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ABSTRACT
At online retail platforms, it is crucial to actively detect the risks
of transactions to improve customer experience and minimize fi-
nancial loss. In this work, we propose xFraud, an explainable fraud
transaction prediction framework which is mainly composed of a
detector and an explainer. The xFraud detector can effectively and
efficiently predict the legitimacy of incoming transactions. Specif-
ically, it utilizes a heterogeneous graph neural network to learn
expressive representations from the informative heterogeneously
typed entities in the transaction logs. The explainer in xFraud can
generate meaningful and human-understandable explanations from
graphs to facilitate further processes in the business unit. In our
experiments with xFraud on real transaction networks with up to
1.1 billion nodes and 3.7 billion edges, xFraud is able to outper-
form various baseline models in many evaluation metrics while
remaining scalable in distributed settings. In addition, we show
that xFraud explainer can generate reasonable explanations to sig-
nificantly assist the business analysis via both quantitative and
qualitative evaluations.
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1 INTRODUCTION
The online retail industry is reshaping our shopping behavior, and
the resulting security risks are not negligible. Common threats
in e-commerce include account acquisition, financial information
theft, fake chargeback, money laundry, and many more. For in-
stance, malicious attackers might try to steal customer’s credit card
information; the login credentials can also be acquired by hackers.
These criminal activities can bring negative impacts on user expe-
riences, cause financial losses, and seriously degrade the platform
credibility. As such, it is critical to identify fraudulent behaviors
and take every precaution to minimize risks.
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Figure 1: The node and edge numbers (𝑙𝑜𝑔) of heteroge-
neous graph datasets in the literature. Full survey in Appen-
dix A [34].

Fraud detection has been an emerging topic for e-commerce and
social media companies. It is studied in various applications: mali-
cious account detection (e.g., social networks [3], online payment
systems [53], and online retailer platforms [4, 5, 28, 54]); anti-money
laundry [10, 43]; spam reviews and news detection [38, 41]. Among
these transaction fraud detection is an important topic [4, 5, 54]. In
this work, we focus on automatic fraudulent transaction detection
in a real-world e-commerce environment at eBay. For an incoming
transaction, we aim to predict whether it is legitimate or not.

Challenges.Despite recent efforts in automatic fraudulent trans-
action detection [3, 8, 11, 17, 20, 22, 26, 28, 33, 38, 40, 44, 51, 53] with
machine learning such as LSTM and graph neural networks (GNNs),
we realize that three challenges still linger when it comes to our ap-
plication scenario at eBay. (1. Information Heterogeneity) In our
system, there are heterogeneous types of information concerning
a transaction such as payment tokens, shipping addresses, email.
Intuitively, such information is indicative in fraud detection. How
to effectively utilize such information in an end-to-end ML model?
(2. Scalability and Efficiency) Our platform can produce millions
of transactions involving millions of users in a short span of time,
which requires the detecting system to be efficient and scalable for
practical use. Specifically, Figure 1 shows the landscape of hetero-
geneous graphs emerging in the last six years. In this paper, we
are tackling a workload, to our best knowledge, that consists of
one of the largest heterogeneous graphs for graph neural networks
(see a more detailed survey in Appendix A [34]). This poses unique
challenges in the system design and optimizations. (3. Explain-
ability) Flagging a transaction to be fraudulent is not a trivial
process. False decisions are likely to cause trouble to our customers
and significantly degrade the platform’s credibility. In general, this
process requires extensive human efforts in cautiously reviewing
the model’s prediction, which is inefficient and costly. How can we
explain the outcome of an ML model, and more importantly, how close
these explanations are to those developed by human experts in the
business unit (BU)?

Our Approach. To tackle the aforementioned challenges, we
propose xFraud, an explainable fraud detection framework at eBay.
xFraud is not only able to efficiently and effectively predict the
legitimacy of a transaction but can also generate human readable
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explanations in to assist flagging transaction frauds. xFraud ad-
vances previous work in two ways.

First, xFraud builds upon a heterogeneous GNN to tackle trans-
action fraud detection. Specifically, xFraud consists of a detector and
an explainer. In the detector, we tackle a transaction fraud detec-
tion task from the graph perspective. Different from the existing
works [24, 27, 31], a heterogeneous graph of different node types
(e.g., transactions, addresses, payment tokens) is constructed. To
capture the heterogeneous relation patterns and learn more expres-
sive node representations, a self-attentive heterogeneous graph
neural network is adopted. The detector can automatically aggre-
gate information from different types of nodes via disparate paths
without manually predefined meta-paths. This is important because
we do not need to predefine the meta-paths of risk propagation and
preprocess the path representations, as required in [4, 17, 38, 53].
Additionally, we explore an efficient sampler in the message ag-
gregation procedure, which empirically reduces the inference time
significantly while achieves a competitive performance.

Second, to the best of our knowledge, we provide the first quanti-
tative evaluation of input-level GNN explanation methods [45, 47]
and its agreement with humans in a real-world application scenario.
Unlike traditional classification tasks, the claim that a transaction
is fraudulent should be made very cautiously to avoid harming cus-
tomer experience and degrading the platform’s credibility. As such,
we integrate an explainer into our framework that can provide
intuitive explanations for model predictions. Equipped with these
explanations, our auditors, regulators, or decision makers know
how a transaction is flagged by the detector, thus making more
sensible decisions. One open question is how well these explanations
agree with the insights from human experts. To this end, we conduct
an extensive quantitative study to measure the agreement between
human perception, GNNExplainer [47], and centrality measures, as
well as provide case studies on how these explanations can help
in practice. This study also reveals an interesting tradeoff between
GNN-based explanations and traditional topological measures (e.g.,
centrality), which allows us to design a hybrid explainer that out-
performs both strategies.

In summary, our technical contributions are as follows.
(1)We propose a heterogeneous GNN model (detector) to iden-

tify transaction frauds. Our model captures the heterogeneity in
transaction graphs and applies to industrial-scale datasets. xFraud
detector provides concrete analytical angles of fraudulent activities.
Compared with HGT [18], in xFraud, we design a new sampling
mechanism, inspired by the sparsity of our underlying graph; com-
pared with GEM [28], xFraud uses a heterogeneous GNN architec-
ture, which allows it to outperform a GEM-style model significantly.

(2) We add explainability into xFraud with a hybrid explainer.
xFraud explainer computes the contributions of its neighboring
node types and edges when predicting a node, and it also attends to
global topological features learned from centrality measures. Thus,
it enables explicit case studies of network predictions, which is ben-
eficial for model trustworthiness. We perform the first quantitative
evaluation between GNNExplainer and human judgments. We also
compare edge weights computed via centrality measures with the
weights learned by GNNExplainer, through which we identify a
trade-off and propose a hybrid explainer in xFraud.

(3) We conduct careful system design and optimizations, which
allow us to scale out, to our best knowledge, to one of the largest
heterogeneous graphs being reported for ML workloads so far.

(4)We conduct experiments on real-world transaction networks
to show the efficiency of xFraud in detecting transaction frauds and
in facilitating the analysis of graph structural patterns.

2 RELATEDWORK
xFraud builds upon recent successes of applying heterogeneous
graphs to fraud detection (e.g., MAHINDER [53] and GEM [28] from
Alibaba) and also recent efforts of GNN explainability [47]. However,
it also makes significant improvements over these previous efforts,
discussed as follows.

Fraud Detection. There are two lines of studies on fraud de-
tection systems. One line of work leverages graph information
with non-GNN methods (see anti-money laundry [10], spam de-
tection [8, 20, 38], fraudster user detection [3, 11, 15, 17, 21, 23,
26, 33, 40, 53], fraud transaction detection [4, 5, 35, 54]). These
models can be event/sequence based [3, 5, 22, 54], or meta-path
based [4, 17, 38, 53]. Zhong et al. [53] propose MAHINDER which
uses heterogeneous graphs in the context of defaulter detection by
pre-defining a set of meta-paths in a heterogeneous graph of users
andmerchants. The preprocessedmeta-path feature representations
are trained with an attention mechanism and LSTM to measure the
importance of nodes, links, and meta-paths at different timestamps.
In xFraud, we focus on a different scenario, aiming at flagging each
transaction of a user in various risk scenarios, as a legitimate user
does not imply that all its transaction records are legitimate, e.g.,
once its payment token has been stolen. More importantly, we focus
on methods that do not need to define meta-paths a priori, instead are
able to automatically learn these patterns using a GNN.

The other line of work uses GNN methods [22, 24, 27, 28, 31,
41, 43, 44, 51]. Homogeneous graph has been widely applied in e-
commerce applications (see spam review detection [41], anti-money
laundry [43], risky/malicious account detection [24, 27, 31]). Re-
cently, people start to solve real-world anomaly detection problems
using heterogeneous graph (see spam review detection [22], suspi-
cious user detection [28, 44, 51]) or to combine homogeneous and
heterogeneous graphs [22], because it allows aggregating informa-
tion propagation through various types of nodes/edges. GEM [28]
by Liu et al. has utilized attention mechanisms in a device-account
heterogeneous graph to capture user activity and device embed-
dings in each subgraph neighborhood. The heterogeneous graph
in GEM is then fed into a GCN.

Explainability in GNN. Recently, how to interpret and ex-
plain GNN predictions has gained spotlight. There are two lev-
els to explain: input level (GraphConsis[29], GNNExplainer [47],
GraphLIME [19], [2, 45]), and model level (XGNN [48]). GNNEx-
plainer [47], a GNN model agnostic explanation framework, pro-
poses explaining the GNN predictions by maximizing the mutual
information gain of the true node labels and the predicted labels
using informative features. GNNExplainer enables a visualization
of important subgraph patterns, which assists users to understand
the feature contribution and node label propagation. GNN explain-
ability in the financial domain has been addressed by Li et al. [45].
They have extended GNNExplainer techniques by (1) adding a reg-
ularization term that ensures at least one edge connected to each
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Figure 2: xFraud pipeline.
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Figure 3: Transactions→ a heterogeneous graph.

node is selected in the subgraph, (2) adding edge weighted graph
attention to calculate the edge weights in the subgraph. Using GCN
in a node classification task, they applied an explainer to identify
informative graph patterns on financial transaction data like bitcoin
over the counter (OTC) and account matching in bank transactions.

3 THE XFRAUD FRAMEWORK
Figure 2 illustrates the xFraud pipeline in a nutshell. First, we build
a graph constructor to convert transaction logs into a graph ab-
straction (Sec. 3.1), which is then fed into a detector to generate a
transaction risk score for each transaction record (Sec. 3.2). Then,
to build a learnable hybrid explainer (Sec. 3.4), we combine the task-
aware measures of predictions generated by the GNNExplainer,
and the task-agnostic centrality measures.

One highlight of xFraud over previous efforts is its emphasis
on explainability, especially its evaluation using insights from real-
world experts in the business unit. We evaluate the efficacy of
the explainer quantitatively (Sec. 5.1) and qualitatively (Sec. 5.2).
Quantitatively, we calculate the agreement (topk hit rate) between
human annotations and explainer weights. Concretely, we first
obtain human ground truth on edge importance in risk propagation.
Then, we calculate edge importance scores from node importance
scores with various aggregationmethods. At last, we report the topk
hit rate between edge importance scores computed from human
annotations and edge weights generated by the hybrid explainer.
Qualitatively, we study in detail many cases where xFraud explainer
assists the BU in better understanding complex fraudulent patterns.

3.1 Heterogeneous Graph Construction
Think of the critical entities involved under fraud scenarios. A credit
card might be linked to both a legitimate user and a fraudulent
user at different stages. The latter happens in a card stolen case.
A common shipping address such as a warehouse is sometimes
used in frauds. This linkage tends to be stable, compared with
stolen financial instruments. If we formulate fraud detection as a
semisupervised learning problem in an inductive setting [14] in
a heterogeneous graph, we have the specification of the problem
formulation as follows. In a heterogeneous transaction graph G, 𝑣 ∈
V has a type 𝜏 (𝑣) ∈ A, whereA := {𝑡𝑥𝑛, 𝑝𝑚𝑡, 𝑒𝑚𝑎𝑖𝑙, 𝑎𝑑𝑑𝑟, 𝑏𝑢𝑦𝑒𝑟 },
referring to transaction, payment token, email, shipping address,
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Figure 4: xFraud detector and explainer.

buyer, respectively1. If a transaction has relation with another type
of node in {pmt, email, addr, buyer}, we put an edge between those
two nodes in the heterogeneous graph. Each 𝑡𝑥𝑛 node carries node
attributes provided by a risk identification system. A transaction is
represented as an ID in the transaction log. The item category in
the purchase order relevant to one transaction (item-type info) is
encoded in the transaction features. Each transaction is flagged legit
or fraud. Figure 3 illustrates how to construct such a heterogeneous
graph based on two transaction records sharing several entities.

3.2 The detector of xFraud
As we have seen in the literature, it is common to define meta-
paths when analyzing graph structured data and then to extract
corresponding features of nodes and edges on themeta-paths before
feeding the features into a machine learning or deep learning model.
However, in a fraud detection scenario, under many circumstances,
it is by nature impossible to enumerate every possible scenario
and their influential meta-paths. This is also one of the primary
intuitions why a heterogeneous GNN is a desirable choice: it allows
a network to learn the importance of meta-paths by itself based on
the network structure and message passing.

3.2.1 xFraud detector. We are inspired by Transformer [39] and
HGT [18], when designing the xFraud detector incl. heterogeneous
mutual attention and heterogeneous message passing with key,
value, and query vector operations (self-attention mechanism). We
do not allow target-specific aggregation on different node types,
so that we reduce the cost in computing different weights for vari-
ous node types. We see a better performance in our detector (see
discussion in Sec. 4), when shared weights among different types
of nodes are used. Moreover, we do not adopt relative temporal
encoding in HGT when processing transactions with timestamps.
Reasons are, we would like to keep track of all transactions a buyer
executes, as well as the linking entities a transaction involves. We
also model the relations between buyers and transactions. This
makes our system adaptable to guest checkouts and their pertain-
ing chargebacks, as those transactions could not be linked to any
buyer accounts, but they could be linked to suspicious third-party

1For this study, we choose these attributes based on the homophilic tests [1]. It is
shown that fraud exhibits homophilic effects [32], and entities with strong homophilic
effects are considered in this work.
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payment accounts or billing email addresses. In this manner, our
system is able to capture disguised/missed fraud patterns of guest
checkouts that could otherwise be neglected by (1) representing
a transaction using buyers and timestamps as in HGT or by (2)
representing the transactions in a homogeneous graph.

Comparison to GEM. Looking at the application scenarios,
xFraud might seem similar to GEM (a malicious account detec-
tion system developed by Alibaba). However, xFraud differs from
GEM [28] in that: (1) GEM is a system which directly applies a
vanilla GCN to a heterogeneous graph, while our proposed xFraud
considers the heterogeneous property of graphs in the underlying
architecture (e.g., sampler, heterogeneous graph convolution). In
this paper, we choose GEM as a representative of heterogeneous
GCN in the evaluation. (2) We focus on a different application and
have different node types. GEM focuses on fraudsters’ detection,
while we aim to find the anomaly transactions (a user may have
both fraudulent and normal transactions due to account hacking).
(3) The GEM model does not provide any explanation for its predic-
tions. We have extensively discussed the GNN explainability and
conducted experiments to understand the xFraud explainer.

In Figure 4, we show the detector architecture in detail (left).
(1) The detector takes a heterogeneous graph as input, incl. tar-

get and source node features 𝑋𝑣𝑡 , 𝑋𝑣𝑠 ; target and source node types
𝜏 (𝑣𝑡 ), 𝜏 (𝑣𝑠 ); edge type 𝜙 (𝑒). For the txn nodes, we have node fea-
tures computed by a company risk identifier. For the other node
types, the initial node features are empty and only get their inputs
after the first convolution layer. The type features are in one-hot
encoding of types. (2) 𝐿 heterogeneous convolution layers process
the graph with self-attention mechanism: the input layer L(0) takes
transaction features, node type embeddings (source and target),
edge type embeddings as input, which are transformed into query,
key, and value vectors. Attention scores are calculated for the source
and target nodes and then layer-wise normalized, which are then
fed into a ReLU activation function that emits input for the next
convolution layer. In Sec. 3.2.2, we introduce with equations how
heterogeneous mutual attention and message passing function in
one heterogeneous convolution layer. (3) After 𝐿 heterogeneous
convolution layers, a tanh activation is applied to the transaction
representations generated by GNN. Then these representations are
concatenated with the original transaction features and fed into a
feedforward connected network with two hidden layers. We then
apply dropout, layer normalization, and ReLU transformation to
calculate a predicted risk score and a label. (4) The loss function of
xFraud detector is the cross entropy of the true label and the proba-
bility score calculated by softmax (see eq. 1 in Appendix D [34]).

3.2.2 Heterogeneous Convolution Layer in xFraud Detec-
tor. We discuss the details of a xFraud detector layer shown in
Figure 4. For a tuple ⟨𝜏 (𝑣𝑠 ), 𝜙 (𝑒), 𝜏 (𝑣𝑡 )⟩, where 𝑒 = (𝑣𝑠 , 𝑣𝑡 ), we ini-
tialize (1) the node type embeddings 𝜏 (𝑣)𝑒𝑚𝑏 and the edge type
embeddings𝜙 (𝑒)𝑒𝑚𝑏 with zero weights; (2) the attentionweight ma-
trices of source node𝑊 𝑎𝑡𝑡

𝜏 (𝑣𝑠 ) and of target node𝑊
𝑎𝑡𝑡
𝜏 (𝑣𝑡 ) with random

weights subject to uniform distributions; and (3) theweightmatrices
for key, query, and value vectors denoted by𝑊𝐾 ,𝑊𝑄 ,𝑊𝑉 , respec-
tively, also with random values subject to uniform distributions.
In a nutshell, a general attention-based heterogeneous convolu-
tion layer of the node 𝑣𝑡 has three components, attention, message,

and aggregate as shown in𝐻 𝑙 [𝑣𝑡 ] ← 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑣𝑠 , 𝑣𝑡 ) ·
𝑀𝑒𝑠𝑠𝑎𝑔𝑒 (𝑣𝑠 )). For each target node 𝑣𝑡 , we create query, key, and
value vector representations for self-attention mechanism with
multiheads.

To construct the 𝑖th query vector for the target node 𝑣𝑡 , we start
with an input to the first layer by taking the transaction features of
the target node𝑋 𝑡𝑥𝑛

𝜏 (𝑣𝑡 ) and its node type embedding 𝜏 (𝑣𝑡 )𝑒𝑚𝑏 to cal-

culate𝑄𝑖 (𝑣𝑡 ) = Q-Linear𝑖
𝜏 (𝑣𝑡 )

(
𝑋 𝑡𝑥𝑛
𝜏 (𝑣𝑡 ) +𝜏 (𝑣𝑡 )

𝑒𝑚𝑏
)
, Then, for𝐻 (𝑙−1) ,

where 𝑙 ≠ 1, we compute 𝑄𝑖 (𝑣𝑡 ) = Q-Linear𝑖
𝜏 (𝑣𝑡 )

(
𝐻 (𝑙−1) [𝑣𝑡 ]

)
,

where 𝐻 (𝑙−1) [𝑣𝑡 ] is the node representation of the node 𝑣𝑡 on the
𝐻 (𝑙−1) layer.

To construct the 𝑖th key vector for the source node 𝑣𝑠 , we start
with an input to the first layer by taking the transaction features of
the source node 𝑋 𝑡𝑥𝑛

𝜏 (𝑣𝑠 ) , its node type embedding 𝜏 (𝑣𝑠 )𝑒𝑚𝑏 and the

edge type embedding 𝜙 (𝑒)𝑒𝑚𝑏 to calculate 𝐾𝑖 (𝑣𝑠 ) = K-Linear𝑖
𝜏 (𝑣𝑠 )(

𝑋 𝑡𝑥𝑛
𝜏 (𝑣𝑠 ) + 𝜏 (𝑣𝑠 )

𝑒𝑚𝑏 + 𝜙 (𝑒)𝑒𝑚𝑏
)
, Then, for 𝐻 (𝑙−1) , where 𝑙 ≠ 1, we

compute 𝐾𝑖 (𝑣𝑠 ) = K-Linear𝑖
𝜏 (𝑣𝑠 )

(
𝐻 (𝑙−1) [𝑣𝑠 ]

)
, where 𝐻 (𝑙−1) [𝑠] is

the node representation of the node 𝑣𝑠 on the 𝐻 (𝑙−1) layer.
To construct the 𝑖th value vector for source node 𝑣𝑠 , we start with

an input to the first layer by the taking transaction features of source
node 𝑋 𝑡𝑥𝑛

𝜏 (𝑣𝑠 ) , its node type embedding 𝜏 (𝑣𝑠 )𝑒𝑚𝑏 and the edge type

embedding 𝜙 (𝑒)𝑒𝑚𝑏 to calculate 𝑉 𝑖 (𝑣𝑠 ) = V-Linear𝑖
𝜏 (𝑣𝑠 )

(
𝑋 𝑡𝑥𝑛
𝜏 (𝑣𝑠 ) +

𝜏 (𝑣𝑠 )𝑒𝑚𝑏 + 𝜙 (𝑒)𝑒𝑚𝑏
)
, Then, for 𝐻 (𝑙−1) , where 𝑙 ≠ 1, we compute

𝑉 𝑖 (𝑣𝑠 ) = V-Linear𝑖
𝜏 (𝑣𝑠 )

(
𝐻 (𝑙−1) [𝑣𝑠 ]

)
.

We adopt the multiheaded attention to control the randomness
of initial weights. First, we compute the attention output of one
attention head, denoted by 𝛼-head𝑖 (𝑣𝑠 , 𝑒, 𝑣𝑡 ), using this equation

𝛼-head𝑖 (𝑣𝑠 , 𝑒, 𝑣𝑡 ) =

(
𝐾𝑖 (𝑣𝑠 )𝑊 𝑎𝑡𝑡

𝜏 (𝑣𝑠 )+𝑄
𝑖 (𝑣𝑡 )𝑊 𝑎𝑡𝑡

𝜏 (𝑣𝑡 )

)
√
𝑑𝑘

, where
√
𝑑𝑘 is the

square root of the key vector’s dimension.
The heterogeneous mutual attention of the target node query

vector 𝑄𝑖 (𝑣𝑡 ) and the source node key vector 𝐾𝑖 (𝑣𝑠 ) is then com-
puted by 𝛼 (𝑣𝑠 , 𝑒, 𝑣𝑡 ) = softmax

∀𝑣𝑠 ∈𝑁 (𝑣𝑡 )

(
∥

𝑖∈[1,ℎ]
𝛼-head𝑖 (𝑣𝑠 , 𝑒, 𝑣𝑡 )

)
, where

𝑁 (𝑣𝑡 ) represents the neighbors of 𝑣𝑡 , ℎ the number of attention
heads, ∥ vector concatenation.

Finally, the message passing between𝐻 (𝑙) and𝐻 (𝑙−1) is given by

msg(𝑣𝑠 , 𝑒, 𝑣𝑡 ) = ∥
𝑖∈[1,ℎ]

(
𝑉 𝑖 (𝑣𝑠 ) ·dropout

(
𝛼-head𝑖 (𝑣𝑠 , 𝑒, 𝑣𝑡 )

))
, where

the right hand side is a concatenation of all msg-head𝑖 , the message
passing of one attention head at the 𝑖th query vector.

3.2.3 xFraud Detector+: An Improvement over HGT. We im-
plement xFraud detector and detector+, whose difference lies in the
sampler. In detector, we use the original HGT implementation2 and
empirically show that HGSampling is computationally costly (see
the inference time in Figure 10). Hence, we modify the sampling
as in GraphSAGE and denote the efficient version of the xFraud
detector as detector+. In detector+, the algorithm first samples

2https://github.com/acbull/pyHGT (last accessed: Oct 18, 2020).
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Figure 5: Architecture of Distributed xFraud Detector+.

𝑘-hop neighborhood of a node and then aggregates feature infor-
mation from neighbors and finally allows GNN to predict the label
using aggregated information. In HGSampling, used by HGT, it
tries to maintain a similar number of different 𝜏 (𝑣) and 𝜙 (𝑒) types
after sampling and minimize the information loss and sample vari-
ance in the subgraph after sampling. However, in our datasets, the
graph is much sparser (2.12 and 1.49 edges/node for eBay-small
and eBay-large) compared with the Open Academic Graph (11.173
edges/node) used in HGT. Therefore, HGSampling is more costly
than GraphSAGE because it requires all types of nodes and edges to
be of similar size in the sampled subgraph. In the following sections,
we consider xFraud detector equivalent to HGT and mainly focus
on the evaluation of xFraud detector+.

3.3 Distributed xFraud Detector+
To make xFraud detector+ scalable to industrial-scale datasets, we
designed a distributed learning architecture (see Figure 5). We
briefly discuss its design and leave more details to Appendix C [34].

3.3.1 Graph Partitioning. We adopt the Power Iteration Clus-
tering (PIC) algorithm [25] to partition the graph according to
pairwise similarities of edge properties. PIC is effective for graph
partition/clustering and well-suited to very large datasets due to its
high efficiency. Each worker takes charge of a different partition
during distributed training.

3.3.2 DistributedLearning. Weutilize theDistributedDataParal-
lel (DDP) tool provided by the flexible package, PyTorch Ignite [12],
for distributed model learning. In terms of gradient synchroniza-
tion, the gradients computed by different workers will be averaged
following the default DDP gradient synchronization protocol. After
that, parameters of the local model will be updated, and all models
on different workers will be the same.

3.3.3 Data Loading. We use a lightweight KV-store to store all
graph-related information. We choose to use Lightning Memory-
Mapped Database (LMDB) as it allows us to have multiple data
loaders simultaneously, where each worker has its own data loader.
This alleviates the system bottleneck that we had when using Lev-
elDB for the same purpose, which we found challenging to support
multi-thread operations. This design decision turns out significant
in reducing the training and inference time.

Table 1: Top𝑘 hit rate computed on different explainability
methods using various measures (on all 41 communities).

Measures to calculate hit rate 𝐻𝑇𝑜𝑝5 𝐻𝑇𝑜𝑝10 𝐻𝑇𝑜𝑝15 𝐻𝑇𝑜𝑝20 𝐻𝑇𝑜𝑝25

1 edge betweenness 0.469 0.718 0.812 0.903 0.923
2 edge load 0.455 0.707 0.812 0.902 0.923
3 approximate current flow betweenness 0.450 0.690 0.821 0.899 0.923
4 betweenness 0.451 0.724 0.815 0.901 0.923
5 closeness 0.464 0.719 0.816 0.901 0.924
6 communicability betweenness 0.448 0.688 0.812 0.899 0.922
7 current flow betweenness 0.446 0.700 0.820 0.900 0.922
8 current flow closeness 0.441 0.691 0.815 0.900 0.924
9 degree 0.464 0.716 0.815 0.901 0.924
10 eigenvector 0.443 0.714 0.811 0.901 0.924
11 harmonic 0.464 0.719 0.816 0.901 0.924
12 load 0.452 0.724 0.815 0.901 0.923
13 subgraph 0.447 0.714 0.813 0.899 0.922

14 GNNExplainer weights 0.445 0.692 0.821 0.898 0.921
15 random weights 0.127 0.454 0.602 0.695 0.791

3.4 The Explainer of xFraud
We present a hybrid explainer (see Figure 4) in xFraud based on
a trade-off between the task-aware GNNExplainer and the task-
agnostic centrality measures.

3.4.1 Trade-off betweenGNNExplainer and edge centrality.
GNNExplainer [47] is a model-agnostic explainer which assigns
edge weights during node prediction. But, a fundamental question
is — Is GNNExplainer itself optimal for all scenarios? What if we
replace the edge weights with other measures, such as random weights
and edge centrality? To answer this, we conduct a micro bench-
mark against other measures (see Table 1). For conducting a fair
comparison, we design a metric called Topk hit rate.

Metric: Topk hit rate. We create human annotations of edge
importance and compare the explanation weights with the human
annotations. The goal of this quantitative evaluation is to quantify
the agreement between different edge importance measures and
human annotations. Note that the average edge importance scores
and edge weights are in different domains (see Figure 6 for an
example): the former are discrete values ∈ [0, 2], and the latter
continuous numbers ∈ [0, 1]. We need ametric that reports the edge
ranking of the most important ones in both domains. Hence, we

compute the topk hit rate 𝐻 , defined as
N+,𝑘
ℎ𝑢𝑚𝑎𝑛

∩N+,𝑘
𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑟

𝑘
, where

N+,k_ denotes the set of edges ranked by human/explainer as top k.
Concretely, we count the common edges in their top k selection
and divide this count by k.

Trade-off and Intuition. Table 1 and Figure 7 illustrate a trade-
off between GNNExplainer and edge centrality measures—they
work well on different “communities” (test examples) and none
of them dominates the other. GNNExplainer is developed to ex-
plain the predictions generated by a GNN network. GNNexplainer
computes the importance scores of node features and assigns edge
weights, with which we determine the most informative edges
when a node prediction is made. On the contrary, edge centrality
measures are popular methods to quantify the edge importance in
a network, which is task-agnostic for node prediction. Intuitively,
we should combine these two measures to generate an explainer
which attends to both task-aware and task-agnostic measures.

3.4.2 xFraud Hybrid Explainer. Based on the above analysis,
we propose a hybrid explainer and formulate a learning problem
as follows. First, we learn two coefficients, namely, the centrality
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coefficient 𝐴 and explainer coefficient 𝐵 to combine the weights
from different explanation mechanisms:𝐴∗𝑤 (𝑐) +𝐵 ∗𝑤 (𝑒). We can
learn these two coefficients by either Ridge regression or directly
maximizing the hit rate on the training set.

4 EXPERIMENTS OF XFRAUD DETECTOR+
We conduct extensive experiments on real-world transaction datasets
sampled from the eBay commerce platform to verify the efficacy
and efficiency of xFraud detector+. The statistics of the datasets
are summarized in Table 2. The details on the graph construction
process are in Appendix B [34]. We run end-to-end experiments
on eBay-xlarge as it is a superset of eBay-large and eBay-small.
Specifically, we run the distributed version of xFraud detector+
since eBay-xlarge is too large to be fit into a single machine. In
the graph partition process, we first split the whole graph into 128
subgraphs using PIC. We then organize these 128 subgraphs into
𝜅 groups, where 𝜅 is the number of workers3. Different groups
are handled by different workers. After the end-to-end evaluation
(Sec. 4.1), we conducted an ablation study (Sec. 4.2) on eBay-large
and eBay-small to study the trade-off between xFraud detector (i.e.,
HGT) and xFraud detector+.

4.1 End-to-end Experiments
We report the end-to-end results on eBay-xlarge in Table 3. In
addition, we show precision-recall curve and ROC curve in Figure 8
and Figure 9 to further study prediction performance as eBay-xlarge
is an extremely imbalanced graph dataset.

End-to-end Results. From Table 3, our detector+, achieves the
best AUC (averaged across seeds) using 8 machines w.r.t. GEM and
GAT. In terms of training efficiency, xFraud detector+ takes only
slightly longer time per epoch compared to GEM in an 8-machine
setting. If we increase the number of machines to 16, the training
time is reduced by 1.89×, 1.84× and 1.82× for GAT, GEM, and our de-
tector+, respectively. Despite roughly linear speedups, we observe
lowered AUC compared with 8 machines. In our implementation,
3We first order the 128 subgraphs according to the total number of nodes in ascending
order. Then, we put the first few subgraphs that cumulatively have ⌈ |V|

𝜅
⌉ nodes into

the same group. We repeat this process until we get 𝜅 groups. In this way, we ensure
that each machine receives a graph partition of similar total number of nodes.

Table 2: Dataset summary
(“B":billion;“M":million;“K":thousand)

*The ratio of frauds is only reported on the sampled datasets.

Dataset Features Graph type #Nodes #Edges Fraud%*

eBay-xlarge 480 hetero 1.1B 3.7B 4.33%
eBay-small 114 hetero 289K 613K 4.30%
eBay-large 480 hetero 8.9M 13.2M 3.57%

Table 3: End-to-end performance on the dataset eBay-xlarge
(epochs: 128). We report the average scores over two differ-
ent seeds (A and B).

# machines Model AUC Training time
(s/epoch)

Inference time
(s/batch)

8
GAT 0.8879 62.74 0.0557 ± 0.1966
GEM 0.8961 61.77 0.0167 ± 0.0054

xFraud detector+ 0.9074 70.47 0.0799 ± 0.1868

16
GAT 0.8866 33.11 (1.89×) 0.0557 ± 0.1966
GEM 0.8938 33.56 (1.84×) 0.0167 ± 0.0054

xFraud detector+ 0.8892 38.72 (1.82×) 0.0799 ± 0.1868

each machine only has a subgraph; therefore, all three methods
obtain a suboptimal model due to a restrained field of neighbors
and edges. This phenomenon reveals a trade-off about our current
way of handling large-scale graphs — one can use more resources
to accelerate the model training but might have to compromise
the model performance. It is an interesting future work to under-
stand how to develop better distributed algorithms for training
heterogeneous graph models. For more details on the system im-
plementation and results, see Appendix C [34]. GEM (8 machines)
takes the shortest time to do inference over a batch of 640 nodes due
to the simplicity of its convolution layers. GAT and xFraud have
longer inference time because their implementations of attention
mechanisms. xFraud takes slightly longer than GAT due to its atten-
tion on heterogeneous types of nodes and edges. Since all methods
take less than 0.1 second for a batch, all of them are practical to
be deployed in production. Overall, xFraud is appealing in fraud
detection, as it achieves the best model quality with a reasonably
fast inference speed. Since xFraud detector+ is scalable to 16 ma-
chines, an online production scenario using xFraud can leverage
historical and up-to-date transaction records to incrementally train
a detector (Appendix H [34]).

Precision-recall Curve (P/R Curve). Figure 8 illustrates the
P/R Curve using different settings. The trade-off of precision and
recall is an ever-lasting goal for machine learning models; and
xFraud detector+ achieves a better balance between precision and
recall compared to GAT and GEM, which means that our model
can return more accurate results (higher precision) as well as most
of the true fraudulent transactions being found (higher recall).

ROC Curve. In eBay-xlarge, the majority of transactions are
benign and the ratio of fraud transactions is very low. Besides, from
the application perspective, the task of fraud detection is vulnerable
to false positive cases, when benign transactions are flagged as
fraud. This would cause an overwhelming human verification and
significantly worsen user experience. Therefore, it is important
to study the imbalance-aware metrics like true positive rate (FPR)
and false positive rate (TPR). Specifically, if we restrict the FPR
being lower than 0.1 as in Figure 9 (even this small ratio could
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involve 85.7M transactions in eBay-xlarge), xFraud significantly
outperforms GAT and GEM when only a small FPR is allowed. We
plot the full range of FPR in Figure 15 of Appendix H [34], where the
three models have a similar area under ROC curve (i.e., AUC-ROC),
xFraud’s ROC curve is consistently beyond GAT and GEM.

Discussion. All results we report are on a dataset after pre-
filtering the fraudulent/benign transactions with rule/ML-based fil-
ters and down-sampling the benign transactions. In AppendixH [34]
we discuss the implication of this pre-filtering step and the pro-
duction scenario of xFraud. Even without downsampling benign
transactions, xFraud achieves a reasonable precision and recall on
industrial-scale data: from 3 fraud candidates investigated by the
business unit, 1 will be a real fraud, with 0.1 of recall.

4.2 Ablation Study: xFraud detector+ vs.
xFraud detector (i.e., HGT)

Here, we conduct an ablation study of xFraud detector (i.e., HGT)
and xFraud detector+ to demonstrate the efficiency of the sam-
pler. We run experiments on eBay-small and eBay-large, which are
subsets of eBay-xlarge because our eBay-xlarge is too large such
that xFraud detector (i.e., HGT) can no longer handle it. We report
the inference time and AUC using a single machine in Figure 10.
Concretely, xFraud detector+ achieves a 5 × speedups in terms

of inference time (during testing) on eBay-large compared with
xFraud detector (i.e., HGT), and the speedup on eBay-small is even
larger, i.e., up to 7 ×. Meanwhile, using a simplified yet efficient
sampler (GraphSAGE) will not sacrifice the model AUC (eBay-small
vs. eBay-large): 0.7248 vs. 0.8683 for HGT, and 0.7262 vs. 0.8690
for xFraud detector+. Interestingly, we observe that the xFraud
detector+ can even slightly outperform xFraud detector (i.e., HGT)
on both datasets in terms of AUC.

5 EXPERIMENTS OF XFRAUD EXPLAINER
In this section, we discuss how we build an xFraud explainer on
top of the detector. The main contribution of the explainer is to
compute node features and edge masks of important features and
nodes. As we see in the quantitative analysis (Sec. 5.1) and the case
studies (Sec. 5.2), xFraud explainer ranks important edges with high
agreement with expert human annotators and provides interesting
insights for risk experts when analyzing risk propagation in a lo-
cal heterogeneous graph. The output of the explainer carries the
following meaning: node feature masks give high weights to the
node feature dimensions influential in prediction; edge masks are
the weights of edges in the subgraph, which indicate the strength
of connectedness between pairs of nodes when flagging fraud. We
visualize the subgraph structure with these outputs.

5.1 Quantitative Analysis of xFraud Explainer:
Topk Hit Rate

First, we want to quantify the efficacy of xFraud explainer by study-
ing the agreement between human perception and explainer output.
Our approach is to compute the agreement between the edge im-
portance scores based on human annotations and the edge weights
generated by our hybrid explainer.

Sample. In total, we randomly select 41 communities from our
test set, among which 18 communities has a fraudulent transaction
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Table 4: Top𝑘 hit rate in the test communities.
H(_) Edge

betweenness 𝐻 (𝑐)
GNNExplainer

𝐻 (𝑒)
Hybrid

(ridge) 𝐻 (ℎ)
Hybrid

(grid) 𝐻 (ℎ)
Top5 0.45540 0.44800 0.44890 0.45550
Top10 0.78175 0.77580 0.81115 0.78700
Top15 0.87763 0.88473 0.88963 0.89410
Top20 0.96205 0.95840 0.96198 0.96275
Top25 0.96616 0.95954 0.96614 0.96614
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Figure 11: TP: xFraud helps to catch potential frauds.

as seed (label 1), 23 a legitimate transaction as seed (label 0). The
AUC score of this test sample is 81.88%. A community is formed
around a transaction seed node, where all connected nodes and
edges are taken. In total, we have 1,591 nodes of five types (buyer,
transaction, shipping address, email, and payment token), and 3,344
edges.4 On average, there are 81.56 edges per community.

Human annotations and edge importance score. We have
created the human evaluation of edge importance scores of all
edges in these 41 communities. The annotation protocol and score
calculations are listed in Appendix E [34]. Out of 41 communities,
we take the first 21 communities as the training set, the last 20 as
the test set. We trained two versions of the hybrid explainer: (1) via
ridge regression on the human annotations on the training set, and
(2) via directly optimizing the average hit rate on the training set.

Results. Table 4 illustrates the result. We see that the hybrid
explainer consistently outperforms both GNNExplainer and cen-
trality measures. This is not surprising, as shown in our previous
discussion of the tradeoff. It is an exciting future direction to come
up with better ways to combine these different metrics together to
form an even better explainer for graphs.

5.2 Qualitative Analysis of xFraud Explainer:
Case Studies

To visualize the subgraph for a certain node, we use the node index,
edge indices and their masks, true labels of nodes as input. The
thicker an edge is, the stronger the connection is. We visualize the
connections with nondirectional edges and use the ground truth
labels for transactions. True positive (TP): flagging frauds. In
4Note that explainer assumes directions and assigns two weights to bidirectional edges
connecting a pair of nodes. Since human annotation is on the node level, and it is
generally hard for annotators to consider directions, we remove directions in the
explainer weights by taking the larger weight.

Figure 11, we see a generic shipping address (node 32, a warehouse)
connected to both fraudulent/benign transactions related to various
buyers using various payment tokens/emails. According to BU, one
explanation for this pattern is there is often a lag between user
chargebacks and when the frauds have taken place, not to mention
it is possible that a card stolen claim might never be forwarded
to eBay from some banks5. As a result, we cannot fully trust the
positive labels in such a case, where it is clearly unusual for such a
community to have an extremely mixed benign/transactions across
buyers. And it could also be a case where defaulters disguise their
true purposes by "cultivating" some legitimate accounts to execute
a few legit transactions. For the 2𝑛𝑑 assumption, the BU needs
extra evidence to further examine. Either way, xFraud is able to flag
the node-to-predict as fraudulent by learning from the important
edges (the thicker ones), and to inform the BU that this set of
buyers are highly suspicious and should be under more detailed
examinations. This shows the importance in detecting frauds on
the transaction level as we propose in xFraud, instead of just on
the account level as in GEM [28]. Currently, the BU is only using a
rule based system6 to filter the suspicious transactions stored in the
tabular format. xFraud explainer is innovative to a traditional BU
annotation routine, because it allows experts to combine graph level
and feature level information. For extensive case studies on false
positive (FP): benign→ fraud and false negative (FN): fraud
→ benign, we discuss in Appendix G [34], where we also discuss
system limitations and potential solutions to improve xFraud.

6 CONCLUSION
In this paper, we propose xFraud, a system for detecting fraud
transaction and explaining model prediction. Specifically, a hetero-
geneous graph is constructed and a self-attentive heterogeneous
graph neural network is leveraged for risky transaction scoring.
We further design a learnable hybrid explainer that leverages both
GNNExplainer and centrality measures to learn node- and edge-
level explanations simultaneously. Through extensive experiments
on real-world datasets, we show the proposed xFraud detector+
can efficiently process billion-scale heterogeneous graphs and out-
perform the competitive baselines. More importantly, xFraud is
the first work that quantifies a strong agreement between human
perception and explainer outputs. Real-world case studies illustrate
that with the hybrid xFraud explainer, we can generate convincing
explanations to assist further decision-making of business units.
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