
Scabbard: Single-Node Fault-Tolerant Stream Processing
Georgios Theodorakis
Imperial College London
grt17@imperial.ac.uk

Fotios Kounelis
Imperial College London

f.kounelis20@imperial.ac.uk

Peter Pietzuch
Holger Pirk

Imperial College London
{prp,pirk}@imperial.ac.uk

ABSTRACT

Single-node multi-core stream processing engines (SPEs) can pro-
cess hundreds of millions of tuples per second. Yet making them
fault-tolerant with exactly-once semantics while retaining this per-
formance is an open challenge: due to the limited I/O bandwidth
of a single-node, it becomes infeasible to persist all stream data
and operator state during execution. Instead, single-node SPEs
rely on upstream distributed systems, such as Apache Kafka, to
recover stream data after failure, necessitating complex cluster-
based deployments. This lack of built-in fault-tolerance features
has hindered the adoption of single-node SPEs.

We describe Scabbard, the first single-node SPE that supports
exactly-once fault-tolerance semantics despite limited local I/O
bandwidth. Scabbard achieves this by integrating persistence op-
erations with the query workload. Within the operator graph, Scab-
bard determines when to persist streams based on the selectivity of
operators: by persisting streams after operators that discard data, it
can substantially reduce the required I/O bandwidth. As part of the
operator graph, Scabbard supports parallel persistence operations
and uses markers to decide when to discard persisted data. The
persisted data volume is further reduced using workload-specific
compression: Scabbardmonitors stream statistics and dynamically
generates computationally efficient compression operators. Our
experiments show that Scabbard can execute stream queries that
process over 200 million tuples per second while recovering from
failures with sub-second latencies.

PVLDB Reference Format:

Georgios Theodorakis, Fotios Kounelis, Peter Pietzuch, and Holger Pirk.
Scabbard: Single-Node Fault-Tolerant Stream Processing. PVLDB, 15(2):
361 - 374, 2022.
doi:10.14778/3489496.3489515

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/lsds/LightSaber.

1 INTRODUCTION

By 2025, 30% of all data is likely to be analyzed in real-time [91].
Therefore, it is not surprising that stream processing is quickly
becoming the fourth important data-intensive application work-
load (next to transaction processing, reporting, and online analyt-
ics). Stream processing enables applications ranging from real-time

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489515

10
2

10
3

10
4

10
5

CM1 CM2 SG1 SG2 LRB1 LRB2 YSB

SSD I/O bandwidth

T
h
ro

u
g
h
p
u
t
(M

B
/s

) Kafka
LightSaber

Figure 1: Data ingestion rates for stream queries in a single-node
SPE (LightSaber) vs. a persistent message queue (Apache Kafka)

credit card fraud detection [36] to click-stream analytics [2, 20, 44],
and live mining of sensor data [28, 29]. Given future data volumes
and velocities, high throughput and low latency performance are
key requirements for stream processing.

To accommodate growing data amounts, distributed stream pro-
cessing engines (SPEs) such as Flink [19] and Spark Streaming [108]
scale out processing to a cluster of nodes through appropriate data
partitioning [19, 108] – at substantial operational cost. With the rise
of parallel hardware, such asmulti-core CPUs andGPUs, wewitness
scale-up designs for single-node SPEs [65, 76, 77, 96, 110] that rival
the performance of cluster-based deployments. While high-speed
networking such as RDMA [16, 59] provides 200 Gbps per-port
bandwidth with microsecond latencies [11], which allows for fast
stream ingestion and remote storage [63], existing cluster-based
SPEs cannot saturate these fast interconnects [109]. In contrast,
single-node SPEs yield up to an order of magnitude higher per-
formance with fewer resources and lower maintenance costs [86].
Such high execution efficiency is achieved by avoiding abstractions
for distributed processing and incorporating techniques such as
just-in-time (JIT) code generation [47, 96].

Despite these advantages, single-node SPEs have seen limited
adoption in practice due to a lack of fault-tolerancemechanisms that
guarantee correct results after system failure [6, 53, 94]. Existing
cluster-based SPEs achieve at-least-once or exactly-once delivery
semantics by persisting input tuples along with the computational
state [19, 37] or logic [107]. Systems typically offload persistence
to external distributed messaging systems such as Kafka [7], Ki-
nesis [4] or Pulsar [87], or stores such as RocksDB [35] or Faster [21].
The use of external systems for persistence introduces overheads [33,
89, 90] that increase the size of scaled out deployments.

While the same persistence approaches could be used for single-
node SPEs, relying on an external cluster-optimized system for
persistence, such as Kafka, counteracts the benefits of a single-node
deployment. A single Kafka node cannot support the performance
requirements of modern single-node SPEs. To illustrate the mag-
nitude of the problem, Fig. 1 shows the difference in ingestion
throughput for a set of real-world stream queries [96] between
LightSaber [96], a high-performance single-node SPE with query

361

https://doi.org/10.14778/3489496.3489515
https://github.com/lsds/LightSaber
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489515
https://www.acm.org/publications/policies/artifact-review-and-badging-current

compilation, and Kafka, a popular persistent message queue sys-
tem. As the results show, a single Kafka node can only ingest data
streams at rates that are several orders of magnitude lower than
LightSaber’s query performance and does not even saturate the
SSD bandwidth (indicated by a dashed line). While it is possible
to scale out the Kafka deployment to increase its throughput lin-
early through stream partitioning, this requires a large cluster (with
associated maintenance costs) just to support a single SPE node.

A strawman solution is to design a “self-contained” fault-tole-
rance mechanism for a single-node SPE in which the SPE persists
all input data streams (and temporary processing state) to stable
storage to recover processing after failure. We observe that, for
such an approach, disk I/O bandwidth becomes the limiting factor
for a majority of queries in Fig. 1, capping performance to 950 MB/s.
While I/O bandwidth can be increased through hardware solutions
(e.g., NVMe SSDs [106] or RAID [82]), this also increases costs.

Our goal is, thus, to design and implement a single-node fault-
tolerant SPE whose fault-tolerance mechanism (i) accounts for the
limited available I/O bandwidth (especially when using remote stor-
age [3]); (ii) has a low impact on processing performance without
failures; and (iii) allows fast recovery after failures. Our key idea is
to reduce the required disk I/O bandwidth by tightly integrating
stream and state persistence with the operator dataflow graph of the
query. This way, the SPE can apply workload-specific optimizations
to (a) reduce I/O bandwidth by only persisting stream and operator
state after high selectivity operators have executed and (b) compress
data before persistence with query-specific compression.

We describe Scabbard, a new single-node fault-tolerant SPE
that provides exactly-once semantics without compromising pro-
cessing throughput. Scabbard’s query execution engine is based
on LightSaber [96], a state-of-the-art SPE that uses JIT query com-
pilation and balances parallelism and incremental processing for
windowed stream queries. Scabbard’s fault-tolerance approach
is to persist input streams and transient operator state to an SSD.
Here Scabbard makes the following three novel contributions:
(i) Persistent operator graph model. Scabbard introduces a
new persistent operator graph model that allows for workload-aware
decisions about data persistence: operators can be reordered to
reduce the needed I/O bandwidth for persistence. Based on query
characteristics, Scabbard “pushes persistence up”,1 i.e., pruning
data with high-selectivity operators. To enable parallelism when
persisting streams and operator state, the persistent operator graph
uses two abstractions: persistent streams, or p-streams, and fault-
tolerant operators, or ft-operators. P-streams are reliable FIFO chan-
nels that support the parallel logging of streams; ft-operators enable
the parallel checkpointing and recovery of stateful operators’ state.
To coordinate persistence decisions, the persistent operator graph
uses control tuples (markers) that flow between operators and trig-
ger storage and garbage collection operations.
(ii) Query-specific adaptive compression. To further reduce
the persisted data, Scabbard compresses p-streams by generat-
ing custom compression operators, taking stream statistics (e.g.,
data ranges, sequences of equal values, etc.) into account. This
exposes the trade-off between the computational cost of a compres-
sion algorithm and the compression benefit in terms of saved I/O
1We use a relational view in which “up” means closer to the output.

bandwidth. Scabbard then selects a suitable compression algorithm
(e.g., run-length encoding, null suppression, delta-encoding, etc.)
and inserts compression operators dynamically into the persistent
operator graph. The choice of compression algorithm is adaptive:
when the statistics of the p-stream change, Scabbard switches to a
new compression algorithm while processing.
(iii) Efficient failure recovery mechanism. Scabbard achieves
sub-second recovery latencies by reducing the data loaded from
storage. It persists the ft-operator state frequently with low over-
head through asynchronous checkpointing. To avoid the overhead
of query compilation during recovery, Scabbard also stores the
optimized code of compiled queries in a native binary format. To
recover only the minimum data, persisted data is garbage collected
when the dependent results have been emitted or persisted.
Our evaluation shows that Scabbard introduces less than 30%
overhead in processing throughput compared to no fault-tolerance.
On a 16-core server, it processes over 200 million tuples per second
with 8 ms latency (95th percentile) and recovers below a second. It
outperforms Apache Flink, a state-of-the-art fault-tolerant SPE, by
at least an order of magnitude for all our benchmarks. Scabbard
achieves stream persistence similar to a 20-node Kafka cluster with
3× lower 95th percentile latency. It achieves a throughput of up to
10.5 GB/s using 100 Gb/s InfiniBand with RDMA for stream ingress.

2 FAULT-TOLERANCE IN STREAM

PROCESSING

We begin with a discussion of fault-tolerance approaches for stream
processing. First, we describe our failure model (Sec. 2.1) and how
fault tolerance is realized in SPEs (Sec. 2.2). We then formalize the
stream processing model that the paper assumes (Sec. 2.3).

2.1 Failure model

SPEs [19, 37, 53, 65, 108] execute continuous queries that translate
into operator graphs, q = (O, S,B), where O is a set of operators, S
is a set of streams and B is a set of feedback channels for sending
acknowledgments to operators. The graph’s nodes represent the
operators; both the streams and the feedback channels are directed
edges (i.e., FIFO communication channels). Every graph has special
operators that act as sources and sinks by subscribing to input
streams or committing results externally.

The operators of such a graph can be stateless (e.g., SELECTION)
or stateful (e.g., AGGREGATION) and maintain arbitrary state, usually
defined with finite windows [8] of tuples. However, given typical
failure rates in large data centers [42], stateful operators pose a
challenge for providing correct results under failure.

We consider failures that cause an SPE node to fail-stop [34]. We
assume that an SPE node is connected to external sources/sinks via
a reliable network and has access to storage that survives failures
(e.g., flash storage [3, 43, 48, 66]).

Upon failure, operators must resume processing from the point
at which they failed. For stateful operators, recovery requires redun-
dant storage [97]: of the computational logic to replay past tuples;
and of the computational state [53] to avoid replay if the state can
depend on the entire stream history.

SPEs can achieve high availability [52] using passive standby,
active standby, or upstream backup: with passive standby, streams

362

(and state) are maintained in stable storage or the memory of an-
other node; with active standby, redundant nodes are deployed that
receive and process the same streams as the primary ones; with
upstream backup, each node retains its output and, in case of failure,
restores the downstream node’s state by replaying it.

To mask the effects of failure fully, an SPE must remove dupli-
cate tuples when restoring state. Fragkoulis et al. [40] distinguish
between exactly-once state and exactly-once output, with only the
latter avoiding duplicates. Providing exactly-once output is also re-
ferred to as the output commit problem [34], precise recovery [52]
or strong productions [2].

2.2 Failure recovery in SPEs

We now examine how SPEs achieve fault-tolerance with exactly-
once output and discuss the challenges for single-node designs. The
four most common fault-tolerance approaches are:
(i) Transaction-based: Trident [98, 99] and MillWheel [2] remove
duplicates. They assign unique identifiers to tuples and commit state
updates or produced tuples to an external transactional store [23].
(ii) Lineage-based: Spark Streaming [10] tracks and persists the
input/output dependencies of operators (i.e., lineage [107]) before
execution. Using the failed operator’s lineage, Spark restores the
previously computed state by re-executing tasks.
(iii) Checkpointing: Flink [18] uses a distributed protocol for
global checkpointing that asynchronously persists operator state
with epochs (aligned checkpoints). Other approaches [37, 38, 79] log
tuples from streams for better runtime performance at the expense
of higher recovery times [40], called unaligned checkpoints. With
an embedded key/value store, such as RocksDB [35], Flink also
supports incremental checkpoints [97].
(iv) Changelog-based: To enable state recomputation without
persisting state dependencies, Kafka Streams [53] persists state
metadata in a changelog, which is stored in Kafka [67]. Although
its design combines computation with storage, the use of Kafka as
the messaging system between operators increases latency.
While these approaches offer strong guarantees under failures in a
distributed deployment, they face limitations for single-node SPEs.
First, they rely on external messaging systems [67, 87] to create
fault-tolerant sources. These messaging systems require non-trivial
tuning [17, 32] and do not maintain compact representations of
stream data, which can lead to higher recovery times [74]. Second,
they use key/value stores for state management that are often not
designed for stream applications [58]. This limits performance [46,
60, 73] and misses optimization opportunities.

2.3 Stream processing model

Following the semantics of the continuous query language (CQL) [8],
we adopt a relational stream model with windows.
Data model. A stream s is an infinite sequence of tuples, t ∈ s .
Each tuple t = (ε, τ ,p) has: an event timestamp ε(t) ∈ E that
denotes when the event occurred, where E is an ordered time
domain of discrete non-negative integer values; a logical timestamp
τ (t) ∈ N+ assigned by a monotonically increasing logical clock
at each operator upon receipt [37]; and p, a sequence of values

of primitive data types. We assume that tuples in a stream arrive
in-order based on their event timestamps.
Operator model. Each operator o receives tuples from n upstream
operators to its input queues, I = {s1, ..., sn }. It then applies an
operator function f , and produces tuples for its downstream opera-
tors stored in a result buffer, denoted by R. An operator keeps track
exchanged tuples with two progress vectors, PV in and PV out [105];
stateful operators have processing state Θ. For ease of presentation,
we denote an operator snapshot as C = (I ,R,Θ, PV in, PV out) and
use the notation Cτe to indicate that it has all values up to τe .

An operator function f is composed of: a state transition func-
tion ρ that accepts the current state Θi and an input tuple ti
and yields the new state Θi+1; and an output function ω that ac-
cepts a state and an input tuple and outputs one or more2 tuples
⟨tj , ..., tj+x ⟩.

We consider queries that use window functions over streams to
transform them into finite sequences, called window fragments [65].
For efficient operator parallelization [65, 96] without depending on
distinct keys, every state transition function is decomposed into:
(i) a fragment function ρf that processes a sequence of fragments
and produces immutable partial results; and (ii) an assembly func-
tion ρα that constructs and reorders complete window results. Each
operator generates computational tasks by bundling fixed-sized
data batches from its inputs with ρf and ρα .

3 SCALE-UP PERSISTENCE

A single-node SPE has limited disk bandwidth, disk space, and CPU
capacity. Therefore, its fault-tolerance mechanismmust persist only
the required parts of streams and operator state to enable recovery.
Selecting what to store or how to manage persistence and recovery
operations are non-trivial tasks, which are highly query- and input-
specific. In particular, which data to persist and discard cannot
be determined statically and instead requires runtime knowledge
about e.g., the data lifetime and its distribution.

Our idea is to exploit the information of the operator graph
to enable optimizations related to persistence by encoding it in a
structure that we call a persistent operator graph (POG). The POG
contains aspects of both query compile-time and runtime. Fig. 3
shows the POG for the third LR Benchmark query [9] (defined
in Sec. 6.1, listed in Fig. 2). The POG extends the operator graph
with two new compile-time abstractions (shown in red) and two
coordination abstractions (shown in green). Through its compile-
time abstractions, persistent streams (p-streams) and fault-tolerant

operators (ft-operators), a POG supports stream and state persistence.
As these persistence operations require runtime coordination to
achieve consistency when recovering, the POG also introduces
persistence units (p-units) and a set of coordinationmarkers. A p-unit
is a batch of data (i.e., a finite subsequence of a stream or operator
state) with associated metadata (i.e., lineage information), which are
persisted, recovered and discarded atomically. Markers are special
control tuples in a stream [18, 22] that coordinate the flow between
operators and trigger persistence and removal operations.

2e.g., join operators produce multiple output tuples per input tuple

363

Table 1: Scabbard fault-tolerance abstractions

Entity Definition in C++ notation Description

PStream

void subscribe(Operator, ReaderId, Offset) Subscribes an operator as reader to the channel
promise<void> write(PUnit<Tuple>, BatchId, Offset, isPersistent) Adds data to the channel
PUnit<Tuple> read(ReaderId) Returns the next available tuples
promise<void> checkpoint(BatchId, CheckpointId) Writes data to stable storage
void trimFrom(ReaderId, Offset, isPersistent) Removes data from the channel
promise<void> loadStream(PUnit<Tuple>, BatchId) Loads data to the channel from stable storage

FTOperator

void prepareCheckpoint(CheckpointId) Mark the streams/state that are going to be checkpointed
promise<void> checkpoint(PUnit<Tuple>, BatchId, CheckpointId) Writes state to stable storage
promise<void> loadState(PUnit<Tuple>, BatchId, CheckpointId) Loads state from the last valid checkpoint
void sendAck(FTOperator) Sends a retain marker to an upstream operator
void setDependencies(PUnit<Tuple>) Calculates the data dependencies of a PUnit
list<Offset> getLatestOffsets() Returns a list of the latest offsets it has received

PUnit

void compress((...)->{...}, StorageBuffer, Index) Compresses tuples with a given compression function
void decompress((...)->{...}, StorageBuffer, Index) Decompresses tuples with a given decompression function
list<Offset> getDependencies() Returns a list of data dependencies

POG

void insertRetainMarker(PStream) Sends a retain marker to a channel
void insertCheckpointMarker(FTOperator) Sends a checkpoint marker to an operator

(select timestamp , vehicle , highway , direction , segment , count (*)

from SegSpeedStr [range 30 slide 1]

group by highway , direction , segment , vehicle) as R --

select timestamp , highway , direction , segment , count(vehicle)

from R group by highway , direction , segment

Figure 2: LRB3 query in CQL

3.1 Persistence abstractions

The compile-time abstractions of POGs expose operations for the
persistence management of streams and state in an operator graph,
which can be executed in parallel at runtime. These abstractions
are accessible through intuitive interfaces (summarized in Table 1):
A persistent stream (p-stream) provides a reliable FIFO commu-
nication channel between two operators in the POG, supporting
asynchronous stream persistence at the granularity of p-units. For
example, p-streams can be used as ingress streams to persist the
incoming data in the absence of a fault-tolerant stream source. Ev-
ery p-unit in a p-stream is assigned a monotonically increasing
logical timestamp τ (t), which maps to the logical position of the
first tuple in the stream. If a p-stream is marked for persistence
with coordination markers (see Sec. 3.2), its data becomes available
only after it is stored to disk.

While a p-stream is related conceptually to the well-known
notion of upstream backup [52], upstream backup persists only
ingress streams (an external system usually creates backups). In
contrast, a POG allows persistence anywhere in the operator graph,
which enables new optimizations (see Sec. 3.4).

The p-stream interface allows to subscribe to, write to and
read from its channel (see Table 1). As multiple operators can
subscribe to a single p-stream, a p-stream tracks their progress
using a stream Offset.
A fault-tolerant operator (ft-operator) is an operator with sup-
port for consistent checkpointing and recovery through progress
tracking. In Table 1, we describe its interface to create checkpoints
and loadState from the last snapshot. In general, ft-operators can
be stateless (Θ = ∅), e.g., PROJECTION (π), SELECTION (σ), or stateful,
e.g., AGGREGATION (α), GROUP-BY (γ), JOIN (Z). For stateful operators,
the ft-operator partitions its state Θ into immutable p-units, which
can be persisted to and recovered from storage.

Tracking data dependencies, however, poses a challenge as a
p-unit may contribute to multiple results. An ft-operator solves
this problem by computing the dependencies between p-units. It

Figure 3: Persistence operator graph (POG) with p-streams, ft-
operators, and markers for LRB3 query

attaches a lightweight graph structure using setDependencies,
and the dependencies are calculated based on the logical times-
tamps, the input ordering and the window semantics (similar to
Timestream [88] or D-Streams [108]). Thus dependencies capture
the relationship: (i) between p-units from different streams (i.e.,
stream-to-stream dependencies); and (ii) p-units from state and
streams (i.e., state dependencies). The logical timestamps of the
graphs can be serialized to vector clocks VC [75], which determine
the event ordering upon recovery.

Although every deterministic operator in the POG can become
an ft-operator, checkpointing overhead can be traded-off against
recovery time by replacing only the most downstream operators
with ft-operators. To prevent inconsistent operator state after a
failure [34], if an operator is marked as fault-tolerant, the POG
replaces all its downstream operators with ft-operators.

3.2 Persistence and recovery coordination

After a failure, the SPE must recover and recompute the data re-
quired to recreate the POG’s operator state, which is challenging
for exactly-once semantics. To manage the operations required to
achieve this on a single-node SPE, we introduce a persistence protocol
with markers. POGs support three types of markers: (i) checkpoint
markers trigger operator checkpoints; (ii) retain markers mark a
p-unit in a p-stream for persistence; and (iii) release markers sig-
nal that a specific p-unit is no longer required for recovery. For
state recovery, the protocol uses consistent snapshots. Following
the state recovery, all data that is not part of the last checkpoint
must be replayed, while tuples already produced are dropped. The
persistence protocol has five asynchronous primitives, shown in
Alg. 1 and described next.
Consistent checkpoint coordination is achieved by checkpoint

markers similar to the Chandy-Lamport algorithm [22]. They are

364

Algorithm 1: POG’s persistence protocol executed by operator o
1 init ▷ Initialize local variables
2 C = (I , R , Θ, PV in , PV out) ← ({∅}, ∅, ∅, {0}, {0})
3 U ← {oi , . . . , oi+x }, D ← {oj , . . . , oj+y } ▷ Upstream and downstream

operators
4 snapshot ← ∅, marked ← ∅, taskQueue← ∅, persist ← {false}

5 upon receive < marker > from in ∈ I
6 (type, VC) ← marker

7 if type = checkpoint then

8 marked ← marked ∪ in
9 if |marked | = 1 then ▷ The first marker overtakes all t ∈ I or R
10 broadcast(D ,marker), snapshot ← snapshot ∪ I ∪ R ∪ Θ

11 if marked = I then ▷ Store to disk when all markers are received
12 taskQueue← taskQueue ∪ checkpointTasks(snapshot)
13 snapshot ← ∅, marked ← ∅

14 else if type = release then ▷ Remove obsolete data fromC
15 C = C \CVC[D] , broadcast(U ,marker)

16 else persist[in] ← true

17 upon receive < punit > from in ∈ I
18 (tuples, offset, VC) ← punit

19 if offset > PV
in[in] then ▷ Persist channels that have not sent a marker

20 if |marked | , 0 ∧ in < marked ∧ persist[in] = false then

21 snapshot ← snapshot ∪ punit

22 (Q, id, offset) ← in

23 taskQueue← taskQueue ∪ persistTask(Q, tuples, id, offset, persist[in])
24 in← (Q, id + 1, offset + |tuples |)
25 PV

in[in] ← PV
in[in] + |tuples |, persist[in] ← false

26 upon receive < notification > from in ∈ I
27 taskQueue← taskQueue ∪ queryTask(ρ f , ρα , I , R , Θ)
28 upon receive < notification > from R
29 for out ∈ D do ▷ Simplified version of sending data downstream
30 (punit, offset, VC) ← read(R , out)
31 if offset > PV

out [out] then
32 ack ← send(out, punit)
33 if ack then

34 PV
out [out] ← PV

out [out] + |tuples |

35 if o = mostDownstream then

36 marker ← (release, VC), broadcast(U ,marker)

37 upon recovery

38 VC = loadMetadata() ⊕ requestMetadata(D), broadcast(U , VC)

39 PV
in ← VC[U], PV

out ← VC[D]
40 taskQueue← taskQueue ∪ recoveryTasks(C)

injected with insertCheckpointMarker at regular intervals or
using a custom dynamic trigger. When an ft-operator receives a
checkpoint marker (line 7, Alg. 1): (i) on the first invocation, the
prepareCheckpoint function triggers the synchronous prepare

phase for all the p-units of an ft-operator’s transient state Θ and its
queues I and R; and (ii) once all checkpoint markers are received
from its upstream operators, the operator creates and dispatches
asynchronous tasks to write the p-units to storage. We decide to
accelerate persistence with asynchronous I/O operations because
they can overlap with CPU operations (i.e., query execution). The
checkpoint completes when all marked p-units have been persisted.

Given a global checkpoint GCτe of graph q at τe and a snapshot
Coiτei

of operator oi at τei , the Chandy-Lamport algorithm guaran-
tees that every tuple from GCτe is captured either in the upstream
operator’s queue or the downstream operator’s queue or state:
∀Co1τe1

∈ GCτe∀C
o2
τe2
∈ GCτe , (o1,o2) ∈ S ∀τn : (τn ≤ τe1 ⇒ to1n ∈

Ro1) ∧ (τn > τe1 ⇒ to1n ∈ I
o2 ∨ τe2 ≥ τn). We refer to that as the

at-least-once property.
Efficient data replay. The persistence protocol replays tuples that
are not captured in the last checkpoint by determining what data
to persist and remove with retain and release markers. The retain
markers are injected into the ingress p-streams at periodic intervals
using the POG’s insertRetainMarker function. They flow through

the POG (e.g., Fig. 3 shows a retain marker between operators
Compression anda1). Upon receipt of a retainmarker (line 16, Alg. 1),
the p-stream creates a sequence of p-units with the tuples that
follow. To remove parts of the p-stream that are no longer required
for the output result, the POG provides release markers (line 14),
which are sent on feedback channels to discard p-units (Fig. 3 shows
a release marker being sent from a2 to a1).
Data deduplication is achieved by exploiting the dependencies
between p-units to track the query progress and remove duplicates
(line 31). Persisting the dependency graphs for all operators before
execution, however, introduces a substantial overhead.

Therefore, to achieve exactly-once output, the persistence proto-
col persists only the most downstream operators’ progress with two
different methods: the first requires a transactional sink [67, 87],
and the most downstream operator performs a two-phase commit
to persist progress; the second requires the sink to store a serialized
vector clock VC with every output result, return the most recent
one on request and filter duplicate tuples similar to line 19 of Alg. 1.
The recovery protocol retrieves the query progress from storage
before deciding which stream and state parts to restore. Recovery
is divided into four phases (lines 37–40, Alg. 1): progress recovery,
upstream requesting, data recovery and upstream replay.

All operators in progress recovery (line 38) load the timestamp
intervals captured by their latest checkpoints and most recent com-
mitted dependencies. In upstream requesting (line 38), operators
send requests downstream for the latest persisted vector clock. At
the end of this phase, every operator has sufficient information to
reload the data from the last checkpoint/streams and drop results
already processed with its progress vectors PV in and PV

out . Next,
the protocol moves on to the data recovery phase (line 40) using
the loadState and loadStream functions, while parallelizing the
process for effective hardware utilization. In the final upstream
replay phase (line 26), operators send data downstream as they
would during normal operation. This last phase transitions into
regular execution as ingress streams receive new data.

3.3 Garbage collection

In contrast to relational processing, stream queries perform com-
putation over infinite streams, which raises two challenges when
persisting data: (i) the finite disk capacity, especially when con-
sidering faster non-volatile memory or the storage cost in a cloud
infrastructure [64]; and (ii) the high recovery latency when replay-
ing large amounts of data to ensure exactly-once semantics. Thus, it
is necessary to remove persisted tuples, state and recovery metadata
that is no longer required.

An SPE can use garbage collection (GC) to discard obsolete data
with either retention policies [67] or classic mark & sweep. Nei-
ther approach, however, applies to a single-node SPE: retention
policies require the user to define a threshold for data removal for
each query, which cannot be automatically derived from the query
semantics; mark & sweep has a high runtime overhead [79]. There-
fore, we propose a GC approach that is semantically partitioned and
optimistic under failure.

With semantic partitioning, a single p-stream or ft-operator
retains ownership of each p-unit. Given that each operator tracks
the dependencies of p-units and manages their ownership when

365

data dependencies
a3 a2 a1 c2

c1 e2

d1d2

b1b2

e1

system

p-stream

d3

Figure 4: P-unit dependency tracking

passing them downstream, it is easier to reason about correctness
when discarding data, and GC is simplified under concurrency.

As p-units in streams are ordered, and the checkpoints capture
the progress of ordered data and deterministic operations, GC can be
performed at a coarse granularity. This minimizes overhead because
previous p-units with an Offset less or equal to a given value can
be discarded in bulk. Without data loss, a p-unit can be removed if
all its dependent results [69] have been either (i) persisted to disk or
(ii) committed to the outside world. When these conditions are met,
a reverse topological ordered traversal of the dependency graph
is performed to send release markers upstream (lines 36 and 15).
We refer to this GC approach as optimistic because it guarantees
that all p-units are eventually removed: when p-units with a larger
Offset are discarded, they invalidate all previous ones.
Example. Fig. 4 shows the emission of tuple e1 at which point its
dependencies (shown in green) can be garbage collected. Note that
all transitive dependencies of e1 appear earlier than the dependen-
cies of e2, because p-units are ordered by increasing Offsets in
their operator’s partition. By using the trimFrom function, each
operator removes obsolete stream and state data.

3.4 Persistence push-up

We now describe the optimizations enabled by the POG to re-
duce disk I/O bandwidth and shorten the recovery process. Stream
queries often consist of highly-reductive, inexpensive operators
early on in their operator graphs, e.g., SELECTION, which eliminates
tuples. By considering persistence as an operation within the POG,
it can be “pushed up”, i.e., executed after the data reducing opera-
tors. This provides a compact representation of the stream required
for recovery and accelerating persistence.

To perform persistence push-up, the POG is traversed in topolog-
ical order, and a set of transformation rules are applied to rewrite
it. These transformation rules identify unused attributes and insert
appropriate PROJECTION operators to prune them or push down se-
lective operators (e.g., SELECTION). Persistence push-up is restricted
to the following operator types: operators with selectivity below
one (e.g., SELECTION or a HAVING clause), i.e., ones that output fewer
tuples than they consume, or ones that reduce the number of bytes
required to represent a tuple (e.g., PROJECTION or COMPRESSION).

Fig. 3 shows a POG instance after persistence push-up, where
the PROJECTION and COMPRESSION operators are placed to the left of
the p-stream, thus decreasing I/O bandwidth for persistence.

The rationale behind the choice of the previous operator types is
straightforward: stateful operators (e.g., AGGREGATION or JOIN) would
amplify the output stream size based on the window semantics (e.g.,
for small window slides), increasing the amount of stored data. In
general, stateful operators expose complex data dependencies that

are expensive to capture and, thus, are more suitable for checkpoint-
ing. Therefore, persistence push-up avoids pushing down stateful
operators, as this would increase recovery latency and burden the
external sources with buffering data for longer periods before the
protocol acknowledges their persistence.

3.5 Correctness

Next, we formally show the correctness of the persistence protocol.
The protocol considers the operator graph as a single fail-stop
recovery unit [95], i.e., if one or more operators fail, the whole graph
must recover. The SPE has access to persistent storage that survives
failures, allowing recovery to a different node. It communicates
over reliable FIFO network channels with external sources/sinks to
guarantee data delivery; the ingress channels3 allow replay even
under failure. To ensure exactly-once output, the protocol requires
deterministic operators without side effects, a consistent checkpoint
mechanism and that the vector clock VC of the last externally
committed tuple is persisted.

First, let us prove that the persistence protocol guarantees exactly-
once output for a single operator and then generalize this to arbi-
trary operator graphs.
Definitions.As discussed in Sec. 2.3, each operator function is mod-
eled as a pair of a state transition function ρ and an output function
ω. F denotes the infinite (deterministic and correct) sequence of
all tuples produced by an operator without failures. To restrict a
tuple sequence to an interval, we use the notation F [m,n] to denote
⟨ω(Θi , ti)|i ∈ [m,n]⟩. We denote the deduplication function that
uses logical timestamps to filter tuples as ϕ .
Theorem 1. Given a single operator graph, failure at timestamp τf
and recovery from timestamp τr , the persistence protocol produces
a recovery sequence Fr , Fr =ϕ

(
F
[
0, τf

]
+⟨ω (Θi , ti) |i ∈ N , i ≥ τr ⟩

)
that is equal to the correct sequence, i.e., Fr = F .
Proof. LetCτe = (I ,R,Θτe , PV

in, PV out) be the checkpoint at times-
tamp τe ; let τp be the timestamp of the last persisted input tuple
in the operator’s p-streams such that τe ≤ τp ; let X [τp+1,∞] =〈
ti |i ∈ N , i ≥ τp+1]

〉
be the sequence of tuples held by the external

sources (i.e., all tuples after τp); and let VC = ⟨τvI , τvR ⟩ be the last
committed vector clock at recovery time (τvI and τvR being the
timestamps of input and output streams, respectively).

The first part of the recovery sequence F [0, τf] denotes the tu-
ples emitted before failure, while ⟨ω (Θi , ti) |i ∈ N , i ≥ τr ⟩ denotes
the sequence produced after failure. For the latter sequence, the
operator retrieves its input sequences I [τvI ,∞] and state Θτf in
one of three ways: (i) if τp = 0 (i.e., no data has been persisted and
Θτf = ∅), all data is received from X [τp+1,∞] and the recovery se-
quence becomes F [τp + 1,∞] =

〈
ω (Θi , ti) |i ∈ N , i ≥ τp+1]

〉
; (ii) if

τvR ≤ τe (i.e., all output dependent to the checkpoint has been
emitted), the operator reconstructs its state Θτf from an empty set
by using the state transition function and replays all data persisted
in its p-streams until τp . The remaining data is received from the
sequence X [τp+1,∞] and the operator uses the reconstructed Θτf
to produce the sequence

〈
ω (Θi , ti) |i ∈

[
τvI , τp

]〉
+ F [τp + 1,∞];

(iii) if τvR > τe (i.e., there is output that depends on the checkpoint),
Θτf is restored from Cτe and data replay from the p-streams and

3For non fault-tolerant external sources, the channels are replaced with p-streams.

366

used to produce the recovery sequence as in case (ii). Thus, in all
three cases, Fr can be reconstituted from the last checkpoint and
a finite external source buffer (i.e., only data between τp and the
timestamp at the beginning of recovery).

Given that there may be overlap between the output before and
after failure, the duplicate elimination function ϕ ensures at-most-
once output. As the concatenated output stream before and after
failure guarantees at-least-once, Fr equals F and has the exactly-
once property. □

Let us now generalize the property to arbitrary graphs.
Theorem 2.Given an arbitrary execution graph with a single most-
downstream operator od that is fault-tolerant,4 a global coherent
checkpointGC , a failure at timestamp τf and recovery from times-
tamp τr , the exactly-once guarantee of the final operator extends
to the entire operator graph.
Proof. Let us prove the theorem by induction, using Theorem 1
as the base case. The exactly-once fault-tolerance property of the
graph is equivalent to the fault-tolerance of the most downstream
operatorod . Analogous to the single operator case, the fault-tolerance
of od is proven for three cases: just as for Theorem 1, in cases (i)
and (ii), the operator replays data from its inputs. By induction, the
sequence produced by each input has the exactly-once property,
even under failure; in case (iii), the operator loads its state from the
last snapshot Cτe before triggering a downstream replay.

While the at-most-once guarantee stems from the ϕ-function,
we must prove at-least-once processing of every input tuple, i.e.,
that every input tuple is either in its producer’s output queue, the
operator’s input queue, or already reflected in the operator state.
Formally, ∀oi ∀tj ∈ Foi ∃ τx | τx < τf : τj > τx ⇒ tj ∈ R

oi ∨ tj ∈
Iod ∨τe ≥ τx . This follows trivially from the at-least-once property
of a snapshot, as defined in Sec. 3.2. As od guarantees at-most and at-
least once results, the operator graph guarantees exactly-once. □
Discussion. The persistence protocol can be extended for out-
of-order data processing and non-deterministic operations. With
out-of-order data, we can add punctuation tuples [15] to markers
for sorting tuples deterministically in a stream.

For the support of non-deterministic operations, the protocol
must log all non-deterministic decisions and replay them for recov-
ery [2, 102]: input and output channels must be replaced with p-
streams for logging all tuples [34], whichmay incur a high overhead.
New operators can be specified as user-defined functions (UDFs) by
implementing the interface from Table 1, while a similar approach
to [93] can be used to capture all the sources of non-determinism.

4 SCABBARD ARCHITECTURE

While POGs provide a high-level interface for fault-tolerance opera-
tions, an SPE must coordinate these operations efficiently, consider-
ing the limited single-node resources and workload characteristics.
We describe Scabbard, an SPE for multi-core CPUs that realizes the
POG model. Its goal is to provide exactly-once fault-tolerance with
minimal performance impact by making workload-aware decisions
during execution. After an overview of the Scabbard architec-
ture (Sec. 4.1), we explain how Scabbard manages persistent data,
and reduces the recovery time (Sec. 4.2).
4Decomposing a query with multiple outputs into multiple queries with a single output
is straightforward.

Task
Dispatcher

Code
Generation

σ αα

Logical Query Plan

Compiler/
Optimizer

α α
Query Task
Checkpoint Task

σ
Persist Task

I/O
Profiling

Input
Streams

Input Buffers Result Buffer

Output
Streams

Stable
StorageCheckpoint

Controller

Block Manager

Task Queues

Query Management
Query Execution

Scabbard

Worker

1

2

3 4

5

6

Figure 5: Scabbard architecture (For simplicity, the figure omits the
interaction of the query execution layer with the Block Manager and the
Checkpoint Controller.)

4.1 Overview

Scabbard is based on the query execution engine and compiler
from LightSaber [96]. To support persistence, Scabbard introduces:
(i) a Block Manager that stores streams and state; and (ii) a Check-
point Controller that orchestrates consistent checkpoints and recov-
ery. For efficient persistence, Scabbard uses task-based paralleliza-
tion for multi-core execution and adaptive data pruning for I/O
bandwidth reduction. Scabbard schedules tasks to a set of worker
threads, with each worker bound to a physical CPU core. Depend-
ing on the number of pipeline breakers [109] (e.g., AGGREGATION), it
instantiates one task dispatcher for each pipeline fragment when
creating computational tasks.

Fig. 5 shows Scabbard’s architecture with a single operator
pipeline, highlighting in red the features for workload-aware per-
sistence. Next, we describe the different query execution stages,
from the logical plan input to the generation of in-order results:

In stage 1 , a user provides a stream query that is transformed
into a logical plan. This plan is optimized in 2 with rule-based
optimizations including (i) operator reordering (i.e., persistence
push-up) and (ii) operator fusion. Scabbard uses the optimized
plan to generate code for persistence, checkpoint, and query tasks.

The task creation stage 3 follows after code generation. As data
and markers arrive in the input queues of a query pipeline [80]
through network sockets or RDMA, different tasks with their data
dependencies are created and placed in system-wide queues. When
the task queues contain tasks, the workers execute them in 4 .

To provide an up-to-date view of data characteristics (e.g., value
distributions), the workers profile a subset of tuples before persis-
tence in 5 . The profiling information may trigger another code
generation process for workload-aware data reduction in step 2
(see Sec. 5.2). Finally, the execution of a query task produces results
in immutable batches, which are reordered and assembled in 6
using the assembly function ρα .

4.2 Managing fault-tolerance operations

Wenow explain the role of Scabbard’s components, its data storage
format, and how it accelerates persistence and recovery.
The BlockManagermanages the persistent data of a query. When
a p-stream or the Checkpoint Controller issue read/write requests
to stable storage, they invoke the Block Manager, which returns a
valid file pointer for these operations. The BlockManager maintains
a pool of files, uniquely identified by a FileId, to reduce the overhead

367

Table 2: Compression algorithms

Name Description

Base-delta [84] Represents values as differences (deltas) from a base value
Delta-of-delta [85] Delta-encoding over the delta-encoded data
Null suppression (NS) [1, 5, 71, 92] Omits leading zeros from the bit representation
Simple-8b [5] Stores integers in fixed-size blocks, first bits denote mini-

mum values’ bit-length
Variable byte (Var-Byte) [30] Represents integers as variable number of bytes, using 1 sta-

tus and 7 data bits per byte
Run-length encoding (RLE) [92] Represents repeated sequences as pairs of values & counts
XOR compression [85] Uses XOR’ed floating-point values
Dictionary [1, 92] Data-agnostic compression scheme that replaces each value

with a unique key from a dictionary
Snappy [112] Dictionary encoding according to LZ77 [112]

of OS file allocation. For p-streams, the Block Manager maintains
a circular list of files that maps directly to stream offsets because
data is stored in offset order. The Block Manager also tracks which
files must be garbage collected and returned to the pool.
The Checkpoint Controller coordinates persistence and recov-
ery operations (see Sec. 3.2). During normal execution, it injects
markers to trigger the persistence of p-units and creates asynchro-
nous tasks in stage 3 for parallel execution. Task completion is
monitored using a lock-free queue with atomics per pipeline to
minimize overhead. When the Controller triggers a checkpoint,
the operators withhold their outputs until checkpoint completion
to ensure consistency. Regular processing is not disrupted, as the
immutable p-units support persistence without an application-level
copy-on-write operation.
Storage format. Our goal is to perform parallel non-sequential
disk operations without conflicts. We partition each file into smaller
logical segments (aligned 256 KB blocks), accelerating reads/writes
at the expense of storage space [12].

Serialization costs are reduced by using state management prim-
itives (e.g., vectors or hashtables) that contain tuples with primitive
data types (e.g., integers) based on a fixed predefined schema. These
primitive types do not require deserialization from storage with-
out compression. For the retrieval of compressed data, however,
metadata must be stored at the start of each segment: (i) the off-
sets of data; (ii) its representation (e.g., data types, row/column
format); and (iii) the used compression algorithms, which may
change dynamically. For example, for dictionary encoding [1, 92],
the hashtable’s file offset (implemented with open addressing) and
themetadata (e.g., schema) are stored to deserialize it. Forwindowed
operators, the number and sizes of window fragments [65, 96] (e.g.,
open windows) must be stored for state reconstruction.
I/O optimizations. Scabbard supports NUMA-aware persistence:
the task placement respects the affinity of p-units to reduce cross-
socket communication. It also uses software prefetching of data
from remote NUMA nodes, which leads up to 35% better perfor-
mance for memory-bound queries. To saturate the I/O bandwidth
of SSDs and minimize latency, it uses Linux’ non-blocking API
with asynchronous notifications [62]. All files are opened using the
O_DIRECT flag to bypass the kernel’s page cache and reduce the
CPU overhead when performing I/O operations. Workers bulk up
writes into chunks to decrease fragmentation and the number of
entries in the disk’s device queue.
Reducing recovery time. Fast recovery necessitates frequent check-
points, short initialization times and fast data loading from storage.
Scabbard reduces the checkpointing impact by performing them

0 20 40 60 80 100
Compresssion Ratio

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (M

B/
s)

Timestamp 1
Timestamp 2
Integer 1
Integer 2
Float

Data-Agnostic
RLE
Delta-of-delta
Base-delta&RLE
Simple-8b

Var-Byte
XOR
LossyRLE
Dictionary
Snappy

Figure 6: Compression for various data types and distributions

asynchronously. It also partitions streams and state into p-units to
enable parallel persistence and recovery (see Sec. 6.4 and Sec. 6.5).
During recovery, Scabbard avoids costly code generation by recov-
ering previously-persisted compiled operators: it compiles queries
using the LLVM compiler [70] and stores the binaries on disk. Upon
restart, it loads the compiled operators, which reduces the restart
time by an order of magnitude. Finally, dependency tracking allows
Scabbard to load only required p-units.

5 WORKLOAD-AWARE STREAM

COMPRESSION

Since stream queries are long running, it is beneficial to react to
changingworkload characteristics at runtime [14]. Scabbard, there-
fore, reduces the required I/O bandwidth for p-stream persistence
using adaptive compression. It considers dynamic workload charac-
teristics by monitoring p-streams and generating suitable compres-
sion operators. However, the best choice of a compression algorithm
exposes a trade-off between compression ratio and throughput and
depends on stream and query characteristics [31].

Prior work in stream processing [83] shows that heavyweight
schemes [51, 104] with high compression ratios are prohibitively
expensive. Therefore, we consider lightweight techniques [1] that
combine high-performance with resource efficiency, which we sum-
marize in Table 2. Next, we describe how the supported compression
techniques apply to different data types (Sec. 5.1), and how Scab-
bard chooses between them using an adaptive mechanism (Sec. 5.2).

5.1 Exploiting workload characteristics

We base the decision which compression algorithm to use at run-
time on three factors: (i) stream data distribution; (ii) compression
ratio; and (iii) compression throughput. Fig. 6 shows the associ-
ated performance trade-offs by plotting the compression ratio and
throughput for different compression algorithms. Each line rep-
resents an input data type, and the marker location indicates the
performance (in terms of throughput) for different algorithms. For
example, the red line refers to a stream of timestamps; the markers
show the compression ratio and throughput for each algorithm
applicable to timestamp data.
Timestamps. While timestamps are not a workload-specific data
type, we consider them separately because they have discrete non-
negative integer values with a relative order. In Fig. 6, we explore
RLE, Delta-of-delta, and Base-delta algorithms for two different
distributions. If timestamps occur in fixed intervals (Timestamp 1),
Delta-of-delta exhibits the best compression ratio and, thus, is
used as the default. If multiple events occur within the same inter-
val (Timestamp 2), Base-delta & RLE offers better performance.

368

Integers. We apply three compression schemes to integer types:
Var-Byte, RLE with word-aligned NS (NS & RLE), and Simple-8b.
With random not repeated values (Integer 1), Simple-8b achieves
the best compression ratio and is thus used by default. If there are
multiple runs of values though (Integer 2), NS & RLE yields better re-
sults. Var-Byte has the highest throughput and is suitable for lower
compression ratios when there is sufficient disk I/O bandwidth.
Floating-points. The nature of floating-point values makes them
more challenging to compress efficiently with low overhead. XOR
compression offers a good trade-off here. If full precision is unnec-
essary, the user can set the decimal point precision to a fixed error
bound to improve compression. This converts floating-point values
into integers, allowing for integer compression schemes. In Fig. 6,
we use a floating-point stream with a predefined error bound, thus
showing the performance difference with lossy compression.
Data-agnostic. For other data types in streams (e.g., fix-length
strings), we observe, based on our evaluation, that dictionary com-
pression works well, especially for a limited set of repeating values.
When no statistics are available, Scabbard uses Snappy as the de-
fault compression scheme. When it is possible to infer that the data
can be mapped to a limited range of distinct values, Scabbard uses
a static hashtable, shown as Dictionary in Fig. 6.
As shown in Fig. 6, while some algorithms achieve the highest com-
pression ratio, they have low throughput. The decision of the appro-
priate algorithm becomes even more complicated when considering
that algorithms, such as lossy compression for floating-points or
dictionary encoding, produce new data types that can be further
compressed with other approaches. Scabbard, therefore, chooses
the compression algorithms adaptively.

5.2 Adaptive stream compression

Scabbard adds lightweight instrumentation code to each pipeline
fragment to carry out fine-grained profiling. For a pipeline fragment
and input column in a p-stream, information is collected about
the value distribution (e.g., the min/max value) and characteristics
specific to the compression schemes (e.g., the average run-length
of consecutive equal values).

Scabbard analyzes the statistics periodically at a configurable
interval5 and combines them with static information, e.g., the p-
stream schema, and heuristics about the algorithms [1]. This allows
Scabbard to reason about the data characteristics (e.g., data range)
and insert newly generated compression operators into the POG.

At the beginning of query execution, Scabbard starts with a pre-
defined compression scheme per column for each pipeline fragment.
Upon detecting workload changes for a pipeline fragment, Scab-
bard JIT-compiles new compression/decompression operators and
fuses them with the query-specific pruning operators from Sec. 3.
The generated operators are memoized and maintained as function
pointers, inserted dynamically into the operator graph.

With the above approach, however, different compression opera-
tors may execute simultaneously. Thus, workers store the metadata
for each approach (see Table 4.2) and use the generated decompres-
sion functions on the compressed data. If the p-stream characteris-
tics change, e.g., a column’s bit precision changes, a worker may

5It is statically defined, but it could change dynamically based on the collected statistics.

Table 3: Evaluation datasets and workloads

Datasets Queries

Name # Attr. / Size (B) Name Windows (s) Operators

Cluster Moni- 12 / 64 CM1 ω60,1 π , γ , αsum
toring (CM) [25, 61] CM2 ω60,1 π , σ , γ , αavg

Smart Grid (SG) [57] 7 / 32 SG1 ω3600,1 π , αavg
SG2 ω128,1 π , γ , αavg
SG3 ω1,1, ω1,1 π , σ , Z

Linear Road 7 / 32 LRB1 ω300,1 π , σ , γ , αavg
Benchmark (LRB) [9] LRB2 ω30,1 π , γ , αcount

LRB3 ω30,1, ω1,1 π , γ , αcount

Yahoo Streaming (YSB) [26] 7 / 128 YSB ω10,10 σ , π , Zrelation, γ , αcount

NEXMark (NQ) [100] 9 / 128 NQ ω60,1 π , γ , αcount, αmax, Z

Sensor Monitoring (SM) [56] 14 / 64 SM ω60,1 π , αavg

decide for deoptimization [39, 47, 50] by falling back to the default
compression scheme to ensure correct results.

This adaptive approach supports a wide range of optimizations,
such as selecting the most resource-efficient algorithm or specializ-
ing the underlying data structures (e.g., the hashtable for dictionary
encoding). An example of such optimizations is using bit precision
information for integers to replace the more expensive Simple-8b
algorithm with word-aligned NS; another example is the use of
average run-length statistics to decide whether to use RLE.

6 EVALUATION

We evaluate Scabbard to explore the benefits of its design in a
top-down fashion: we start by comparing Scabbard with state-of-
the-art SPEs in terms of throughput and latency under a range of
real-world query benchmarks (Sec. 6.2). We then investigate the
efficiency of stream persistence (Sec. 6.3), checkpointing (Sec. 6.4),
recovery (Sec. 6.5), persistence push-up, compression (Sec. 6.6), and
execution with remote sources, sinks and storage (Sec. 6.7).

6.1 Experimental setup

We run experiments on three servers: Server A with two Intel
Xeon E5-2640 v3 2.60 GHz CPUs (16 physical cores), a 20 MB LLC
cache, 64 GB of memory, and a local 256 GB SSD (950 MB/s write
bandwidth; 72k IOPS); a c5.4xlarge AWS EC2 instance (Server B)
with EBS [3] for remote storage (700 MB/s write bandwidth; 16k
IOPS); Server C with four Intel Xeon E5-4660 v4 2.20 GHz (64 physi-
cal cores), a 40 MB LLC cache, 528 GB of memory, and a local 1.6 TB
SSD (1.5 GB/s write bandwidth; 90k IOPS). We use Ubuntu 18.04
and Clang 9.0.0 with -03 -march=native. Unless stated otherwise,
all experiments are executed on Server A using all cores.
Stream persistence systems. We compare to (i) Apache Kafka
v2.3.0 [7], a persistent messaging system; and (ii) a C++ prototype
(Kafka++) that flushes data to disk before acknowledging it.

For a fair comparison, we tune Kafka for high throughput by
batching input messages; using multiple partitions and producers
per topic; and maintaining a median latency of less than 90 ms,
which we deem acceptable given the latency results measured be-
low. We use acks= "all" mode to persist tuples to disk before ac-
knowledging them, and replication.factor="1". We find that, in
most cases, the compression algorithms supported by Kafka lead
to performance degradation or increased latency; thus, we disable
this feature. For the prototype, we manage memory and execution

369

10
-1

10
0

10
1

10
2

10
3

C
M 1

C
M 2

SG 1
SG 2

SG 3

LR
B 1

LR
B 2

LR
B 3

YSB
N
QT

h
ro

u
g

h
p

u
t

(1
0

6
 t

u
p

le
s
/s

)

FT-Flink Flink Scabbard LightSaber

(a) Performance for applications

10
2

10
3

10
4

10
5

10
6

C
M 1

C
M 2

SG 1
SG 2

SG 3

LR
B 1

LR
B 2

LR
B 3

YSB
N
Q

L
a

te
n

c
y
 (

µ
s
)

LightSaber
Scabbard

(b) Latency for applications

Figure 7: Application benchmark queries

10
0

10
1

10
2

10
3

C
M 1

C
M 2

SG 1
SG 2

SG 3

LR
B 1

LR
B 2

LR
B 3

YSB
N
QT

h
ro

u
g

h
p

u
t

(1
0

6
 t

u
p

le
s
/s

)

Scabbard Kafka Kafka++

(a) Stream persistence results

10
2

10
3

10
4

10
5

10
6

C
M 1

C
M 2

SG 1
SG 2

SG 3

LR
B 1

LR
B 2

LR
B 3

YSB
N
Q

L
a
te

n
c
y
 (

µ
s
)

Scabbard Kafka Kafka++

(b) Latency for ingesting streams

Figure 8: Ingestion of streams

as in Scabbard, pre-partition the input to avoid the additional cost
and use Snappy [112] compression.
Stream processing engines. We compare to (i) Apache Flink
v1.12.0 [6], a Java-based scale-out SPE; (ii) a hardcoded C++ imple-
mentation of Flink’s execution strategy (Flink++); and (iii) Light-
Saber [96], a single-node SPE without fault-tolerance.

Following best practices [27] for data ingestion, we configure
Kafka to use as many partitions as Flink workers. We enable object
reuse and preload the input data into Kafka partitions before start-
ing experiments to avoid bottlenecks. For Flink++, we pre-partition
the input, perform operator fusion, manage memory as in Scab-
bard, and use Kafka++ as its persistent source (Flink-Kafka++).

We examine Scabbard with and without stream persistence
(Scabbard-Chk). If not stated otherwise, we checkpoint all opera-
tors every second and generate in-memory ingress streams for the
remaining systems. We pre-populate large buffers and replay tuples
by updating their timestamps to avoid network bottlenecks.
Workloads. We use the macro-benchmark stream queries from
previous work [96] as well as four additional queries: (1) the first
workload emulates two cluster monitoring applications (CM) [103]
that apply a grouped aggregation over a sliding window; (2) the
smart grid queries (SG) [57] perform anomaly detection: SG1 calcu-
lates a sliding global average of a meter load, SG2 reports the sliding
load average per plug in a household, and SG3 joins their results
with a tumbling window; (3) the Linear Road Benchmark (LRB) [9]
computes three queries on a network of toll roads with multiple
key groupings: LRB1 performs a grouped window aggregation with
a selection to find congested road segments; LRB2 and LRB3 (a
tumbling window count over LRB2) count the number of vehicles
in road segments; (4) the Yahoo Streaming Benchmark (YSB) [26]
emulates an advertisement application with a table join and a win-
dowed count using numerical values (128 bits) [86]; (5) the fifth
query (NQ) from NEXMark benchmark [100] that monitors auc-
tion items with the most bids over a sliding window; (6) finally, the
sensor monitoring (SM) [56] query computes the running average
of three energy readings. Table 3 summarizes the workloads, with
the window sizes and slides measured in seconds.6

Metrics. Following prior work [101], we define end-to-end process-
ing latency as the difference between the time when a tuple enters
the system and when a window result is produced. Candlesticks in
plots show the 5th, 25th, 50th, 75th and 95th percentiles, respectively.

6All window sizes and slides are defined using event time to be independent of pro-
cessing latency.

6.2 System comparison

Fig. 7a compares the performance of Flink with 1-sec checkpoints
(denoted as Flink-FT) with that of Flink without fault-tolerance,
LightSaber (no fault-tolerance), and Scabbard. The results show
that for compute-intensive queries (SG3, LRB1-3), Scabbard ex-
hibits less than 11% performance drop over LightSaber, and effec-
tively hides the cost of persistence. For the remaining memory-
intensive queries, we observe that the overhead of persistence leads
to a greater degradation: 69% for CM1, 45% for CM2, 12% for SG1,
23% for SG2, up to 2× for YSB, and 28% for NQ, respectively.

Compared to Flink-FT, Scabbard performs at least an order of
magnitude better for all queries, even though it performs additional
work for stream persistence. To investigate the fault-tolerance over-
head, we use the bpftrace tools [45] and measure the average block
I/O device latency for disk operations. While Flink has an aver-
age latency of 16 ms with frequent spikes (up to 64 ms), Scabbard
exhibits low and predictable (around 64 µs) average latency with
1 ms spikes by bypassing the kernel’s page cache. The average disk
latency explains the increased number of memory stalls for Flink
that lead to a 4–6× performance overhead for LRB2-3 and YSB.

Next, we compare the end-to-end latency of Scabbard against
LightSaber (we omit the results for Flink, as they are an order of
magnitudeworse [46, 101]). Fig. 7b shows that, similar to LightSaber,
Scabbard exhibits median latency lower than 50 ms for all queries,
except for LRB3, in which both systems have sub-second latency.
For the compute-intensive queries (SG3 and LRB1-3), the increase
in latency is shown mostly in the 95th percentile, while for the rest,
we observe that the median latency is more than 2× higher.

The experiments show that Scabbard achieves at least an order
of magnitude higher throughput compared to state-of-the-art fault-
tolerant SPEs, with only an up to 10× increase in the 95th percentile
latency. Having established Scabbard’s high-level performance
profile, we study the factors contributing to its performance.

6.3 Stream persistence cost

Next, we compare Scabbard’s stream persistence to that of Kafka
to reveal the overhead of existing approaches. Fig. 8a shows that
Kafka achieves comparable performance for all applications (up to
4m tuples/s). However, Scabbard has at least two orders of mag-
nitude greater throughput for all benchmarks. When analyzing
resource utilization, we observe that Kafka introduces more in-
struction cache misses (the JVM leads to a large code footprint) and
memory cache misses (caused by serialization, copying, and object
allocation), which prevent scaling even with compression.

Next, we remove the aforementioned bottlenecks with Kafka++,
which achieves up to an order of magnitude higher throughput
and performs almost the same as Scabbard for queries SG2-3 and

370

10
1

10
2

10
3

0.
5M 1M 2M 4M

0.
5M 1M 2M 4M

10
2

10
3

10
4

10
5

10
6

10
7

Flink-Kafka++ Flink++ Sca
bb

ar
d

Sca
bb

ar
d-

C
hk

T
h

ro
u

g
h

p
u

t
(1

0
6
 t

u
p

le
s
/s

)

L
a

te
n

c
y
 (

u
s
e

c
)

Figure 9: YSB

 0

 200

 400

 600

0 2 4 6 8 10 12
 0

 200

 400

 600

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

L
a
te

n
c
y
 (

m
s
)

Time (s)

Throughput Latency

Figure 10: Performance with failure

10
2

10
3

10
4

10
5

CM1 CM2 SG1 YSB NQ SM

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

no-opt
p-pu

only-cmp
both-lossless

both-lossy
both-no-disk

Figure 11: Data reduction

 0
 2
 4
 6
 8

 10
 12
 14

1 5 10 15 20

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Time (s)

No-Cmp
Lightweight-Cmp

Adaptive-Cmp

Figure 12: Adaptive compression

Table 4: Checkpointing based on application characteristics

App
State (MB) Avg checkpoint time (ms) Overhead

Scabbard Flink Scabbard Flink Scabbard Flink

CM1 18 0.08 25.7 292 4% 5%
CM2 10 0.08 44.3 275 9% 3%
SG1 2 0.03 89.6 291 1% 1%
SG2 41 0.08 68.6 290 7% 11%
SG3 115 3.3 103.6 > 60000 2% 17%
LRB1 114 4.2 122.7 9000 5% 15%
LRB2 105 5.9 168.6 1000 14% 20%
LRB3 143 6 361 2000 1% 10%
YSB 23 0.13 23.1 311 6% 1%
NQ 27 2.68 49.1 932 4% 10%

LRB2-3, at the expense of a 7× latency increase, as shown in Fig. 8b.
This increase is caused by the large batch size required to achieve
high throughput with synchronous disk writes.

In addition, we observe a significant percentage of stalls and high
I/O device latency for both implementations that perform synchro-
nous flushes to the page cache. Scabbard, in contrast, has more
efficient resource utilization (e.g., NUMA locality), writes fewer
bytes to disk per tuple, reduces the transmission overhead with
compression and block-aligned writes, and submits more asynchro-
nous I/O requests per second to disk.

6.4 Checkpointing overhead

In Table 4, we measure the performance overhead of checkpointing
with a 1-sec interval for Scabbard without p-streams (Scabbard-
Chk) and Flink: in terms of the average checkpoint size, the check-
pointing time, and the performance overhead.

With LRB1-3, the checkpoint time is affected by the persisted
state size. Compared to Flink, Scabbard has higher throughput
for all queries, which leads to larger state sizes. When the state
grows to several MBs, checkpointing affects performance adversely
over time. Thus, for queries SG3 and LRB1-3, we had to increase
Flink’s checkpoint interval. Overall, Scabbard combines efficient
parallelization of persistence with data reduction and predictable
I/O latency, allowing frequent snapshots and low recovery time.

We also consider the efficiency of unaligned checkpoints (i.e.,
persisting streams along with state) in a single-node SPE using
Flink++ and YSB: we choose a workload with tumbling windows
that allows a comparison without aggregation optimizations [96].

Fig. 9 compares Flink++ for different batch sizes with and with-
out stream persistence (using Kafka++ from Sec. 6.3) to Scabbard
and Scabbard-Chk. With only checkpointing, the prototype exhibits
5×worse performance, two orders of magnitude higher latency, and
6× greater checkpoint time with a batch size >1 MB. This latency
increase is due to message passing [109] and the alignment phase
required during Flink’s shuffle stage. While Flink++ waits for the
checkpoint completion before committing results, Scabbard uses
its dependency tracking mechanism to output the results immedi-
ately. However, Flink++ stores to disk 100× less data with aligned
checkpoints, demonstrating how the additional I/O pressure can

become a bottleneck for Scabbard without the persistence opti-
mizations. With stream persistence enabled, Scabbard interleaves
persistence with normal execution and yields 7× higher throughput.

6.5 Recovery with remote storage

In this experiment, we evaluate Scabbard’s behaviour during re-
covery with remote storage. We use an AWS EC2 instance with
Elastic Block Storage (EBS), excluding the time for failure detec-
tion and machine restart. We use LRB1 (the other queries exhibit
similar behaviour) and persist the ingress stream and checkpoint
every second and configure the generator to generate the stream at
300 MB/s (i.e., half the maximum sustainable throughput) to allow
Scabbard to catch up with the input when recovering.

Fig. 10 shows the throughput before and after manually trigger-
ing a failure by terminating the Scabbard process (indicated by the
red vertical line). Upon failure, it initializes (memory pre-allocation
and precompiled code loading), which takes approximately 360 ms,
followed by 100 ms of recovery time. In terms of average latency,
there is an initial increase while Scabbard is down and restarts,
but it then recovers to the pre-failure latency within 2 s.

To emulate a failure in Flink, we stop and restart the worker
process (TaskManager) and collect the logged events. The restart
time of the TaskManager is 38 s, and recovering the state from disk
takes 2 s. This is the effective recovery time expected from a hot-
standby system and, thus, the key metric of this experiment. Using
this metric, Scabbard performs roughly 20× better than Flink.

6.6 Optimization breakdown

We study Scabbard’s data reduction techniques. In the first ex-
periment, we execute the queries bound by the disk bandwidth
(CM1-2, SG1, YSB, NQ, SM) and evaluate Scabbard using six
configurations: (i) no compression and no persistence push-up
(no-opt); (ii) only persistence push-up (p-pu); (iii) only compres-
sion (only-cmp); (iv) both p-pu and lossless floating-point compres-
sion (both-lossless); (v) both p-pu and two-decimal digit precision
floating-point compression if applicable (both-lossy); and (vi) both
optimizations without persistence to emulate a fast storage medium
(both-no-disk). The last configuration assumes that disk bandwidth
is no longer a bottleneck in future hardware architectures.

Fig. 11 shows that Scabbard without data reduction reaches up
to 780 MB/s, which matches the disk bandwidth. For all queries
apart from CM2 (low filter selectivity), using only one of the tech-
niques does not yield the optimal throughput. With both optimiza-
tions, Scabbard outperforms the baseline (no-opt) from 7× to 50×,
depending on the input data characteristics. For CM1 and SG1, the
lossy compression yields 20–40% performance improvement.

We conclude that Scabbard benefits from disks with higher
bandwidth and lower latency operations, as we observe a 1.2–4×

371

10
2

10
3

10
4

C
M 1

C
M 2

SG 1
SG 2

SG 3

LR
B 1

LR
B 2

LR
B 3

YSB
N
Q

Disk bandwidth

RDMA bandwidth

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Scabbard
no-opt

Figure 13: Remote ingestion

 0

 0.2

 0.4

 0.6

 0.8

 1

CM1 CM2 SG1 YSB
10

1

10
2

10
3

10
4

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

L
a
te

n
c
y
 (

u
s
e
c
)Scabbard no-disk

Figure 14: Remote storage

speedup. With a faster disk, it may become necessary to sacrifice
the compression ratio for throughput. As future work, we want to
develop a cost-based model to resolve this.

In the second experiment, we explore the performance benefit
of adaptive compression when the data characteristics change over
time. We execute the SM query, and after 10 secs, we change the
value distribution of the integer columns.

Fig. 12 compares Scabbard with adaptive compression against
the default compression approach and without compression. While
Scabbard profiles execution and decides to switch the compres-
sion function every 4 secs, this does not affect performance. Based
on the collected statistics, Scabbard generates a more efficient
compression scheme, resulting in a 5–10% performance improve-
ment. After 10 secs, the data characteristics change, invalidating
the assumptions of the generated code, and Scabbard falls back to
the generic compression algorithms. Finally, after 12 secs, it uses
the most recent statistics to generate a new compression function,
yielding a 2× improvement. The reoptimization interval can be
reduced to adapt more quickly at the cost of higher overhead. We
conclude that Scabbard adapts effectively to changing workload
characteristics at runtime, resulting in up to a 2× performance gain.

6.7 Remote I/O bottlenecks

We consider the impact of the network that interconnects Scabbard
with remote sources/sinks and storage. We observe its behaviour
when ingesting data over the network with and without data reduc-
tion (no-opt). To have sufficient bandwidth, we connect Server C
(see Sec. 6.1) using RDMA over 100 Gb/s with two separate ma-
chines (similar to Server A) to generate streams and commit results.

In Fig. 13, for the memory-intensive queries, Scabbardmanages
to saturate the RDMA bandwidth with less than 6 physical cores,
which shows the importance of Scabbard’s data reduction tech-
niques when the ingestion rate is higher than the disk bandwidth.
The performance improvement for SG2-3 is up to 65%, and for the
remaining queries, data reduction does not improve performance
and increases latency. This experiment reveals that data reduction
plays a crucial role with fast networks.

In Fig. 14, we compare Scabbard’s performance with and with-
out (no-disk) remote block storage in terms of throughput and
latency using the EC2 instance (Server B). For queries CM1-2, SG1,
and YSB, Scabbard exhibits greater throughput degradation com-
pared to the local disk experiments (Sec. 6.2) because it saturates the
IOPS of the EBS volume. Thus, we increase the batch size to reduce
IOPS, which results in up to 12× higher 75th percentile latency.
The remaining queries exhibit similar performance to local storage
with less than a 2× latency increase. We conclude that high-speed
networking allows for remote storage with low overhead.

7 RELATED WORK

Fault-tolerance in SPEs. Many industrial [68, 81, 98] and aca-
demic [65, 77, 96, 110] SPEs only achieve high throughput and low
latency with limited fault-tolerance. Compared to systems with par-
tial fault-tolerance [52, 54] that sacrifice the precision of recovered
results, Scabbard offers stronger processing guarantees.

More recent scale-out systems [2, 18, 18, 37, 55, 99] use check-
pointing for fault-tolerance. SEEP uses continuous state checkpoint-
ing and input replay for recovery, which shares similarities with our
work, but it does not efficiently manage the shared-memory state
persistence. IBM Streams, Apache Flink, and Naiad employ a varia-
tion of the Chandy-Lamport algorithm [22] but are not designed
for persisting streams efficiently. Instead, these systems rely on
messaging systems [4, 7, 87] and general-purpose stores [21, 35]. In
contrast, Scabbard integrates persistence with the operator graph
to enable workload-aware optimizations.

Another common approach is the use of a lineage-based mecha-
nism [10, 72, 88] that persists all data dependencies, which would
compromise performance for scale-up designs. Data migration (e.g.,
Rhino [78] or Megaphone [49]) is an orthogonal technique that
uses fast remote storage to speed up recovery to a new machine,
and it also enables query reconfiguration at runtime.
Adaptive optimizations in SPEs have been used extensively in
SPEs [13, 24, 41, 47, 65, 111]. Early research focused on plan migra-
tion [24, 41, 111] in distributed deployments or operator reorder-
ing [13]. SABER [65] uses an online algorithm to choose between
CPU and GPU execution of operators. Grizzly [47] employs adap-
tive optimizations with query compilation to accelerate execution.
These approaches are orthogonal to our work, which uses adapta-
tive compression to reduce I/O bandwidth.
Compression in SPEs. Gorilla [85] is a time series database that
introduces compression schemes for stream timestamps and floats.
Scabbard utilizes these techniques and provides a more general
solution for stream data through adaptive optimization [14]. Ter-
secades [83] uses hardware accelerators for compression and per-
forms some computation directly over compressed data; Scabbard
uses compression to accelerate persistence.

8 CONCLUSION

To enable fault-tolerance with exactly-once semantics in a single-
node SPE without compromising performance, we developed Scab-
bard. It tightly couples the persistence operations with the operator
graph through a novel persistent operator graph model and dynami-
cally reduces the required disk bandwidth at runtime. Scabbard
achieves sub-second recovery latencies by performing frequent
checkpointing and optimistic garbage collection. Consequently, it
outperforms the state-of-the-art fault-tolerant SPEs by at least an
order of magnitude on all our benchmarks, processing hundreds of
millions of tuples/sec with millisecond latencies.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the EPSRC Centre for
Doctoral Training in High Performance Embedded and Distributed
Systems (HiPEDS; EP/L016796/1).

372

REFERENCES

[1] Daniel Abadi, Samuel Madden, and Miguel Ferreira. 2006. Integrating com-
pression and execution in column-oriented database systems. In ACM SIGMOD.
671–682.

[2] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Is, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-tolerant Stream Processing at Internet Scale. In Proc. VLDB

Endow., Vol. 6. 1033–1044.
[3] Amazon. 2021. Amazon Elastic Block Store. https://aws.amazon.com/ebs/. Last

access: 28/10/21.
[4] Amazon. 2021. Amazon Kinesis. https://aws.amazon.com/kinesis/data-streams/.

Last access: 28/10/21.
[5] Vo Ngoc Anh and Alistair Moffat. 2010. Index compression using 64-bit words.

Software: Practice and Experience 40, 2 (2010), 131–147.
[6] Apache Flink. 2021. https://flink.apache.org. Last access: 28/10/21.
[7] Apache Kafka. 2021. https://kafka.apache.org/. Last access: 28/10/21.
[8] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL Continuous

Query Language: Semantic Foundations andQuery Execution. The VLDB Journal
15, 2 (2006), 121–142.

[9] Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Lin-
ear Road: A Stream Data Management Benchmark. In Proc. VLDB Endow., Vol. 30.
480–491.

[10] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: A Declarative API for Real-Time Applications in Apache Spark. In ACM

SIGMOD. 601–613.
[11] InfiniBand Trade Association. 2021. InfiniBand Roadmap - Advancing InfiniBand.

https://www.infinibandta.org/infiniband-roadmap/. Last access: 28/10/21.
[12] Manos Athanassoulis, Michael S Kester, Lukas M Maas, Radu Stoica, Stratos

Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Meth-
ods: The RUM Conjecture.. In EDBT. 461–466.

[13] Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive
query processing. In ACM SIGMOD. 261–272.

[14] Shivnath Babu and Pedro Bizarro. 2005. Adaptive query processing in the
looking glass. In CIDR.

[15] Magdalena Balazinska. 2005. Fault-tolerance and load management in a dis-

tributed stream processing system. Ph.D. Dissertation. Massachusetts Institute of
Technology.

[16] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. 2015.
Rack-Scale In-Memory Join Processing using RDMA. In ACM SIGMOD. 1463–
1475.

[17] Benchmarking Apache Kafka, Apache Pulsar, and RabbitMQ: Which is the
Fastest? 2020. https://www.confluent.io/blog/kafka-fastest-messaging-system/.
Last access: 28/10/21.

[18] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and
Kostas Tzoumas. 2017. State management in Apache Flink®: consistent stateful
distributed stream processing. Proc. VLDB Endow. 10, 12, 1718–1729.

[19] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. IEEE TCDE 36, 4 (2015).

[20] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine,
Danyel Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014.
Trill: A High-performance Incremental Query Processor for Diverse Analytics.
In Proc. VLDB Endow., Vol. 8. 401–412.

[21] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. Faster: A concurrent key-value store
with in-place updates. In ACM SIGMOD. 275–290.

[22] K Mani Chandy and Leslie Lamport. 1985. Distributed snapshots: Determining
global states of distributed systems. ACM TOCS (1985), 63–75.

[23] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM TOCS (2008),
1–26.

[24] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ: A
Scalable Continuous Query System for Internet Databases. ACM SIGMOD Rec.

(2000), 379–390.
[25] Xin Chen, Charng-Da Lu, and K. Pattabiraman. 2014. Failure Analysis of Jobs

in Compute Clouds: A Google Cluster Case Study. In ISSRE. 167–177.
[26] S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holderbaugh, Z.

Liu, K. Nusbaum, K. Patil, B. J. Peng, and P. Poulosky. 2016. Benchmarking
Streaming Computation Engines: Storm, Flink and Spark Streaming. In IEEE

IPDPSW. 1789–1792.
[27] Confluent. 2020. Optimizing Your Apache Kafka Deployment.

https://www.confluent.io/thank-you/white-paper/optimizing-your-apache-
kafka-deployment/. Last access: 28/10/21.

[28] OpenFog Consortium. 2017. Smart cities scenario. https://www.iiconsortium.
org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf. Last access: 28/10/21.

[29] OpenFog Consortium. 2017. Transportation scenario: Smart cars and traffic
control. https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_
2_09_17.pdf. Last access: 28/10/21.

[30] Doug Cutting and Jan Pedersen. 1989. Optimization for Dynamic Inverted Index
Maintenance. In ACM SIGIR. 405–411.

[31] Patrick Damme, Annett Ungethüm, Juliana Hildebrandt, Dirk Habich, and Wolf-
gang Lehner. 2019. From a comprehensive experimental survey to a cost-based
selection strategy for lightweight integer compression algorithms. ACM TODS

(2019), 1–46.
[32] Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus RabbitMQ:

A comparative study of two industry reference publish/subscribe implementa-
tions: Industry Paper. In ACM DEBS. 227–238.

[33] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Savor,
and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.. In
CIDR.

[34] Elmootazbellah Nabil Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B
Johnson. 2002. A survey of rollback-recovery protocols in message-passing
systems. ACM CSUR (2002), 375–408.

[35] Facebook. 2012. RocksDB. http://rocksdb.org/. Last access: 28/10/21.
[36] feedzai.com. 2013. Modern Payment Fraud Prevention at Big Data Scale. http:

//tinyurl.com/nwnzdxs.
[37] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter

Pietzuch. 2013. Integrating Scale out and Fault Tolerance in Stream Processing
Using Operator State Management. In ACM SIGMOD. 725–736.

[38] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2014. Making State Explicit for Imperative Big Data Processing. In
USENIX ATC. 49–60.

[39] Stephen J Fink and Feng Qian. 2003. Design, implementation and evaluation of
adaptive recompilation with on-stack replacement. In CGO. 241–252.

[40] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. A Survey on the Evolution of Stream Processing Systems. arXiv preprint
arXiv:2008.00842 (2020).

[41] Buğra Gedik, Henrique Andrade, and Kun-Lung Wu. 2009. A code generation
approach to optimizing high-performance distributed data stream processing.
In ACM SIGMOD. 847–856.

[42] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. 2011. Understanding
Network Failures in Data Centers: Measurement, Analysis, and Implications. In
ACM SIGCOMM. 350–361.

[43] Google. 2021. Google compute engine persistent disk. https://cloud.google.com/
persistent-disk. Last access: 28/10/21.

[44] Thore Graepel, Joaquin Quiñonero Candela, Thomas Borchert, and Ralf Herbrich.
2010. Web-Scale Bayesian Click-Through rate Prediction for Sponsored Search
Advertising in Microsoft’s Bing Search Engine. In ICML. 13–20.

[45] Brendan Gregg. 2019. BPF Performance Tools. Addison-Wesley Professional.
[46] Jamie Grier. 2016. Extending the Yahoo! Streaming Benchmark. https://www.

ververica.com/blog/extending-the-yahoo-streaming-benchmark. Last access:
28/10/21.

[47] Philipp M Grulich, Breß Sebastian, Steffen Zeuch, Jonas Traub, Janis von Ble-
ichert, Zongxiong Chen, Tilmann Rabl, and Volker Markl. 2020. Grizzly: Efficient
stream processing through adaptive query compilation. In ACM SIGMOD. 2487–
2503.

[48] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and
Scott Shenker. 2013. Network support for resource disaggregation in next-
generation datacenters. In ACM HotNets. 1–7.

[49] Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious state
migration for distributed streaming dataflows. In Proc. VLDB Endow., Vol. 12.
1002–1015.

[50] Urs Hölzle, Craig Chambers, and David Ungar. 1992. Debugging optimized code
with dynamic deoptimization. In ACM SIGPLAN. 32–43.

[51] David AHuffman. 1952. Amethod for the construction of minimum-redundancy
codes. IRE (1952), 1098–1101.

[52] Jeong-Hyon Hwang, Magdalena Balazinska, Alex Rasin, Ugur Cetintemel,
Michael Stonebraker, and Stan Zdonik. 2005. High-availability algorithms
for distributed stream processing. In ICDE. 779–790.

[53] Introduction to Kafka Streams. 2017. http://www.confluent.io/blog/introducing-
kafka-streams-stream-processing-made-simple. Last access: 28/10/21.

[54] Gabriela Jacques-Silva, Bugra Gedik, Henrique Andrade, and Kun-Lung Wu.
2009. Language level checkpointing support for stream processing applications.
In DSN. 145–154.

[55] Gabriela Jacques-Silva, Fang Zheng, Daniel Debrunner, Kun-Lung Wu, Victor
Dogaru, Eric Johnson, Michael Spicer, and Ahmet Erdem Sariyüce. 2016. Consis-
tent regions: Guaranteed tuple processing in ibm streams. In Proc. VLDB Endow.,
Vol. 9. 1341–1352.

[56] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung,
and Nenad Stojanovic. 2012. The DEBS 2012 Grand Challenge. In ACM DEBS.
393–398.

373

https://aws.amazon.com/ebs/
https://aws.amazon.com/kinesis/data-streams/
https://flink.apache.org
https://kafka.apache.org/
https://www.infinibandta.org/infiniband-roadmap/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://www.confluent.io/thank-you/white-paper/optimizing-your-apache-kafka-deployment/
https://www.confluent.io/thank-you/white-paper/optimizing-your-apache-kafka-deployment/
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
http://rocksdb.org/
http://tinyurl.com/nwnzdxs
http://tinyurl.com/nwnzdxs
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark
https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark
http://www.confluent.io/blog/ introducing-kafka-streams-stream-processing-made-simple
http://www.confluent.io/blog/ introducing-kafka-streams-stream-processing-made-simple

[57] Zbigniew Jerzak and Holger Ziekow. 2014. The DEBS 2014 Grand Challenge. In
ACM DEBS. 266–269.

[58] Vasiliki Kalavri and John Liagouris. 2020. In support of workload-aware stream-
ing state management. In USENIX HotStorage.

[59] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. Design guidelines
for high performance RDMA systems. In USENIX ATC. 437–450.

[60] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking distributed stream data
processing systems. In ICDE. 1507–1518.

[61] Soila Kavulya, Jiaqi Tan, Rajeev Gandhi, and Priya Narasimhan. 2010. An
Analysis of Traces from a Production MapReduce Cluster. In CCGrid. 94–103.

[62] Kernel Asynchronous I/O for Linux. 2021. http://lse.sourceforge.net/io/aio.html.
Last access: 28/10/21.

[63] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar.
2016. Flash storage disaggregation. In EuroSys. 1–15.

[64] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. 2018. Selecta: Heterogeneous
cloud storage configuration for data analytics. In USENIX ATC. 759–773.

[65] Alexandros Koliousis, Matthias Weidlich, Raul Castro Fernandez, Alexander L.
Wolf, Paolo Costa, and Peter Pietzuch. 2016. SABER: Window-Based Hybrid
Stream Processing for Heterogeneous Architectures. In ACM SIGMOD. 555–569.

[66] G. Kovacs. 2017. EBS, EFS, or Amazon S3: which is the best cloud storage system
for you? https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-
system. Last access: 28/10/21.

[67] Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In NetDB. 1–7.

[68] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, SaileshMittal, JigneshM. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In ACM SIGMOD. 239–250.

[69] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed
system. In Concurrency: the Works of Leslie Lamport. 179–196.

[70] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO. 75.

[71] Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per
second through vectorization. Software: Practice and Experience (2015), 1–29.

[72] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong Zhou.
2016. StreamScope: Continuous Reliable Distributed Processing of Big Data
Streams. In USENIX NSDI. 439–453.

[73] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez-
Hernández, Bogdan Nicolae, Radu Tudoran, and Stefano Bortoli. 2018. Kera:
Scalable data ingestion for stream processing. In IEEE ICDCS. 1480–1485.

[74] title = Roadmap to Building a Streaming Database on Timely Dataflow Materi-
alize. 2020. https://materialize.io/blog-roadmap/. Last access: 28/10/21.

[75] Friedemann Mattern et al. 1988. Virtual time and global states of distributed

systems. Univ., Department of Computer Science.
[76] HongyuMiao, Myeongjae Jeon, Gennady Pekhimenko, Kathryn SMcKinley, and

Felix Xiaozhu Lin. 2019. Streambox-hbm: Stream analytics on high bandwidth
hybrid memory. In ASPLOS. 167–181.

[77] Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko, Kathryn S.
McKinley, and Felix Xiaozhu Lin. 2017. StreamBox: Modern Stream Processing
on a Multicore Machine. In USENIX ATC. 617–629.

[78] Del Monte, Steffen Zeuch, Tilmann Rabl, and VolkerMarkl. 2020. Rhino: Efficient
Management of Very Large Distributed State for Stream Processing Engines. In
ACM SIGMOD. 2471–2486.

[79] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
andMartín Abadi. 2013. Naiad: a timely dataflow system. InACM SOSP. 439–455.

[80] Thomas Neumann. 2011. Efficiently compiling efficient query plans for modern
hardware. In Proc. VLDB Endow., Vol. 4. 539–550.

[81] Leonardo Neumeyer, Bruce Robbins, Anish Nair, and Anand Kesari. 2010. S4:
Distributed stream computing platform. In IEEE ICDM. 170–177.

[82] David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for redundant
arrays of inexpensive disks (RAID). In ACM SIGMOD. 109–116.

[83] Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng Huang, and Li-
dong Zhou. 2018. TerseCades: Efficient Data Compression in Stream Processing.
In USENIX ATC. 307–320.

[84] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry. 2012. Base-Delta-Immediate Compres-
sion: Practical Data Compression for on-Chip Caches. In ACM PACT. 377–388.

[85] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. In Proc. VLDB Endow., Vol. 8. 1816–1827.

[86] Peter Pietzuch, Panagiotis Garefalakis, Alexandros Koliousis, Holger Pirk, and
Georgios Theodorakis. 2018. Do We Need Distributed Stream Processing?
https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing. Last

access: 28/10/21.
[87] Apache Pulsar. 2016. Open-sourcing Pulsar, Pub-sub Messaging at

Scale. https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-
pub-sub-messaging-at-scale. Last access: 28/10/21.

[88] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang,
Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013. TimeStream: Reliable Stream
Computation in the Cloud. In ACM EuroSys. 1–14.

[89] Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abraham. 2017.
Pebblesdb: Building key-value stores using fragmented log-structured merge
trees. In ACM SOSP. 497–514.

[90] Redpanda Raison D’etre. 2019. https://vectorized.io/blog/redpanda-raison-
detre/. Last access: 28/10/21.

[91] David Reinsel, John Gantz, and John Rydning. 2018. Data age 2025: The digi-
tization of the world from edge to core. https://www.seagate.com/files/www-
content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf. Last access:
28/10/21.

[92] Mark A Roth and Scott J Van Horn. 1993. Database compression. ACM Sigmod

Record (1993), 31–39.
[93] Pedro F Silvestre, Marios Fragkoulis, Diomidis Spinellis, and Asterios Katsifodi-

mos. 2021. Clonos: Consistent Causal Recovery for Highly-Available Streaming
Dataflows. In ACM SIGMOD. 1637–1650.

[94] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. 2005. The 8 require-
ments of real-time stream processing. ACM Sigmod Record (2005), 42–47.

[95] Rob Strom and Shaula Yemini. 1985. Optimistic recovery in distributed systems.
ACM TOCS (1985), 204–226.

[96] Georgios Theodorakis, Alexandros Koliousis, Peter R. Pietzuch, and Holger Pirk.
2020. LightSaber: Efficient Window Aggregation on Multi-core Processors. In
ACM SIGMOD. 2505–2521.

[97] Quoc-Cuong To, Juan Soto, and Volker Markl. 2018. A survey of state manage-
ment in big data processing systems. The VLDB Journal (2018), 847–872.

[98] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade,Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In
ACM SIGMOD. 147–156.

[99] Trident. 2021. http://storm.apache.org/Trident-tutorial.html. Last access:
28/10/21.

[100] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. NEX-
Mark—A Benchmark for Queries over Data Streams DRAFT. Technical Report.
Technical report, OGI School of Science & Engineering at OHSU, Septembers.

[101] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust,
Ali Ghodsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle:
Fast and Adaptable Stream Processing at Scale. In ACM SOSP. 374–389.

[102] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage stash: fault tolerance off the
critical path. In ACM SOSP. 338–352.

[103] John Wilkes. 2011. More Google Cluster Data. Google Research Blog. http:
//bit.ly/1A38mfR. Last access: 28/10/21.

[104] Ross N Williams. 1991. An extremely fast Ziv-Lempel data compression algo-
rithm. In IEEE Data Compression Conference. 362–363.

[105] Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic stateful stream
computation in the cloud. In ICDE. 723–734.

[106] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
analysis of NVMe SSDs and their implication on real world databases. In ACM

International Systems and Storage Conference. 1–11.
[107] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In USENIX NSDI. 15–28.

[108] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-tolerant Streaming Computation at
Scale. In ACM SOSP. 423–438.

[109] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing Efficient Stream Processing on Modern Hardware. In Proc. VLDB Endow.,
Vol. 12. 516–530.

[110] Shuhao Zhang, Jiong He, Amelie Chi Zhou, and Bingsheng He. 2019.
BriskStream: Scaling Data Stream Processing on Shared-Memory Multicore
Architectures. In ACM SIGMOD. 705–722.

[111] Yali Zhu, Elke A Rundensteiner, and George T Heineman. 2004. Dynamic plan
migration for continuous queries over data streams. In ACM SIGMOD. 431–442.

[112] Jacob Ziv and Abraham Lempel. 1977. A universal algorithm for sequential data
compression. IEEE Transactions on information theory (1977), 337–343.

374

http://lse.sourceforge.net/io/aio.html
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://cloud.netapp.com/blog/ebs-efs-amazons3-best-cloud-storage-system
https://materialize.io/blog-roadmap/
https://lsds.doc.ic.ac.uk/blog/do-we-need-distributed-stream-processing
https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-pub-sub-messaging-at-scale
https://yahooeng.tumblr.com/post/150078336821/open-sourcing-pulsar-pub-sub-messaging-at-scale
https://vectorized.io/blog/redpanda-raison-detre/
https://vectorized.io/blog/redpanda-raison-detre/
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://storm.apache.org/Trident-tutorial.html
http://bit.ly/1A38mfR
http://bit.ly/1A38mfR

