchmarks in Table 5. For those datasets that contain a training
set and a test (or dev) set, we only pick the test (or dev) set, since
they are used by previous works to benchmark NLIDBs [44]. We
also deem the comparison as fair, because MT-TEQL generates its

Table 5: Comparison of NLIDB benchmarks.

Dataset Schema Domain | Query Type Method #Utterance | #Schema | #Table per Schema | Naturalness
WikiSQL-dev [54] Cross-domain Single-table | crowdsourcing 8,421 2630 1 0.143
WTQ-test [16] Cross-domain Single-table | crowdsourcing 2,955 2102 1 N/A
GeoQuery-dev [11, 15, 51] Single-domain Cross-table hand-crafted 49 1 7 0.144
ATIS-dev [8, 11, 15] Single-domain Cross-table hand-crafted 486 1 25 0.133
MAS [17] Single-domain Cross-table hand-crafted 194 1 8 0.128
FIBEN [34] Single-domain Cross-table hand-crafted 300 1 152 0.127
ParaphraseBench [44] Single-domain Single-table | hand-crafted 399 1 1 0.145
Spider-dev [50] Cross-domain Cross-table hand-crafted 1,034 20 4.05 0.155
Spider-Realistic [9] Cross-domain Cross-table hand-crafted 508 ~20 ~4.05 N/A
MT-TEQL Cross-domain Cross-table | auto-generated 62,430 2,273 4.97 0.148

Table 6: Distribution of (transformed) inputs of each MR.

MR # Inputs || MR # Inputs
Prefix Insertion 6,370 Opaque Key 3,697
Prefix Removal 199 Table Shuffle 2,575
Prefix Substitution 8,266 Column Shuffle 6,675
Synonym Substitution 639 Column Removal 8,707
Normalization 8,707 Column Renaming 11,775
Flattening 2,018 Column Insertion 2,802
Total 62,430

benchmark from Spider-dev. Table 5 categorizes benchmarks by
schema domains and query types. Cross-domain benchmarks de-
note the schemas collected from various domains. For instance,
WikiSQL collects schemas from Wikipedia web tables, which cover
multiple domains. In contrast, GeoQuery only uses an identical
schema about geography information for all queries in the bench-
mark. Cross-table benchmarks denote that the SQL queries may
have joining operations to connect different tables within a schema.
For WikiSQL, since its schemas are derived from standalone web
tables, all queries only retrieve data from one single table. Among
all these benchmarks, only Spider, Spider-Realistic and MT-TEQL are
cross-domain cross-table benchmarks, which indicate a practical
and challenging setting.

MT-TEQL synthesizes 62,430 utterance-schema pairs from 1,034
data samples in Spider-dev [50]. As shown in Table 5, the size of
the MT-TEQL testcase surpasses other benchmarks by orders of
magnitude. In addition, MT-TEQL synthesizes considerable distinct
cross-table schemas compared with other benchmarks, which can
presumably uncover more defects.

Naturalness. As previously mentioned, instead of heavily trans-
forming utterances (e.g., replacing certain words with typos) which
likely induce ill-formed utterances, we aim to synthesize natural ut-
terances whose incurred errors likely denote real-world defects that
normal users frequently encounter. That is, we advocate naturalness
as an important metric to assess the quality of synthetic utterances.
We follow [19, 26] to evaluate the naturalness of synthetic utter-
ances and report the naturalness in Table 5.! In Suppl. Material [18],
we empirically illustrate that the employed naturalness score aligns
well with human perception. MT-TEQL synthetic utterances exhibit
comparable naturalness with hand-crafted Spider-dev utterances
!We only consider synthetic utterances in MT-TEQL for naturalness evaluation. We

do not evaluate the naturalness of WTQ-test and Spider-Realistic since they are not
publicly available at the time of writing.

575

and even better than other benchmark datasets. Based on our obser-
vations, ParaphraseBench paraphrases utterances with uncommon
phrases (e.g., “whose age is 15” — “are exactly as old as 15”), which
induces relatively unnatural utterances. Some benchmarks, such
as MAS and FIBEN, exhibit relatively low naturalness. We inspect
the utterances with the low naturalness of these benchmarks and
report that many utterances are grammatically incorrect. For in-
stance, an utterance in FIBEN states “find all stocks has a last traded
value Greater than 1500.”

1.09

I o o
EN o 0

Frequency (%)

e
N}

o

.0
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250
Naturalness

[wikisQL-dev [MAS 1 Spider-dev
[GeoQuery 1 FIBEN [MT-Teql
1 ATIS [ParaphraseBench

Figure 4: Cumulative distributions of naturalness.

Fig. 4 further reports the cumulative naturalness distributions of
utterances in Spider-dev, ParaphraseBench and MT-TEQL. Particu-
larly, in the bottom 25%, the naturalness distributions of Spider-dev
utterances and utterances generated by MT-TEQL are very close,
illustrating promising results that our MRs do not notably impede
the readability of worse-case utterances in the original dataset.
MT-TEQL synthesized utterances manifest comparable naturalness
compared with other hand-crafted benchmarks. It also generally
outperforms WikiSQL, a crowdsourced benchmark, on naturalness.

5.2 Assessing NLIDB Inconsistency

We evaluate the reproduced NLIDBs in Table 4 with utterance-
schema pairs synthesized by MT-TEQL. We report the error rate
of NLIDBs in Table 7. Overall, MT-TEQL successfully finds erro-
neous predictions (1,908(+380)) from all the evaluated NLIDBs.
We interpret that utterance MRs are all highly effective to expose
defects with an average error rate of 9.5%. SS is particularly ef-
fective, given its high flexibility in perturbing natural language

Table 7: Error rate of NLIDBs. PI: Prefix Insertion; PR: Prefix Removal; PS: Prefix Substitution; SS: Synonym Substitution; NO:
Normalization; FL: Flattening; OK: Opaque Key; TS: Table Shuffle; CS: Column Shuffle; CRm: Column Removal; CRn: Column

Renaming; CI: Column Insertion.

NLIDB PI| PR [PS| S |[NO|FL | OK|TS | CS | CRm | CRn | CI | All
SyntaxSQLNet 82| 80 |67 |133| 24 | 27| 13 |21 11 1.5 1.7 108 | 3.2
SyntaxSQLNet+aug | 9.2 | 35 |82 | 167 | 2.1 | 22 | 1.4 | 23 | 1.1 14 16 | 1.1] 34
IRNet 751112 | 7.0|378 | 24 | 66| 52 | 28 | 2.1 2.1 16 | 21| 40
GNN 46 | 55 | 34| 254 | 34 | 43| 53|00 00 1.0 05 | 02| 24
GlobalGNN+Linking | 40 | 7.5 | 33| 183 | 58 | 6.9 | 6.1 | 0.4 | 0.2 29 1.1 | 30| 32
RAT-SQL 241 50 | 261|218 | 30 | 49| 38 |02]004]| 13 0.7 |00 1.9
DuoRAT (a) 471 60 | 46(299| 25 |59]| 61 |10 0.1 2.0 1.0 | 0.6 | 29
DuoRAT (b) 35| 25 | 44| 141] 25 | 65| 50 | 20| 0.2 2.5 09 | 12| 27
DuoRAT (c) 50| 80 | 43| 124 | 53 |70 | 34 | 48| 21 4.8 14 | 18| 3.8
Average 55| 64 |49 |21.1| 33 |52 42 |17 08 2.1 1.2 | 12| 31

utterances, of which 21% transformed utterances trigger errors. Rel-
atively mundane prefix-oriented transformations (i.e., PI, PR, and
PS), which impose easy challenges for humans, are also effective for
testing NLIDBs (on average 5.6%). Schema-based transformations
also achieve reasonable performance with an average error rate
of 2.5%. NO, FL and OK, by manipulating the holistic structure of
schema, are more useful at triggering errors (4.2%). In contrast, TS,
CS, CRm, CRn and CI, which are generally trivial for humans,
still induce certain errors (1.4%).

For NLIDB-wise comparison in Table 7, we see that the perfor-
mance of NLIDBs is largely influenced by the design of NLIDBs (e.g.,
specific natural language encoders and schema learning modules as
shown in Table 4), which is aligned with our intuition. For example,
SyntaxSQLNet and IRNet use the sequences of columns as input
and are generally more sensitive to TS and CS. In contrast, the
other NLIDBs learn from schema structural features (e.g., graph-
based method and relation encoding) and become more resilient
to these MRs. We also observe that the adopted natural language
encoders can induce distinct errors in terms of SS. For example,
DuoRAT (a) uses GloVe to encode utterances and has 2.4X more
errors on SS compared with its variant, DuoRAT (c), which uses
BERT-large as the natural language encoder. It is also difficult for
NLIDBs to overcome schema-related MRs. As shown in Table 7,
while GNN-based methods (i.e., GNN and Global GNN+Linking) are
almost resilient to TS and CS, holistic structural changes (e.g., NO)
can still impose considerable challenges.

We view Table 7 illustrates the strength of MT-TEQL by exposing
numerous defects from well-trained neural NLIDBs. By applying
MT-TEQL as assessment criteria, developers can obtain finer-grained
diagnosis to NLIDB and allow them to further improve it on specific
criteria, compared to the standalone accuracy on hold-out datasets.
Lessons. Overall, our studies show that high benchmark accuracy
does not necessarily indicate better robustness. As illustrated in Ta-
ble 4 and Table 7, models with high accuracy do not necessarily in-
duce better consistency (robustness). We interpret that, for gaining
high accuracy on the standard benchmark, models inevitably learn
more fine-grained information from both utterances and schemas,
which become sensitive to subtle changes in the meantime. For
instance, DuoRAT (c) encodes structural information in a finer-
grained manner (vs. RAT-SQL). Therefore, while it achieves higher
standard accuracy, its robustness downgrades simultaneously.

In addition, we find that powerful pretraining techniques may be
resilient to linguistic variations. As shown above, BERT-large has a
better capability of capturing user intents from noisy utterances
generated by Synonym Substitution. Hence, we interpret that pow-
erful pretraining techniques, which are customized for NLIDB, may
provide a normalized “embedding” of utterances for the follow-up
layers to proceed, thus achieving higher robustness in terms of lin-
guistic variations. It is worth noting that task-oriented pretraining
techniques already show effectiveness in boosting accuracy [9, 48].

Furthermore, we presume that it is generally hard for models to
capture schema invariance. Given the flexibility of schema design,
it is non-trivial for models to comprehend and be robust to such
variations. For instance, although GNN-based methods (i.e., GNN
and GlobalGNN+Linking) manifest high robustness toward Table
Shuffle and Column Shuffle, more holistic structural changes (e.g.,
Normalization) can still impose challenges. Hence, we envision that
data augmentation techniques can mitigate the issue by training
models on diverse schemas, as we show in Sec. 5.5.

Table 8: Empirical distribution of error types.

Error Type # Errors Error Type # Errors
Column Prediction 101 Table Joining 171
Aggregate Function 77 Complex Query 48
Operator 73 Others 30

5.3 Error Analysis

We manually checked 500 pairs of errors and we present the error
type distribution in Table 8. We also notice that there are no false
negative cases in the errors and presume the overall false negative
should be lower than error cases reported by standard metrics. For
example, it is reported that exact set matching has a 2.5% false
negative rate on average and 8.1% in the worst case [53]. In the
following, we discuss five major sources of errors with representa-
tive cases in Table 9 and Fig. 5, corresponding to utterance-related
and schema-related error cases, respectively. They are derived by
transforming the Singer, Pet, Car schemas in the Spider-dev
set or transforming utterances associated with these schemas. In
Table 9, we report the original and transformed utterances and
corresponding SQL queries, respectively. In Fig. 5, we present the
SQL query derived from the transformed schemas (Pred@T) and the
query derived from the original schemas (Pred@0), accordingly.

576

Table Shuffle

Column Removal

Find the id and weight of all pets whose age is older than 1.

What is the average and maximum age for each pet type?

| StuID | PetID | Has_Pet

Students Pets Students Pets
| Stulb | .- | | PetID | PetType weight | age | 600 | | StulD | e | | PetID | PetType weight | age | 000 |

| StuID | PetID | Has_Pet

Pred@T: SELECT PetID, weight FROM Pets WHERE pet_age > value

Pred@0: SELECT PetType, weight FROM Pets WHERE pet_age > value

Pred@T: SELECT PetType, max(age), avg(age) FROM Pets GROUP BY PetType
Pred@O: SELECT max(weight), avg(weight), max(age), avg(age) FROM Pets
GROUP BY PetType

Flattening

Opaque Key

How many concerts are there in year 2014 or 2015?

Show the stadium name and the number of concerts in each stadium.

Singer_in_cencert Singer

| Cencert_ID | Singer_ID | | Singer_ID | Name | Country | Song_Name |...

Concert

| Cencert_ID | Concert_Name | Theme | Stadium_ID | Year | Stadium_Location | oo

Singer_in_cencert

Singer
| Gt _My | Singer_ID | | Singer_ID | Name | Country | Song_Name | |
Concert

| Cencert_ID | Concert_Name | Theme | Stadium_ID | Year |
" Stadium
| Stadium_ID | Location | coo |

Pred@T: SELECT Count(*) FROM concert WHERE Year >= value

Pred@O: SELECT Count(*) FROM concert WHERE Year = value OR Year = value

Pred@T: SELECT stadium.Name, Count(*) FROM stadium JOIN concert GROUP BY
stadium.Stadium_ID

Pred@O: SELECT stadium.Name, Count(*) FROM stadium JOIN concert ON
stadium.Stadium_ID concert.Stadium_ID GROUP BY stadium.Stadium_ID

Figure 5: Schema-related errors. Foreign key constraints are annotated by arrows. Transformations are in red and errors are in
green. Pred@T denotes the prediction on the transformed inputs and Pred@0 denotes the prediction on the original inputs.

Table 9: Utterance-related error cases. u,u’ denote original
and transformed utterances. ¢, ¢’ represent SQL queries gen-
erated from u and u/, respectively.

MR | Utterance and SQL Query

u = what is the model for the car with a weight smaller than the average?
q = SELECT CarName.Model FROM CarName JOIN [. . .] WHERE
CarData.Weight < (SELECT avg(Weight) FROM CarData)

u’ = return what is the model for the car with a weight smaller than the
average?

q’ = SELECT ModellList.Model FROM ModelList JOIN [. ..] WHERE
CarData.Weight < (SELECT Model FROM CarName)

u = what is the year that had the most concerts?

q = SELECT Year FROM concert GROUP BY Year ORDER BY count(x)
DESC LIMIT 1

u = whatis the year that had the most concerts?

q = SELECT SongReleaseYear FROM singer GROUP BY
SongReleaseYear ORDER BY count(x) DESC LIMIT 1

u = show countries where a singer above age 40 and a singer below

30 are from.

q = SELECT Country FROM singer WHERE Age > value INTERSECT
SELECT Country FROM singer WHERE Age < value

u’ = let me know countries where a singer above age 40 and a singer
below 30 are from.

q’ = SELECT Song_Name FROM singer WHERE Age > value INTERSECT
SELECT Song_Name FROM singer WHERE Age < value

u = Find the number of pets whose weight is heavier than 10.

q = SELECT count(*) FROM Pets WHERE weight > value

u’ = Find the amount of pets whose weight is heavier than 10.

q’ = SELECT weight FROM Pets WHERE weight > value

PI

PR

PS

SS

Column Predictions. As shown in PS of Table 9, the NLIDB is mis-
led to choose an incorrect column Song_Name instead of Country,
even though the correct column name is explicitly referred to in the
utterance. In contrast, as reported by the error analysis on the stan-
dard dataset [14], most column prediction errors are due to the fact
that the ground-truth column names are not explicitly (or merely

577

partially) mentioned in the utterances. Similarly, after shuffling ta-
ble orders or removing an irrelevant column, the predicted columns
become inconsistent in “Table Shuffle” and “Column Removal” of
Fig. 5. According to our observation, column prediction errors not
only exist in the SELECT clause, but also occur in the GROUP BY and
ORDER BY clauses. According to our manual study of 500 errors,
erroneous column predictions account for 20.2% of errors.
Aggregate Function. Among 500 manually checked errors, we re-
port that 15.4% of errors are caused by incorrect aggregate functions.
As discussed in Sec. 3.2, changing aggregate function indicators
can impose challenges to NLIDBs. For instance, in SS of Table 9, by
replacing “number of” with “amount of”, the NLIDB under test fails
to comprehend the transformed utterance and uses an aggregate
function count (*) in q’.

Operator. Predicting operators is a major step towards identifying
intended contents. Our study on the 500 erroneous cases reports
that 14.6% of errors are due to incorrect operator predictions. For
example, a >= operator may be mistakenly predicted as =. As shown
in the “Flattening” case in Fig. 5, some irreverent changes in schema
structure can result in an incorrect prediction on the operator in the
WHERE clause. Besides, we also observe errors in the HAVING clauses
of the group-by operation. Overall, our manual study shows that
such erroneous operators widely exist in almost all MRs.

Table Joining. Linking multiple tables in one query is challenging
for NLIDBs and is a major cause of errors (34.2%). As an important
table joining indicator, foreign key constraints help NLIDBs link
two tables to alarge degree. Without explicit foreign key constraints
in the schema, NLIDBs may lack the guidance to link two tables.
As shown in the “Opaque Key” case of Fig. 5, though the NLIDB
captures the need for table joining, it fails to make predictions on the
joining condition (i.e., the ON clauses). Besides “Opaque Key”, our

manual study shows that prefix- and column-based transformations
can also trigger a considerable number of table joining errors.
Complex Query. Besides the four basic types of errors, we also
observe that some “extra hard” queries in the Spider-dev set, with
multiple table joining and complex conditions, are lengthy and frag-
ile, even for human experts, to translate. For instance, PI in Table 9,
by changing the prefix of an utterance, reports a drastic change
in the generated queries, including incorrect column, table, join
operation and nested sub-query. In these cases, even subtle changes
in the input can induce multiple errors in the corresponding output.
Nevertheless, as reported in Sec. 5.5, the dataset augmented by our
transformed inputs can effectively enhance NLIDB performance
toward “Extra Hard” challenges. Among the 500 sampled pairs, we
observe that about 9.6% of predictions have more than one error.
Misc. & Lessons. We have shown common weaknesses of neural
NLIDB. Besides the aforementioned types of errors, we also find
some errors are less common, e.g., erroneous table predictions and
unwanted conditions in WHERE clauses, which comprise 6.0% of
errors. More importantly, our manual investigation reveals that
human-in-the-loop revision, such as human annotation or interactive
correction, may help to correct a substantial amount of inconsistencies.
On one hand, if users can explicitly specify their desired aggregate
functions or columns in addition to the input utterances, the output
space of the model can be effectively reduced, presumably enhanc-
ing the model accuracy. On the other hand, if MT-TEQL pinpoints
inconsistent outputs under given utterances, NLIDB can ask users
to revise particularly inconsistent clauses for correction. Hence, we
envision adopting human-in-the-loop methods to further disam-
biguate user intent and prune output space.

54

Motivation. MT-TEQL features an NLIDB model-agnostic design;
we can smoothly benchmark representative neural NLIDB mod-
els and effectively detect their erroneous outputs automatically.
Overall, we interpret that our study and findings in Table 7 have
suggested an important usage scenario of this work: when differ-
ent NLIDBs distinctly perform w.r.t. MRs, users can select the most
appropriate NLIDB to use, according to their preference or particular
scenarios, which can be reflected from certain MRs.
Domain-General Criteria vs. Domain-Specific Criteria. In
general, MRs proposed in this research can be treated as domain-
general assessment criteria, where we benchmark the consistency of
their general functionality and expose their differences. Table 7 has
shown that MT-TEQL can effectively expose differences of NLIDBs.
NLIDBs of different architectures and data preprocessing techniques
show largely distinct robustness against different MRs. Holistically,
we suspect that these differences are informative enough to fa-
cilitate users selecting NLIDBs. For instance, when users mostly
face single table queries (e.g., web table query), DuoRAT would
be desirable despite its low robustness against schema variations.
In contrast, if users frequently encounter sophisticated database
schemas, RAT-SQL, due to higher robustness, would be more suit-
able despite its relatively low accuracy compared with DuoRAT.
Furthermore, we also envision the potential of designing domain-
specific MRs as the assessment criteria. For instance, a user, par-
ticularly concerning multi-lingual scenarios, can design MRs to

MR as Assessment Criteria

578

benchmark the consistency of NLIDB regarding a query in different
languages. This way, users particularly concerning multi-lingual
scenarios can opt for NLIDB that performs the best over the MRs.
User Study. In the rest of this section, we present a user study:
1) to assess whether MT-TEQL’s MRs are informative enough to
help users select NLIDBs, and 2) to assess the feasibility for users
to design domain-specific MRs, as a plugin of MT-TEQL.

First, we pick a collection of NLIDBs from Table 4 and put MT-
TeQL’s MRs into two main categories, in total seven capabilities to
reflect robustness. We then use Formula 1 (smaller is better; see
below) to summarize NLIDB robustness. Here, ; denotes “good”,
== denotes “neutral” and @ denotes “bad”.

B, r <avg—05xstd
—=,avg —0.5Xxstd <r <avg+0.5xstd
@, r > avg+0.5x std

F(r)= (1)

In Formula 1, avg denotes average error rate and std denotes
standard error. Each NLIDB’s robustness is thus summarized in
Table 11 over two categories and seven capabilities. The last two
rows are models’ “Overall Robustness” and “Overall Accuracy”.
Note that “Overall Accuracy” is summarized from models’ accuracy
on hold-out datasets (which is from Table 4). “Overall Robustness”
is computed by averaging the above seven scores of capabilities.

We recruit seven participants (who have taken at least one grad-
uate database and NLP course or experience on developing relevant
software) to join the assessment procedure. The user study is de-
signed to validate the following questions:

@ Are capabilities implied by MT-TeQL’s MRs valid?

® Would MT-TEQL’s evaluation affect users’ preferences?

® Can developers use MT-TEQL to assess NLIDBs in their domain-
specific scenarios?

@ serves as a “pre-study” to measure the validity of our asserted
capabilities and MRs. To answer @, we invite participants to assign
validity scores of each capability based on their own scenarios.
Participants also need to assign correlation scores between derived
capabilities and MRs. Each score ranges from 1 to 3. Higher scores
denote higher validity or correlation. Ideally, an MR should manifest
high correlation with its implied capability, and the capability itself
should be deemed as valid by our participants.

To answer @, we invite participants to assign scores (in the
form of ;, = and @) to each NLIDB and compare users’ choices
with the “Overall Accuracy” row in Table 11. This comparison can
convincingly reflect the utility of MRs in better assessing model dif-
ference, by comparing models’ accuracy on hold-out datasets with
participants’ decisions. After being aware of models’ performance
under MT-TEQL, users tend to take the model robustness into their
considerations rather than simply employ the most accurate model.

To answer ®, we describe two domain-specific scenarios and de-
sired capabilities. Participants are then asked to design correspond-
ing MRs for MT-TEQL to evaluate the given capabilities. In contrast
to the general functionality-oriented capabilities in Table 11, we
evaluate the extensibility of MT-TEQL under domain-specific sce-
narios. Details of the user study are released in our artifact.

Table 10: Error rate of augmented NLIDBs. aug: SyntaxSQLNet standard data augmentation; RS: Random Sampling; SS: Stratified
Sampling; AS: Adaptive Sampling; Cmp: Relative Change on ALL.

NLIDB PI| PR [PS| SS |NO|FL|OK |TS |CS|CRm | CRn |CI| All| Cmp
SyntaxSQLNet 82| 80 |67 133 | 24 (27| 13 |21] 11 1.5 1.7 0.8 | 3.2 | N/A
SyntaxSQLNet+RS 52| 40 | 51| 81 12 22|09 |16 |05 0.9 1.0 | 03] 2.0 | -37.5%
SyntaxSQLNet+SS 471 35 |46 | 78 | 09 | 20| 08 | 14|03 0.5 09 | 04| 1.8 | -43.8%
SyntaxSQLNet+AS 391 65 | 43|72 |08 [14] 03| 14]02 0.6 08 | 09| 1.6 | -50.0%
SyntaxSQLNet+aug | 9.2 | 35 82| 167 | 2.1 |22 | 14 | 23| 1.1 14 1.6 1.1 | 34 | N/A
SyntaxSQLNet+RS*™ [53 | 3.0 |44 | 69 | 14 | 1.7] 0.7 | 1.6 | 03 0.5 0.7 0.1 | 1.8 | -47.0%
SyntaxSQLNet+SS* [38 | 45 [42 | 44 | 1.5 [1.7] 04 | 1.6 | 0.2 0.6 0.7 02| 1.6 | -52.9%
SyntaxSQLNet+AS™ | 3.5 | 4.5 | 3.8 | 2.2 15 24| 1.1 | 1.8 | 038 1.1 09 | 02| 1.8 | -47.1%
IRNet 751112 | 7.0 | 37.8 | 24 | 6.6 | 52 | 28 | 2.1 2.1 1.6 | 21| 40 | N/A
IRNet+RS 43| 76 | 47| 149 | 1.0 | 34| 28 | 0.5 | 0.5 0.9 0.5 0.1 | 1.9 | -52.5%
IRNet+SS 52| 81 |55 (173 | 1.2 |47 | 3.6 | 1.1 | 0.7 1.0 08 | 03] 24 | -40.0%
IRNet+AS 46| 81 |57 (102 | 1.0 | 25| 3.0 | 0.6 | 0.4 0.7 09 | 01| 21 | -47.5%

Table 11: MRs as assessment criteria. SSN denotes SyntaxSQL-
Net, IRN denotes IRNet, GGL denotes Global GNN+Linking,
RAT denotes RAT-SQL, and Duo denotes DuoRAT (c).

- [H [}

. 181832
Capability » | 2|0~ |A
Utterances of diverse linguistic habits | = | @ | = | & | &
start with diverse prefixes. ® S | | =
indicate aggregates in diverse forms. | 5 | @ | = | = | B
express an attribute in diverse ways. | @ | @ | B | B | =
Schemas with diverse design styles FAEERK IR AK)
follow diverse normal forms. B = @\ |
lack foreign key constraints. 3 ® S| ==
stores in diverse orders. =\ ® |3 || S
contains/misses irrelevant columns. B | = B ®
Overall Robustness 2| ® | =@ ||
Overall Accuracy ® | e e |

Feedback of @ shows that participants confirm the validity of
our designed MRs. In particular, they agree that all the summa-
rized capabilities in Table 11 are reflected by our designed MRs
(2.45 + 0.22). More importantly, participants confirm that all ca-
pabilities are valid for evaluation (2.53 + 0.13). Furthermore, in @,
most participants’ choices (74.3%) are not consistent with the row
of “Overall Accuracy” in Table 11. That is, when users have finer-
grained assessment criteria, their preferences are not likely to be
solely influenced by accuracy on hold-out datasets. The promising
results illustrate that our MRs can serve as informative assessment
criteria, and they also indicate the limits of using only accuracy
for NLIDB assessment. In &, we prepare two domain-specific sce-
narios (e.g., multi-lingual NLIDB) for evaluation. Six out of seven
participants successfully designed at least one MR on each given
capability. With manual inspections, we report that all MRs are
valid and effective for assessment and can be leveraged in MT-TEQL.
This shows the feasibility and easiness of extending MT-TEQL in
evaluating other domain-specific capabilities of NLIDBs.

5.5 MT-TEQL for Augmentation

We report the error rates in Table 10, subsuming base NLIDBs and
also NLIDBs augmented by three schemes. Overall, Table 10 shows

579

that with augmentation, errors of existing NLIDBs are notably
reduced in all settings (on average —46.5%). Consistent with our
intuition, the adaptive sampling scheme (and AS™), which entails
an “error-aware” augmentation, exhibits a stable enough perfor-
mance to reduce prediction errors in general, where 48.2%(+1.3%)
errors are effectively eliminated. Table 10 shows that the standard
augmentation in SyntaxSQLNet (i.e., SyntaxSQLNet+aug) impedes
the performance under six MRs (out of 12), resulting in an increase
in the overall error rate (see “All” column). The lower robustness
of SyntaxSQLNet+aug further exhibits that potential limitations of
other template-based augmentations, e.g., DBPal [44], in compari-
son to MT-TEQL (mutation-based augmentation).? We also observe
that MT-TEQL surpasses other standard NLP augmentation tech-
niques, as will be shown in Suppl. Material [18].

Table 12: Accuracy of augmented NLIDBs. All*: accuracy on
“Hard” and “Extra” questions. Cmp: relative change on All*.

NLIDB Easy | Medium | Hard | Extra | All | All" | Cmp
SyntaxSQLNet 41.9 19.3 17.8 6.6 224 | 124 | N/A
SyntaxSQLNet+RS 37.9 20.6 23.0 6.0 22.8 | 147 | +19%
SyntaxSQLNet+SS 41.1 18.8 20.1 9.0 22.8 | 147 | +19%
SyntaxSQLNet+AS 37.5 18.4 19.5 7.2 214 | 135 | +9%
SyntaxSQLNet+aug | 42.7 242 224 | 84 | 258 156 | N/A
SyntaxSQLNet+RS* | 46.0 20.0 224 7.8 24.6 | 153 | -1%
SyntaxSQLNet+SS* 39.5 21.1 253 7.8 24.1 | 16.8 | +8%
SyntaxSQLNet+AS* | 42.3 21.7 21.3 8.4 24.5 | 15.0 | -4%
IRNet 72.3 53.6 42.0 32.9 52.8 | 37.6 | N/A
IRNet+RS 70.3 52.9 47.7 30.5 52.6 | 393 | +5%
IRNet+SS 70.7 53.8 45.9 35.9 | 52.7 | 41.1 | +9%
IRNet+AS 70.3 54.3 44.8 29.3 525 | 373 | -1%

Table 12 further reports the accuracy on Spider-dev (the All
column), which is slightly reduced by 0.6% on average after aug-
mentation. On one hand, it is generally acknowledged that NLIDBs
with relatively higher robustness can exhibit lower accuracy to
hold-out datasets. On the other hand, we note that the performance
of NLIDBs is generally enhanced on “Hard” and “Extra” questions
compared with base NLIDBs (the All* and Cmp columns). In partic-
ular, SyntaxSQLNet, after augmented by the SS* scheme, achieves
better accuracy for “Hard” and “Extra” questions compared with

2We are unable to evaluate DBPal since its augmentation is not released.

MR | Utterance and SQL Query

u = return me the homepage of PVLDB.

q = SELECT DISTINCT journal.homepage FROM journal WHERE
journal.name = "PVLDB"

u’ = return-me the homepage of PVLDB.

q’ =N/A

u = return me the paper with more than 200 citations.

q = SELECT DISTINCT publication.title FROM publication WHERE
publication.reference_num > 200

u” = tell me the paper with more than 200 citations.

q’ = SELECT DISTINCT publication.citation_num FROM publication
WHERE publication.reference_num > 200

u = return me the number of the organizations.

q = SELECT DISTINCT count(organization.name) FROM organization
u’ = return me the amount of the organizations.

¢’ = SELECT DISTINCT publication.title FROM publication,
organization, writes, author WHERE publication.pid = writes.pid
AND writes.aid = author.aid AND author.oid = organization.oid

Table 13: Erroneous outputs of NaLIR found by MT-TEQL.
u,u’ denote original and transformed utterances. ¢, q’ repre-
sent SQL queries generated from v and v/, respectively.

PR

PS

SS

“SyntaxSQLNet+aug.” More importantly, it also achieves much bet-
ter robustness as shown in Table 10. Hence, when envisioning
that “Hard” or “Extra” questions are mostly encountered in usage
scenarios, users can leverage SS* scheme to augment NLIDBs for
simultaneously better accuracy and robustness.

6 DISCUSSION

6.1 Validity to Non-Neural NLIDB

While the NLIDBs assessed in Sec. 5.1 are based on deep learning,
we note that MT-TEQL can also be used to evaluate non-neural
NLIDBs. To demonstrate MT-TEQL’s ability to non-neural NLIDBs,
we reproduce NaLIR [17], a popular non-neural NLIDB, and evalu-
ate it with MT-TEQL on linguistic variations.

We use the MRs defined in Sec. 3.1 to transform 194 utterances
from the MAS benchmark [17] and obtain 2,924 utterances. We set
up NaLIR according to the official instructions and test it against
mutated utterances. We show that MT-TEQL stresses NaLIR in terms
of parsing natural language utterances. NaLIR generates inaccurate
inquiries in front of several utterances mutated by SS and PR. We
achieve 92.1% and 69.4% error rates. Particularly, 38.1% of errors
is caused by simply changing the prefix of utterances (using PS).
Other MRs are not applicable due to the characteristics of the MAS
benchmark. Table 13 lists some NaLIR errors regarding different
MRs. We show that after transforming utterances using PR, NaLIR
fails to deliver valid queries in most cases. By changing the prefixes,
NaLIR typically picks the wrong column. SS can effectively stress
the testing target, as seen when benchmarking neural NLIDBs.
We presume that replacing “number” to “amount” may drastically
impact the SQL query. We also observe that PI is not applicable
because all MAS benchmark utterances begin with “return me,” mak-
ing it impossible to add a declarative prefix. We interpret the results
as reasonable. According to a relevant survey [16], the performance
of NaLIR largely depends on its mapping rules. Incomprehensive

3Non-neural NLIDBs don’t normally follow training-testing paradigms. They do not
ship with a “training dataset” for MT-TEQL to augment. It is also impractical to evaluate
schema variants because it needs substantial database interactions. Nevertheless, MT-
TEQL can assess translations from utterances to SQL queries.

580

rules prevent NaLIR from smoothly processing real-world linguistic
variants, resulting in erroneous SQL queries.

6.2 Comparison with NLP Behavioral Testing

NLP behavioral testing becomes popular in evaluating NLP model
robustness and consistency [12, 20, 27, 45]. It often generates con-
trolled counterfactuals using pre-trained language models (e.g.,
GPT-2 [25]). At this step, we launch empirical study to explore if
existing NLP behavioral testing techniques can be leveraged in our
research context. We report detailed evaluation results in Suppl.
Material [18]. In short, we find that while sentences generated by
representative behavioral testing techniques like CheckList [27]
and Polyjuice [45] share seemingly similar meaning with the origi-
nal utterances, many of the transformed utterances are no longer
semantics-preserving in the context of NLIDB. Our findings thus il-
lustrate the overall inadequacy of existing NLP behavioral testing in
assessing NLIDBs. We leave designing ML-based NLIDB behavioral
testing for future exploration.

7 RELATED WORK

NLIDB is a challenging topic that requires the ability to translate hu-
man utterances into corresponding SQL queries on given relational
databases. It has been actively studied by both database and NLP
communities for decades [16]. Generally, there are two research
lines to tackle this problem. The first line leverages the strong power
of deep learning models to generate complex SQL queries in an
end-to-end manner [3-5, 14, 41, 42, 44, 46, 47, 49, 50, 54]. Another
research line aims to extract key information by pre-defined pars-
ing rules and then convert it into SQL queries [17, 31, 34]. Various
benchmarks and evaluation methods are proposed to evaluate the
performance of NLIDBs [8, 9, 11, 15-17, 34, 44, 50, 51, 54]. In partic-
ular, Spider benchmark advocates a focus on generating cross-table
queries from cross-domain utterances [50], which take an important
step for real-world adoption of NLIDBs. ParaphraseBench crafts
a benchmark with 399 utterances on a single table with diverse
linguistic variations to stress NLIDBs [44]. Suhr et al. pinpoint the
general challenge on linguistic variations, novel database, query
structure, and conventions in different datasets [39]. Data augmen-
tation techniques are thus extensively used to enrich utterances
and achieve higher performance [44, 48, 49].

8 CONCLUSION

In this paper, we present a comprehensive empirical study of neu-
ral NLIDBs. We introduce MT-TEQL, an automatic framework to
benchmark NLIDBs on real-world linguistic and schema variations.
MT-TEQL delivers a model-agnostic design and enables thorough
assessment without manual efforts. We conduct fair and systematic
evaluations on neural NLIDBs using MT-TEQL. We further launch
user studies to illustrate how MT-TEQL helps developers assess
NLIDB, and also augment NLIDB with findings of MT-TEQL. We
summarized several important findings, which can assist users to
better benchmark and select neural NLIDBs in real-world develop-
ment and usage scenarios.

REFERENCES

(1]

o
&

[9

=

[10]

[11]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

Christopher Baik, Hosagrahar V Jagadish, and Yunyao Li. 2019. Bridging the
semantic gap with SQL query logs in natural language interfaces to databases.
In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
374-385.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceed-
ings of the 57th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Florence, Italy, 4560-4565.
https://doi.org/10.18653/v1/P19-1448

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019. Global Reasoning over
Database Structures for Text-to-SQL Parsing. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 3650-3655.
Ursin Brunner and Kurt Stockinger. 2021. ValueNet: a natural language-to-SQL
system that learns from database information. In International Conference on
Data Engineering (ICDE), Chania, Greece, 19-22 April 2021. IEEE.

Sanxing Chen, Aidan San, Xiaodong Liu, and Yangfeng Ji. 2020. A Tale of Two
Linkings: Dynamically Gating between Schema Linking and Structural Linking
for Text-to-SQL Parsing. In Proceedings of the 28th International Conference on
Computational Linguistics. 2900-2912.

Tsong Y Chen, Shing C Cheung, and Shiu Ming Yiu. 1998. Metamorphic testing:
a new approach for generating next test cases. Technical Report. Technical Report
HKUST-CS98-01, Department of Computer Science, Hong Kong
DongHyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin.
2020. RYANSQL: Recursively Applying Sketch-based Slot Fillings for Complex
Text-to-SQL in Cross-Domain Databases. arXiv preprint arXiv:2004.03125 (2020).
Deborah A Dahl, Madeleine Bates, Michael K Brown, William M Fisher, Kate
Hunicke-Smith, David S Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the ATIS task: The ATIS-3 corpus. In
HUMAN LANGUAGE TECHNOLOGY: Proceedings of a Workshop held at Plainsboro,
New Jersey, March 8-11, 1994.

Xiang Deng, Ahmed Hassan Awadallah, Christopher Meek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2020. Structure-Grounded Pretraining for
Text-to-SQL. arXiv preprint arXiv:2010.12773 (2020).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In NAACL-HLT (1).

Catherine Finegan-Dollak, Jonathan K Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-sql evaluation methodology. arXiv preprint arXiv:1806.09029 (2018).
Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao
Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al.
2020. Evaluating Models’ Local Decision Boundaries via Contrast Sets. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural Language Processing:
Findings. 1307-1323.

Tao Ge, Furu Wei, and Ming Zhou. 2018. Fluency boost learning and inference for
neural grammatical error correction. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers). 1055-1065.
Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards complex text-to-sql in cross-domain database
with intermediate representation. arXiv preprint arXiv:1905.08205 (2019).
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a neural semantic parser from user feedback. arXiv
preprint arXiv:1704.08760 (2017).

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737-1750.

Fei Li and HV Jagadish. 2014. Constructing an interactive natural language
interface for relational databases. Proceedings of the VLDB Endowment 8, 1 (2014),
73-84.

Pingchuan Ma and Shuai Wang. 2021. MT-Teql: Evaluating and Augmenting
Neural NLIDB on Real-world Linguistic and Schema Variations. Supplementary
Material. https://bit.ly/MT-Teql-sm.

Pingchuan Ma, Shuai Wang, and Jin Liu. 2020. Metamorphic Testing and Certified
Mitigation of Fairness Violations in NLP Models. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, I[JCAI-20. 458-465.
Nishtha Madaan, Inkit Padhi, Naveen Panwar, and Diptikalyan Saha. 2021. Gen-
erate Your Counterfactuals: Towards Controlled Counterfactual Generation for
Text. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAT
2021, Virtual Event, February 2-9, 2021. AAAI Press, 13516-13524.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schonberg, Jakob Zwiener, and Felix Naumann. 2015. Func-
tional dependency discovery: An experimental evaluation of seven algorithms.
Proceedings of the VLDB Endowment 8, 10 (2015), 1082-1093.

581

[22

[23]

[24]

[26

[27]

[28

™~
29,

[30

[31

[32

[33

&
=)

(35]

[39]

[40]

[41]

[42]

Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. GloVe:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532-1543.
Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander
Yates. 2004. Modern natural language interfaces to databases: Composing statis-
tical parsing with semantic tractability. In COLING 2004: Proceedings of the 20th
International Conference on Computational Linguistics. 141-147.

Patti Price. 1990. Evaluation of spoken language systems: The ATIS domain. In
Speech and Natural Language: Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27, 1990.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAl blog 1, 8 (2019), 9.

Marco Tulio Ribeiro, Carlos Guestrin, and Sameer Singh. 2019. Are red roses
red? evaluating consistency of question-answering models. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics. 6174-6184.
Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh.
2020. Beyond Accuracy: Behavioral Testing of NLP Models with CheckList.
In Proceedings of the 58th Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational Linguistics, Online, 4902-4912.
https://doi.org/10.18653/v1/2020.acl-main.442

Manuel Rigger and Zhendong Su. 2020. Detecting optimization bugs in database
engines via non-optimizing reference engine construction. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. 1140-1152.

Manuel Rigger and Zhendong Su. 2020. Finding bugs in database systems
via query partitioning. Proceedings of the ACM on Programming Languages 4,
OOPSLA (2020), 1-30.

Manuel Rigger and Zhendong Su. 2020. Testing Database Engines via Pivoted
Query Synthesis. In 14th { USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 20). 667-682.

Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R Mittal, and Fatma Ozcan. 2016. ATHENA: an ontology-driven
system for natural language querying over relational data stores. Proceedings of
the VLDB Endowment 9, 12 (2016), 1209-1220.

Torsten Scholak, Raymond Li, Dzmitry Bahdanau, Harm de Vries, and Chris
Pal. 2020. DuoRAT: Towards Simpler Text-to-SQL Models. arXiv preprint
arXiv:2010.11119 (2020).

Sergio Segura, Gordon Fraser, Ana B Sanchez, and Antonio Ruiz-Cortés. 2016. A
survey on metamorphic testing. IEEE Transactions on software engineering 42, 9
(2016), 805-824.

Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Ozcan, Vasilis Efthymiou, Ayushi
Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik Sankara-
narayanan. 2020. ATHENA++ natural language querying for complex nested
SQL queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747-2759.
Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, and Yasemin
Altun. 2019. Generating Logical Forms from Graph Representations of Text
and Entities. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. 95-106.

Meina Song, Zecheng Zhan, and E Haihong. 2019. Hierarchical schema repre-
sentation for text-to-SQL parsing with decomposing decoding. IEEE Access 7
(2019), 103706-103715.

Ezekiel Soremekun, Sakshi Udeshi, and Sudipta Chattopadhyay. 2020. Astraea:
Grammar-based Fairness Testing. arXiv preprint arXiv:2010.02542 (2020).
Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. ConceptNet 5.5: An Open
Multilingual Graph of General Knowledge. In Proceedings of the Thirty-First AAAT
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,
USA, Satinder P. Singh and Shaul Markovitch (Eds.). AAAI Press, 4444-4451.
Alane Suhr, Ming-Wei Chang, Peter Shaw, and Kenton Lee. 2020. Exploring
unexplored generalization challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. 8372-8388.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. 2018. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In Proceedings of the
40th international conference on software engineering. 303-314.

Bailin Wang, Mirella Lapata, and Ivan Titov. 2020. Meta-Learning for Domain
Generalization in Semantic Parsing. arXiv preprint arXiv:2010.11988 (2020).
Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2019. Rat-sql: Relation-aware schema encoding and linking for
text-to-sql parsers. arXiv preprint arXiv:1911.04942 (2019).

David HD Warren and Fernando CN Pereira. 1982. An efficient easily adaptable
system for interpreting natural language queries. American journal of computa-
tional linguistics 8, 3-4 (1982), 110-122.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,
Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hattasch, Steffen
Eger, et al. 2020. DBPal: A Fully Pluggable NL2SQL Training Pipeline. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 2347-2361.

[45]

[46]

[47]

[48]

[49]

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. 2021.
Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improv-
ing Models. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured
queries from natural language without reinforcement learning. arXiv preprint
arXiv:1711.04436 (2017).

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. Type-
sql: Knowledge-based type-aware neural text-to-sql generation. arXiv preprint
arXiv:1804.09769 (2018).

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir Radev, Richard Socher, and Caiming Xiong. 2020. GraPPa:
Grammar-Augmented Pre-Training for Table Semantic Parsing. arXiv preprint
arXiv:2009.13845 (2020).

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li,
and Dragomir Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex
and Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing. 1653-1663.

582

[50

[51

[52

[54

]

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, Brussels, Belgium.

John M Zelle and Raymond] Mooney. 1996. Learning to parse database queries
using inductive logic programming. In Proceedings of the national conference on
artificial intelligence. 1050-1055.

Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R Lyu,
Irwin King, and Steven CH Hoi. 2020. Photon: A Robust Cross-Domain Text-to-
SQL System. arXiv preprint arXiv:2007.15280 (2020).

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic Evaluation for Text-to-SQL
with Distilled Test Suites. arXiv preprint arXiv:2010.02840 (2020).

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning. CoRR
abs/1709.00103 (2017).

