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ABSTRACT
Many real-life applications require processing graph data across
heterogeneous sources. In this paper, we define the graph federation
that indicates that the graph data sources are temporarily federated
and offer their data for users. Next, we propose a new framework
FedGraph to efficiently and effectively perform subgraph matching,
which is a crucial application in graph federation. FedGraph con-
sists of three phases, including query decomposition, distributed
matching, and distributed joining. We also develop new efficient
approximation algorithms and apply them in each phase to attack
the NP-hard problem. The evaluations are conducted in a real test
bed using both real-life and synthetic graph datasets. FedGraph
outperforms the state-of-the-art methods, reducing the execution
time and communication cost by 37.3 × and 61.8 ×, respectively.
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1 INTRODUCTION
Graph data (e.g., web graphs, social graphs, knowledge graphs, and
biological graphs) are widely used in many applications across vari-
ous domains, including bioinformatics, finance, and healthcare. The
development of big data increases the demand for processing (or
analyzing) graph data over several sources with various domains,
formats, and query interfaces. In this paper, we name this new com-
putational paradigm graph federation, and an illustrative example
is shown as follows.
Example 1: Financial Graph Federation forRiskManagement.
The China Banking Regulatory Commission (CBRC) includes thou-
sands of financial institutions that may build their own graphs or
networks for internal data management and analysis [40]. How-
ever, there are increasing demands for performing analytics across
graphs. For example, before lending money to an enterprise, a bank
should conduct due diligence for risk assessment. One of the in-
vestigations is the related-party analysis, which attempts to find
the relation patterns among the bank accounts related to this enter-
prise. The related-party analysis can help identify illegal behaviors
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such as money laundering by monitoring the complex sequence
of banking transfers. The related-party analysis can be formalized
as a party query (or subgraph matching) [18]. Figure 2(a) shows
that query pattern 𝑄 is a set of normal accounts, including the
target enterprise’s account. However, if these accounts have a set
of suspicious connections, the target enterprise may be involved in
money laundering. We aim to identify these suspicious connections
(i.e., query patterns) from three independent graphs (𝐺1, 𝐺2 and
𝐺3 in Figure 2(b)) provided by different financial institutions of the
CBRC for risk assessment. Unfortunately, many entities from these
graphs have the same or similar meaning but are represented in
semantical differences. As a result, we need a unified solution to
build the connections among the graphs, namely, financial graph
federation.

Graph federation is not limited to the financial field. Increas-
ingly, enterprises have embraced data lakes. To uniformly ana-
lyze heterogeneous data, some state-of-the-art methods (e.g., fed-
erated GraphQL [47]) build a knowledge graph for every data
source [9, 13, 39]. These knowledge graphs are composed of a
knowledge graph federation. Moreover, the resource description
framework (RDF) graphs in the Linked Data cloud [1] are semanti-
cally different and distributed across the world wide web. Therefore,
the linked data cloud implies a RDF graph federation.

query Q matches

Mediator Global

Ontology

Source S1 Source S2 Source S3

q1 q1(S1) q2 q3q2(S2) q3(S3)

G1

G1.O

LO1

G2

G2.O

LO2

G3

G3.O

LO3

Figure 1: An architecture of graph federation.

These examples indicate that a graph federation 𝐺𝐹 -based ap-
plication has a common architecture, as shown in Figure 1. To
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query a 𝐺𝐹 , a query 𝑄 is submitted to a mediator 𝑀 . Next, 𝑄 is
decomposed into a set of subqueries {𝑞1, ..., 𝑞𝑚} and distributed to
a set of 𝑛 graph sources {𝑆1, ..., 𝑆𝑛} for data analysis. Every source
𝑆𝑖 contains a data graph 𝐺𝑖 shared for 𝐺𝐹 , and the 𝑛 graphs also
make up a virtual graph 𝑉𝐺 (i.e., 𝑉𝐺 =

⋃𝑛
𝑖=1𝐺𝑖 ). 𝑆𝑖 also contains

a local ontology 𝐿𝑂𝑖 and a set of out-nodes 𝐺𝑖 .𝑂 , such that each
node 𝑣 ∈ 𝐺𝑖 .𝑂 is owned by 𝑆𝑖 and other sources 𝑆 𝑗 (𝑖 ≠ 𝑗 ). Differ-
ent sources use their out-nodes to communicate with each other.
Finally, 𝑀 aggregates all results collected from 𝑆𝑖 and reports to
users.

(a) Query graph
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Source S2 Source S3
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Figure 2: Query and data graphs.

(b) Local ontology LO1

(a) Global ontology
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Figure 3: Global and local ontologies.

To the best of our knowledge, this is the first paper discussing
graph federation applications. As a primary study, we focus on
subgraph matching over graph federation in this paper, and a sce-
nario is illustrated in Example 1. Additionally, subgraph matching
is one of the most fundamental problems in graph analysis and has

(a) match1 (b) match2 (c) match3

su1
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cr1 su2
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sp1 su3

sp2

en4 en5

cr2

Figure 4: Query answers.

many applications, including protein-protein interaction (PPI) net-
works [22], knowledge bases [56], and program analyses [46, 48].

Subgraph matching has been well studied in traditional graph
systems [3, 19, 20, 32, 38, 43], but this is not applicable for 𝐺𝐹 for
the following reasons. R1) Traditional subgraph matching requires
exact label matching (i.e., the node labels of the source graph and
query graph must be the same). As shown in Figure 2, the query
graph𝑄 cannot find any matches over the three data graphs𝐺1,𝐺2
and𝐺3 in this case. For example, node 𝑘𝑚 of𝑄 cannot be mapped to
any node by exact label matching. If we recognize that some labels
have “equivalence" or “subclass" relations, as shown in Figure 3, 𝑄
can find matches𝑚1 and𝑚3 from𝐺1 and𝐺3, respectively. However,
𝑄 still cannot find a match𝑚2 across𝐺1 and𝐺2 (see Figure 4). This
is because different sources have heterogeneous data semantics
but may contain the same entities denoted by the bold nodes in
Figure 2. R2) Traditional subgraph matching algorithms [19, 20] are
suitable for a single large graph, and some works [3, 32, 38] have
been proposed for processing distributed graphs. These works,
however, do not consider that in graph federation 𝐺𝐹 , different
sources have varying computational and storage capabilities. A𝐺𝐹
is also autonomous: every source provides limited resources to the
𝐺𝐹 ; e.g., the memory is constrained.
Key idea. To solve R1, we advocate ontology-based subgraph
matching (OSM) [57]. Specifically, the mediator 𝑀 maintains a
global ontology 𝐺𝑂 , and every source keeps a local ontology 𝐿𝑂
that provides the semantic relationships between the graphs in
different sources. The OSM over the 𝐺𝐹 identifies the matches for
𝑄 in the virtual graph 𝑉𝐺 , where the matches and the query are
semantically close according to the𝐺𝑂 and 𝐿𝑂s. We propose a ma-
chine learning approach to build the 𝐺𝑂 and bridge semantic gaps
between the 𝐿𝑂s. To tackle R2, we develop efficient approximation
algorithms to process an OSM over𝐺𝐹 , with theoretical guarantees
of the parallel execution time and network overhead. Specifically,
we advocate a decomposition-matching-joining method to perform
OSM. In the matching, we propose query rewriting based on on-
tologies to solve the heterogeneous semantics. In the joining, we
propose heterogeneity-aware pipelines and scheduling techniques
to attack distinct computational and storage capabilities.
Contributions. In summary, we make the following contributions
in this paper.
(1) In Section 2, we formally define a graph federation that reflects
the features of autonomy and heterogeneity. In this section, we also
define OSM over graph federation. (2) In Section 3, we introduce a
universal framework to process an OSM over graph federation, i.e.,
query decomposition, distributed matching and distributed joining.
(3) In Section 4.1, we propose the query decomposition algorithm

438



Dec and the distributed matching algorithm Mat. Dec identifies
different optimization algorithms to decompose a query 𝑄 into
a set 𝑆𝑄 of star-shaped subqueries. Mat progressively generates
star matches for the pipeline joining. (4) In Section 5, we develop
a distributed joining algorithm that includes logical joining and
physical joining. The logical joining applies the pipeline technique
to output an efficient corrected joining tree. Based on the joining
tree, the physical joining generates and executes an optimized
execution plan to minimize the joining process’s parallel execution
time and communication cost. (5) In Section 5, we design machine
learning algorithms to build the global ontology that bridges the
semantic gaps between different graphs. (6) In Section 7, using real-
life and synthetic graphs, we experimentally verify the efficiency
and scalability of our algorithms.
Position of the work. The graph federation also has dynamic
features (i.e., every data graph changes automatically) and private
features (i.e., every source may contain sensitive and private data
that should be protected). In this paper, however, we concentrate on
the features of autonomy, heterogeneous semantics, and different
processing capabilities. We propose novel and systematic solutions
to address issues incurred by these features. The dynamic and
private features are very different from these features. We will
extend our proposed algorithms to solve the issues incurred by the
dynamic and private features in other works.

2 PROBLEM DEFINITION
2.1 Basic Concepts
Data graph.We consider labeled, directed, attributed graphs, de-
fined as 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), where (1) 𝑉 is a finite set of nodes and
𝐸 ⊆ 𝑉 × 𝑉 is a set of edges. For each node 𝑣 ∈ 𝑉 (resp. edge
𝑒 ∈ 𝐸) 𝐿(𝑣) (resp. 𝐿(𝑒)) is a type (resp. relation) from a finite al-
phabet. The value of each node 𝑣 is denoted as 𝑣 .val. 𝑣 .val is an
example of an attribute of 𝑣 , describing a node property. For each
node 𝑣 , its attributes 𝐴𝑖 ∈ 𝐴, 𝑖 ∈ [1, 𝑛] are captured in its prop-
erty tuple, 𝐹𝐴 (𝑣), defined as a sequence of attribute-value pairs
{(𝑣 .𝐴1, 𝑎1), ..., (𝑣 .𝐴𝑛, 𝑎𝑚)}. Each pair (𝑣 .𝐴𝑖 , 𝑎𝑖 ) states that the at-
tribute 𝑣 .𝐴𝑖 = 𝑎𝑖 .
Graph federation. The integration of distributed graph sources
via a central mediator implies a graph federation 𝐺𝐹 . 𝐺𝐹 consists
of a mediator and a set of graph sources. The mediator and graph
sources also maintain ontology graphs (introduced later). The on-
tology graphs capture the semantics of different data graphs in
sources and can be used to map queries to sources. More specifi-
cally, a graph federation needs the following basic components and
functionalities:
Graph sources. A collection of 𝑛 graph sources, or simply sources
𝐺𝑆 = {𝑆1, ..., 𝑆𝑛}, agree to collectively support query services over
their data graphs. Each source 𝑆𝑖 manages its own data graph 𝐺𝑖 .
An 𝑆𝑖 also maintains a set of out-nodes 𝐺𝑖 .𝑂 , each of which is also
a node of 𝐺 𝑗 in another source 𝑆 𝑗 . An out-node 𝑣 ∈ 𝐺𝑖 .𝑂 can be
owned by multiple sources. In practice, multiple knowledge graphs
have the same entity. In Section 6, we introduce how to determine
the same out-nodes (e.g., entities) between different data graphs.

In summary, a source 𝑆𝑖 maintains the graph 𝐺𝑖 as well as the
out-node set 𝐺𝑖 .𝑂 . Considering all the sources, a graph federation

has a virtual graph 𝑉𝐺 composed of data graphs from every 𝑆𝑖 ; i.e.,
𝑉𝐺 =

⋃𝑛
𝑖=1𝐺𝑖 . The virtual graph is physically distributed across

𝑛 sources. This graph is used to define our problems in the next
section.

Figure 2(b) shows three data graphs 𝐺1, 𝐺2 and 𝐺3 for sources
𝑆1, 𝑆2 and 𝑆3, respectively. Every 𝑆𝑖 also maintains an out-node set
𝐺𝑖 .𝑂 , denoted by bold circles. For example, 𝑆1 maintains 𝐺1 .𝑂 =

{𝑐𝑜1, 𝑐𝑜2}. To see this, nodes 𝑐𝑜1 and 𝑐𝑜2 are also maintained in 𝑆2,
represented as 𝑒𝑛1 and 𝑒𝑛21. For the same reason, nodes 𝑠𝑝1 and
𝑐𝑟2 are the out-nodes of 𝑆2 and 𝑆3, respectively.

Below, we introduce two features of graph sources, based on
which we model the protocols of computation and communication
over the graph federation 𝐺𝐹 .
(1) Heterogeneous data sizes and semantics.

Different sources build their own data graphs without a uniform
standard. Different data graphs thus may have heterogeneous data
sizes and semantics. Heterogeneous data semantics refer to those
nodes of different data graphs with distinct labels that may refer to
the same entity. Ontology-based mapping is an effective mechanism
to bridge heterogeneous data semantics [23, 57]. For example, 𝐿𝑂1
and 𝐿𝑂2 (in Figure 3) are the local ontologies of 𝐺1 and 𝐺2 in
(Figure 2), respectively. 𝐿𝑂1 and 𝐿𝑂2 form a global ontology 𝐺𝑂 .
There are mappings from 𝐿𝑂1 (or 𝐿𝑂2) to 𝐺𝑂 , such as 𝜋 (𝑐𝑜) = 𝑒𝑛
(represented by the dotted lines in Figure 3), which means they are
the same concept but have different names.
Ontology. An ontology graph 𝑂 = (𝑉𝑜 , 𝐸𝑜 ) is a directed graph,
where𝑉𝑜 is a set of concept labels or attributes and 𝐸𝑜 ⊆ 𝑉𝑜 ×𝑉𝑜 is
a set of semantic relations among the nodes. In practice, an edge
(𝑣, 𝑣 ′) ∈ 𝐸𝑜 may encode 6 types of relations [30, 36]: (a) equivalence,
which states that 𝑣 and 𝑣 ′ are semantically equivalent; (b) hyponym,
which is that 𝑣 is a kind (or subclass) of 𝑣 ′; (c) property, which
states that 𝑣 is a property of 𝑣 ′ in terms of ‘association’ or ’part-of’
relation; (d) cause, which states that 𝑣 is caused by 𝑣 ′; (e) location,
which states that 𝑣 is a location of 𝑣 ′; and (f) temporal, which states
that 𝑣 is the temporal information of 𝑣 ′.

The relations in an ontology may vary with different domains,
but most domains include the above 6 relations.

A node 𝑢 ∈ 𝑉𝑜 is a label ancestor (resp. label offspring) of a node
𝑣 ∈ 𝑉𝑜 if there is a path from 𝑢 (resp. 𝑣) to 𝑣 (resp. 𝑢) in 𝑂 with
a sequence of “hyponyms" and “equivalences". Intuitively, 𝑢 is a
subclass of 𝑣 if 𝑢 is a label ancestor of 𝑣 .

Figure 3(c) shows that nodes 𝑘𝑚 and 𝑠𝑝 have an equivalent
relation and that node 𝑒𝑛 is a subclass of node 𝑒𝑢. Additionally,
in the figure, node 𝑖𝑒 is an offspring of node 𝑒𝑢, and thus, 𝑖𝑒 is a
subclass of 𝑒𝑢.

Every source maintains a local ontology 𝐿𝑂𝑖 of 𝐺𝑖 . We assume
that 𝐿𝑂𝑖 contains all the labels of 𝐺𝑖 . 𝐿𝑂𝑖 can be obtained from 𝐺𝑖

by merging nodes with the same type of label, as introduced in the
works [59].

The mediator 𝑀 keeps a global ontology 𝐺𝑂 of 𝑉𝐺 . 𝐿𝑂𝑖 (resp.
𝐺𝑂) can be viewed as a schema that is a summary of the node
and edge labels of 𝐺𝑖 (resp. 𝑉𝐺). For any concept label 𝑐𝑙 of a
𝐿𝑂𝑖 , there is a mapping 𝜋 from 𝑐𝑙 to a concept label 𝑐𝑙 ′ of 𝐺𝑂 ; i.e.,

1co and en are short for company and enterprise, as shown in Figure 3. co
and en refer to the same concept via ontology mapping.
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𝜋 (𝑐𝑙) = 𝑐𝑙 ′. 𝑐𝑙 and 𝑐𝑙 ′ refer to the same concept, although they
may have different names. These concepts are generalizations (i.e.,
superconcepts) of related concepts in local ontologies. In Section 6,
we introduce how to compute a global ontology 𝐺𝑂 from local
ontologies. Users can write queries based on 𝐺𝑂 .
(2) Heterogeneous computational and storage capabilities.

Every source 𝑆𝑖 is autonomous and manages its data without any
interference from other sources. Each 𝑆𝑖 voluntarily participates in
a graph federation𝐺𝐹 by using a capsule𝐶𝑖 , which is a logic unit.𝐶𝑖
indicates the shared data graph of 𝑆𝑖 . Since each 𝑆𝑖 is autonomous
and voluntary, it offers limited and various storage and computing
resources. We define the resource constraints of each 𝑆𝑖 as 𝑐𝑖 ; i.e.,
the consumed memory at every computing time is less than 𝑐𝑖 .

2.2 Subgraph Matching

Query graph. A query graph is a directed graph defined as 𝑄 =

(𝑉𝑞, 𝐸𝑞, 𝐿𝑞, 𝐹𝑞), where (1) 𝑉𝑞 and 𝐸𝑞 are a set of query nodes and
query edges, respectively; (2) 𝐿𝑞 is a labeling function such that for
each node 𝑣 ∈ 𝑉𝑞 (resp. 𝑒 ∈ 𝐸𝑞 ), 𝐿𝑞 (𝑣) (resp. 𝐿𝑞 (𝑒)) is a node (resp.
edge) label; and (3) for each node 𝑣 ∈ 𝑉𝑞 , 𝐹𝑞 (𝑣) specifies the set
{𝐴1, ..., 𝐴𝑘 } of its attributes. Note that 𝐿𝑞 (𝑣) or 𝐹𝑞 (𝑣) (resp. 𝐿𝑞 (𝑒))
is a node (resp. edge) label of the global ontology 𝐺𝑂 . Users can
formate their queries based on 𝐺𝑂 .
Ontology-based subgraph matching (OSM). Given a query
graph 𝑄 = (𝑉𝑞, 𝐸𝑞, 𝐿𝑞, 𝐹𝑞), a data graph 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴) and
an ontology 𝑂 , the OSM finds the subgraphs 𝐺 ′ = (𝑉 ′, 𝐸 ′, 𝐿′, 𝐹 ′

𝐴
)

of 𝐺 , such that there is a bijective function ℎ from 𝑉𝑞 to 𝑉 where
(1) for each node 𝑢 ∈ 𝑉𝑞 , (a) 𝐿(ℎ(𝑢)) is a label ancestor (or label
offspring) of 𝐿𝑞 (𝑢) in 𝑂 , and (b) 𝐹𝐴 (ℎ(𝑢)) .𝐴𝑖 is a label ancestor (or
label offspring) of 𝐹𝑞 (𝑢) .𝐴𝑖 in 𝑂 ; and (2) (𝑢,𝑢 ′) is a query edge if
and only if (ℎ(𝑢), ℎ(𝑢 ′)) is an edge of𝐺 ′. We refer to𝐺 ′ as a match
of 𝑄 in 𝐺 induced by the mapping ℎ and denote all the matches in
𝐺 for 𝑄 as 𝑄 (𝐺).
Problem definition. Given a query graph 𝑄 = (𝑉𝑞, 𝐸𝑞, 𝐿𝑞, 𝐹𝑞)
and a graph federation 𝐺𝐹 with the virtual graph 𝑉𝐺 , our problem
is to find a set of matches 𝑄 (𝑉𝐺) of 𝑄 in 𝑉𝐺 via OSM. A match
𝑚 ∈ 𝑄 (𝑉𝐺) is called a crossing match if 𝑚 contains nodes in
different sources.
Example 2: Figure 4 shows the query answers of OSM 𝑄 over the
virtual graph 𝑉𝐺 . We take an example of query node 𝑘𝑚 mapping
to the data node 𝑎𝑐1 of 𝐺1 as follows. First, 𝐿′𝑠 (𝑎𝑐1) = 𝑎𝑐 in 𝐿𝑂1,
and 𝐿𝑞 (𝑘𝑚) = 𝑘𝑚 in 𝐺𝑂 . Then, based on the mapping 𝜋 from 𝐿𝑂1
to 𝐺𝑂 , 𝜋 (𝑎𝑐) is the child of 𝑘𝑚 in 𝐺𝑂 , i.e., equivalence. □

Clearly, subgraph matching over graph federation is an NP-hard
problem. This is because its subproblem–subgraph isomorphism–is
NP-hard [15]. In the next section, we propose a novel algorithmic
framework to address it.

3 FRAMEWORK OF THE QUERYING
ALGORITHM

In this section, we propose a general federated graph querying
framework, namely, FedGraph, which includes an online phase and
an offline phase. The online phase solves the OSM problem in a
decomposition-matching-joining manner, consisting of three steps.

Step 1) Query decomposition. The inputs of FedGraph are a graph
federation 𝐺𝐹 = (𝑀,𝐺𝑆 = {𝑆1, ..., 𝑆𝑛}) and a query graph 𝑄 . Once
a 𝑄 is submitted to𝑀 , a procedure Dec is invoked to decompose 𝑄
into a set of star queries 𝑆𝑄 (detailed in Section 4.1). A star query
contains a pivot node and a set of leaves as its neighbors in𝑄 . After
query decomposition, 𝑆𝑄 is sent to 𝐺𝑆 for performing distributed
matching.

Step 2) Distributed matching. Taking the input from Step 1, Fed-
Graph invokes a procedure Mat to efficiently generate all matches
for each star query in 𝑆𝑄 over 𝑉𝐺 (see Section 4.2). The procedure
Mat progressively generates the matches, which are fed into the
pipeline join in the next step.

Step 3) Distributed joining. The matches produced by Mat for
multiple star queries are then joined in pipeline parallel by a Join
procedure to produce complete matches of 𝑄 (see Section 5). Join
includes logical and physical joining, aiming at minimizing the
parallel execution time and network overhead. Specifically, logical
joining outputs a joining plan that minimizes the time cost. Physical
joining executes a joining plan to minimize the traffic cost.

The offline phase of FedGraph is the determination of the out-
nodes of graph sources and the construction of the ontologies (see
Section 6). The online phase needs the out-nodes and ontologies to
execute the three steps.

4 QUERY DECOMPOSITION & MATCHING
4.1 Query Decomposition
In this section, we propose an algorithm Dec that decomposes a
query𝑄 into a set of star subqueries 𝑆𝑄 = {𝑞1, ..., 𝑞𝑚}. Dec aims to
achieve the following two goals.
Goal 1: The number of decomposed star queries should be as small
as possible, which intuitively reduces the number of joins.
Goal 2: The number of out-nodes of star matches should be as
small as possible, which intuitively reduces the communication
costs through these out-nodes.
Achieving goal 1. To achieve goal 1, we have to uncover the
following problem: Let 𝑄 be a query graph and 𝑆𝑄 = {𝑞1, ..., 𝑞𝑚}
be a set of stars such that any edge of 𝑄 belongs to only one star
𝑞𝑖 ∈ 𝑆𝑄 . 𝑆𝑄 is called the star cover of 𝑄 . The problem consists of
computing the minimum star cover of 𝑄 . It is not difficult to prove
that the minimum star cover problem is polynomial equivalent to
the minimum node cover problem, which is NP-hard. As a result,
our problem is an NP-hard problem.

We leverage the 2-approximate algorithm [51] to construct a star
cover from a node cover in polynomial steps, detailed as follows.
In every step, we randomly select an edge (𝑎, 𝑏), add 𝑎 and 𝑏 to
the answer, and remove all edges incident to 𝑎 or 𝑏. This process is
repeated until we remove all of the edges. We use the same process
to create a 2-approximate star cover.

To realize goal 2, Dec revises the query decomposition algorithm
by picking edges with higher selectivity as follows.
Achieving goal 2.We first calculate a selectivity 𝑠 (𝑢) of a node𝑢 ∈
𝑄 . 𝑉𝐺.𝑂 denotes a set of out-nodes of 𝑉𝐺 ; i.e., 𝑉𝐺.𝑂 =

⋃𝑛
𝑖=1𝐺𝑖 .𝑂 .

For nodes 𝑢 ∈ 𝑄 and 𝑣 ∈ 𝑉𝐺.𝑂 , |𝐿𝑂 (𝑢) | denotes the number
of out-nodes 𝑣 such that ℎ(𝑢) = 𝑣 . We then define the selectivity
as 𝑠 (𝑢) = 1

|𝐿𝑂 (𝑢) | . Intuitively, the larger 𝑠 (𝑢) is, the smaller the
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probability of ℎ(𝑢) being an out-node, where ℎ is the mapping of
𝑄 to 𝑉𝐺 (i.e., 𝑢 and 𝑣 have an ancestor/descendent relationship in
the global ontology).

q1 q2 q3Query Q

su km

km

en en km

en en

en

su en

km

su en

Figure 5: Query decomposition of 𝑄 in Figure 2(a).

Figure 6 outlines the detailed steps of Dec. Dec simulates the
process of the approximate algorithm for the node cover problem.
Instead of selecting a common edge (𝑢, 𝑣) of 𝑄 for the node cover,
Dec picks an edge (𝑢, 𝑣) such that 𝑠 (𝑢) + 𝑠 (𝑣) is the largest. This
difference allows Dec to achieve the above two goals.

Algorithm Dec
Input: a query 𝑄 .
Output: a set of decomposed star subqueries 𝑆𝑄 .
1. initialize 𝑆𝑄 = 𝜙 ; 𝑅 = 𝜙 ;
2. while 𝑄 has edges do
3. if 𝑅 = 𝜙 then
4. select an edge (𝑢, 𝑣) such that 𝑠 (𝑢) + 𝑠 (𝑣) is the largest;
5. else
6. select an edge (𝑢, 𝑣) such that 𝑢 ∈ 𝑅 and 𝑠 (𝑢) +

𝑠 (𝑣) is the largest
7. 𝑇𝑢 = the stars rooted at 𝑢;
8. add 𝑇𝑢 to 𝑆𝑄 ;
9. 𝑅 = 𝑅∪neighbor(𝑢);
10. remove 𝑇𝑢 from 𝑄 ;
11. if 𝑑𝑒𝑔(𝑣) > 0 then
12. 𝑇𝑣 = the star rooted at 𝑣 ;
13. add 𝑇𝑣 to 𝑆𝑄 ;
14. remove all edges in 𝑇𝑣 from 𝑄

15. 𝑅 = 𝑅∪neighbor(𝑢);
16. remove 𝑢, 𝑣 and all nodes with degree 0 from 𝑅;
17. return 𝑆𝑄 ;

Figure 6: Algorithm of query decomposition Dec.

Based on the two goals, the query𝑄 in Figure 2(a) can be decom-
posed into 3 star subqueries with the smallest number of stars and
out-nodes, as illustrated in Figure 5.

4.2 Distributed Matching
After query decomposition, we obtain a set of star queries 𝑆𝑄 . Our
distributed matching scheme aims to maximize the parallelism of
the query 𝑞 ∈ 𝑆𝑄 over all sources {𝑆𝑖 }. To achieve this, the mediator
𝑀 sends 𝑞 ∈ 𝑆𝑄 to every source 𝑆𝑖 . Every 𝑆𝑖 then computes the

Algorithm Mat
Input: a star query 𝑞 and source 𝑆𝑖 .
Output: the match set 𝑞(𝐺𝑖 ).
1. let 𝑢 be the pivot node of 𝑞;
2. for each node 𝑙 ∈ 𝑉 (𝐿𝑂𝑖 ) do
3. if Reach(𝐿(𝑢), 𝜋 (𝐿(𝑙))) or Reach(𝜋 (𝐿(𝑙)), 𝐿(𝑢)) then
4. let Cand(𝑢)={𝑣} be the set of nodes of 𝐺𝑖 with label

𝐿(𝑙);
5. if Reach(𝑢.𝐴𝑖 , 𝑣 .𝐴𝑖 ) or Reach(𝑣 .𝐴𝑖 , 𝑢.𝐴𝑖 )
6. add edges from 𝑣 to nodes of 𝑞(𝐺𝑖 );
7. for each 𝑣 ∈ Cand(𝑢) do
8. for each𝑤 ∈ Neighbor(𝑣) do
9. for each leaf node 𝑥 of 𝑞 do
10. if Reach(𝐿(𝑤), 𝜋 (𝐿(𝑥))) or Reach(𝜋 (𝐿(𝑥)), 𝐿(𝑤)) then
11. if Reach(𝑤.𝐴𝑖 , 𝑥 .𝐴𝑖 ) or Reach(𝑥 .𝐴𝑖 ,𝑤.𝐴𝑖 )
12. add edges from𝑤 to nodes of 𝑞(𝐺𝑖 );

Figure 7: Algorithm of distributed matching Mat.

match set 𝑞(𝐺𝑖 ) of 𝑞 in 𝐺𝑖 in parallel. Figure 7 shows the detailed
steps of Mat, where the inputs of Mat are a star query 𝑞 and the
source 𝑆𝑖 . Its output is the match set 𝑞(𝐺𝑖 ).

Mat takes the following steps. (1) For the pivot node 𝑢 of 𝑞, Mat
computes the candidate match set Cand(𝑢) of 𝑢 in𝐺𝑖 (lines 1-6). To
obtain Cand(𝑢), Mat needs the local ontology 𝐿𝑂𝑖 of 𝐺𝑖 and the
global ontology𝐺𝑂 . Recall that a node 𝑙 ∈ 𝐿𝑂𝑖 has a mapping node
𝜋 (𝑙) in 𝐺𝑂 and that the label 𝐿(𝑢) of 𝑢 is a node of 𝐺𝑂 . We thus
justify that𝑢 matches 𝑙 if 𝐿(𝑢) is an ancestor or offspring of 𝐿(𝜋 (𝑙))
in𝐺𝑂 (line 3) (the same as for their properties (line 5)). In this case,
𝑢 may be a subclass or superclass of 𝑙 . The function Reach(𝐿(𝑢),
𝐿(𝑣)) determines such a case. Reach() speeds up the determination
based on a reachability index [53]. (2) Using the same idea, Mat
calculates the matches of leaf nodes of 𝑞 (lines 7-12). Once all leaf
nodes find their matches, Mat returns the match set 𝑞(𝐺𝑖 ). Mat
also optimizes this process based on a good match order [55].

(b) join tree

(a) matches of q1 in G1

Star q1 q1(G1)

km

en en

matches
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Figure 8: Example of matching and joining tree.

441



For example, Figure 8(a) shows the matches of star 𝑞1 in 𝐺1,
represented as 𝑞1 (𝐺1). Query 𝑄 in Figure 2(a) is decomposed into
3 star subqueries 𝑞1, 𝑞2 and 𝑞3, as shown in Figure 5. The mediator
sends these stars to every source. We aim to obtain all the matches.
We use 𝑞1 to match 𝐺1 as an example (see Figure 8(a)). We first
identify the node matches 𝑎𝑐1 and 𝑐𝑟1 for the pivot node 𝑘𝑚. By
probing their neighbors, we then find all the matches for the leaf
nodes of 𝑞1 (i.e., 𝑒𝑛). Finally, we have all the matches of 𝑞1 in 𝐺1,
as shown in Figure 8(a).

Note that any node of a star query has only one-hop neighbors
in the star. Additionally, a source contains also one-hop neighbor
nodes (i.e., out-nodes) of other sources. Therefore, a match 𝑞(𝐺𝑖 ) is
entirely within a source.

5 DISTRIBUTED JOINING
Given 𝑄 decomposed to a set of star queries 𝑆𝑄 = {𝑞1, ..., 𝑞𝑚},
distributed joining finds all the matches for 𝑄 by assembling the
matches retrieved by Mat on each 𝑞𝑖 . We aim to achieve two goals
in this section:

(1) Logical joining. A complete match is constructed from star
matches. Logical joining outputs a joining tree that guarantees a
corrected joining answer.

(2) Physical joining. A logical joining plan is executed over graph
sources. Physical joining aims at minimizing the parallel execution
time and the network overhead.

5.1 Logical Joining
In this section, we develop the algorithm of logical joining LogJoin
to obtain a complete match of𝑄 . Given a query𝑄 , we decompose it
to a set of star queries 𝑆𝑄 = {𝑞1, ..., 𝑞𝑚}, denoted 𝑅(𝑞𝑖 ) as the star
matches (𝑖 ∈ [1,𝑚]). LogJoin computes the set of matches 𝑅(𝑄) as:

𝑅(𝑄) = 𝑅(𝑞1) ⊲⊳ 𝑅(𝑞2) ⊲⊳ · · · ⊲⊳ 𝑅(𝑞𝑚). (1)

Joining tree.A join plan determines the order for solving the above
joining and processes𝑚 rounds of two-way joins. We denote 𝑃𝑖
as the 𝑖-th partial pattern, whose results are produced in the 𝑖th
round of the joining plan. Obviously, we have 𝑃𝑚 = 𝑄 . The joining
plan is presented in a tree structure, where the leaf nodes are the
stars and the internal nodes are the partial patterns. A joining tree
T uniquely specifies a joining plan. If all the internal nodes of the
joining tree have at least one joining operation as their child, the
tree is called a left-deep tree [27]. Otherwise, it is a bushy tree [27].
Note that a left-deep tree is a version of bushy tree.

LogJoin advocates the left-deep tree; i.e., LogJoin applies a se-
quence of two-way joins to compute 𝑅(𝑄). This is because a left-
deep tree incurs much fewer partitions (i.e., disjoint subtrees) than
a bushy tree. This feature allows the following algorithms to be
effectively applied to the distributed joining.

Figure 8(b) demonstrates a joining tree T for the three stars in
Figure 5. The leaf nodes of T are 𝑞1, 𝑞2 and 𝑞3, each of which relates
to the star matches.
Optimizing the joining procedure. We use the joining pipeline
to perform Equation 1; i.e., we progressively join star matches gen-
erated by Mat. The pipeline performs joining operations once star
matches are generated without waiting for all the matches to be

produced. The pipeline technique ensures that the consumed mem-
ory of the algorithms in each source satisfies the storage constraint
𝑐𝑖 . We can select a joining order that minimizes the intermediary
results of Equation 1. In this paper, we apply the sample-based join-
ing cost estimation method and cost-based joining order selection
method [14] to compute an optimal joining order.

5.2 Physical Joining
The previous sections discuss the algorithms used to obtain a logical
joining plan; this plan needs to be transferred to a physical joining
plan for distributed execution. Given a joining tree T, the physical
joining plan aims to maximize the parallel execution and minimize
the network overhead of T.
Idea of physical joining. The key idea of physical joining is to
optimize the parallel execution and communication costs via logical
scheduling and physical scheduling, respectively.

Logical scheduling partitions T into disjoint subtrees such that
these subtrees can be executed in amaximumparallel form. Physical
scheduling is an assignment of these subtrees to sources such that
the communication cost of executing every subtree is minimized.

Both optimization problems are NP-complete as stated later. To
solve the two problems, we propose two polynomial time algorithms
with approximation ratio bounds 8𝜀 (𝜀 is a constant) and log𝑛,
respectively.

5.2.1 Logical Scheduling. Given a left-deep joining tree T, T has𝑚
leaf nodes based on Equation 1. A leaf node of T represents a set of
star matches 𝑅(𝑞𝑖 ) across sources.2 These sources can be viewed as
a virtual machine. Thus, T corresponds to a set of𝑚 virtual machines.
Logical scheduling is a partitioning of T to𝑚 virtual machines such
that the parallel execution time of T is minimized.

This idea is similar to the classical problem of multiprocessor
scheduling with homogeneous environments (i.e., machines with
the same computational speeds [16]). However, our environment is
heterogeneous, as the𝑚 virtual machines have a variety of com-
puting resources. This is because every source has heterogeneous
processing capabilities, as introduced in Section 2. In this paper,
we propose novel solutions to the heterogeneous scenario. Before
introducing our solutions, we first define the following.

We first define a weighted operator tree PT originating from the
joining tree T. PT shares the same structure with T, i.e., the same
nodes and edges of T. The weight 𝑡𝑘 of node 𝑘 is the time to run the
operator. The operator is joined if 𝑘 is an internal node of T, and
the operator is matched otherwise. The weight 𝑐𝑘 𝑗 of the edge from
node 𝑘 to node 𝑗 is the network overhead that both 𝑘 and 𝑗 incur for
communication if they are scheduled on different virtual machines.
The values of 𝑡𝑘 and 𝑐𝑘 𝑗 can be obtained by the sample-based cost
estimation method for the joining order [14].

Figure 10(a) shows the PT of the joining tree in Figure 8(b). We
also need the following definitions.

Definition 5.1. Given𝑚 virtual machines and an operator tree
PT= (𝑉𝑝𝑡 , 𝐸𝑝𝑡 ), a scheduling of PT is a partition of 𝑉𝑝𝑡 into𝑚 sets
𝐹1, ..., 𝐹𝑚 , with set 𝐹𝑘 allocated to virtual machine 𝑘 . The load 𝐿𝑘
on the virtual machine 𝑘 is the cost of executing all nodes in 𝐹𝑘

2𝑅 (𝑞𝑖 ) might not span all the sources.
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plus the overhead of communicating with nodes on other virtual
machines; 𝐿𝑘 =

∑
𝑖∈𝐹𝑘 [𝑡𝑖 +

∑
𝑗∉𝐹𝑘

𝑐𝑖 𝑗 ].
Every virtual machine has a relative computing speed 𝑠𝑖 (1 ≤

𝑖 ≤ 𝑚). We assume these speeds have been normalized such that
𝑠1 = 1, 𝑠𝑖 ≥ 1 for 2 ≤ 𝑘 ≤ 𝑚. The response time of scheduling is
𝜆 = max1≤𝑘≤𝑚

𝐿𝑘
𝑠𝑘
. The logical scheduling computes a partition of

𝑉 into 𝐹1, ..., 𝐹𝑚 that minimizes 𝜆.
This problem is intractable since the special case in which all

edge weights are zero is the NP-complete problem of multipro-
cessor scheduling [15]. Note that our algorithm (LogSch) is not
parameterized by 𝑠𝑖 (1 ≤ 𝑖 ≤ 𝑚), which is used to analyze only
LogSch. Therefore, we do not need to estimate the values of 𝑠𝑖 .

To schedule a PT, two operations, introduced as follows, are used
to modify it:

Definition 5.2. 𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 (𝑖1, 𝑖2) collapses nodes 𝑖1 and 𝑖2 in tree
PT, where 𝑖1 and 𝑖2 are replaced by a new node 𝑖 . The weight of the
new node 𝑖 is the sum of the weights of the two deleted nodes; i.e.,
𝑡𝑖 = 𝑡𝑖1 + 𝑡𝑖2. The edge between 𝑖1 and 𝑖2 is detected if it exists. All
other edges connected to either 𝑖1 or 𝑖2 are instead connected to 𝑖 .
𝐶𝑢𝑡 (𝑖, 𝑗) modifies a PT by deleting edge (𝑖, 𝑗) and adding its

weight to that of nodes 𝑖 and 𝑗 ; i.e., 𝑡𝑛𝑒𝑤
𝑖

= 𝑡𝑜𝑙𝑑
𝑖

+ 𝑐𝑖 𝑗 and 𝑡𝑛𝑒𝑤𝑗
=

𝑡𝑜𝑙𝑑
𝑗

+ 𝑐𝑖 𝑗 . □

Now, we propose the logical scheduling algorithm LogSch. Fig-
ure 9 shows the steps of LogSch. LogSch consists of two phases:
partitioning and the actual scheduling.

Given an operator tree PT, LogSch performs a subprocess Col-
Cut (for partitioning, line 1), followed by another subprocess LPT
(for scheduling, line 2). LPT is a classic scheduling algorithm [15].
LPT assigns tasks to machines in decreasing order of their pro-
cessing times. A task is taken from this list and is assigned to a
machine whose finishing time is the earliest. ColCut partitions PT
by iteratively applying 𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 (𝑖𝑙 , 𝑖2) and 𝐶𝑢𝑡 (𝑖, 𝑗) to PT.

As shown in Figure 9,ColCut iteratively selects a leaf and decides
whether to collapse or cut the edge from the leaf of its parent (line
1). It determines the operation based on the ratio of the leaf weight
to the edge weight to its parent. If the ratio is greater than an input
parameter 𝛼 (𝛼 > 1), it cuts the edge (lines 2-3). If the ratio is less
than 𝛼 , it collapses the leaf to its parent (lines 4-5). This is because
the weight of the parent node does not greatly increase. In ColCut,
a parent node is defined as a node whose child nodes are leaves. In
our algorithm, we set the value of 𝛼 to 3.
Example 3: Figure 10 shows the process of LogSch for the PT
in Figure 10(a). LogSch collapses the leaf node 𝑞1 to its parent 𝐽1
because the new weight of 𝐽1 does not increase substantially. For
the same reason, LogSch also collapses the leaf node 𝑞3 to its parent
𝐽2. LogSch cuts the edge between the leaf node 𝑞2 and its parent
𝐽1 since this operation does not incur the weight of the resulting
partitions. Figure 10(b) gives the final partition of PT. □

In the following, we apply LogSch to the problem in Defini-
tion 5.1, for which we prove that LogSch provides a constant
approximation ratio bound. Here, denote 𝐿 as the total load; i.e.,
𝐿 =

∑𝑝

𝑘=1 𝐿𝑘 . The superscript ∗ is used to denote the quantities in
the optimal scheduling.

We first have a lemma for a partitioning the 𝜙 of the PT of the
optimal scheduling.

Algorithm LogSch
Input: an operator tree PT, 𝑝 virtual machines.
Output: a schedule of PT to 𝑝 virtual machines.
1. invoke ColCut(PT) to partition PT into sets 𝐹1, ..., 𝐹𝑝 ;
2. invoke LPT() to schedule 𝐹1, ..., 𝐹𝑝 over 𝑝 virtual machines;
Procedure ColCut(PT)
1. while (there exists a parent node𝑚 with child 𝑗 ) do
2. if (𝑝 𝑗 > 𝛼𝑐 𝑗𝑚) then
3. 𝐶𝑢𝑡 ( 𝑗,𝑚);
4. else
5. 𝐶𝑜𝑙𝑙𝑎𝑝𝑠𝑒 ( 𝑗,𝑚);

Figure 9: Algorithm of logical scheduling LogSch.
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Figure 10: Example of logical scheduling.

Lemma 5.3. Suppose that there exists a mapping function 𝑓 from
the fragments produced by partitioning the 𝜙 of the PT to fragments
of the optimal scheduling that satisfies the following conditions: (1) 𝑓
is total on its domain, and (2) for all 𝐹𝑘 (𝑘 ≥ 1) such that 𝑓 (𝐹𝑘 ) = 𝐹 ∗𝑗
( 𝑗 ≥ 1), we have

∑
𝐿𝑘
𝐿∗
𝑗

≤ 𝑟 (𝑟 > 0).
After LPT is executed for the partitions of 𝜙 , we have the approx-

imation ratio bound at most 𝑟𝜀, where 𝜀 is the ratio bound of LPT.
□

Proof. First, we make a schedule Ψ from the optimal schedule.
Each fragment 𝐹𝑘 of 𝜙 is assigned to the virtual machine such that
𝑓 (𝐹𝑘 ) has been assigned to the optimal scheduling. Because of
totality of 𝑓 , we can schedule all fragments of 𝜙 in this manner.
From our assumption, if 𝜆1 is the response time of Ψ, we have
𝜆1
𝜆∗1

≤ 𝑟 . Clearly, if 𝜆∗1 is the response time of the optimal scheduling

of fragments produced by𝜙 , we have 𝜆∗1 ≤ 𝜆1. Therefore, scheduling
these fragments by LPT yields a response time of 𝜆 ≥ 𝜀𝜆1. Then
𝜆
𝜆∗ ≤ 𝑟𝜀. □
To define the following theorem, we need a concept main node.

The main node (denoted by 𝜇 (𝐹 )) of a partition 𝐹 is the highest
level node in the partition. Clearly, every partition has one and only
one main node.

Theorem 5.4. LogSch provides an approximation ratio bound of
8𝜀, where 𝜀 is the ratio bound of LPT. □

Proof.We define a relation 𝑓 from partitions of ColCut to those
of optimal solution such that 𝑓 (𝐹𝑘 ) = 𝐹 ∗

𝑗
, if and only if 𝜇 (𝐹𝑘 )
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belongs to 𝐹 𝑗 . Clearly, 𝑓 is a total function on its domain because
each partition of ColCut has one and only one main node and each
node of PT belongs to one and only one partition in its optimal
solution.

The value of 𝑟 =
∑
𝐿𝑘
𝐿∗
𝑗

such that ∀𝑘 𝑓 (𝐹𝑘 ) = 𝐹 ∗
𝑗
is maximized

when
∑
𝐿𝑘 is maximized and 𝐿∗

𝑗
is minimized. Assume that 𝑓 maps

𝑝 partitions 𝐹1, ..., 𝐹𝑝 to one partition 𝐹 ∗
𝑗
. Because of the definition

of 𝑓 , 𝐹 ∗
𝑗
must have at least 𝑝 nodes. 𝐹1, ..., 𝐹𝑝 must be connected

because they are mapped into a partition. 𝐿∗
𝑗
is minimized, if 𝐹 ∗

𝑗

cuts all incident edges of the main nodes of 𝐹1, ..., 𝐹𝑝 , except those
edges that connect the main nodes to each other. This is because
for every edge 𝑒𝑘 𝑗 we have, 𝑐𝑘 𝑗 < 𝐿𝑘 − 𝑐𝑘 𝑗 . 𝐿∗𝑗 is also minimized if
𝐹 ∗
𝑗
collapses all edges which connect 𝜇 (𝐹1), ..., 𝜇 (𝐹𝑝 ) to each other.

We therefore have, ∑𝑝

𝑘=1 𝐿𝑘 =
∑𝑝

𝑘=1 [𝑚𝑘 +∑𝑞

𝑗=1 𝑡 𝑗 +
∑𝜇

𝑙=1 𝑐𝑙 ], in which𝑚𝑘

is the weight of 𝜇 (𝐹𝑘 ), 𝑡 𝑗 is the weight of the child node 𝑗 of 𝜇 (𝐹𝑘 )
that belongs to 𝐹𝑘 and 𝑐𝑙 is the weight of the connecting edge
between partitions incident 𝜇 (𝐹𝑘 ). For each boundary node 𝑗 of
𝐹𝑘 ; we assume that𝑚 𝑗 and 𝑡 𝑗 are the sum of node weights plus the
weights of all edges incident to 𝑗 that are not in 𝐹𝑘 .

Because 𝐹1, .., 𝐹𝑝 form a subtree, and each connecting edge be-
tween 𝐹𝑘 and 𝐹 𝑗 is considered for computing the cost of both 𝐹𝑘
and 𝐹 𝑗 , we have, ∑𝑝

𝑘=1 𝐿𝑘 =
∑𝑝

𝑘=1 [𝑚𝑘 +∑𝑞

𝑗=1 𝑡 𝑗 ] + 2
∑𝑝−1
𝑙=1 𝑐𝑙 .

Since connecting edges are cut by ColCut, we have
𝑝∑︁

𝑘=1
𝐿𝑘 <

𝑝∑︁
𝑘=1

[𝑚𝑘 +
𝑞∑︁
𝑗=1

𝑡 𝑗 ] +
2
𝛼

𝑝∑︁
𝑘=2

𝐿𝑘

.
Let 𝛼 > 2 so

𝑝∑︁
𝑘=1

𝐿𝑘 <
𝛼

𝛼 − 2

𝑝∑︁
𝑘=1

[𝑚𝑘 +
𝑞∑︁
𝑗=1

𝑡 𝑗 ]

.
For 𝐿∗

𝑗
we have, 𝐿∗

𝑗
=

∑𝑝

𝑘=1 [𝑚𝑘 + ∑𝑞

𝑗=1 𝑐 𝑗 ] in which 𝑐 𝑗 is the
weight of the cut edge 𝑗 incident to 𝜇 (𝐹𝑘 ). Note that 𝑗 cannot be
a connecting edge between the main nodes. Since these edges are
collapsed by ColCut, we have

𝑡∑︁
𝑘=1

𝐿𝑘 <

𝑝∑︁
𝑘=1

[𝑚𝑘 +
𝑞∑︁
𝑗=1

𝑡 𝑗 ] +
2
𝛼

𝑝∑︁
𝑘=2

𝐿𝑘

. ∑𝑝

𝑘=1 𝐿𝑘
𝐿∗
𝑗

<

∑𝑝

𝑘=1 [𝑚𝑘 +∑𝑞

𝑗=1 𝑡 𝑗 ]∑𝑝

𝑘=1 [𝑚𝑘 + 1
𝛼

∑𝑞

𝑗=1 𝑡 𝑗 ]
(

𝛼

𝛼 − 2) <
𝛼2

𝛼 − 2
.

The above ratio is minimized when 𝛼 = 4, and the minimum
value of 𝑟 is 8. This completes the proof. □

5.2.2 Physical Scheduling. Consider a joining operation 𝐽 = 𝐴 ⊲⊳ 𝐵

(i.e., an internal node of T). Since T is a left-deep tree, pattern 𝐴
corresponds to partial matches 𝑅(𝐴), and pattern 𝐵 corresponds
to star matches 𝑅(𝐵). All these matches are distributed over the
sources in 𝑀𝑆 = {𝑆1, ..., 𝑆𝑛}. Physical scheduling studies how to
assign 𝑅(𝐴) and 𝑅(𝐵) to the sources in𝑀𝑆 such that the communi-
cation cost of executing 𝐴 ⊲⊳ 𝐵 is minimized. Physical scheduling is
performed for every joint node of T from bottom to top.

The problem is an NP-hard reduction from the distributed joining
optimization for relational databases [52]. We thus propose an
approximation scheme (PhySch) in this subsection. Specifically,
PhySch generates a plan 𝜉 for 𝑄 by a reduction from the minimum
set cover (MSC) problem [51].

The MSC problem is defined as follows: given a universe set
of elements 𝑈 , 𝑋 is a collection of weighted sets whose union
equals 𝑈 . We aim to find an 𝑋 ′ that covers all elements in 𝑈 and

simultaneously has the minimum total weight of all such subsets
of 𝑋 .

We design PhySch by applying an approximation-preserving
reduction [24] from the MSC such that PhySch can optimize the
joining overhead by the current approximate algorithms for the
MSC.
Reduction. The idea of the reduction is (a) to represent 𝐽 = 𝐴 ⊲⊳

𝐵 over 𝑅(𝐴) ∪ 𝑅(𝐵) as a cost plan that assigns necessary data
movement for answering 𝐽 and (b) to transform the assignment
problem as a variant of the MSC that admits a PTIME logarithmic-
factor approximation algorithm [51].

Consider 𝐽 = 𝐴 ⊲⊳ 𝐵 over 𝑅(𝐴) ∪ 𝑅(𝐵), and an instance of MSC
is constructed as follows. Given a universe 𝑈 of elements and a
set 𝑋 of weighted subsets of 𝑈 , each solution to MSC with an
approximation ratio of 𝑐 encodes a distributed joining plan for 𝐽
with a cost of at most 𝑐-times the minimum cost of all plans for 𝐽 .

(a) case 1 (b) case 2 (c) case 3 (d) case 4
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Figure 11: Four cases of physical scheduling.

Four cases from logical scheduling affect PhySch; these cases are
introduced as follows. 𝑉𝑀 is the virtual machine to which logical
scheduling assigns a node of PT. 𝐼𝐴 is the set of sources making up
𝑉𝑀𝐽 ; similarly, for 𝐼𝐵 corresponding to 𝐵. 𝐼 𝐽 is the set of candidate
sources to which PhySch performs the join 𝐽 . Figure 11 illustrates
the four cases.

◦ Case 1: 𝐽 and 𝐴 are in the same𝑉𝑀 , and 𝐵 is in another𝑉𝑀 .
Then, 𝐼 𝐽 = 𝐼𝐴 \ 𝐼𝐵 .

◦ Case 2: 𝐽 and 𝐵 are in the same𝑉𝑀 , and 𝐴 is in another𝑉𝑀 .
Then, 𝐼 𝐽 = 𝐼𝐵 \ 𝐼𝐴 .

◦ Case 3: 𝐽 , 𝐴 and 𝐵 are in the same 𝑉𝑀 . Then, 𝐼 𝐽 = 𝐼𝐴
⋃
𝐼𝐵 .

◦ Case 4: 𝐽 ,𝐴 and 𝐵 are in different𝑉𝑀s. Then, 𝐼 𝐽 = 𝑀𝑆\𝐼𝐴\𝐼𝐵 .
Case 1 means that the join operation 𝐽 is executed at the sources

in 𝐼 𝐽 = 𝐼𝐴 \ 𝐼𝐵 . The other cases follow the similar meanings.
𝑅𝑖 (𝐴) includes the matches of 𝐴 at source 𝑆𝑖 (𝑆𝑖 ∈ 𝐼𝐴), similar to

𝑅 𝑗 (𝐵) (𝑆 𝑗 ∈ 𝐼𝐵 ). For any 𝑖, 𝑗 ∈ [1, 𝑛], 𝑢𝑖 𝑗 = [𝑅𝑖 (𝐴), 𝑅 𝑗 (𝐵)] is called
a unit joining of 𝐽 in 𝑅(𝐴) ∪ 𝑅(𝐵). Then:

(1) 𝑈 consists of all unit joinings of 𝐽 in 𝑅(𝐴) ∪ 𝑅(𝐵); and
(2) 𝑋 consists of pairs (𝑖, 𝑋 ) for all 𝑖 ∈ [1, 𝑛] and 𝑋 ⊆ 𝑈 . We

say that (𝑖, 𝑋 ) covers element 𝑢 𝑗𝑘 = [𝑅 𝑗 (𝐴), 𝑅𝑘 (𝐵)] in 𝑈 if
𝑢 𝑗𝑘 ∈ 𝑋 . The weight of (𝑖, 𝑋 ), denoted by 𝑡 (𝑖, 𝑋 ), is defined
as the sum of the total travel cost of fetching 𝑅 𝑗 (𝐴) and
𝑅𝑘 (𝐵) from sources 𝑆 𝑗 and 𝑆𝑘 to source 𝑆𝑖 and the total cost
of computing 𝑅 𝑗 (𝐴) ⊲⊳ 𝑅𝑘 (𝐵) for all units [𝑅 𝑗 (𝐴), 𝑅𝑘 (𝐵)] in
𝑋 .

(3) The sources 𝑆𝑖 , 𝑆 𝑗 and 𝑆𝑘 obey the rules in the above four
cases for 𝑆𝑖 ∈ 𝐼 𝐽 , 𝑆 𝑗 ∈ 𝐼𝐴 and 𝑆𝑘 ∈ 𝐼𝐵 .

It is not difficult to verify that the reduction is approximation
preserving [51]. Based on the reduction, PhySch iteratively selects
(𝑖∗, 𝑋∗) such that the ratio of its weight 𝑡 (𝑖∗, 𝑋∗) to the number of
new unit joinings covered by 𝑋∗ is the minimum of all set covers.
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After the greedy process, it returns a distributed plan that consists
of exactly these atomic operations. It is an𝑂 (log𝑛)−approximation
for computing minimum cost joining plans since it is an𝑂 (log |𝑈 |)-
approximation for the reduced MSC [51], where |𝑈 | = 𝑛2.

6 LINKING NODES OF GRAPHS
To obtain an out-node of a source, we need to identify the same
entity for different graphs. To obtain a global ontology 𝐺𝑂 , we
merge different local ontologies 𝐿𝑂 by identifying the same concept
of different 𝐿𝑂s.

To this end, we develop node linking that can identify the same
node (concept) for two different graphs (resp. ontologies). To obtain
the global ontology 𝐺𝑂 , we apply node linking to every pair of
local ontology graphs in the graph federation 𝐺𝐹 .

Node linking uses the following concepts: Given a directed graph
𝐺 and two nodes 𝑎, 𝑏 in 𝑉 (𝐺), 𝑎 is a child of 𝑏 if (𝑎, 𝑏) ∈ 𝐸 (𝐺); 𝑎 is
a grandson of 𝑏 if there are two consecutive edges from 𝑎 to 𝑏 in 𝐺 ;
and 𝑎 is a descendant of 𝑏 if there is a path from 𝑎 to 𝑏 in 𝐺 .

Given two disjoint graphs𝐺1 = (𝑉1, 𝐸1, 𝐿1) and𝐺2 = (𝑉2, 𝐸2, 𝐿2),
node linking has the following intuitive idea. If a node 𝑢 in 𝐺1
matches a node 𝑣 in𝐺2, the children of 𝑢 are “similar" to those of 𝑣 ;
the grandsons of 𝑢 are “similar" to those of 𝑣 ; and the descendants
of𝑢 are “similar" to those of 𝑣 . That is, node linking inductively con-
siders the “similarity" of the descendants of 𝑢 and the descendants
of 𝑣 .

To realize the idea, node linking first embeds nodes in𝐺1 and𝐺1
into the same feature space based on representation learning. Node
linking then computes the distances of these node embeddings
and returns the matching nodes. In the representation learning,
node linking considers similar descendant semantics and attribute
semantics.

We first illustrate the descendant semantics. For a node 𝑢 ∈
𝐺 , to obtain the embedding about 𝑢 and its descendant 𝑢 𝑗 , node
linking aggregates the paths from 𝑢 to 𝑢 𝑗 based on a path-level
attention. There can be many paths from 𝑢 to 𝑢 𝑗 in𝐺 , which reveals
the rich semantic information between 𝑢 and 𝑢 𝑗 . To learn a more
comprehensive semantics for𝑢 and𝑢 𝑗 , node linking needs to merge
these paths.

Specifically, we design a graph-specific transformation matrix
for𝐺 , denoted by𝑀𝑔 , to project the features of these paths in𝐺 into
a unified feature space. That is, given a path 𝑝 in 𝐺 , its projected
path feature ℎ′𝑝 can be obtained by:

ℎ′𝑝 = 𝑀𝑔 · ℎ𝑝 ; (2)

where 𝑀𝑔 is the transformation matrix for 𝐺 and ℎ𝑝 is the initial
embedding vector of path 𝑝 created by a natural language model
(e.g., BERT [12]).

Denote by 𝑃𝑖, 𝑗 the set of paths from 𝑢 to 𝑢 𝑗 in 𝐺 . Node linking
computes the attention weight 𝛼𝑝

𝑖,𝑗
for each 𝑝 ∈ 𝑃𝑖, 𝑗 , to indicate

how important the path 𝑝 for expressing the semantics between 𝑢
and 𝑢 𝑗 . Formally, the attention weight 𝛼𝑝

𝑖,𝑗
is calculated as follows:

𝛼
𝑝

𝑖,𝑗
= 𝑅𝑒𝐿𝑈 (ℎ′𝑝 ), (3)

where 𝑅𝑒𝐿𝑈 is the non-linear activation function.
After obtaining the attention weights of paths from 𝑢 to 𝑢 𝑗 , node

linking normalizes them to obtain the weight coefficient 𝑐𝑝
𝑖,𝑗

using

the softmax function:

𝑐
𝑝

𝑖,𝑗
= 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥𝑝 (𝛼𝑝𝑖,𝑗 ) =

𝛼
𝑝

𝑖,𝑗∑
𝑞∈𝑃𝑖,𝑗

𝑒𝑥𝑝 (𝛼𝑞
𝑖,𝑗
)
; (4)

Then, node linking obtains the descendant semantics between 𝑢
and 𝑢 𝑗 as follows:

ℎ𝑠𝑖, 𝑗 = 𝜎 (
∑︁

𝑝∈𝑃𝑖,𝑗
𝑐
𝑝

𝑖,𝑗
ℎ′𝑝 ), (5)

where 𝜎 is the activation function.
Consider a set of node pairs {(𝑢,𝑢 𝑗1), (𝑢,𝑢 𝑗2), ..., (𝑢,𝑢 𝑗𝑙 )}, where

𝑢 𝑗 · is a descendant of 𝑢 in 𝐺 . Feeding their path sets into the path-
level attention, node linking obtains 𝑙 descendant embeddings, de-
noted by {ℎ𝑠𝑖, 𝑗1, ℎ𝑠𝑖, 𝑗2, ..., ℎ𝑠𝑖, 𝑗𝑙 }.

To balance the computation complexity and the representations
of descendant semantics, node linking focuses on the descendants
within 𝑘 hops away from the node 𝑢, denoted by 𝑁𝑘 (𝑢). To aggre-
gate the embeddings between 𝑢 and its descendants within 𝑁𝑘 (𝑢),
node linking takes such 𝑙 embeddings {ℎ𝑠𝑖, 𝑗1, ℎ𝑠𝑖, 𝑗2, ..., ℎ𝑠𝑖, 𝑗𝑙 } as
inputs and returns the attention coefficients {𝛽𝑖, 𝑗1, 𝛽𝑖, 𝑗2, ..., 𝛽𝑖, 𝑗𝑙 }.

Based on these results, the descendant representation of node 𝑢,
denoted by ℎ𝑠𝑢 , is computed as follows:

ℎ𝑠𝑢 = 𝜎 (
∑︁

𝑢 𝑗 ∈𝑁ℎ (𝑢)
𝛽𝑖, 𝑗ℎ𝑠𝑖, 𝑗 ); (6)

where 𝜎 is the activation function.
In addition to the descendant semantics, we should also con-

sider the semantic (embedding) of node 𝑢’s attributes, denoted by
ℎ𝑎𝑢 . Given nodes 𝑢 and 𝑣 in 𝐺1 and 𝐺2, node linking inputs their
attributes and returns the semantic similarity of ℎ𝑎𝑢 and ℎ𝑎𝑣 by
utilizing a sentence embedding model [29].

In summary, we say 𝑢 and 𝑣 is a match if sim(ℎ𝑎𝑢 , ℎ𝑎𝑣) ≥ 𝜇 and
sim(ℎ𝑠𝑢 , ℎ𝑠𝑣) ≥ 𝜈 , where 𝜇 and 𝜈 are thresholds for attribute and
descendant similarities. After obtaining all the node representations
for 𝐺1 and 𝐺2, node linking applies a cluster-based matching to
reduce unnecessary comparisons of pairwise embeddings. Specifi-
cally, node linking groups the node embeddings into a set of clusters
using a cluster algorithm, e.g., 𝐾-means. For each cluster, node link-
ing then computes the related similarities of node embeddings to
find the matching nodes.

7 EVALUATION
We evaluate FedGraph using a real test bed with 7 real-life datasets
and compare it with 3 baselines. Our highlights are illustrated as
follows:

◦ FedGraph is effective at reducing both parallel execution
and network cost, outperforming its competitors by 37.3-
and 61.8-fold on average, respectively.

◦ The performance of FedGraph is less sensitive with an in-
creasing number of tasks than that of its competitors.

◦ FedGraph has better scalability than its competitors due to
the effective techniques for reducing the communication
overhead among the sources.

◦ NodeLink of FedGraph provides high accuracy graph and
ontology integrations.
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7.1 Setup
Test bed. FedGraph is deployed on a cluster with 13 machines con-
nected with a high-speed kilomega network, where one machine is
selected as the mediator, and the remaining machines are sources.
Each machine runs CentOS Linux 7.6 with a 4 Intel Core i7-880 3.06
GHz CPU, 32 GB memory, and 1 TB HDD.

Table 1: Real-life datasets

Dataset CS Mater Engin Chem Phy CrossD YAGO2
|𝑉 (𝐺) | 11.9M 4.6M 5.2M 12.2M 18.1M 27.2M 3.5M
|𝐸 (𝐺) | 107.2M 42.2M 36.1M 159.5M 79.5M 51.6M 7.35M
|𝑉 (𝑂) | 38 27 53 41 35 103 13
|𝐸 (𝑂) | 107 67 189 105 87 856 36
|𝐺𝑖 .𝑂 | 15.5K 2.7K 7.1K 2.2K 1.8K 156.8K 78.8K

Real-life dataset. We use 7 real-life property graphs, as shown in
Table 1. We first generate five graphs from the Open Academic
Graph (OAG) [58] dataset (with 178 million nodes and 2.236 bil-
lion edges); these graphs are domain-specific subgraphs from OAG:
computer science (CS), materials science (Mater), engineering (En-
gin), chemistry (Chem), and physics (Phy). We then supplement
two widely used graph datasets, CrossDomain (CrossD) [1] and
YAGO2 [25]. These property graphs have labels and properties such
as papers, authors, venues, and institutes. We use the state-of-the-
art scheme [59] to generate an ontology from each data graph. All
the statistics of the 7 graphs are listed in Table 1. The global ontol-
ogy (GO) has 296 nodes and 1357 edges. The GO is very small and
is maintained in every source.

Every graph is maintained in a source (machine). Thus, five (i.e.,
12-7=5) sources do not have preloaded graphs. To be more practical
for real applications, each source must contain a dataset. We select
the 3 largest data graphs and partition each into three subsubgraphs.
Every subgraph is distributed to one source, and its ontology is also
copied to the corresponding source. Finally, we apply NodeLink
to merge the 12 local ontologies into one global ontology that is
maintained in the mediator and every source.
Query workload.We first randomly derive star queries from the 7
property graphs. The star queries have labels and properties. We
then extend the stars by adding nodes and edges to generate queries
with more complex and larger structures, e.g., cliques. We use𝑄𝑖 to
denote the size of a query 𝑄 , where 𝑖 is the number of nodes of 𝑄 .
For each 𝑄𝑖 , we generate a set of 20 queries and report the average
performance. In the experiment, we set the query sets as 𝑄2, 𝑄4,
𝑄6, 𝑄8 and 𝑄10, where 𝑄6 is the default set.
Implementation.Wedevelop a prototype system of FedGraph, which
employs Neo4j as the database at each source. As we discuss in
Section 3, there are three key phases of the FedGraph framework.
The algorithms of distributed matching and joining are developed
in Neo4j and deployed at each source. The algorithm of query
decomposition is developed in the mediator.

To reflect autonomy, we partition the 12 sources into 4 groups,
i.e., 3 sources in each group. The heterogeneity is reflected in two
ways: (1) the memories of the sources belonging to 4 groups are
constrained to 50%, 40%, 30% and 20% of their capacities; and (2)

the datasets deployed on various sources have different sizes and
semantics.
Baselines. We compare FedGraph with the algorithms:
(1)Match is an OSM algorithm for a centralized environment [57]. It
follows the filtering-verification strategy, which directly computes
matches from the extracted small subgraph without searching the
entire graph. To apply it to graph federation, we make the following
adaptation. We extract a subgraph from each 𝐺𝑖 using Match. The
subgraph retains the out-nodes of 𝐺𝑖 . We then send 𝑄 to every
𝑆𝑖 to executeMatch. Note thatMatch may span multiple sources
through out-nodes since the matches of 𝑄 might span multiple 𝐺𝑖 .
(2) DisRDF processes subgraph matching over a distributed RDF
graph by using a “partial evaluation and assembly" framework [41].
DisRDF cannot support ontology-based matching. To adapt it to
graph federation, we feed our matching algorithm (see Figure 7)
into the “partial evaluation" phase of DisRDF. During the assembly,
DisRDF relies on a straightforward joining strategy that cannot
schedule any intermediate computations as FedGraph.
(3) BinJoin computes subgraph matching by solving a series of
binary joins [31]. It first decomposes the query graph into a set of
joined units (e.g., TwinTwig) whose matches can serve as the base
relations of the join. BinJoin then joins the base relations based on
a near optimal joining order. Similar to DisRDF, BinJoin focuses
only on the optimal joining order but neglects the heterogeneity of
graph federation.
Metrics. In the experiments, we evaluate the total execution time
and communication cost of the algorithms. The communication cost
is measured by the number of exchanged messages, including the
messages exchanged between the mediator and the sources, as well
as the messages exchanged between the sources.

7.2 Experimental Results
Exp-1: accuracy of the node linking. To evaluate NodeLink, we ran-
domly initialize all the learnable parameters and optimize the model
using Adam optimizer [28]. The initial features of attributes and
paths are generated by the word2vec model [12] and the distributed
bag of words (DBOW [34]), respectively. The negative sample num-
ber is 10 for each pre-matched node pair. The activation functions
are tanh(·) and ReLU(·) for the node representations. We use early
stopping to terminate training with a patience of 5 epochs.

NodeLink is executed for every pair of graphs from the 7 datasets,
and its quality is evaluated by the F-measure. The F-measure is
defined with the precision and recall [7]. Here, the precision, recall
and F-measure are (1) the ratio of true matches to matches returned,
(2) the ratio of true matches to annotated match pairs in the dataset,
and (3) 2·(precision · recall)/(precision + recall), respectively.

We perform our evaluation with three settings: (1) we vary 𝑘
from 1 to 5 by fixing 𝜇 = 0.8 and 𝜈 = 2; (2) we vary 𝜇 from 0.5 to
0.9 by fixing 𝑘 = 20 and 𝜈 = 2; and (3) we vary 𝜈 from 1.0 to 3.0 by
fixing 𝑘 = 20 and 𝜇 = 0.8. Table 2 reports the evaluation results of
precision (Acc), recall (Rec) and F-measure (𝑓 -m).

With setting (1), the F-measure first increases and then remains
stable after reaching a 𝑘 of approximately 4. With setting (2), the
F-measure first grows steadily when 𝜇 increases; it reaches the peak
at 𝜇 = 0.8 and then drops sharply with larger 𝜇. The accuracy with

446



Table 2: Accuracy of node linking (Exp-1).

𝜈=2 𝜇=0.8 𝜈=2 𝑘=20 𝑘=20 𝜇=0.8
𝑘 Acc, Rec, 𝑓 -m 𝜇 Acc, Rec, 𝑓 -m 𝜈 Acc, Rec, 𝑓 -m
1 0.61, 0.09, 0.15 0.5 0.58, 0.11, 0.17 1 0.64, 0.08, 0.15
2 0.66, 0.24, 0.35 0.6 0.6, 0.19, 0.29 1.5 0.63, 0.13, 0.21
3 0.72, 0.56, 0.62 0.7 0.67, 0.51, 0.58 2 0.73, 0.95, 0.88
4 0.82, 0.98, 0.88 0.8 0.75, 0.97, 0.88 2.5 0.52, 0.08, 0.11
5 0.91, 0.87, 0.88 0.9 0.9, 0.6, 0.72 3 0.43, 0.05, 0.09

setting (3) exhibits a similar trend to that with setting (2). From the
evaluation, we observe that the F-measure is the best at 𝜈 = 2.0.
Therefore, we set the parameters as 𝜇 = 0.8, 𝜈 = 2 and 𝑘 = 4 for the
following experiments.
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Figure 12: Impact of query sizes (Exp-2).

Exp-2: impact of query sizes. To evaluate the impact of query sizes,
we vary the query size from 𝑄2 to 𝑄10 and then apply FedGraph
as well as the comparison algorithms.

Figure 12 shows that both execution time and commutation cost
of Match, DisRDF and BinJoin grow exponentially, while that of
FedGraph has less of an upward trend than the others. On average,
FedGraph exhibits 107.5, 23.8, and 18.7 times fewer communications
thanMatch, DisRDF and BinJoin, respectively, and is 39.6, 16.5 and
11.2 times faster. Notably, this advantage is more significant with
increasing query size. This is because FedGraph optimizes all three
phases of the framework instead of the exhaustive search of the
compared algorithms and thereby has a lower chance of being stuck
in a local optimum.

Figure 13 shows the performance of each phase of FedGraph
with respect to query size. Specifically, Figure 13(a) reports the
running time of Dec,Mat, LogJoin, LogSch and PhySch, and Fig-
ure 13(b) gives the commutation cost of the distributed matching
(Match) and the joining (Join).

We observe that PhySch dominates most of the running time,
followed by LogJoin, LogSch,Mat, andDec. This result is consistent
with our intuition that PhySch tries every feasible joining plan to
select the optimal one and that Dec executes only in the local
mediator. For commutation, Join contributes more than 80% of the
traffic of FedGraph, whereas Match incurs less than 20% of that of
FedGraph.
Exp-3: impact of source numbers. To evaluate the scalability, we
vary the source number from 4 to 12. Figure 14 shows that Fed-
Graph outperforms other methods in terms of scalability, yielding
the minimum execution time and communication cost. In general,
all execution times decrease with increasing source number, and
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Figure 13: Performance of each phase of FedGraph.
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Figure 14: Impact of source numbers (Exp-3).

adding more sources causes an increase in the communication cost.
Because of the source heterogeneity, the decrease in execution time
and the increase in communication cost are not completely propor-
tional to the increase in the source number. Moreover, Figure 14(b)
shows that FedGraph introduces less network overhead with a
varying number of sources than other algorithms; i.e., the growth
of the communication cost of FedGraph is much smaller than that
of the others with increasing sources.
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Figure 15: Impact of graph sizes (Exp-4).

Exp-4: impact of graph sizes. Finally, we examine the impact of the
data graph size. Here, we use a new experimental setting as fol-
lows. We develop a graph generator to randomly produce synthetic
graphs; this generator is controlled by three parameters: the num-
ber of nodes |𝑉 |, the number of edges |𝐸 |, and the size |𝐿 | of the
node label set. Additionally, we generate ontology graphs for the
set of synthetic graphs sharing the same set of labels 𝐿, controlled
by the same set of parameters. Based on the setting, we generate 5
data graphs and 5 ontology graphs. Every data graph is randomly
partitioned and distributed across the 12 sources. NodeLink is used
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to identify the out-nodes and the global ontology. We also generate
a set of 20 Q6 queries according to 𝐿. We report the average results.

Figure 15 presents the experimental results by varying the node
numbers of the data graphs from 16M to 4,096M. FedGraph consis-
tently performs the best of all themethods. This advantage amplifies
as the graph size increases. For example, on average, the execution
time of FedGraph is 32.5 × less than other algorithms, and it sends
85.3% fewer messages than the other algorithms. FedGraph is very
efficient; e.g., it takes 30 seconds for the graph of 40 billion nodes.
FedGraph sends fewer than 80M messages for the same graph. This
experiment shows that FedGraph has good scalability for very large
graphs.

8 RELATED WORK
We categorize the related work as follows.
Graph pattern matching. There have been a large number of algo-
rithms developed for graph pattern matching thus far; these algo-
rithms can generally be classified into backtracking [11, 19, 20, 50],
encoding and indexing [5, 22, 46, 57], and decomposition [6, 49].
The first category of algorithm started with [50] and was followed
by [11]. An approach of rewriting the query into a neighborhood
equivalence class (NEC) tree in terms of neighborhood equivalence
is proposed in [20]; dynamic programming is exploited to determine
the matching order according to a directed acyclic graph (DAG)
established from the pattern in [19]. Backtracking-based subgraph
ENUmeration (BENU) [54] divides a subgraph enumeration task
into a group of local search tasks that can be executed in parallel,
each of which follows a backtracking-based execution plan. In the
second category, the labels of a node within a radius are encoded
as signatures in [22]. The neighbors or degrees of each node are en-
coded as indices in [46].Match is an ontology-based index proposed
for subgraph matching [57]. Recently, to find the candidates for
every edge of the query trees, an index using a compact embedding
cluster was proposed in [5]. In the third category, the pattern is
decomposed into a series of tree-like subgraphs in [49] and a dense
subgraph along with a forest in [6]. The same approaches have
been proposed for distributed subgraph matching [3, 4, 31–33].
Federated RDF query. A number of algorithms have been developed
for federated RDF query processing, classified into metadata-based
queries [2, 17, 21, 42, 44] and ask queries [45]. Due to the autonomy
of RDF sources, the major differences among existing algorithms
are query decomposition and source selection. In the first category,
a vocabulary of interlinked dataset-based OWL language is used as
the metadata in [17], and a variant of the R-tree where its leaf nodes
store a set of source identifiers is used in [21, 42]. [2] generates
the query plan dynamically, considering both data availability and
runtime conditions. Recently, a set of capabilities that can map the
properties to corresponding subjects and objects were defined and
used in [44]. In the second category, ask queries for every triple
pattern are sent to the RDF sources and the patterns are annotated
with relevant sources according to the answers in [45]. [9] is the
first to consider heterogeneous securities for federated databases
and proposed related efficient query processing algorithms.
Ontology-based query processing. Ontological information has been
studied and used for keyword queries [23, 30, 36, 37], pattern min-
ing [8] and semantic queries [10, 35, 57]. In the first category, an

ontology-based multifaceted search paradigm that links keyword
queries to a number of entities in multidistinct ontology views is
explored in [37]. In the second category, an approach [8] of mining
frequent patterns over graphs uses generalized labels in input tax-
onomies. In the third category, class hierarchy is exploited in [10]
to evaluate queries specified by SPARQL and OWL on RDF graphs,
in which distance metrics identify approximate results. Template
graph searching is extended by interpolating ontologies to data
graphs in [35, 36]. Moreover, [57] leverages the ontology graph to
develop filtering strategies to identify semantically related matches.

FedGraph is designed for a brand new graph computation sce-
nario, namely, graph federation. It differs from all the prior works
in the following ways. (1) Rather than exact graph pattern matching
using identical labels, this work identifies the matches semantically
close to the query graph through ontology from distributed graph
sources via a mediator in the graph federation. (2) This work pro-
poses a machine learning-based solution for integrating graphs and
ontologies that has wider applications than RDF graphs and OWL
languages, where common uniform resource identifiers (URIs) often
need manual identification. (3) This work aims to propose a general
framework for graph federation that is more suitable to be formu-
lated by a graph model. Compared to the RDF, the graph-based
model has the advantage of identifying instances of a relationship
of the same type [26]. In other words, the RDF-based model is not
suitable for performing subgraph matching, which is one of the
critical features in graph federation. (4) The graph federation is
autonomous and heterogeneous, which is not considered in prior
works, e.g., logical and physical scheduling algorithms. The ex-
periments show that these algorithms can very efficiently process
subgraph matching, e.g., 53 times faster than the SPARQL-based
solution.

9 CONCLUSION
We made the first attempt to study query answering in graph feder-
ation by incorporating the features of autonomy and heterogeneity.
We abstracted these features, formalized the subgraph matching
problem in graph federation, studied its complexity, and developed
approximate algorithms for generating distributed query plans. We
proposed machine learning techniques to identify common entities
(resp. concepts) between different graphs (resp. ontologies). Our
experimental study showed that this framework is promising for
reducing communication costs and minimizing execution time. In
future work, we will study the challenges incurred by graph feder-
ation dynamic and private features. Additionally, we will extend
the techniques to other types of graph queries in graph federation.
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