Enabling Personal Consent in Databases

George Konstantinidis
Electronics and Computer Science
University of Southampton, UK
g.konstantinidis@soton.ac.uk

ABSTRACT

Users have the right to consent to the use of their data, but current
methods are limited to very coarse-grained expressions of consent,
as “opt-in/opt-out” choices for certain uses. In this paper we identify
the need for fine-grained consent management and formalize how
to express and manage user consent and personal contracts of
data usage in relational databases. Unlike privacy approaches, our
focus is not on preserving confidentiality against an adversary,
but rather cooperate with a trusted service provider to abide by
user preferences in an algorithmic way. Our approach enables data
owners to express the intended data usage in formal specifications,
that we call consent constraints, and enables a service provider
that wants to honor these constraints, to automatically do so by
filtering query results that violate consent; rather than both sides
relying on “terms of use” agreements written in natural language.
We provide formal foundations (based on provenance), algorithms
(based on unification and query rewriting), connections to data
privacy, and complexity results for supporting consent in databases.
We implement our framework in an open source RDBMS, and
provide an evaluation against the most relevant privacy approach
using the TPC-H benchmark, and on a real dataset of ICU data.

PVLDB Reference Format:

George Konstantinidis, Jet Holt, and Adriane Chapman. Enabling Personal
Consent in Databases. PVLDB, 15(2): 375 - 387, 2022.
doi:10.14778/3489496.3489516

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/georgeKon/enabling-personal-consent/.

1 INTRODUCTION

We are witnessing an emerging business, governmental, technolog-
ical and cultural interest in developing frameworks for allowing
citizens to choose how their personal data is used. Traditional se-
curity, data privacy or access control approaches, such as [14, 15,
25, 35, 36, 38, 45], protect personal information or ensure confiden-
tiality of individuals’ identities against an adversary. Nevertheless,
we increasingly see privacy breaches that are due to failures to
implement privacy agreements between relatively trusted, non-
adversarial parties. We refer to this setting, where data is released
to a non-adversary party who has incentive to abide by the privacy
or process agreement, as collaborative privacy.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489516

Jet Holt
Electronics and Computer Science
University of Southampton, UK
hello@jetholt.com

375

Adriane Chapman
Electronics and Computer Science
University of Southampton, UK
adriane.chapman@soton.ac.uk

Today, the need for collaborative privacy is omnipresent: an
individual gives her own data to a social media provider and trusts
that the provider will respect her privacy settings, patients give
data to clinical trials and trust the researchers to respect their
preferences, customers register data in commercial websites and
trust that the website will respect their privacy, etc.. Such privacy
enforcement does not rely on encryption or partial revelation of
data. Instead, users give their personal data in its entirety and trust
the service providers to respect their privacy as described in “Terms
and Conditions” documents or other custom agreements.

Commonly, these agreements are monolithic and top-down poli-
cies which protect the interest of organizations, rather than data
subjects. They are written in natural language and they are enforced
in an “extra-algorithmic”, ad-hoc manner. For example, in clinical
trials, researchers elicit consent from patients through question-
naires and then give the list of patient’s terms to a technical team to
explicitly implement these preferences in the data workflow. There
lies a technological gap, between the agreement in natural language
and its implementation into code. Indeed, the only automation or
automatic customisation that is usually taking place is in the form
of predefined, coarse-grained opt-in/out choices.

Starting from query answering in RDBMSes, we advocate for the
need to support data usage agreements that are machine-processable,
fine-grained, and bottom-up. In order to do this, we have to revise,
and can not directly re-use, classic data privacy technologies since
these have been designed to protect against collusions and avoid
returning (even non-private) data if this could be used for a subse-
quent privacy breach. For example, a clinical patient might hand
over their email to find out the results of a clinical research but
not for other purposes. Data privacy would not release the email at
all; collaborative privacy, on the other hand, intends to automate
organisations willingly enforcing consent and privacy preferences.

Thus we propose the notion of personal, fine-grained consent
that allows individuals to express their own data sharing policies.
In particular, we allow users to describe combinations of personal
information for which consent is not given. We call these state-
ments consent constraints. In Figure 1, users with ID numbers ‘4872°
and ‘2321’ trust the service provider with all their data, but do not
consent for their Birthdate to be associated with their disease Diag-
nosis. They do not mind however sharing each of these attributes
in isolation or in combination with other attributes, again with the
understanding that these two attributes are not going to be com-
bined to violate their consent later. We develop an algorithm and a
system that service providers can use to honor these constraints, by
removing non-consented tuples from their queries. That is, rather
than rejecting, we partially answer a query to the fullest extent that
it does not explicitly violate consent.

We focus on expressing both our consent constraints and the ser-
vice providers queries in the language of conjunctive queries (CQs),

https://doi.org/10.14778/3489496.3489516
https://github.com/georgeKon/enabling-personal-consent/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489516
https://www.acm.org/publications/policies/artifact-review-and-badging-current

| Don’t give back (Birthdate, Disease) associations |

DiagnosisYear | Disease

Birthdate | PhoneNo

4872 | Smith M 28/02/89| |2153409001 | 2017 Hepatitis
2321 | Jones M O4/04/78] 3456008984 | 2014 Heart Dis‘
1312 | Harris F 23/02/07 | 2329345674 | 2007 Heart Dis.
7463 |Johnson | F 02/06/82 | 4956732833 | 2018 Flu
2322 |Walker |M 12/02/76 |5457853322 | 2014 HIV

Figure 1: A constraint that can be represented by a query
selecting the users with IDs 4872 or 2321 and then projecting
on ‘Birthdate’ and ‘Disease’.

which corresponds to the “core” (SELECT-PROJECT-JOIN) fragment
of SQL, and is powerful enough to express fine-grained personal
consent and top-down policies. CQs is a natural first generaliza-
tion of opt-in/out choices (the only-machine processable consent
language so far), and has been employed as a privacy language in
multiple works and systems [7, 10, 11, 22, 23, 33, 36, 39, 42]. It is
important to note that focusing on CQs for the service provider’s
language allows for more expressive solutions as well. A query
containing an aggregate operation can be checked and filtered for
consent only on its CQ part before the aggregation takes place.
Our contributions include the following. In Section 3, we for-
malize the semantics of consent constraints and consent-abiding
query answers via a novel usage of provenance annotations; we
also lay a formal connection to data privacy and the guarantees
our framework provides. In Section 4, we present an algorithm to
implement our semantics without relying on annotations, but via
query rewriting: given a CQ and a set of constraints we produce
an SQL query that computes the consent-abiding answer of our
original query on any database; we then discuss strategies to propa-
gate consent. We implement and evaluate our algorithms on top of
PostgreSQL, and compare our framework (in Sec. 5) with the most
relevant "opt-in/out” work from data privacy [33] exhibiting a com-
parably efficient but more expressive framework. We experiment
with both TPC-H and real data scaling our system to answering
queries in the face of thousands of constraints within seconds.

2 PRELIMINARIES

We use the well-known mathematical logic and relational calculus
notions of constants, variables, predicates, terms (which are either
constants or variables), attributes and tuples [4]. For any expression
e, vars(e), and terms(e) denote the sets of variables and terms
that appear in e respectively. Atoms are of the form P(7) with P a
predicate/relation name. By 7[i] we denote the i element of tuple
f. A ground atom, with only constant terms, is a fact. A database
relation is a set of facts. A relation name R and its arity, is a relation
schema. A set of relation schemas is a database schema. A a set of
facts of different relations is database instance.

A substitution o = {v; — t1,..,0n — tp} is a mapping of
variables to terms. For any expression e, such as a tuple, an atom,
or a set of atoms, o(e) is obtained by simultaneously replacing
each occurrence of a variable v; in e, that also occurs in the domain
of o, with o(v;) = t;; variables outside the domain of ¢ remain

376

unchanged (as, obviously, do constants). For example, consider atom
P(v1,v2,03,04,“Tohn”) and o = {v1 — 03,02 — v1,03 — 04}, then
o (P(v1,02,03,04,"John”)) = P(vg, 01, v4, 04, John”). A substitution o
is a homomorphism of a set of atoms Sp into a set Sy, if the domain
of o is the set of all variables occurring in S; and o(S1) C Sy.

We write CQs in the rule form q (4, &) « Py (1, ¢1), ... , Pn (tin, ¢n)
where q is the name of the answer relation, Py, ..., P, are database re-
lation names, , u; are tuples of variables, ¢, ¢; are tuples of constants
and the query is safe, ie,d € UL, @ and¢ € UL, ;. Atom ¢(7,©),
is called the head of the query, denoted head(q), while the body is
body(q) = {P1(u1,¢1), ..., Pn(tn, cn)}. The vector of head variables,
3, is the tuple of free or distinguished variables of the query. Notice
that, for technical reasons we allow query constants to also appear
in the head. We denote joins with the same variable repeated in
different atoms. We refer to a CQ with head terms X by its head
q(X) or even by q if its head terms are not important. A query with
no head terms is boolean, and it is false if the result is empty or true
if the result contains the empty tuple. For two queries g(X) and
p(Z) of arity n, we say that q and p have the same result schema
if, for all i € [1, n], there are atoms of the same predicate P, P(7)
in body(q) and P(w) in body(p), such that X[i] and Z[i] appear in
the same position in P(7j) and P(w) respectively. For a query q(X),
whenever there is a substitution ¢ such that o(X) = I; we denote
the query obtained by replacing X with bin g, by q(l;) or o(q(%)).

Consider schema: {Patient(pid, name),HasDoctor(pid,did)}.
Query SELECT name FROM Patient, HasDoctor WHERE
Petient.pid=HasDoctor.pid AND HasDoctor.did = ¢723’
corresponds to the rule-notation formula: q(y) < Patient(x,y),
HasDoctor(x,723). Given a CQ ¢(X) and a database instance D,
q(D) denotes the result of evaluating q over D; this is the set of all
tuples of constants @ such that g(a@) holds in D. For every answer
tuple @ of q(X) over D, there is a homomorphism h of body(gq) into
D (sometimes we write of g into D) such that h(X) = a.

For two conjunctive queries, q1(f1),qz(f2), we say that g5 is
contained in q1, denoted by g2 C q1, iff for all databases D, gq2(D) C
q1(D) (strict query containment C is defined in the obvious way).
For all q1, g2, g2 C q; iff there is a containment mapping from q; to
q2 [21]. A containment mapping from q; to g2 is a homomorphism
h:wars(q1) — terms(qz) such that: (1) for all atoms « € body(q1),
it holds that h(a) € body(q2), and (2) h(head(q1)) = head(q2)
(modulo the answer relation names of q1, g2).

For technical reasons, we mix our rule-notation for CQs with
notation from relational algebra and in particular the projection op-
erator. Given a relation R with size |R| = n, the standard definition
of the projection of R on A = iy, iy, ..., im, a list of attribute positions
of R(ij € [1,n]),is ma(R) = {{a1, ..., am) | there is a tuple (b1, ..., bn)
in Rwith ay = b;,, ..., am = b;,, }. We also apply projection on single
tuples: given a tuple f= (t1, ... tn), and A = iy, ..., i a list of posi-
tions of 7 (possibly with repetitions), 7 (7) is the tuple {ay, ..., am)
such that a; = tj,...,am = t;,,. Given a CQ q(%), ma(q(?)) denotes
a new query with the same body and head g (74 (%)).

Lastly, we make use of some logic-programming notions [34].
Let two substitutions 0 = {u; — s1,...,um — sm} and o
{v1 = t1,...,0n — ty}. The composition o o 6 is obtained from the
substitution {u; — o(s1),...,um — 0(sm),v1 = t1,...,0n — tn}
after deleting all those elements u; — o(s;) for which u; = o(s;),

and also deleting all those v; — t; for which v; € {uy,...,um}.
Given a set of atoms S, a unifier is a substitution o such that o(S)
is a singleton (i.e., all atoms “merge” into becoming the same one,
after substitution). A most general unifier or mgu for a set of atoms
S is a unifier o such that any other unifier p can be obtained by the
composition of the mgu o with a substitution 6, i.e., p = 6 o 0. For
example, for S = {P(x,y,z), P(v,w,w)} a most general unifier is
o={x >0,y > z,w — 2)} since 0(P(x,y,2)) = o(P(v,w,w)) =
P(v, z, z), and all other unifiers must be more “specific”, e.g., unifier
p={x >z y—> z,w — 2)}, for which p(S) = {P(z,z2)} can be
obtained by composing the mgu with substitution {v — z}.

3 SEMANTICS OF CONSENT

Within relational databases, it is natural to imagine a set of sharing
defaults where a user is specifying what not to reveal. We focus
on negative statements of consent called consent constraints, for-
malized as CQs with “negative” semantics, i.e, whose answers are
not consented to be revealed. Table 1 contains some consent state-
ments users may make over their health data, and the associated
constraints. The third row corresponds to the example of Figure 1.

We discuss our desired semantics starting from the most related
data privacy approach that considers negative/secret queries against
an adversary, a setting commonly referred to as perfect privacy [36].

3.1 From Adversarial to Collaborative Privacy

Perfect privacy considers whether a CQ view V (or a set of views)
exposes answers, known as critical tuples, to a secret CQ query gq.
A tuple 7 is critical for a query g, if there exists a database instance
I that contains 7, such that the answer of the query changes if T is
removed from I; that is, 7 is critical for q if (I \ {f}) # q(I) [36].
The set of all critical tuples for a query q is denoted as crit(q).

Definition 3.1. [36] A CQ q is secure with respect to a CQ view
V, denoted q|V, if crit(q) N crit(V) = 0.

Our consent constraints can be seen, at a first glance, as secret
queries. However, there are three main properties that our non-
adversarial setting aims to offer differently to perfect privacy:
Avoid collusion explicitly. Perfect privacy aims to implicitly
avoid future collusion when answering a query: a secret query
in [36] is secure with respect to different individual views in isola-
tion iff it is secure against any possible combination of these views.
On the other hand, for collaborative privacy, we will avoid collu-
sion by having all service provider queries and their combinations
willingly go through the framework and not maliciously explored
outside. As we discuss below this is beneficial in multiple ways.
Provide fine-grained consent statements. Perfect privacy is
coarse-grained: the critical tuple semantics characterizes all the
tuples, and their values, in the image of a secret query’s homomor-
phism as critical/sensitive. In essence, no part of a tuple or a query
answer is revealed even if only a small subset of tuples/cell values
are essentially private. In fact, there is no distinction between se-
cret boolean queries and secret queries with free variables (they
characterize the same tuples as critical). On the other hand, our
explicit treatment of collusions, allows us to develop much more
fine-grained and flexible semantics. We aim to annotate particular
combinations of attributes as private; projections in our constraints

377

make a difference since they characterize particular cells within a
query image which are not consented to be used/shared.

For example, in Table 1, constraints N - Ny essentially collapse

to the same (N3) using the perfect privacy semantics, as they all
reveal information (in an information-theoretical sense [36]) about
the tuples of Patient ‘1312’; these tuples are all critical. With our
modeling, these are different constraints. Including attributes in the
head of constraints denotes that only queries that ask for these (or
a superset of these) attributes are violating the constraints. Boolean
constraints, e.g, Na, are the most strict in our framework since they
disallow the sharing of any attributes (any attribute set is a superset
of the empty set). In that sense, our boolean constraints are the most
similar to secret queries. Section 3.5 provides a formal connection
of our semantics to perfect privacy using boolean queries.
Offer partial consent-abiding query answers. Perfect privacy is
a total “accept/reject” query answering approach. That is, if a secret
query and a view share a critical tuple the entire query is deemed
insecure and rejected. Instead, we will allow partial query answers:
by removing only the non-consented tuples from the result of a
query, we still return the most information allowed.

Note that [36] also studies the probability of disclosing a secret.
This is not applicable to our setting. Private values in our context are
not in fact “secret”; the service provider does have these values but
is willing to use them only in the intended way, so the probability
of learning a secret is irrelevant.

Faithful to the above requirements, we subsequently define the
semantics of consent constraints that allow us to detect consent
violations and implement consent-abiding query answering. In
principle, consent-abiding query answering is relatively simple: a
consent constraint describes values that are preferred not to be
returned and so we should remove those tuples from the query an-
swers; there are technical details however that we need to consider.

As a first step, we need to identify the “overlapping” part in the
answers of two CQs (one being a consent constraint), and we do this
in the next subsection by using data annotations (labelling every
data tuple as in [17, 29, 46]). While in Section 4 we develop an algo-
rithm to implement our semantics without relying on annotations,
using annotations for our semantics allows for a more tangible
interpretation of what our constraints mean since they describe
particular tuples; as such, a front-end implementation could even
support a visually-aided way of denoting the constraints similar to
Figure 1. There is ongoing research [7, 32] as well as real and emerg-
ing systems [23, 42] that help transform user policies into CQs. In
this paper we focus on the foundational and algorithmic aspects of
consent abiding-query answering, rather than the interface.

3.2 Annotated Relations & Overlapping Queries

To pinpoint particular values in our data, we exploit the prove-
nance [29] of a tuple, assuming each tuple in the database anno-
tated with a unique identifier or label (as in [46]), via an annotation
function A (see Table 2). We will annotate the answer tuples of a
query with the labels by creating a different annotated tuple for ev-
ery different query homomorphism in the data. Moreover, towards
being even more fine-grained, we aim to annotate each individual
term in a result tuple with exactly the tuple identifiers it “came
from”; this is different to provenance semirings that annotate the

Table 1: User Consent and its mapping to negative consent constraints.

User Consent

Negative Constraint

Patient 1312 does not want to share her phone number (5t attribute of the

Patients relation)

Ni(x5) « Patients(1312, x, x3, X4, X5, X6, X7)

Patient 1312 does not want to share her any combination of her attributes (Ny).
N; actually subsumes N3 and Ny which dissalow Name and Disease respectively

N2 () « Patients (1312, xy, x3, X4, X5, X6, X7)
N3(x3) « Patients(1312, x2, x3, X4, X5, Xg, X7)
Ny(x7) « Patients(1312, x2, x3, X4, X5, X6, X7)

Patients 4872 and 2321 do not want to share the association of their Birthdate

together with their Disease

N5 (x4, x7) < Patients(4872, x2, x3, X4, X5, X6, X7)
Ng (x4, x7) < Patients(2321, x2, x3, X4, X5, X6, X7)

Do not share patient IDs when their disease is being cross checked against the

Insurance table

Table 2: An annotated database I with 4 relations, showing the
identifier annotations on the left of each tuple, and example
queries/constraints with their annotated answers.

B C D
by [1]1]2]2]3
A = o [1]5]5]6] dy: [1]5
by |1]1[1]1]1
ar: [1] co: |1]5]6]6] dy:[2]7
by 114121213} Ts(5(5| ds: [2]8
by:|1]a]a]5]6] 3
q1() < B(1,1,2,2,3)| No() « B(x,y,z z,0), B(x,x,x,y,y)

() ={<>by [N} = {<>brbe, <52y

q2(x1,3) < A(x1), B(x1, x2, x3, x3,3), D(x3, x4)

qé([) = {< 1901 3b1 5 < qanbs 3bs 5y

q3(x1, x4) < B(x1, x32, x3, x3, x4), C(x1, X5, X5, X¢)

g (D) = {<1bver 3bis <qbuer qbes cqbser 3bss cqbies sbis
<1baes 1bas <qbscs by

g5(x1) < A(x1), B(x1, x2, x3, x3, x4), C(X1, X5, X5, X6)
qé([) = { <1@bres cqavbaers cqanbsens cqanbiess
<1avbacss cqanbsess y

q6(21) < B(z1, 22, 22, 23, 24), C(21, 25, 26, 26), D(21, Z6)
qé([) = {< 1265 > < 1bacs 5}

entire result tuple (for boolean queries where the result tuple is
empty we do annotate it in its entirety).

Consider for example query g2 and database I in Table 2. This
query has the following four different homomorphisms on I:

homomorphism ‘ annotation
hi {x1 = Lxy — Lx3 > 2,x4 — 7} | (1{acbi} 3ibily)
hy {x1 > Lxs > 1x3 — 2,x4 — 8} | (1taubi} 3{bilyy
hy {x1 = Lxy = 4,x3 — 2,x4 — 7} | (1{avbs} 3{bs}yy
hy {x1 = Lxy > 4,x3 — 2,x4 — 8} | (1{avbs}t 3ibs}yy

For each homomorphism, we annotate a value in the result tuple
with the identifiers of the tuples (in the image of the homomor-
phism) that this value appears in. For g2, this gives rise to two
different annotated answer tuples. Note that different homomor-
phisms do not always give different annotated tuples since the
images of atoms that do not contain head terms (such as D in g3)
do not participate in the annotations of the result tuples.

Note that in provenance semirings [29], we annotate the tuples
of a query by constructing a monomial for each homomorphism and

378

N7(x1) — Patients(xl,xg,xg,x4,x5,x6,x7)/\
Insurance(x7, x3)

“summing up” all monomials to a polynomial. In effect, according
to [29] the polynomial annotation for the result (1, 3) of g2 would
be a1bidy + a1b1ds + a1b3dz + a1bsds. For presentation purposes,
and because we want to ignore dy, ds labels that are not projected,
we choose to “break” this down to its different monomials.

For boolean queries we will use all image identifiers to label
the entire (empty) answer tuple. Shown in Table 2 the boolean
query g has a single annotated (empty) answer tuple on I, while
constraint Ny will have two annotated answer tuples: tuple <>bub2
for the homomorphism {x,y—1, z—2,0—3} that maps the two
different atoms of Ny to by and by respectively, and <>b2 for the
homomorphism {x, y, z,v—1} that maps both atoms of N to b;.

Definition 3.2. For all CQs q(x1, x2, ..., Xp), instances D, homo-
morphisms A from g to D, with h({x1, x2, ..., xnV)=t=(t1, b, ..., tn),

. . Ly ,L L
an annotated answer tuple of q over D via h, is (tl 1 tzz,. L),

denoted also L with f:(Ll,Lz, .., Lp), where each L; is the set
of labels L; = {A(h(@))| a € atoms(body(q)) s.t. x; € terms(a)}.
If q is boolean we annotate an entire (empty) result tuple with
L ={Ah(a)) | a € atoms(body(q))}, and we denote it 7.

The annotated answer of q over D, denoted q’1 (D), is the set of
all annotated answer tuples of g over D. Table 2 shows a number of
example queries with their annotated answers. We will generally
write ZL for an annotated answer tuple, to either mean that L is
a set of identifiers (for boolean queries) or vector of sets (for non-
boolean). Given annotated answer tuple ¥ = 7 we define base(?) =
7. For T a set of annotated tuples, base(T') = {base(?)|f € T'}.

Next, we use annotated tuples to define the overlap between two
queries (or a query and a constraint). Intuitively, our semantics will
want to eliminate all base tuples from a query answer for which
all corresponding annotated answer tuples are violating (common
to) some consent constraint; or dually, return those tuples which
can be obtained by at least one legitimate way with respect to
annotations. Given two annotated answer tuples with the same
base, f; = ZL1 and £, = 72, their annotations intersect, denoted My,
if Ly N Ly # 0. When Ly, Ly are vectors Ly = (L11, L12, ..., L1) and
Ly = (L1, L22, ..., Lan), then Ly N Ly # @ means Ly; N Ly; # O for all
i € [1, n]. Two queries are overlapping if they have some annotation
intersected tuples on some database, per the next definition.

Definition 3.3. For all CQs, g and p of the same result schema, we
say that g and p overlap, if there exists a database D, a f; € qA(D)
andat € p’l(D) st i M.

For example, queries gz and g3 from Table 2 overlap on I. Indeed,
one annotated answer tuple of gz, obtained by homomorphism A3,

is g‘z = (1901 301} and one of g3 is ?3L3 = (1b1e1 301y (let hg, the
homomorphism constructing this tuple). The fact that Ly N L3 # 0

(thus, %, M 73) means that each result value in fg‘ ? and ?2L3 exists in
the same actual tuple (here b1), common to the image of k2 and hg;,.
In fact queries g2 and g3 overlap for both annotated answer tuples
of g2; if g2 was an input query and g3 a negative consent constraint
we would have to remove all annotated answer tuples of g2 on this
particular database in order to execute it in a consent abiding way.

Before we fully define consent-abiding query answering, we
further enhance our semantics to capture cases where a query and
a constraint differ in their answer relation schemas but we would
still like to consider them overlapping.

3.3 Query-consent Overlap and Violation

Our definition of overlapping queries relies on annotated answer
tuples having the same base and schema. However, we might want
to consider a query and a constraint overlapping even if the answer
relations (the heads of the rules) have trivially different schemas.

First, notice that a resulting query relation might have a different
order on its attributes than the constraint answer relation, but we
might still want to consider these overlapping. Consider for ex-
ample, q7(x7,x2) < Patients(xy, xg, x3, x4, X5, X6, x7) Which asks
for (Disease, Birthdate) pairs of patients. Constraints N5 and Ng
of Table 1 disapprove the sharing of (Birthdate, Disease) pairs for
two particular patients. Even though the head attributes are the
same, their order is different and hence a base tuple in the result
of g7 can not be the same as one returned by constraints N5 or Ng.
Nevertheless, our natural interpretation of N5 and Ng is that users
prefer not to associate birthdates with diseases, independently of
the actual order of appearance of these values in an answer tuple.

Second, equally important is to abide to user consent in the face
of a query that asks for “more” attributes than those corresponding
to the constraint head. For example, for query gqs(x7, x1, x2, x3) «
Patients(x1, x2, X3, X4, X5, X6, X7) We believe it is natural to remove
tuples with non-consented values for Birthdate and Disease in
the attributes for x2 and x7 (per constraints N5 and Ng); even if
these tuples are “larger” and contain more values, they still violate
intended consent. The requirements of reordering or dropping
attributes of the query can be supported by the projection operator;
essentially we want to look for overlaps between any projection
74(q(X)) of a query q and a constraint N.

Our last observation for establishing our consent semantics is
the following. Consider constraint Ny from Table 1 and a query
asking for the IDs of patients whose phone number is 23293456
(that happens to be the phone number of patient 1312): qg(x1) «
Patients(xi, xg, x3, x4, 23293456, x4, x7). With our definitions up
to now, g9 and Nj cannot be overlapping since they do not even
project on the same attribute of Patients. However, patient 1312,
in Figure 1, does not want her phone number revealed, and if we
return her ID in the answer of g9 we are violating her consent. The

379

observation here is that although the query does not explicitly ask
for the PhoneNo attribute through a head variable, it grounds this
attribute to a constant and in a sense it is still “asking” for it. To ad-
dress this, we place all constants appearing in the query, in its head
as well. Given a conjunctive query q(¥), with ¥ = (x1, x3, ..., xp), let
(c1, 2, ..., ci.) be the tuple of all constants ¢; € (consts(body(q))\X)
in a lexicographic order (although the order does not matter). By ¢
we denote the constant-extended version of g, that is, the conjunctive
query with same body as g, and head §(x1, x3, ..., xn, €1, €2, ..., Ck.)-
To take all three observations into account, given a query q(X)
we define its support set of queries ﬁq, as the set of queries which
are projections on §(x), i.e., flq ={ra(4(X)) | Ais a non-empty list
of integers (positions) (i1, ..., im), with i; € [1,]X|]}. In practice, we
can limit m to the maximum arity of any constraint head (there is
no use to create support queries with heads larger than those of
the constraints since these will necessarily have different schemas).

Definition 3.4. For all CQs g, for all CQ consent constraints g,
we say that g violates qp, if there is a support query g, € fIq such
that g, and gn overlap.

As an example, query g9 with the user’s phone number violates
Nj from Table 1, since the support query 71 (Go(x1, 23293456)) «—
Patients(x1,x2,%3,X4, 23293456,%¢,%7) is contained in N1, and thus
trivially 71 (§o) and Nj overlap. Note that support query projections
are performed only on the input query and not the constraint. Per
the semantics of Table 1, N5 is not violated by a query asking for
only one of the two attributes in its head, rather N5 is only violated
by queries asking (or setting) at least both attributes. Note that
support queries are not necessary for boolean constraints, since
just the boolean version of the query is enough to detect violations.

3.4 Consent-abiding Query Answering

Once we detect a violation of a support query g, and a constraint
qN, we should remove from the query those annotated answer
tuples that intersect with the answer of qp, in order to answer the
query in a consent abiding way. To compare an annotated tuple
f from the query to a tuple in the answer of gy, we need to use
the projection operator on the single tuple f as well, in order to
reorder or drop some of its values, as defined in Section 2. When
we use projection on an annotated answer tuple, the annotations
of projected terms are maintained.

Definition 3.5. Given a CQ g, a set of CQ constraints N, and a
database D, the annotated consent-abiding answer of ¢ w.r.t. N is
g\pN ={7| 7€ ¢*(D) and there is no support query g, = m4(4) €
14, constraint gy € N and N € qﬁ,(D) such that 4 (f) M tx}).

After removing all consent-violating annotated tuples we drop
annotations to get the final answer tuples of our query. Thus, intu-
itively, base tuples make it to the consent-abiding answer if they can
be obtained by at least one non-consent-violating way. The consent-
abiding query answer of q with respect to N over D, denoted by
q"(N,D),is g7 (N, D) = base(q \p N).

Towards a practical implementation of our semantics note that
if a query and a constraint overlap they do so on all databases
where both queries are answerable and their homomorphic images
“intersect” on some database atoms. In fact, two query atoms that
map to the same database tuple are unifiable (see section 2), and

by computing unifications between query and constraint atoms we
will present a rewriting algorithm that produces a query that can
be directly executed using SQL and returns ¢~ (N, D). Intuitively,
unifications can give us the intersections of the queries” annotated
tuples on a “schema level”. This has multiple benefits: It allows
us to develop a data-independent approach; our consent-abiding
rewriting is the same for all database instances. At the same time we
do not need to annotate the data nor do a brute-force comparison
of the annotation vectors for all pairs of resulting tuples; unified
parts of the query and the constraint will directly map to intersected
tuples. Moreover, by bookkeeping the way constraint head variables
unify with query terms, in the next section, we automatically obtain
all support queries as results of these unifications.

3.5 Privacy guarantees

As discussed, our framework has been designed with collaborative
privacy in mind, and not to protect against an adversary. Neverthe-
less we provide a formal connection to traditional data privacy and
in particular perfect privacy [36]. The following Theorem guaran-
tees that using our framework with boolean constraints, a query
that does not violate a constraint per our definition means always
that the constraint is secure with respect to the query per [36] (all
theorem and lemma proofs can be found in our online appendix at
https://github.com/georgeKon/enabling-personal-consent).

THEOREM 3.6. For all CQs q and boolean CQs qn, q if q does not
violate qn then qn|q.

Note that our boolean constraint semantics is more strict than
secret queries; there are corner cases where we might call a violation
where perfect privacy is not violated. Due to space limitation we do
not give an example but point the interested reader to [36], page 7,
example immediately following Prop 3.9. Admittedly as the authors
of [36] point out this concerns some rather unnatural cases, and in
practice and most cases our semantics actually coincides (certainly
for all examples of this paper and of [36]).

4 A PRACTICAL SOLUTION

Our objective in this section is to produce a rewriting of the query
and the constraints that can be directly executed to obtain the
consent-abiding answer on any (non-annotated) database. If we
attempt to do this by simply taking the difference of a constraint g5
from a query g we might remove tuples which are not annotation-
intersected. Thus, intuitively, we aim to produce a new constraint
qm, by unifying q and gy appropriately, such that we can safely
remove all answers of g;;,; due to the way gy, is constructed all its
homomorphisms will be “touching” tuples that the query does.

4.1 Query Unifications and SQL Rewritings

In order to unify a set of query atoms to atoms of another query
or constraint, we define a variant of unification for sets of atoms
(reminiscent of piece unification [8]). Our unifiers describe all atoms
of a query that are unified with some atoms in the constraint.

Definition 4.1. For non-empty sets of atoms Sy = {ay, a, ..., am}
and Sy = {b1, by, ..., by}, a piece unifier of S; over S is a substitution
92; s.t. for all a; € S thereis a b; € Sy with 9:221 (a;) = 0?21 (bj); we

call all such (a;, bj) pairs the unifiable pairs of 95;

380

For example let S; = {B(x1, x2, x3, X3, x4), C(x1, x5, X5, x6) } and
Sy = {B(z1, z2, 22, 23, 24), C(z1, 25, 26, 26), D (21, z6) }. Notice that Sy
is a subset of the body of g5 from Table 2 and S; is the body of gs.
One piece unifier is 912: { x1—>21, X2—22, X322, X4—24, X525,

X6—2Z5, 2322, 26—25 }. Applying the unification, 912 (Sy) =
{B(z1, 22, z2, 22, 24), C(z1, 25, 25, 25), D(z1, z5)}, and indeed for all
a; in Sy, 9?21 (a;) is in this set. Note that this unified piece has a
homomorphism to the annotated tuples in Table 2 that are common
to g5 and g¢ (where g¢ can be negative constraint). To construct a
proper unfied CQ out of this unifier we should also unify the heads
of the the query and the constraint.

Definition 4.2. For all CQs q(%), qn(Z), and non-empty S C
body(q), a query unifier of g over g for S, is a piece unifier of S over

S S o\
body(GN). Oy, 4, (gn)» Such that 0 (% =0

S -
body(gn) body(gn) P

Given a query unifier 0 of q(X) over qn (Z), the query unification
for 0, denoted 0[q, gn], is the conjunctive query with head g(6(¥))
and body 0(body(q)) U 8(body(qn)). Using 91§; from previously
as 0, the query unification 6[gs, gs], of g5 over g is:
qBc(z1) « A(z1), B(z1, 22, 22, 22, 24), C(21, 25, 25, 25), D (21, 25). There
are other query unifiers for gs over g6, that could potentially use a
different subset of body(qgs), as long as these still unify the distin-
guished variables of both queries, e.g., for S3 = {B(x1, x2, x3, X3, x4) }
or Sy = {C(x1, x5, x5, x6) }. For example QZ“ZZdy(qﬁ) ={x1—>21,x2>22,
X3—29, X4— 24, 23—2z2 } unfies only the B atoms and keeps both C
atoms of the queries, producing query unification gg(z1) < A(z1),
B(Zl, 22,222,222, 24), C(Zl, X5, X5, xﬁ), C(Zl, Z5, 26, Zé), D(Zl, 26), while
unifier 93i3dy(q6): {x1—>z1, X525, X6—25, Z6—25} unfies only
the C atoms producing qc(z1) «<A(z1), B(z1, x2, X3, X3, X4),

B(z1, 22, 22, 23, 24), C(21, 25, 25, 25), D(21, 25) .

Intuitively, all query unifications provide only consent-violating
annotated answer tuples. For every distinguished variable of the
constraint, a query unification contains a unified atom with this
variable, and anywhere this atom maps on a database the anno-
tation labels will be “propagated” to the constrtaint result value.
At the same time, the query also maps to this atom by mapping
one of its own head terms and thus inheriting the same database
annotations on this term. For example, the annotated answer tuples
that gp gives would contain a superset of the annotations that gs
gets on the resulting value for z; (since gp contains more atoms).
Similarly, g¢c will propagate the annotations, for any tuple of table
C it touches, to both g5 and g¢. Lastly, note that ggc might only give
a subset of the annotated answer tuples that either gp or gc give
as it is more restrictive, essentially contained in both gp and gc. In
this example gg and g¢ are enough to capture (intersect with) all
intersected answer tuples of g5 with Q¢. Indeed, we will not need
all query unifications but just the most general ones, i.e., the ones
that come out of a minimal set of unifications between the query
and constraint (which still unify all constraint head terms).

Definition 4.3. For all CQs q(%), qn(Z), and non-empty S C
body(q), a most general query unifier of q over gy for S, is a query

. S . , .

unifier 6, dy(qn)’ s.t. there is no non-empty S’ c S with a query
. S’ . S >\ _ pS’ >

unifier gbody(qN) for which gbody(qN) (%) = gbody(qN) (¥).

Let MGQU (q, q’) the set of all most general query unifications
of g over ¢’. We can now implement the annotated consent abid-
ing answer of a query and a set of constraints, as in Def. 3.5, by
considering queries in MGQU rather than the constraints.

THEOREM 4.4. Given a CQ g, set of constraints N, and database D,
g\p N ={7| T € g*(D) and there is no support query g, = m4(§) €
flq, constraint qn € N, qm € MGQU(qr, qn) and t, € qﬂn (D)
such that w4 () Mty }.

Given a support query and a constraint, Theorem 4.4 dictates
that it is only tuples of a query unification that need to be removed.
In practice, as explained in Section 3.4 (and as we will do in Sec-
tion 4.2), by relaxing the requirement to unify all query head terms
we essentially obtain directly the corresponding projections of a
support query; it has the head constructed from those query terms
that unified with the constraint distinguished variables. In the ex-
amples above, even if g5 had additional free variables to zi, it is
only z; that is needed to violate g4 (as a constraint). Thus, every
different appropriate unification of the query and the constraint
produces a different g, in Theorem 4.4, and for every g, we will
create a query rewriting; the union of these rewritings gives the
consent-abiding query answer, without relying on annotations, by
removing those tuples that exactly “satisfy” unifications g,. In the
next subsection, we present a bottom up, dynamic-programming
style of algorithm to obtain an mgu.

To see how we construct our rewritings, consider query g(x) «
A(x,y) and a constraint gy (z) < A(z, z); the most general query
unification is ¢’ (x) « A(x, x), equating x and y in g (support query
is q itself). Let a database with two tuples D = {A(1,0),A(1,1)}.
If we were, however, to execute g(D) \ ¢’ (D) the result would be
empty since the value 1 coming from tuple A(1,0) would also get
removed, but per our semantics it should be retained. To achieve
this without annotations we have to execute a query informally
looking like q(x) « [A(x,y) \ (A(x, x),x = y)]; by this we mean
to iterate over every tuple of A(x,y) and remove those which agree
with (A(x, x), x = y), i.e., agree on all unified attributes, pinpointing
exactly the tuples to remove. We can express such queries in SQL.

LemMA 1. Let a CQ q(X) « P1(x1), ..., Pn(x3), a CQ constraint
qN. a support query q-(§) = 7a(g), and a gm € MGQU (qr. qN)
with gm(Z) < Ri(21), ..., Rm(Zm). The following SQL query re-
turns all tuples T € q(D) for which there are no fq e ¢gM(D) with
base(t_;) =% andty, € q’lm(D), such that ﬂA(ﬂ]) M b

SELECT X FROM Py, ..., P,
WHERE Jg AND NOT EXISTS(
SELECT Z FROM Ry,...,Rm

WHERE J,,, AND J4 AND Jp); where

o Jq is a conjunction of equalities of the form P;.x = P.x for all the
joins/repeated terms in atoms P;, P in g,

® Jm is the corresponding conjunction of equalities, R;.z = R;.z, for
the joins/repeated terms in qm,

o Jy is the conjunction of equalities /\leyl y[i] = Z[i] (equating the
projection/re-ordering of terms in w4 (q) and qm),

e Jp adds the unification equalities between q; and qm, i.e., for
01qr, qN] = qm and for all unifiable pairs of 9, (a, 6) € body(q) %
body(qnN), for all terms u € terms(a) we addu = 0(u) in Jy.

381

As an example consider again ¢s against constraint g¢ and their
most general query unification gg (using gs itself as support query).
To remove consent violating tuples of g from g5 we execute:
SELECT A.at1 FROM A, B, C
WHERE A.at1=B.at1=C.at1 AND B.at3=B.at4 AND C.at2=C.at3
AND NOT EXISTS(

SELECT A2.at1 FROM A as A2,B as B2,C as C2,C as C3,D
WHERE A2.at1=B2.at1=C2.at1=C3.at1=D.at1 AND B2.at2 =
B2.at3 =B2.at4 AND C2.at2=C.2at3 AND C3.at3=C3.at4=D.at2
AND B.at1=B2.at1 AND B.at2=B.at3=B2.at2 AND B.at5=B2.at5)

In the face of multiple constraints and MGQUs, Lemma 1 gen-
eralizes to construct g~ (N, D) by simply conjuncting more nested
NOT EXISTS queries to the WHERE clause of the outer query. Alterna-
tively, we could UNION more nested queries inside the NOT EXISTS.
Notice that there is not a unique way to express difference with
union in SQL; in fact, in Section 5.2 we run different comparisons
with EXCEPT, LEFT OUTER JOIN and NOT EXISTS. Through ex-
perimentation, we decide to use NOT EXISTS; however, finding the
optimal serialization is an orthogonal rich research problem [43].
Independently of the actual serialization of Lemma 1 in the face
of multiple constraints the query produced is the consent-abiding
rewriting of q with respect to V, and we can represent it as a union
of CQs (UCQ) with safe negation.

4.2 Algorithm

In this section, we present the core algorithm of our framework to
find the most general query unifications of support queries. This
happens by unifying the original query’s body with the constraint
such that all constraint distinguished variables are unified with
either distinguished query variables or query constants (thus iden-
tifying the necessary head terms of a support query). The output
of this algorithm is a set of query unifications g, each paired with
the necessary equalities J4 and Jy as required by Lemma 1; these
pairs are then translated to SQL as in the previous subsection.
Generally, given an input query g and a constraint gn we will
start by pairwise unifying, initially taking the mgu (see Sect. 2) of
single atoms in the query and the constraint, while making sure
that we unify head terms in the constraint with either a head term
of the query or a constant. By starting from pairwise unifications of
single atoms, we guarantee that our unifiers will be most general,
i.e., contain a minimal number of query atoms (or unifiable pairs).
If by simple pairwise unifications we cover all head terms of the
constraint (if the constraint is boolean, one atomic unifier is enough)
we have essentially managed to find a most general query unifier
over a support query of g. If by using pairwise mgu’s we fail to
unify all head terms of the constraint it might be because two, or
more, query atoms need to be unified with a constraint atom. To
unify larger sets of atoms in a minimal and efficient way, if a set
of atoms has been unified and has not covered all the constraint
head terms, this unifier is still “open” and we will try to further
unify it with another query atom. Whenever some sets of atoms
unify successfully we shall not use them in further unifications, as
unnecessary unifications will spoil the most-generality property.
The structure that keeps our substitutions/unifications is a set of
equivalences classes named ECset in our pseudocode. Each equiva-
lence class in this set contains terms that have been unified with

one of them being a representative term, so each equivalence class
essentially is a substitution that maps all the terms it contains to
the representative (obviously if there is constant in an equivalence
class this should be the representative). Substitutions that are used
together in a unifier are kept in a set of ECset objects.

Algorithm 1: findMGQUs

Input: A Query q and a set of constraints N

Output: Union of pairs (MGQU (g, qN), Ja, Jo) Where g, gn, Ja, Jo

are as in Lemma 1
1: Result « 0
2: for all constraints g € N do
3: ApplicableECsets«— 0

4: OpenAtomicECsets « 0
5: for all atoms « in g do
6: for all atoms & in gn do
7: ECset « unify(a, 5)
8: if unify(ea, §) was not successful then
9: continue line 6
10: if coversHead(ECset, gn7) = true then
11: ApplicableECsets« ApplicableECsetsU ECset
12: else
13: OpenAtomicECsets«OpenAtomicECsetsU ECset
14 ne2 //irst pick pairs, then triples, etc
15: while n < |OpenAtomicECsets| do
16: for all sets T = {ECsety, ...,ECset,, } where
ECset; € OpenAtomicECsets and for i # j, ECset; # ECset;
do
17: if no subset of T has been marked applicable then
18: ECset « 0
19: forie{1,..,n}do
20: ECset « unionECSets(ECset,ECset;)
21: if union unsuccessful then
22: goto line 16
23: if coversHead(ECset,qn) then
24: add ECset to ApplicableECsets
25: mark T as applicable
26: ne—n+1
27: for all ECset € ApplicableECsets do
28: mgqu-query « apply(ECset, gnr) //replace terms with EC
representative
29: Equalities « 0
30: for all EC € ECset do
31: Equalities « Equalities U transitive closure of EC
32: Result « Result U (mgqu-query,Equalites)

33: return Result

Algorithm 1 starts by initializing the applicable unifiers, i.e.,
those that are already most general, and the open ones, i.e., those
that should be combined further (lines 3-4). Then, it tries to unify all
pairs of query-constraint atoms (lines 5-13), and for the successful
unifications it checks whether each one of them is a most general
query unifier, i.e., whether it has covered all head variables of the
constraint (line 10); those are called applicable and stored aside for
later generation of the most general query unifications. Those that
are not applicable are still open (line 13). Note that, each one of
the applicable unifiers corresponds to a different query unification
of a support query over the constraint, since most probably it is
using different head terms and constants of the original query. The

382

pairwise unifications that are still open are combined gradually in
larger groups to each other (lines 14-25). Note that, to make sure
we end up with a most general unifier, we do not try combinations
of n+1 open unifiers before we finish examining combinations of n.
We first chose two ECSets (line 14) to see if they are compatible and
they can be unioned (line 20). This unioning essentially consists
of comparing all equivalence classes in the two sets and merging
them if they contain common values; or fail if they contain common
values but their representatives are different constants. At the end
of this process we apply the most general query unifiers to get their
query unifications, and we compute equalities between terms that
we will use as J4 and Jy (lines 27-32).

In practice, our implementation is more careful than the abstract
algorithm presented here, e.g., in line 31 our implementation com-
putes only a required part of the transitive closure. Moreover, notice
that in line 28 we obtain the most general query unification by only
applying the unifier to the constraint. We do not have to include
the extra joined atoms of the input query apart from the unified
atoms. Our end objective is to remove tuples from the input query
and, since the input query contains these joins, any tuples that we
are going to remove have to satisfy such joins in the first place.
This is referred to as serialization optimization in our experiments.

Every unification Alg. 1 finds creates an element in the union
of our rewriting. The latter can be exponentially large but each
element is NP-complete to compute in constraint size, as we prove
below. Moreover, to evaluate each of the elements in the union has
the same complexity as evaluation of CQs with safe negation (in
NP in query size). Thus, the whole end-to-end problem remains
NP-complete in combined complexity. Our complexity results are
reminiscent of Ontology Based Data Access [19], where a CQ is
rewritten over ontological constraints into a (possibly exponential)
UCQ. Similar to these results and since our rewriting is a UCQ with
safe negation we know that our data complexity (fixing the query
and constraints) is in ACO0.

THEOREM 4.5. Given a CQ q, a constraint qN, a database D, and
a tuple t, deciding ift € ¢~ ({qn}, D) is NP-complete.

5 EVALUATION

The algorithms described in Section 4, were implemented in Java
and executed over a PostgreSQL database using default settings
(code, data and experiments can be found in [1]). All experiments
were run on a 2.30GHz processor, with 32GB of memory, and a
total of 512GB of disk space. We have used two datasets for our
experiments. Initially, we used the TPC-H [47] dataset; in addition
to being a widely used benchmark in databases, it also provides
realistic scenarios for our framework such as customers and their
personal order data. We scaled TPC-H with default distribution
using scale factors 0.1, 1, 7, 33, 66, and 100. For reference, this results
in 15K, 150K, 1 million, 5 million, 10 million and 15 million tuples in
the Customer relation alone. We manually extracted the conjunctive
part of the TPC-H queries (queries 14 and 22 are meaningless as CQs
and discarded). Our second, real, dataset is MIMIC-III [3], a large,
freely-available database comprising of de-identified health-related
data associated with over forty thousand patients who stayed in
critical care units of the Beth Israel Deaconess Medical Center

Figure 2: TPC-H queries against constraints that opt-out 10%
of the join values. The graph shows our rewriting- vs the
annotation-based approach, the original query times also
with the execution of all constraints, and the re-application
of aggregation operators after the rewriting process.

between 2001 and 2012. We hand-crafted a number of queries and
automatically generated constraints inspired by the policies of [48].
We have four sets of main experiments. First, we compare against
our annotation-based semantics and we also show the impact of
re-application of aggregations on the rewritten queries. Second, we
compare against the most relative opt-in/out approach from data
privacy. Third, we explore the overhead of supporting fine-grained
consent in query answering (which often is minor), and then we
do scalability experiments where we scale the number and size of
constraints, using both TPC-H and MIMIC-III datasets.

5.1 Annotation semantics and aggregation

First, we compare our rewriting-based approach with our imple-
mentation of the annotation-based semantics. To implement this
semantics we wrote scripts that extend the database schema with
a label column and the data tuples with a unique id. We then im-
plemented Def. 3.5 to obtain the consent abiding answer of the
query. We run several experiments with the TPC-H queries, us-
ing the OJ set of constraints explained in Section 5.3. We varied
the data size and the number of constraints and we compared the
rewriting-based approach with the annotation-based. Fig. 2 shows
a small TPC-H scale (0.1) using 500 constraints.

The rewriting-based semantics clearly performs faster, even by
an order of magnitude, in all but two queries. Nevertheless, we find
that in larger scales the difference between the two approaches
becomes smaller and further investigation is needed into settings
where the annotation-based implementation might be preferable. At
the same time, the figure shows the original query execution’s time,
and as well the sum of the times it takes to execute all constraints
plus the query in isolation. We see that executing the rewriting in
all but the two slow aforementioned rewritings (Q9, Q18) is faster
than just executing the query and the constraints in isolation. This,
intuitively, shows that our rewriting approach very often does not
induce more overhead than what the constraints encode; on the
contrary, it might actually factor out execution cost of constraints
that are not overlapping with the query. The last point that Figure
2 makes is about inserting aggregation back in our re-writings. As
discussed, we rewrite the CQ part of our original query; thereafter
we have implemented a re-insertion of the aggregation back into

383

the rewriting. Note that our scripts do a “best-effort” approach in
re-inserting the aggregations; many of the TPC-H queries contain
aggregations in nested queries or interacting with other features
which are stripped out of the CQ version. As such, re-inserting ag-
gregations might end up in queries with different semantics. In fact,
we believe that focusing on aggregations should be an independent
piece of feature research on its own. Our experiments do show
however the impact of aggregations to some extend and we see
that, in almost half the queries the rewriting plus the aggregation
is faster than the rewriting itself. This happens in particular when
the rewriting produces an output which is order of magnitudes
larger than the result set of the aggregated version. Note that at this
point aggregation is supported only on the input queries and not
the negative constraints; for the latter further research is needed.

5.2 Comparison to Opt-in/out Approaches

Our approach allows us to capture more traditional opt-in/out
approaches as well. Here, we compare against the Hippocratic work
[33] where a user opts-in/out of sharing an attribute of a table.

Experiments in [33] use opt-in/-out choices at varying degrees
of selectivity over a single table. These options are encoded either
within the data as extra columns in the same data table (-IN) or
externally in a separate table (-EX). In our approach we can easily
encode these options as negative constraints. We reimplemented
this work (HIPPO) using the Customer table of the TPC-H dataset
which has 8 attributes. For the solution HIPPO-EX, we create a
“Choice Table” with 8 attributes distributing values that can take 1
(opt-in) or 0 (opt-out) as follows. Over the 8 attributes for which a
user can express choices, we vary the privacy selectivity to encom-
pass: 1%, 10%, 50%, 90%, 100% opt-ins. Within [33], a basic query
selecting all attributes is executed; based on the consent stored in
the choice cells, data cells are nulled out, and if the key becomes null
the entire tuple is removed from the answer. In our recreation of
HIPPO, we execute the same “SELECT *” query over Customer with
either internally or externally represented choices. Additionally,
we create a set of negative constraints that reflect information from
the choices. These are serialized via EXCEPT (E), LEFT OUTER
JOIN (LOJ), NOT EXISTS (NE), as discussed in Section 4.1. For these
use the optimization serialization discussed in Sec. 4.2, but we also
create a version of NOT EXISTS that does not use this optimization
(NEU). We also run the unmodified query (UM).

Queries are evaluated on a warmed-up database, and we take
the average of 11 executions. Fig. 3 contains times for all these
queries that honor consent both via HIPPO and our approach, for
the TPCH scale 100. As expected, enforcing the privacy choices is
slower than the unmodified query (UM) for all implementations.
Our implementation of NOT EXISTS with internal choices (NE-IN)
outperforms the unoptimized NOT EXISTS with internal choices
(NEU-IN), indicating that the optimization we discuss at the end of
Sec. 4.2 is worthwhile. Our NOT EXIST external choices (NE-EX)
outperforms both LEFT OUTER JOIN external choices (LOJ-EX)
and EXCEPT external choices (E-EX). Based on this we use NOT
EXISTS with optimization as our serialization method for the rest of
our experiments. Moreover, we can focus on comparing HIPPO-IN
against our NE-IN, and HIPPO-EX against our NE-EX. Our NE-IN
is always on par or slightly faster than HIPPO-IN, while our NE-EX

