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ABSTRACT
Query rewrite transforms a SQL query into an equivalent one but

with higher performance. However, SQL rewrite is an NP-hard

problem, and existing approaches adopt heuristics to rewrite the

queries. These heuristics have two main limitations. First, the order

of applying different rewrite rules significantly affects the query

performance. However, the search space of all possible rewrite

orders grows exponentially with the number of query operators

and rules and it is rather hard to find the optimal rewrite order.

Existing methods apply a pre-defined order to rewrite queries and

will fall in a local optimum. Second, different rewrite rules have

different benefits for different queries. Existing methods work on

single plans but cannot effectively estimate the benefits of rewriting

a query. To address these challenges, we propose a policy tree based
query rewrite framework, where the root is the input query and

each node is a rewritten query from its parent. We aim to explore

the tree nodes in the policy tree to find the optimal rewrite query.

We propose to use Monte Carlo Tree Search to explore the policy

tree, which navigates the policy tree to efficiently get the optimal

node. Moreover, we propose a learning-based model to estimate

the expected performance improvement of each rewritten query,

which guides the tree search more accurately. We also propose a

parallel algorithm that can explore the tree search in parallel in

order to improve the performance. Experimental results showed

that our method significantly outperformed existing approaches.
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1 INTRODUCTION
The performance of a slow SQL query (e.g., redundant operators)

can be improved by orders of magnitude if the SQL query is properly

rewritten by query rewrite [17, 46]. Query rewrite is a fundamental

problem in query optimization [9, 32, 46], which aims to transform

a SQL query into an equivalent one but with higher performance.

Specifically, query rewrite transforms a SQL query in logic level
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(e.g., removing redundant operators, pulling up subqueries) such

that (1) the rewritten query is equivalent to the original one and (2)

the execution time is reduced. For example, in Figure 1, if the origin

query q is rewritten into an equivalent query q2 by the order of (1)

removing aggregate function in o5, (2) pulling up the subquery in

o4, and (3) removing aggregate function in o2, we achieve over 600x
speedup than PostgreSQL that rewrites q in a top-down manner.

Query rewrite is an NP-hard problem [9, 32], and existing meth-

ods rewrite SQL queries by matching queries with a predefined rule

order (e.g., attempt to pull up the subquery before pushing down

predicates). However, the limitation is that they only use a default

order (e.g., top-down, arbitrary), which may fall in a local optimum.

For example, in Figure 1, PostgreSQL rewrites query q in a top-

down manner, i.e., (o1, o3) (we omit operators that do not match

any rules). This order achieves limited improvement, because it first

creates a temporary table for subquery o3, and then the operators

in the subquery (e.g., o4, o5) cannot be rewritten. Instead, if we

first rewrite o4 and o5, and then rewrite o3, the operators in o3 can
be rewritten and the execution time is reduced. A straightforward

method samples some orders and selects the best one. However, as

there are a huge number of possible orders, it is hard to select the

optimal one through sampling within limited rewrite time.

Therefore, existing methods suffer from several challenges. First,

the search space of possible rewrite orders is exponential to the

number of applicable rules, so how to represent such a large amount of
orders (C1) is a major challenge. Second, given a large search space,

how to find the optimal order efficiently (C2) is another challenge.
Third, to select a good rewrite order, an intuitive idea is to estimate

the cost reduction of a rewrite (or a sequence of multiple rewrites)

and prune a rewrite if the reduced cost by the rewrite is small. The

third challenge is how to estimate the cost reduction of a rewrite (C3).
To address these challenges, we propose a query rewrite system,

LearnedRewrite, which takes as input a SQL query and a set of

rewrite rules, finds the optimal rewrite order and outputs an opti-

mized rewritten query. LearnedRewrite first models the possible

orders as a policy tree, where the root is the input query. Each non-

root node is a rewritten query obtained by applying rewrite rules

on its parent, and a path from the root to a tree node corresponds

to a rewrite order (addressing C1). The advantage of the policy

tree is that different paths (rewrite orders) are likely to share com-

mon ancestors (rewrite operations), so we avoid applying repetitive

operations on these orders. Second, we propose Monte Carlo Tree
Search (MCTS) to explore the policy tree to find the optimal node

1
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Table 1: Example Rewrite Rules.

rule description example
r1 RemoveAggregate Remove redundant aggregates e.g., “select max(distinct a) from t;” → “select max(a) from t;”

r2 TemporaryTable
Create a temporary table for subquery e.g., “select * from t1 where a1 < any(select a2 from t2 where a2>10);”
not accessing the outer query → “with t as (select a2 a from t2 where a2>10) select t1.* from t1,t where a1<a;”

r3 Subquery2Join
Pull up the subquery as a join if e.g., “select t1.* from t1 where a1 in (select a2 from t2 where a2<2);”
it is correlated with the outer query → “select t1.* from t1 semi join t2 on a1=a2 and a2<2;”

r4 SplitSubquery
Divide the query into subqueries if e.g., “select * from t where (c1=‘f’ and c2>5) or c2>8;”
there are AND/OR in predicates → “select * from t where (c1=‘f’ and c2>5) union all select * from t where c2>8;”

r5 NormalizePredicate
Transform predicate with common e.g., “select * from t where (c2>18 or c1=’f’) and (c2>18 or c2>15);”
expressions → “select * from t where (c1=‘f’ and c2>15) or c2>18;”

r6 SimplifyPredicate Replace “in” with “=” e.g., “· · · t1.c in (10,20,30);” → “· · · t1.c=10 or t1.c=20 or t1.c=30;”

r7 OuterJoin2InnerJoin Replace outer join with inner join

e.g., “select * from t1 left join t2 on t1.a=t2.a where t2.a is not null;”
→ “select * from t1,t2 where t1.a=t2.a and t2.a is not null;”
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Figure 1: Query Rewrite Example: q1 is obtained by rewriting the query tree from top down, i.e., (o1, o3) and other operators
cannot be rewritten; and q2 is obtained by the optimal rewrite order (o1, o4, o3, o5) that LearnedRewrite found.

(i.e., rewritten query with maximum cost reduction) iteratively. In

each iteration, MCTS selects the most beneficial node (which has

high possibility to lead to the optimal node) and expands children of

the node (applying rewrite operations). We propose node utility to

define the beneficial nodes by considering both cost reduction and

access frequency (i.e., the number of selected times), which guides

the search to find the optimal order (addressing C2). We then pro-

pose a deep estimation model to estimate the cost reduction of each

node accurately (addressing C3), by considering query operators,

applicable rewrites and columns features. To improve the efficiency

when the policy tree is large, we propose a multi-node selection

algorithm (addressing C2). We make the following contributions.

(1) We propose a tree-based framework to judiciously select an

optimal rewrite order, for a SQL query and a set of rewrite rules.

(2) We build a policy tree to represent rewrite orders. We use

a MCTS algorithm to search on the policy tree, so as to find the

optimal order efficiently and effectively.

(3) We propose an effective model to estimate the cost reduction

of a rewritten order.

(4) We design a parallel MCTS algorithm that selects the nodes

in parallel to improve the search efficiency.

(5) Experimental results showed that our method significantly

outperformed existing approaches.

2 PRELIMINARIES
In this section, we first introduce rewrite rules and rewrite bene-

fits (Section 2.1), and then formalize the problem of query rewrite
(Section 2.2). Finally, we discuss the related work (Section 2.3).

2.1 Query Rewrite Rules
Query Tree. Given a SQL query q, we model it in the form of a log-

ical query tree, where each tree node is a query operator, e.g., scan,
filter, aggregate, join, subquery, union, intersect. For
example, in Figure 1, the query tree of query q contains 6 operators

and 3 tables. Note that if there is a subquery inq, we add a subquery
node as a virtual operator in the query tree.

We interchangeably use a SQL query and its corresponding query

tree if there is no ambiguity.

Query Rewrite Rules. Given a query q, a query rewrite rule per-

forms equivalent transformation on the query, e.g., removing a

useless operator or exchanging two operators.

Definition 1 (Rewrite Rule). A rewrite rule r is a triple r =
(o, c,α), where o is an operator, c is a condition and α is a rewrite
action. Given a query q, the rule first matches a query operator o, and
if c is true on o or the subtree rooted at o, we can apply the action α
to query q and get q(o,r ), where q and q(o,r ) are equivalent.
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Table 2: Notations.
Notation Description
q, qi origin query, equivalent rewritten query

R ={r1, · · · , r |R | } a set of rewrite rules

r = (o, c, α ) a rewrite rule (operator, condition, action)

O ={o1, · · · , o |O | } a set of query operators

T the policy tree of rewrite orders
vi a node in the policy tree
C↑(vi ) node cost reduction

C↓(vi ) subsequent cost reduction

F(vi ) access frequency

As a rewrite rule r can be applied to multiple operators, we use

q(o,r ) to denote rewriting q with rule r on operator o. If there is no

ambiguity, we abbreviate q(o,r ) as qr .

Example 1. In Figure 1, for the filter operator o5, since its pred-
icate is “((c.ck<2 and c.cn<2) or (c.ck<2 and l2.lk>10))” and satisfies
the condition “there are common expressions in the predicate” of rule
r5 (as shown in Table 1), we can apply the rule to o5 and the predicate
of o5 will change into “c.ck<2 or (c.cn<2 and l2.lk>10)”.

Rewrite Benefit of Applying A Rewrite Rule. Given a query q

and a rule r , let q(o,r ) denote the rewritten query by applying r

on q. Let Cost(q) and Cost(q(o,r )) denote the cost of executing q

and q(o,r ) respectively. The benefit of applying a rewrite rule r to

a query q is ∆Cost(q(o,r ),q) = Cost(q) − Cost(q(o,r )). We get the

cost of a query (e.g., Cost(q) and Cost(q(o,r ))) from cost estimator.

Example 2. As shown in Figure 1, we can apply the rule r1 (re-
duce redundant aggregates) to the two aggregate operators o1 and o4.
However, we gain different benefits, i.e., ∆Cost(q(o1,r1),q) = 0.0001

and ∆Cost(q(o2,r1),q) = 0.11, because themax function in o1 only
sorts one row, while the aддreдate operator o4 under o2 computes on
the joined table.

TheRewriteOrder ofApplyingMultipleRewriteRules.Given
a query q and two rules r1 and r2, let q

r1,r2
and qr2,r1 denote two dif-

ferent rewrite orders of the query q . Cost(qr1,r2 ) and Cost(qr2,r1 )
may be largely different, as different rewrite rules may affect each

other. For example, applying rule r1 may make r2 inapplicable (see
below). Thus it is important to select a good rewrite order.

Example 3. In Figure 1, (1) for the top rewrite order, we first rewrite
o3 with the rule r2 (create a temporary table (inline view) that can be
repeatedly referenced by the query, and cannot rewrite the aggregate
operator o4, i.e., q(o3,r2), because the subquery is taken as a temporary
table and the operators in it cannot be rewritten. (2) For the bottom
rewrite order, we consider from a different perspective: we first reduce
the aggregateo4 undero2 with the rule r1. And theno3 does not contain
aggregates and is rewritten with the rule r3 (replace the correlated
subquery with a join), i.e., q(o2,r1),(o3,r3). In (o3, r3), because tables
L1 and L2 are the same tables that are joined with table C , they can
be replaced with table L and only join with C once, which achieves
much more cost reduction than the top order.

2.2 Query Rewrite
Next we formally define the query rewrite problem. Given a query

q and a set R =(r1, · · · , r |R |) of rules, we optimize the query by

applying the rewrite rules to the policy tree in order to get the best

optimized query, defined as below.

Definition 2 (Query Rewrite). Given a query q and a set R
of rules, query rewrite is to select a sequence of rewrite operations
(oi , r j ), where oi denotes the i-th operator of q and r j is a rewrite
rule for oi , and apply the rewrite operations in this order to obtain a
rewritten query q∗ such that (1) q∗ is equivalent to q and (2) the cost
of executing q∗ is minimized among all rewritten queries.

Example 4. In Figure 1, the first order rewrites query q in a
top-down manner, i.e., q(o1,r1),(o3,r2), where only two rules can be
applied and it achieves limited cost reduction. Instead, the second
order gains the optimal cost reduction with the rewritten query as
q(o1,r1),(o2,r1),(o3,r3),(o5,r5), where the costly subquery o3 and the join
in o3 are removed and the cost is significantly reduced.

2.3 Related Work
Query Rewrite. There are two baselines for query rewrite. (1)
Human-involved methods. They rely on DBAs to select a subset

of rewrite rules and apply the rules to queries, which can achieve

relatively high performance. However, it cannot generalize to a

large number of queries, because DBAs may take hours or even

days to analyze and rewrite a query. Although there are some

assistant tools (e.g., ARE-SQL [8], SOAR [1]) that automatically rec-

ommend applicable rules based on statistics like table cardinality

and disk size, they cannot explore rewrite orders and still cannot

automatically rewrite without DBAs. Moreover, it usually finds

sub-optimal queries, because DBAs mainly rewrite a query based

on past experience (e.g., first optimizing subqueries) and cannot

explore more efficient rewriting strategies for different query struc-

tures. (2) Heuristic query rewrite (e.g., Calcite [6], PostgreSQL [3]).

They traverse operators in the logical query plan in a top-down

manner. For each operator, it matches rules based on the operator

type and reconstructs the query plan with matched rules. Heuristic

methods are more efficient but have two main limitations. First,

they apply the rewrite rules in a fixed order, and may miss a better

rewrite order. Second, they do not estimate rewrite benefits and

thus some rewrites may be useless or even slow down the query.

For example, adding a semi-join inside a join operator may bring

in rewrite overhead and cannot reduce cost when the join column

of the driven table is unique. To avoid this problem, heuristic meth-

ods only select a small subset of the rules with high possibility to

improve the query performance, but they may miss many useful

rules. Hence, it calls for an automatic query rewrite system that can

efficiently find near-optimal rewrite order from all rewrite rules,

rewrite the query by the selected order, and optimize the query.

Learning Models for Databases. Recently there are many works

that utilize machine learning techniques to address database prob-

lems [5, 10, 12, 18–23, 25, 41, 44–48]. For optimizers, most works

focus on physical optimization modules like cardinality/cost estima-

tor [14, 28, 34–36, 40, 42], plan enumerator [15, 27, 30, 39, 43], and

plan hinter [26, 31], but ignore the logical rewrite stage. For cost

estimation, existing methods [28, 34] estimate the cost of a given

plan, but cannot effectively estimate the cost reduction of rewrit-

ing the plan. Given a logical plan, there could be a large number

of possible rewritten plans, and existing methods need to sample

some rewritten queries, estimate the costs of their plans, and select
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Figure 2: The Workflow of Monte Carlo Tree Search Based Query Rewrite.

the minimum one as the cost reduction of the query. Obviously

this method is rather expensive. Instead, LearnedRewrite directly
computes the promising rewrite rule combinations and estimates the
cost reduction without sampling, and thus LearnedRewrite gains
higher accuracy and takes less time to infer the best rewritten query.
Note that LearnedRewrite has been applied in openGauss [20]

that provides slow query optimization.

Reinforcement Learning. RL methods include model-based RL

(e.g., MCTS) and model-free RL (e.g., Q-learning, DDPG) [2, 37, 38].

Model-free RL needs to fine-tune and update the policy model dur-

ing online inference, which usually cannot support instant queries.

Model-based RL pre-trains the estimation model and directly uses

the model for online inference. For our problem, query rewrite

requires low rewrite overhead (e.g., milliseconds) and high rewrite

benefits. Thus we select a light-weight model-based RL (MCTS) that

judiciously explores the policy tree based on the utility function.

3 TREE SEARCH FOR QUERY REWRITE
We first present the basic idea of using policy tree search to auto-

matically rewrite SQL queries (Section 3.1), and then introduce the

Monte Carlo Tree Search (MCTS) based method to explore promising

rewrite orders by searching the policy tree (Section 3.2).

3.1 Overview of Policy Tree Search
Traditional rewrite methods apply rewrite rules in a default order

(e.g., traversing operators in a top-down order and applying the

appropriate rules for each operator) and may fall in a local optimum.

However, enumerating all possible rewrite orders is not practical,

because there are a huge number of possible rewrite orders, espe-

cially for SQL queries with dozens of operators. For example, given

a query, suppose there are 50 applicable rewrites (pairs of opera-

tor and applicable rules), there can be over 50! “potential” rewrite

orders. Thus it is vital to judiciously select the best order.

Policy Tree. We build a policy tree to represent all the possible

rewrite orders, where the root denotes the original query and each

node is a rewritten query. A child node is rewritten from its parent

by applying a rewrite rule to a query operator. For example, in

Figure 2, the edge from the root to v1 denotes rewriting the origin

query with rewrite operation (o1, r1).

Definition 3 (Policy Tree). Given a query q and a set of rewrite
rules, we build a policy tree T , where the root node denotes the origin
query q, any non-root node denotes a rewritten query (that transforms
the query of its parent by applying a rewrite operation), and a leaf
denotes a query that cannot be rewritten by any rewrite rules.

Each node v corresponds to a query, and we use Cost(v) to
denote the cost of executing the query. The node with the smallest

cost in the policy tree is the optimal rewrite node.

Definition 4 (Optimal Node). The node on the policy tree with
the smallest cost is the optimal node.

Obviously, wewant to select the optimal nodewhich is equivalent
to the root (the given query) but with the smallest execution cost.

To find the optimal node, we want to judiciously expand the node

with high possibilities leading to the optimal node. To find such

nodes to expand, we define the node utility.

Node Utility. A node has large potential if it is on the optimal path
from the root to the optimal node. However, it is rather hard to

knowwhether the node is on the optimal path. To address this issue,

given a node, we compute its benefit, and the larger the benefit is,

the high possibility the node is on the optimal path. We compute

the benefit by considering two factors.

(1) Previous cost reduction C↑(vi ) of node vi . It captures the

reduced cost between executing the origin query v0 and executing

the rewritten queryvi , i.e., C
↑(vi ) = Cost(v0)−Cost(vi ), where the

cost can be estimated by the database optimizer or some statistical

functions [11]. Intuitively, the higher C↑(vi ) is, the larger the benefit
of this node is.

(2) Subsequent cost reduction C↓(vi ) of vi . The query of vi may

be further rewritten and achieves much higher cost reduction. For

any descendant vdi of vi , we have

Cost(v0) − Cost(vdi ) = Cost(vi ) − Cost(vdi ) + Cost(v0) − Cost(vi )

= Cost(vi ) − Cost(vdi ) + C↑(vi ).

Obviously, we want to select the descendant vdi with the largest

Cost(vi )−Cost(vdi ) to rewrite the query. Supposev
∗
is the descen-

dant of vi with the largest Cost(vi ) − Cost(vdi ), and we call

C↓(vi ) = Cost(vi ) − Cost(v∗i )

the largest subsequent cost reduction of vi , which is abbreviated as

subsequent cost reduction if there is no ambiguity. For example, in

Figure 1, the rewrite operation (o4, r1) only eliminates a redundant

aggregate (low C↑(v ′′)), but can allow pulling up the subquery and

gain much cost reduction (high C↓(v3)). Hence, for any node vi ,
its subsequent rewrites (i.e., descendant nodes of vi ) are likely to

further reduce the cost. It is naturally to compute C↓(vi ) using a

descendant node with the largest cost reduction, i.e.,

C↓(vi ) = max{C↑(v) + C↓(v) − C↑(vi )|v ∈ d(vi )}.

where d(vi ) denotes the descendant set of vi .
However, it is hard to obtain the value of C↓(vi ), because we

cannot actually rewrite all the descendant nodes and derive the

optimal one [4], so we propose learned techniques to estimate the

subsequent cost reduction (see Section 4).
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Algorithm 1: MCTS Based Policy Tree Search

Input: q: a query tree; R: a set of rewrite rules
1 Initiate a root node v0 with query q;

2 while within computational budget do
3 v = NodeSelection(v0);

4 C↓(v) = SubsequentCostEstimation(v);

5 UtilityUpdate(v , C↓(v));

6 return the node with the largest previous cost reduction;

Function NodeSelection(v0)

Input: vi : a tree node of the policy tree
1 Select node v with the largest utility under vi ;

2 if v is not selected then
3 foreach o ∈ a query operator of v do
4 foreach r ∈ an applicable rule of o do
5 r = an applicable rule of o′;

6 v ′
= the node that rewrites v with (o, r );

7 C↑(v ′) = estimated cost reduction of v ′
;

8 C↓(v ′)= 0; F (v ′) = 1;

9 Add v ′
as a child of v ;

10 else NodeSelection(v); ;

11 return v ;

Function UtilityUpdate(v , C↓
(v))

Input: v : a tree node; C↓(v): subsequent cost reduction
1 F (v) = F (v) + 1;

2 foreach v ′ is an ancestor of v do
3 C↓(v ′) = max(C↑(v) + C↓(v) − C↑(v ′), C↓(v ′));

4 F (v ′) = F (v ′) + 1;

5 Update the utility of v ′
;

Definition 5 (Node Benefit). Given a policy tree, we define the
node benefit of a node vi as the sum of the previous cost reduction
C↑(vi ) and subsequent cost reduction C↓(vi ),

B(vi ) = C↑(vi ) + C↓(vi )

Obviously, we want to access the node with large benefit. How-

ever, the estimated benefit may not be accurate, and if we always

access such nodes, we may miss the real optimal node. To address

this issue, we also consider the access frequency of a node and

balance the benefit and frequency in order to avoid falling into a

local optimum or wrong directions.

(3) Access frequency F (vi ). It represents the number of visits

of the node vi when selecting new child nodes. Besides rewrite

benefits, we tend to select the node that is rarely accessed in order

to try more possible rewrites and avoid falling in a local optimum.

For example, in Figure 2, after selecting v2, the access frequencies
ofv2 andv3 are increased by one and the updated utilities ofv2 and
v1 get smaller than v3. Thus, v3 can be selected in next iteration,

whose subtree contains the optimal node.

Next we define the node utility by combining node benefit and

access frequency as blow.

Definition 6 (Node Utility). Given a policy tree, we define the
node utility as the upper confidence bound (UCB) of the probability

thatvi is on the path from the root to the optimal node, by considering
node benefit (C↑(vi ) + C↓(vi ), and access frequency F (vi ),

U(vi ) =
(
C↑(vi ) + C↓(vi )

)
+ γ

√
ln(F (v0))

F (vi )

where F (v0) =
∑
i≥1 F (vi ) is the number of total accesses, γ is the

exploration parameter that adjusts the amount of explorations of
uncovered rewrite orders.

Example 5. In Figure 2, given γ = 0.1, v1 has highest node benefit
(i.e., C↑(v1)=0.3 and C↓(v1)=0.1) and the utility value equals 0.5. At
this iteration, v1 has the highest utility and we further select the
subsequent nodes of v1 since v1 has been selected.

3.2 MCTS based Policy Tree Search
To efficiently get the optimal node in the policy tree, we propose

a Monte Carlo Tree Search (MCTS) based search strategy that judi-

ciously explores the nodes to obtain the optimal node. MCTS [24]

is a well-known tree search algorithm, which balances exploition

(high benefit) and exploration (low frequency) when searching the

policy tree and can acquire more information to the “optimal” node.

MCTS-based Framework. Figure 2 shows the system architecture.

Given a SQL query q, we build a policy tree with the root node v0
as q and initialize C↑(v0) = 0, C↓(v0) = 0, and F (v0) = 0. Then we

iteratively explore/exploit promising rewrite rules to expand the

policy tree in three steps.

1. Node Selection and Expansion. As the node with the maxi-

mum utility has the largest possibility of leading to the optimal

node, we select the node v with the maximum utility to explore. (i)
If the selected node has not been expanded (not rewritten by any

rules), we enumerate the rewrite operation (o ∈ v, r ∈ R), where o is
an operator inv and r is an applicable rule on o. For each operation,

we use it to rewrite v and generate a new child v(o,r ) of v . (ii) If
the node has been expanded, we select a node with the maximum

utility from the descendants of this node.

2. Subsequent Cost Estimation: For the selected node v , we es-
timate its subsequent cost reduction, which corresponds to the maxi-

mal cost reduction from v to its descendant node. Intuitively, ac-

cording to the traditional MCTS algorithm [7], we can randomly

explore K descendants of v and take the maximum cost reduction

as subsequent cost reduction. However, since v may have a large

number of descendants and it is expensive to estimate the cost, it is

hard to obtain the highest cost reduction through sampling. There-

fore, we propose a deep estimation model to compute relatively

accurate C↓(v) by considering both the query operators, rewrite

rules, and column features (see Section 4).

3. Utility Update.As the subsequent cost reduction ofv is updated

from 0 to C↓(v), some ancestors may have smaller benefit than v ,
and we need to update their subsequent cost reductions based on

that of v , i.e., redirecting to a descendant node with higher cost

reduction. Thus, for each ancestor v ′
of v ,

(i) If v has larger benefit than v ′
(i.e., C↑(v)+ C↓(v) > C↑(v ′)+

C↓(v ′
), then the subsequent cost estimation of v ′

is not correctly

estimated, and we update C↓(v ′), i.e.,

C↓(v ′) = (C↑(v) + C↓(v)) − C↑(v ′)
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(ii)We increase the frequency ofv ′
by 1 (i.e., F (v ′) = F (v ′)+1).

(iii)We update the utility of v ′
according to Definition 6.

Termination. We repeat above steps until arriving the maximum

iteration number or meeting the performance expectation, i.e., the

estimated cost reduction C↓(v0) is approaching min(Cost(v0) −
Cost(vi )), where vi is a tree node.

Algorithm. Algorithm 1 shows the pseudo code. It first initiates

the policy tree, with a root node denoting the origin query (line

1). And then it iteratively explores promising rewrite orders by (1)

selecting high utility node and expanding its child nodes on the

policy tree (line 3); (2) estimating the subsequent cost reduction of

the selected node (line 4); (3) updating the policy tree based on the

estimation results (line 5). Finally, it outputs the query with the

minimum cost in the policy tree (line 6).
Example 6. For a SQL query q, Figure 2 shows a running example

of finding the optimal rewrite orders. First, after initiating the policy
tree, we compute the maximum utility node v1, which has the highest
cost reduction among all the expended nodes. As v1 has been selected,
we further select v2 from the subtree rooted at v1. As v2 has not been
selected, next we estimate the subsequent cost reduction of v2, i.e.,
C↓(v2) = 0.1. And then, we update the policy tree from two aspects: (1)
For v2, we update the subsequent cost reduction with 0.1, and increase
the access frequency by one; (2) For the ancestor v1, because the node
benefit of v2 is lower than that of v1 (i.e., 0.2+0.1<0.3+0.1), we only
increase the access frequency of v1 by one. Finally, we incrementally
update the utility values for all the existing tree nodes.

4 DEEP REWRITE ESTIMATION
Given a tree node (a rewritten query) in the policy tree, it is vital
to estimate its subsequent cost reduction to compute the utility

and find optimal rewrite orders (i.e., high cost reduction). However,

there are three main challenges. (C1) There are multiple factors (e.g.,

rewrite rules, query operators, data distributions) that can affect

the cost reduction and it is challenging to characterize these factors

from different feature spaces. (C2) The rewrite rules are correlated

and the cost reduction of applying multiple rules is not the sum

of the cost reduction of each rule, because different rules may

conflict (e.g., applying a rulemaymake other rules inapplicable). It is

challenging to learn the rule correlations and detect the optimal rule

order. (C3) Deep learning models require a large volume of labeled

training data, where a label data includes a query and its optimal

rewritten query which has the largest cost reduction. However, it

is expensive to obtain the optimal rewritten queries. To address

these issues, we propose a multi-ahead attention model. We first

present the framework in Section 4.1, and then discuss the models

in Section 4.2 and present the training step in Section 4.3.

4.1 Model Framework
Overview. Figure 3 shows the architecture of our framework.

(1) Rewrite Feature Encoding. To characterize the factors from

different feature space (C1), we extract effective features (i.e., rewrite

rules, query operators, metadata) that affect the rewrite benefit, en-

codes them into the same feature space, and outputs embedding

vectors/matrix for these features (see Section 4.2.1).

(2) Rewrite Rule Embedding. To capture the rule correlations

(C2), we use a multi-ahead attention model to learn the rule corre-

lations between different rules (e.g., rule conflicts) and produces an

embedding vector for each rule that captures rules that may work

together with this rule. It takes the embeddings (output of Step 1)

as input and outputs the rule embedding vectors (see Section 4.2.2).

(3) Rewrite Rule Selection. From all the rule embedding vectors

for each rule, we select the optimal rule embedding vector with the

highest benefit and outputs this optimal rule vector. To this end, it

first normalizes the rule embedding vector (output of Step 2) using

the sigmoid function, and then selects the optimal one using the

fully connection neural network (see Section 4.2.3).

(4) Rewrite Cost Estimation.With the selected optimal rule vec-

tor (output of Step 3), it estimates the cost reduction of the rules. To

estimate the actual cost reduction, it first utilizes another attention

layer to learn the relations between the embedding rules (output of

Step 3) and the related data and operator features (output of Step 2)

and conducts non-linear transformation to convert the embedding

vector into the cost reduction (see Section 4.2.4).

Training.As it is costly to get the labeled data (expensive to get the
optimal rewrite orders), we first cluster a large number of queries by

the operator features, label a query in each cluster (get the optimal

rewritten query and the cost), take the cost reduction of the selected

query as the ground truth of other queries in that cluster, and train

the queries with the approximate ground truth (see Section 4.3).

4.2 Rewrite Cost Estimation Models
4.2.1 Rewrite Feature Encoding
There are three main factors that affect rewrite costs (Figure 3- 1 ).

Rewrite Rule FeaturesMR
n×m . The reduced cost of a rewrite rule

mainly depends on (1) the operators that can be rewritten by the

rule and (2) the rewrite cost of applying the rule to rewrite the

operator (e.g., reorder two operators). Hence, we build a rule matrix

MR
with n rows (rules) andm columns (operators) to denote the

rewrite features, where MR [i, j] = 0 if rule ri is not applicable to
operator oj ; otherwise M

R [i, j] is the cost reduction of applying

ri to operator oj , which can be estimated by the optimizer. For

example, in Figure 3, rule r1 can rewrite o1 and o4, and its encoding
rewrite rule vector is [0.01, 0, 0, 0.01, 0, 0].

Query Column FeaturesMQ
k×m . Query column features (e.g., in-

dex and distinct values) also affect the actual cost reduction. We

use a matrixMQ
withm rows (operators) and k columns (database

columns) to encode the column features, where MQ [i, j] denotes
whether operator oi contains column c j : 1 yes; 0 otherwise.

Metadata Features MD
2×k . Metadata affects the rewrite benefit.

For example, inner join works better on indexed columns; and

outer join gains lower cost when the right join column has few

distinct values (e.g., the gender attribute). Hence, we define the

metadata matrixMD
with 2 rows and k columns from two aspects:

(1) Index Utilization. MD [0, i] = 1 if the column i has an index,

and MD [0, i] = 0 otherwise; (2) Distinct Value indicates the data
distribution.MD [1, i] is the distinct value ratio of this column.

To capture both the query and metadata feature, we integrate

MQ
andMD

together and generate aM
Q+D
m×2k vector, where the first

k columns capture the index information and the second k columns

capture the distinct value information. Specifically, MQ+D [i, j] =
MQ [j, i]T ◦MD [1, j] for j < k ; and MQ+D [i, j] = MQ [j − k, i]T ◦

MD [1, j − k] for j > k , where ◦ is a dot product operation.
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Figure 3: Learned query rewrite model.

4.2.2 Rewrite Benefit Embedding
With the three rewrite features, [MQ ,MR ,MD ], the Rule Embedding
Module learns rewrite benefits (e.g., conflicts with other rules) from

those factors and outputs rule embedding vectors.

Step 1 - Learn the rewrite correlations from the rule matrix.
MR

encodes the cost reduction of each rule. However,MR
cannot

reflect the correlations between different rules, which are vital to

obtain the overall cost reduction. To this end, we utilize an attention

based mechanism to encode input rules. (1) We takeMR
as the input

matrix of the multi-head attention layer, i.e., H0 = MR
(Figure 3-

2 ); (2) For any row H0[i, ∗], we compute the similarity with all the

other rows, i.e., αi , j =
H 0[i ,∗]T ·H 0[j ,∗]

√
m

, where j , i andm is the size

of the rows (equals to the operator number). Note that we divide

by the square root of the dimension (

√
m) to keep the products in

a certain scale. We use αi , j as the attention weight between the

two rules, indicating the similarity of their cost vectors. And the

higher the attention weight gets, the higher possibility that r j can
affect the rewrite benefit of ri (Figure 3- 3 ); (3) With attention

weights between two rules, we compute the rule combinations

for each rule ri , such that the rules in the combination cause few

rewrite conflicts (e.g., few same operators) and high cost reduction;

(4) We use a softmax function to normalize the attention weights

(αi , j ), i.e., α
′
i , j =

exp(αi , j )∑
i , j exp(αi , j )

, which represents the degree that

the rule r j can affect the rule ri in cost reduction (Figure 3- 4 );

(5) For any row in H0[i, ∗], we divide all the other rules by the

normalized attention weights α ′
i , j (denoting the side-effects of other

rules) and sum them with the rule vector H0[i, ∗], i.e., H0
′

[i, ∗] =
H0[i, ∗] +

∑
j,i αi , jH

0[j, ∗], where H0
′

are the embedding vectors

that represent the rewrite benefits of rule ri by considering both

the rewrite features of ri and the other rules (Figure 3- 5 ).

Step 2 - Embed the overall rewrite benefits based on the data
features. We input both the embedding vector H0

′

and matrix

MQ+D
into a fully connected layer (FC), where each neural unit

denotes a rule combination. To learn the actual cost reduction of

any rule combination, we input the multiplication of the embedding

matrix H0
′

and MQ+D
(section 4.2.1) and learn the optimal com-

bination for each rule, i.e., MD
, i..e, H1 =W 1H0

′

MD + b, where
W 1

is the network weights learned from the training data, b is the

standard deviation from the cost space. Any row H1[i, ∗] embeds

the maximum cost reduction that can be reduced by rule ri and the

rules that can be co-used with ri (Figure 3- 6 ).

4.2.3 Best Rule Selection
Since H1

represents the n cost embeddings of the rules, next we

further embed H1
and select the optimal rule order as a 1 × 2k

dimension vector with two steps.

Step 1 - Normalize the n combinations.We first add a siдmoid

activation function to normalize the rows in H1
, i.e., H1

′

= 1

1+e−H 0
,

so as to limit the values of the input embedding matrix within the

same value range (Figure 3- 7 ).

Step 2 - Learn themaximal cost reduction from the n embed-
dings. With the normalized embedding matrix H1

′

, we utilize a

fully connected layer to further combine then rows ofH1
′

(applying

more rules together), learn the cost reduction, and output the best

combination (1 × 2k dimension vector), which denotes the rules

with the maximum cost reduction H2
(Figure 3- 8 ) .

4.2.4 Rewrite Cost Estimation
We learn the overall cost reduction based on H2

, i.e., the n embed-

ding vectors of optimal rules. Since the values inH2
are normalized,

we first compute the data factors to the actual cost with another

multi-head attention layer, whose output vector is denoted as H2
′

.

And then, as the overall cost reduction is not simply the sum of all

the values in H2
′

, we conduct nonlinear transformation on H2
′

to

learn the actual cost reduction, i.e.,
ˆ
C↓(q) = H3 = ReLU (W 3 H2

′

),

where
ˆ
C↓(q) is the estimated subsequent cost reduction of q, and

W3 denotes the network weights. We apply the ReLU function (i.e.,

f (x) =max(0, x)) to learn the nonlinear mapping fromH2
′

to
ˆ
C↓(q)

based on the network weightsW3 (Figure 3- 9 ).

4.3 Training Mechanism
We discuss the training mechanism for the estimation model. The

optimal rewrite order of a SQL query is hard to obtain, because

even for a query with a few operators, there can be a large number

of possible rewrite orders. Hence, to train the learning model with

limited labeled data, we propose an effective training mechanism.

Training Data Generation. The training data is a set of ⟨q, R, D,

C↓(q)⟩, where q is a query, R is the set of rewrite rules, D denotes

the meta data features, and C↓(q) is the highest subsequent cost re-
duction of q. We take the first three terms as the input features and

take the last term as the label. For query q, we generate slow queries

(e.g., over one second) as training data, which have large potential

to be rewritten. To this end, we adopt a two-step method. First,

to generate some representative queries, we randomly assemble

{Table, Join, Predicate, Aggregate Operation, Column} based
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on query structures (e.g., correlated subquery, uncorrelated sub-

query, tree structured predicates). Second, we utilize SQLSmith, a
random query generator, to synthesize queries via the SQL syn-

tax tree. For generating the highest cost reduction of q, as it is
time-consuming to collect the labels (e.g., months to run all rule

combinations for 1K queries), we first cluster all queries (e.g., DB-
SCAN) based on their cost vectors (e.g., six types of query operators

and corresponding summed costs); then, for each cluster we sample

5% queries to enumerate their optimal rewrite costs, and compute

the average cost reduction as the label for queries in the cluster.

Training. To efficiently train the model, for each sample, we com-

pute the loss function based on both the sample query (accurate

evaluation) and queries in the same cluster (robust evaluation) and

update the network weights based on the loss function values.

Loss Function. Loss function is vital for rewrite cost estimation,

which measures the accuracy between the estimated cost reduction

and real cost reduction. However, there are many noises in the

training data (i.e., we label the queries based on a small part of the

queries), which will slow down model convergence and affect the

final accuracy. Hence, to improve both estimation accuracy and

training efficiency, we use both the query q in a training sample and

other queriesQ∗
in the same cluster of q to compute the estimation

loss. (1) To evaluate the estimation accuracy, we calculate the loss

on query q using the Mean Squared Error (MSE), i.e., L0 = (F (q) −

C↓(q))2, where F (∗) denotes our estimation model and C↓(q) is the
labeled cost reduction of q; (2) To smooth the estimation results

across queries within the same cluster, we calculate the loss on

other queries of the cluster of q as a Laplacian regularization term:

Lr eд =
∑
i , j µi , j | |F (qi ) − F (qj )| |, where |F (qi ) − F (qj )| denotes the

L1 distance, in order to minimize the sum of absolute differences.

Lr eд represents that the queries within the same cluster have similar

operator costs and should have similar subsequent cost reduction.

Finally, we denote the overall loss function as: Ltotal = L0 +γLr eд ,
where γ is a weight factor to tradeoff the importance between the

accuracy and estimation robustness.

5 PARALLEL QUERY REWRITE
The policy tree can be very large (e.g., with 10 rewrite operations and
over 30,000 tree nodes) and the policy tree search algorithm may

require hundreds of iterations to find the optimal rewrite orders,

which is not tolerable for queries that require to be answered within

milliseconds. To reduce the rewrite overhead, we need to search

the tree in parallel, i.e., selecting multiple nodes at each iteration.

For example, in Figure 4, if we select one node to expand each time,

it requires three iterations to obtain the “optimal” branch (Figure 4

(a)). Instead we can find the optimal tree node by simultaneously

selecting three nodes (Figure 4 (c)).

Intuitively, we want to select the top-τ nodes with the highest

utilities. However, the utility of one node may affect the utility

of other nodes based on Definition 6. Given two nodes vi ,vj , if
they have no ancestor-descendant relationships, their node utilities

will not be affected by each other, because we only update the

ancestors and itself of any selected node; otherwise supposing vi
is an ancestor of vj , if vj is selected, vi ’s utility will be affected as

the access frequency will be increased by 1 and the subsequent cost

reduction may be updated. To address this issue, we want to select
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Figure 4: Comparison of Node Selection Strategies. (a) Select
single nodes for three times. (b) Select top-3 nodes withmax-
imum total utility. (c) Select three nodes with maximum to-
tal utility and without ancestor-descendant relations. (d) Se-
lect three nodes using dynamic programming.

top-τ nodes with the highest overall utility such that the selected

nodes have no ancestor-descendant relationships.

Multi-Node Selection Problem.Given a policy treeT and a given

number τ , we aim to select a subset V ∗ ⊂ V of nodes in policy
tree, which satisfies (1) the node number is τ ; (2) any two nodes

vi ,vj ∈ V ∗
do not have ancestor-descendant relations; (3) the sum

of utilities of nodes in V ∗
is maximized. For example, in Figure 4,

althoughv5,v7 have high utilities, they cannot be selected together

because they have ancestor-descendant relationships.

Definition 7 (Multiple Node Selection). Given a policy treeT
and an integer τ , we select the subsetV ∗ ⊂ V with τ nodes such that (1)
any two nodes vi ,vj ∈ V ∗ have no ancestor-descendant relationship,
and (2) V ∗ has the highest utility, i.e., argmaxV ∗⊂V

∑
v ∈V ∗ U(v).

Node Selection Algorithm. A naive method first selects the node

with the largest utility, and then greedily selects a node from the

remainder nodes which has the largest utility and has no ancestor-

descendant relationships with selected nodes. However, this method

may not select the optimal nodes. To address this issue, we propose

a dynamic programming algorithm to select the optimal τ nodes

without ancestor-descendant relationships in a bottom-up way.

We first discuss how to select τ nodes under node v which have

the largest utility without ancestor-descendant relationships. Let

Siv denote selecting i nodes with the largest utility under node v
without ancestor-descendant relationships, and I iv =

∑
u ∈S iv U(u)

denote the corresponding utility.
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Computing Siv and I iv when v is a leaf node. If v is a leaf, S1v =
{v} and I1v = U(v), and Siv = ϕ and I iv = 0 for 1 < i ≤ τ .

Computing Siv and I iv based on v’s children. If v is not a leaf

node, let c1, c2, · · · , cx denote the set of children of v in the policy

tree. Suppose Sicz and I icz of child cz have been computed for 1 ≤

z ≤ x and 1 ≤ i ≤ τ . Next we discuss how to use them to compute

Siv and I iv . Obviously, v has ancestor-descendant relationships with

any node under v , and thus v can only appear in S1v and will not

appear in Si>1v . We first consider the case of not selecting v . Let
I denote a matrix with τ row and x columns, where I[i, j] is the
maximal utility of selecting i nodes with the largest utility from

nodes under c1, · · · , c j . Next we discuss how to compute I.

First, we compute the first row. Any node under cy and cz for

1 ≤ y , z ≤ τ have no ancestor-descendant relationships. Thus

I[1, 1] = I1c1 ,I[1, 2] = max(I1c1 , I
1

c2 ), · · · ,I[1, x] = max1≤j≤x I
1

c j .

Next, we compute the i-th row based on the first i − 1 rows.

I[i, 1] = I ic1 . We compute I[i, j] by considering the following cases.
(1) We do not select any node under c j . In other words, we select

i nodes from the first j − 1 children, i.e., I[i, j] = I[i, j − 1].

(2) We select i nodes under c j . Thus we have I[i, j] = I ic j .

(3) We select z nodes under c j for 1 ≤ z < i . In other words,

we select i − z nodes from the first j − 1 children, i.e., I[i, j] =
I[i − z, j − 1]+ Izc j . Thus we have the following recursive function.

I[i, j] = max


I[i, j − 1] 0 node under c j

I ic j i nodes under c j

I[i − z, j − 1] + Izc j z ∈ [1, i − 1] nodes under c j

We use the dynamic programming algorithm to computeI. Then

we can get I iv = I[i, x], and obtain Siv by selecting the nodes to

maximize I[i, x]. Next, if we also select v , we only need to update

I1v and S1v . If U(v) > I1v , we update I1v = U(v) and S1v = {v}.
Finally, we output Sτv0

as the selected nodes, such that achieving

highest overall utility without ancestor-descendant relations.

Algorithm Complexity. First, we compute each entry in the ma-

trix I for each node v , and the number of entries is O(τ |v |), where
v is the number of children of v . Second, for any entry I[i, j], we
compare at most i entries and the time complexity is O(τ ). Hence,
the time complexity for node v is O(τ 2 |v |) and the overall time

complexity for the tree is O(τ 2
∑
v |v |) = O(τ 2 |T |), where |T | is the

number of nodes in the policy tree.

Example 7. Figure 4 shows the matrix to select three nodes from
the policy tree to achieve the highest overall utility without ancestor-
descendant nodes. We first compute the entries in row I(1, ∗), where
any I(1, j) (j ∈ [1, 7]) denotes the highest utility to select one node
from the first j nodes. For example, I(1, 1) = U(v1) = 0.1 and
I(1, 2) = max{I (1, 1),U(v2)} = 0.3. Next, for each entry I(2, j) in
the second row, we compare (1) selecting two nodes without using the
nodevj and (2) selecting two nodes using the nodevj . Considering the
entry I(2, 6), we can either select v3,v5 without using v6 (I(2, 5) =
0.9) or select v3 and v6 (I(1, 3) +U(v6) = 0.9). We cannot combine
v5 andv6 for higher utility, as they have parent-child relationship (v5
relies on the update of v6). So I(2, 6) = 0.9 for {v3,v5} and {v3,v6}.

6 EXPERIMENTS
We evaluated our techniques and demonstrated the experimental

results from several aspects. (1) We compared the performance (e.g,

execution cost, query latency, rewrite latency) of LearnedRewrite

Table 3: Parameters of Rewrite Estimation Network.

Step Layer Dimension

1 Attention + Full-Connection 82 × 20

2 Norm (Sigmod) + Full-Connection 82 × column_num

3 Attention + ReLU 1 × column_num

4 Output 1

with three typical rewrite orders (top down, bottom up, arbi-

trary); (2) We separately evaluated the efficiency of components in

LearnedRewrite (i.e., policy tree search, rewrite estimation, and

parallel rewrite algorithms); (4) we evaluated the adaptability of

LearnedRewrite under different rules and queries.

6.1 Experiment Setting
We utilized rewrite rules in Calcite [6], an advanced query engine

that independently encapsulates rewrite rules and supports user-

defined rewrite orders. And we executed the rewritten queries in

popular databases (e.g., PostgreSQL). The server was a machine

with 16GB RAM, 256GB disk, 4.00GHz CPU. We used Pytorch to

implement the neural networks (estimation module only) and the

hyper-parameters were shown in Table 3. We trained the neural

networks on a Titan RTX 2080Ti GPU with 11GB frame buffer.

Our system was open-sourced and publicly available on Github

(https://github.com/zhouxh19/LearnedRewrite).

Datasets. To verify the efficiency of LearnedRewrite on different

scenarios, we conducted experiments on three types of datasets. (1)

TPC-H is an OLAP benchmark. It contains 62 columns and 10,673

synthetic queries whose latency is over 1s. We separately tested

LearnedRewrite with different data sizes, i.e., TPC-H 1x (∼4.7G)

and TPC-H 50x (∼50.0G). (2) JOB is an OLAP benchmark [16]. It

uses a real-world dataset IMDB which contains 134 columns, 1.1G

data, and 15,750 synthesis queries whose latency is over 1s. (3)

XuetangX is a real-world OLTP benchmark for online education.

We took 14 tables with 204 columns, 11.5G data, and 22,000 real

queries whose latency was over 1s. For each dataset, we randomly

generated complex queries with tools like SQLSmith [33], and split

into training/validation/test sets by 8:1:1 (9-fold cross-validation).

Hyper-parameters. Table 3 shows the network parameters. We

separately trained three networks for the three datasets. The learn-

ing rate was 0.001 and epoch number was 2.

Rewrite Metrics. We evaluated LearnedRewrite using four met-

rics. (1) Execution Cost: we first used the execution cost pro-

vided by the optimizer to evaluate the quality of a rewritten query,

which indicated the performance under the same physical optimiza-

tion strategy; (2) Rewrite Latency: the time of rewriting a query;

(3) Query Latency: the actual time of answering a rewrite query;

(4) Overall Query Latency: the overall runtime of rewriting and

answering a query. High rewrite latency may slow down the overall

latency, especially for relatively simple queries in OLTP workloads.

We executed each query for three times and took the average la-

tency to reduce runtime noises. For each metric, we verified the

performance on median, 90th, and 95th, because (1) the average

metric was easily affected by extreme values, so we used median to

report the overall performance; (2) 90th/95th percentiles showed

the performance in the worst cases.
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Figure 5: Performance Comparison on 1G TPC-H Queries.
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Figure 6: Performance Comparison on JOB Queries.
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Figure 7: Performance Comparison on XuetangX Queries.

Baseline Methods. We compared the performance of

LearnedRewrite with three typical rewrite orders.

(1) TopdownPostgre and TopdownCalcite rewrote from the root

node in a top-down order, which are separately the default rewrite

orders of PostgreSQL and Calcite.

(2) Heuristic matched any rewrite rules with the query tree itera-

tively until no more rules can be applied [32].

(3) Arbitrary rewrote any operators in the tree until all the opera-

tors cannot be rewritten, which was supported in Calcite [6].

To obtain rewrite latency, we approximated the rewrite latency of

TopdownPostgre by the “planning time” statistics in the execution

plans, and timed the code running time for the other methods.

6.2 Performance Comparison
We compared LearnedRewrite with four baselines (topdown in

PostgreSQL, topdown in Calcite, arbitrary in Calcite, and heuristic

in Calcite) on the standard datasets. We separately demonstrated

their performance on the test sets in Figures 5-7.

Execution Cost Reduction. Figures 5-7(a) showed the cost of

rewritten queries. LearnedRewrite outperformed the other rewrite

strategies on all the datasets. For example, the overall latency

(i.e., the rewrite latency and query latency) of LearnedRewrite
was over 46.9% less than TopdownPostgre, 52.3% less than

TopdownCalcite, 80.9% less than Arbitrary, and 19.9% less than

Heuristic on the TPC-H dataset. The reasons were two-fold.

Firstly, LearnedRewrite explored more beneficial rewrite orders

with much lower execution cost than the default top-down or-

der in PostgreSQL and Calcite. For example, with an outer join,

TopdownPostgre cannot first push predicates close to the input

table, but LearnedRewrite rewrote by first converting outer-join

into inner-join and then pushing down the predicate. Second, the

Table 4: Average Rewrite/Query Latency on 50G TPC-H.

Method Rewrite Latency Query Latency
Arbitrary 3.3 - 10.1 ms 553.2 s

TopdownPostgre 0.3 - 3.9 ms 427.5 s

TopdownCalcite 1.5 - 18.9 ms 431.1 s

Heuristic 5.8 - 24.2 ms 331.7 s

LearnedRewrite 6.1 - 69.8 ms 224.5 s

estimation model can predict the potential cost reduction and

guided LearnedRewrite to efficiently select orders. For queries

with low previous cost reduction and high subsequent cost reduc-

tion, LearnedRewrite found the optimal orders by first sampling

rarely selected orders (low previous cost reduction) and then find-

ing the optimal rewrite orders (high subsequent cost reduction). In-

stead, the baselines only found sub-optimal rewrite orders, because

Heuristic only selected orders with high previous cost reduction,

and Arbitrary randomly sampled rewrite orders and had high

possibility to find sub-optimal ones within limited steps.

Query Latency Reduction. Figures 5-7(b) showed the latency of

rewritten queries. We had two observations. First, LearnedRewrite
outperformed existing methods, because LearnedRewrite can find

high-quality rewrite orders based on the policy tree search method

and significantly reduced the query latency than other methods. For

example, LearnedRewrite achieved over 23.7% latency reduction

than the baselines in average. Second, LearnedRewrite worked

better on TPC-H than JOB, because TPC-H queries contained many

subqueries that can be removed by query rewrite.
Rewrite Latency.We also evaluated rewrite latency of eachmethod

and Table 4 showed the results. Topdown rewrite order took the

least rewrite latency, but the overall query latency was worse than

Heuristic and LearnedRewrite; and LearnedRewrite took the

highest rewrite latency, but achieved the lowest overall latency. The

reasons were four-fold. First, LearnedRewrite took a bit more time

(e.g., average 20ms on TPC-H) to try out different rewrite orders by

the exploration-and-exploitation policy, and found rewrite orders

with much higher cost reduction and improved the slow queries

by much more time. Instead, other methods only adopted limited

rewrite orders, i.e., by default (topdown in PostgreSQL), greedily

(Heuristic), or randomly (Arbitrary), and caused sub-optimal

rewritten queries. Second, LearnedRewrite needed to estimate the

subsequent cost reduction of each selected rewrite order, which

took a bit time (e.g., average 0.5 ms for each query) but enhanced

efficiency by identifying optimal orders at early iterations. Note

that LearnedRewrite took around 40 minutes (on 10,673 queries)

to train the estimation model, but can generalize to any queries

on the same dataset. Third, TopdownPostgre and TopdownCalcite
took the smallest rewrite latency, because it only traversed the plan

tree once. Fourth, compared with TopdownPostgre, Heuristic and
Arbitrary took higher rewrite latency, because they repeatedly

matched applicable rules and conducted more redundant rewrites.

Summary. LearnedRewrite outperformed existing methods and

achieved lower latency on the three datasets, i.e., gaining 37.5%

latency reduction on TPC-H, 30% on JOB, and 29.3% on XuetangX.

6.3 Evaluation on Our Techniques
6.3.1 Evaluation on the exploration parameter γ
Since LearnedRewrite was based on the tree search algorithm,

the exploration parameter γ balanced between selecting high cost

reduction orders and selecting rarely accessed rewrite orders (with
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Figure 9: Comparison of Estimation Methods (TPC-H).
Rewrite(S): sampling. Rewrite(E): enumerating all orders.

potential high subsequent cost reduction), which was vital to the

query performance. Hence, we evaluated the impact of different

exploration parameters to the rewrite performance. Figure 8 showed

the results. And we made the following observations.

First, exploration parameter γ affected the query latency and

rewrite latency. A larger γ expected to try many more rewrite

orders, leading to high rewrite latency; while a larger γ leaded to

lower query latency, because it found a better rewrite order. Thus

we required to select an appropriate γ to balance query latency and

rewrite latency to achieve the lowest overall latency. For example,

when the exploration parameter γ was smaller than 1.4 × 10
5
, the

query latency went down by increasing γ , because the policy tree

of a query was generally large (e.g., over 320,000 branches for a

10-operator query); while it could select more rarely selected orders

in case of avoiding falling in local optimum and got lower overall

latency. However, when γ was bigger than 1.4 × 10
5
, the rewrite

latency become higher, because too large exploration parameter

took more iterations to exploit the orders with best previous cost

reduction, and query latency would be further reduced (cannot

find better orders). Thus we needed to select an appropriate γ , i.e.,
γ = 1.4 × 10

5
. Second, for slow queries in Figure 8, query latency

reduction was higher than the ratio of rewrite latency, and it would

be more beneficial to take more time to explore different rewrite

orders (e.g., we selected γ = 1.4 × 10
5
for slow queries). Moreover,

for fast queries running quickly, we could select a relatively small

τ (e.g., around 2 × 10
4
) and reduced the rewriting overhead.

6.3.2 Evaluation on the tree search algorithms
We compared with two traditional tree search strategies,

i.e., best-first algorithm (BestFirst) and depth-first algorithm

(DepthFirst) [13]. We used our attention-based estimation model

to estimate the cost reduction of the selected nodes. As shown in

Figure 11, MCTS outperformed BestFirst and DepthFirst in la-

tency reduction, because MCTS can balance between selecting nodes

with high cost reduction and nodes with low access frequency,

which helped to find global optimal queries. Instead, BestFirst
always selected the nodes with highest cost reduction and leaded to
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Figure 10: Comparison of Parallel Algorithms (TPC-H). DP
denotes DP-based parallel rewrite; TopK denotes greedy par-
allel rewrite; and Single denotes selecting single node.
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Figure 11: Comparison of Tree Search Algorithms (TPC-H).
local optimum. DepthFirst cannot efficiently explore untouched

branches on the policy tree and caused sub-optimum, but via prun-

ing nodes, DepthFirst performed better than BestFirst within

limited iterations.

6.3.3 Evaluation on the estimation model
We compared the estimation accuracy and efficiency of three esti-

mation strategies: (1) enumerate all the rewrite orders and output

the highest cost reduction (denoted by Rewrite(E)); (2) sample K

rewrite orders, and output the highest cost reduction estimated by

a deep neural network [29] (denoted by Rewrite(S)); (3) estimate

the highest subsequent cost reduction using our estimation model

(LearnedRewrite). Figure 9 showed the results. And we made the

following observations.

First, LearnedRewrite gained relatively high estimation ac-

curacy, i.e., over 29% higher than Rewrite(S), because, for

Rewrite(S), it was hard to sample rewrite orders to find the highest

cost reduction order when the policy tree was large, e.g., sampling

50 orders from 320,000 candidates, and caused great errors even

if the neural network can effectively estimate the cost of sampled

queries. Instead, LearnedRewrite directly predicted the rewrite

rule combination with the highest cost reduction by features like

query operators and rule conflicts, which were captured by the

attention layer and embedded as an embedding vector. Note that

LearnedRewrite worked much better for queries with high cost

reduction (e.g., the queries 9c and 11a in TPC-H), because these

queries usually had large rewrite potential and LearnedRewrite
can simulate more rewrite combinations with multi-head attention

than random sampling. Second, LearnedRewrite achieved low-

est overall latency than Rewrite(E) and Rewrite(S). Although
Rewrite(E) enumerated all the rewrite orders and could derive the

optimal rewritten query, it took much longer rewrite time (e.g., over

2000ms) and the overall latency was worse than LearnedRewrite.
LearnedRewrite selected the orders based on the estimationmodel,

which can give relatively accurate results within 10ms. Moreover,

Rewrite(S) also had higher rewrite latency than LearnedRewrite
because it needed to sample many rewritten queries and separately

estimate their costs, which was more time-consuming than model

inference in LearnedRewrite.
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6.3.4 Evaluation on the parallel algorithm
Finally we evaluated our parallel rewrite algorithm, which was

vital to enhance query rewrite with numerous candidate orders

(tree nodes). We compared the efficiency of three methods on

LearnedRewrite. (1) dynamic programming based node selection

method (DP); (2) top-τ based node selection method (TopK); (3) sin-
gle node selection (Single). The results were shown in Figure 4.

And we made two observations. First, parallel algorithms can signif-

icantly reduce the rewrite overhead (i.e., the searching time). This

was because Single selected one rewrite order (a tree node) at each
iteration and could evaluate different orders in parallel. Second, DP
gained lowest query latency than TopK and Single. On one hand,

TopK greedily selected top-τ nodes, which might come from the

same rewrite order, cannot be updated by the selection frequency,

and caused suboptimal solution. Instead, DP selected maximum

overall utility nodes without ancestor-descendant relations (i.e.,

the selected nodes were on different rewrite orders) and could find

optimal orders. Second, Single took much more time in tree search

and caused its overall query latency was worse than DP.

6.4 Evaluation on Adaptability
6.4.1 Varying Number of Rewrite Rules
We first tested the adaptability of LearnedRewrite by changing the
number of rules. We first ranked the rules by their usage frequency,

and varied the number of rules from 10 to 80.

TPC-HDataset.Wemade two observations. First, LearnedRewrite
outperformed the other methods and achieved the lowest query la-

tency with different rule numbers. The main reasons were two-fold.

(1) LearnedRewrite characterized the rule features as the input

of the estimation model. And the well-trained model can adapt

to different rule combinations (i.e., padding the positions if corre-

sponding rules are absent). While other methods cannot estimate

the rule benefits and selected many useless rewrite operations. (2)

LearnedRewrite can adaptively learn the benefits of rewrite oper-

ations of the new rules, i.e., estimating their utility and exploring

the subsequent order if the utility was relatively high. While, lack

of the estimation model, other methods cannot rewrite based on

the rewrite benefits. Second, the query latency of LearnedRewrite
decreased by increasing the rule numbers, because it utilized the

tree search algorithm to efficiently explore rewrite orders even if

the policy tree was large. While other methods used limited rewrite

order and cannot select from many potential rewrite orders.

JOB Dataset. We got similar results. LearnedRewrite achieved

lowest query latency, around 54.9% less than TopdownPostgre,
61.1% less than Arbitrary, and 38.6% less than Heuristic. This

was because the baselines cannot efficiently explore the new rewrite

rules and sampled sub-optimal solutions when the rewrite space got

large. Instead, LearnedRewrite can handle it by exploring the pol-

icy tree by the estimation results. However, different from TPC-H,

the latency change on JOB was relatively stable, because the logical

problems in JOB were much fewer than TPC-H, whose queries had

many subqueries, correlations, and complex predicates. Thus, with

a small part of rules, we can optimize the JOB queries well.

6.4.2 Varying Number of Query Operators
Next we tested the rewrite performance under different operator

numbers. Figure 13 showed the results and we made two observa-

tions. First, the methods had similar performance when the oper-

ator number was small (e.g., less than 5), as the order space was

small and there was little opportunity to reduce the latency. Sec-

ond, LearnedRewrite worked better when the operator number

increased, as more operators caused larger rewrite order space and

the baselines were hard to gain high performance. Besides, more op-

erators led to more correlations between different query segments

(e.g., an outer query referenced by a subquery), and the baselines

mismatched many rewrite rules without properly arranging the

rewrite orders. Instead, LearnedRewrite solved the problem from

two aspects. First, it had an efficient tree search algorithm that tried

different orders to rewrite the operators and selected the highest

cost reduction one as the rewrite result. Second, the estimation

model adapted to variable operator numbers by encoding the opera-

tor features into the matrix of rules and metadata features, and gave

relatively accurate benefit estimation based on different operators.

7 CONCLUSION
We have proposed a learning-based query rewrite system. We first

modeled the rewrite orders as a policy tree, and then used Monte
Carlo tree search to explore the policy tree to judiciously find the

optimal rewrite query. We proposed a deep rewrite estimation

model that effectively predicted the rewrite benefit of a rewrite

order. We proposed a parallel query rewrite algorithm to select

multiple nodes at each iteration. Experimental results showed that

our method significantly outperformed state-of-the-arts.
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