
FINEdex: A Fine-grained Learned Index Scheme for Scalable and
Concurrent Memory Systems
Pengfei Li, Yu Hua, Jingnan Jia, Pengfei Zuo

WNLO, Huazhong University of Science and Technology
{cspfli,csyhua,jingnanjia,pfzuo}@hust.edu.cn

ABSTRACT
Index structures in memory systems become important to improve
the entire system performance. The promising learned indexes
leverage deep-learning models to complement existing index struc-
tures and obtain significant performance improvements. Existing
schemes rely on a delta-buffer to support the scalability, which
however incurs high overheads when a large number of data are
inserted, due to the needs of checking both learned indexes and
extra delta-buffer. The practical system performance also decreases
since the shared delta-buffer quickly becomes large and requires
frequent retraining due to high data dependency. To address the
problems of limited scalability and frequent retraining, we propose
a FINE-grained learned index scheme with high scalability, called
FINEdex, which constructs independent models with a flattened
data structure (i.e., the data arrays with low data dependency) under
the trained data array to concurrently process the requests with
low overheads. By further efficiently exploring and exploiting the
characteristics of the workloads, FINEdex processes the new re-
quests in-place with the support of non-blocking retraining, hence
adapting to the new distributions without blocking the systems. We
evaluate FINEdex via YCSB and real-world datasets, and extensive
experimental results demonstrate that FINEdex improves the per-
formance respectively by up to 1.8× and 2.5× than state-of-the-art
XIndex and Masstree. We have released the open-source codes of
FINEdex for public use in GitHub.

PVLDB Reference Format:
Pengfei Li, Yu Hua, Jingnan Jia, Pengfei Zuo. FINEdex: A Fine-grained
Learned Index Scheme for Scalable and Concurrent Memory Systems.
PVLDB, 15(2): 321-334, 2022.
doi:10.14778/3489496.3489512

1 INTRODUCTION
Data storage and access performance are important for memory
systems, which however are exacerbated by the explosive growth of
data. Existing index structures, such as B+-tree [16], Hash-map [10],
and Bloom filters [18], usually support in-memory systems to han-
dle data processing tasks [22, 27, 39] in a memory-efficient manner
over the past decades [21, 27, 34, 40, 46, 52].

In general, tree-based structures keep all data sorted for range
queries, which aim to identify the items within a given range. Many
systems, such as NoSQL systems (e.g., Redis [48], MongoDB [32]),

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489512

IBM DB2 [31], LevelDB [25] and PostgreSQL [28], construct tree-
based structures to provide efficient data storage and access. Al-
though maintaining all data and metadata completely in the main
memory eliminates expensive disk I/O operations [13, 56], the high
space overhead becomes exacerbated once the index structures are
too large to fit into the limited-size memory. In fact, the indexes, e.g.,
tree-based structures, consume around 55% of the total memory in
state-of-the-art memory systems [58].

In order to improve the performance and reduce the memory
overhead, the powerful hardware is used to improve the perfor-
mance of B+-tree, including cache [46, 47], SIMD [34] and GPUs [33,
34, 50]. In the meantime, some compression schemes leverage the
prefix/suffix truncation, dictionary compression and key normal-
ization techniques [5, 26, 46] to save the space. The approximate
structures [3, 24, 37] are also proposed to reduce the memory over-
head of the B+-tree.

However, all above schemes are designed for general-purpose
data structures andmainly focus on the index structures themselves,
while overlooking the patterns of data distribution in memory sys-
tems. Kraska et al. [37] argue that exact data distribution enables
efficient optimization for index structures. For instance, a linear
regression function is sufficient to store and access a set of con-
tinuous integer keys (e.g., the keys from 1 to 100M), which has
significant advantages over traditional B+-trees in terms of lookup
performance and memory overhead. The patterns of data distri-
butions become important for memory systems to deliver high
performance. However, in real-world applications and systems (e.g.,
processing the data of smart devices [55], the petabyte scale stor-
age systems of Facebook [6, 8] and LMDB [1]), some patterns are
extremely complex or even impossible to be represented via known
patterns. Hence, we consider machine learning (ML) approaches to
learn a model that exhibits the patterns of data distribution, called
learned indexes [37].

The learned indexes open up a new research topic on indexing
in memory systems: Indexes can be considered as ML models.
We use cost-efficient computations to speed up traditional compar-
isons, thereby increasing access speed and saving memory space.
Moreover, in order to efficiently exploit the benefits of multi-core
processors, we carry out concurrent operations to deliver high
performance. The concurrency in the context of this paper is inter-
preted as that the index operations (e.g., read and write data) are
executed by using multiple threads. However, it is non-trivial to
efficiently leverage learned indexes for concurrent memory systems
due to the following challenges.

1) Limited Scalability. The scalability requires the learned
indexes to efficiently handle inserts and adjust to the new data
distribution at runtime, as well as scaling to multiple threads for
high concurrent performance. However, existing schemes show

321

https://doi.org/10.14778/3489496.3489512
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489512

limited scalability since they do not simultaneously meet all these
requirements, including concurrent reading, writing and retraining.
For example, FITing-tree [24], ALEX [19] and PGM-index [23] do
not consider the data consistency issues to concurrently retrain
the models in the multi-core systems. XIndex [53] stores the data
into different data structures, hence not keeping all data sorted for
efficient range query performance.

2) High Overheads. The strategies adopted by existing schem-
es incur high overheads due to the heavy data dependency. Specif-
ically, XIndex [53] and FITing-tree [24] handle inserts through a
delta-buffer, which is a tree-based structure [11, 40] (e.g., B+-tree or
Masstree) and has high dependency of inner nodes when travers-
ing the tree. Moreover, XIndex [53] shows that the performance
decreases about 3× when the delta-buffer becomes large, due to
checking these two different structures in each index operation.
ALEX [19] and PGM-index [23] preserve empty slots in the trained
data arrays to handle inserts. When scaling to multiple threads,
many thread collisions occur, since different threads need to put
the data into the same slot during insertion, which decreases the
concurrent performance.

In order to address these challenges, we present a fine-grained
learned index scheme for scalable and concurrent memory systems,
called FINEdex. Our proposed FINEdex achieves high scalability by
appending the low-overhead level bins under each trained data to
alleviate the data dependency, rather than building a large shared
delta-buffer. By using such flattened structure, FINEdex mitigates
the thread collisions and achieves efficient scalability. In fact, the
used level bins are two-level sorted arrays, which are used to effi-
ciently handle inserts while keeping all data sorted to support range
queries. For the dynamic workloads, FINEdex adaptively assigns
models according to the data distribution and adjusts to the new
data distribution at runtime without blocking the system. We have
integrated FINEdex into Redis [48] to evaluate the performance of
real implementations. Our experimental results show that FINEdex
improves the insertion performance respectively by about 1.8× and
2.5× than state-of-the-art XIndex and Masstree, while consuming
less memory space.

It is worth noting that the mentioned models are interpreted as
linear regression ML models with bounded prediction errors, which
predict the positions of the keys. To ensure that no data are lost in
the system, the bounded prediction errors are determined by the
data that is farthest from the central function. We use multiple small
models, rather than a complex model, to learn the data distribution,
since multiple small models are flexible and efficient for system
scalability [24, 37, 53].

In this paper, we have the following contributions.
• High scalability meeting system requirements. We pres-

ent a fine-grained learned index scheme for concurrent memory
systems, i.e., FINEdex, which efficiently meets the scalability re-
quirements. The main insights are reducing the data dependency
via the flattened data structure and concurrently retraining the
models in two granularities.

• Low overheads for cost-efficient index operations and
non-blocking retraining. The index operations (i.e., read and
write) are cost-efficient, since FINEdex incurs a few data movements
during insertion and keeps all data sorted for accessing. In the
concurrent systems, FINEdex alleviates the thread collisions by

(b) CDF models(a) Range Index Model

Key Index Structures
(e.g., B+-trees or learned indexes)

Prediction

pred-max_err pred+max_err

leaf node

············

leaf node 0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Key

Po
si

tio
n

 normal lognormal ycsb
 weblogs documentid

Figure 1: Range index and CDF models. The CDFs are
obtained by normalizing the keys and positions to 1.

reducing the data dependency, as well as concurrently retraining
models without blocking the system.

• System Implementation and Evaluation. We implement
and evaluate FINEdex1 based on Redis [48]. Compared with state-
of-the-art schemes, our experimental results show that FINEdex
obtains high insertion performance, as well as the high search
performance after inserts.

The rest of this paper is organized as follows. Section 2 introduces
the background. In Section 3, we demonstrate the different compo-
nents of FINEdex. Section 4 describes the system implementations.
Section 5 shows the experimental results and analysis. Section 6
discusses the related work, and Section 7 concludes our paper.

2 BACKGROUND AND MOTIVATION
2.1 New Perspectives on Indexes
From the perspective of machine learning, the range index struc-
tures are considered as regression models [37], which predict the
position of a given key, as shown in Figure 1a. In the B+-tree, the
data are found through traversing the tree. A learned index [37]
views this process as a prediction and supports range queries,
which requires the data to be sorted, thus facilitating efficient data
access. The records between [𝑝𝑟𝑒𝑑 −𝑚𝑎𝑥_𝑒𝑟𝑟, 𝑝𝑟𝑒𝑑 +𝑚𝑎𝑥_𝑒𝑟𝑟]
are the analogy with the leaf nodes in the B+-tree. The length
of [𝑝𝑟𝑒𝑑 −𝑚𝑎𝑥_𝑒𝑟𝑟, 𝑝𝑟𝑒𝑑 +𝑚𝑎𝑥_𝑒𝑟𝑟] is related with the lookup
performance. We term this length as prediction granularity.

In order to provide practical and accurate prediction, the sorted
keys and true positions are respectively considered as the inputs and
outputs. The relationship between keys and positions is a monotoni-
cally increasing curve and similar to a cumulative distribution func-
tion (i.e., CDF, which helps to learn the data distribution) [37, 53],
as shown in Figure 1b. The datasets used in Figure 1b are the same
as those used in Section 5. Based on this observation, the prediction
accuracy can be improved by learning the patterns of data distri-
bution. When the CDF between keys and positions is accurately
represented via the known regression models, the lookup complex-
ity becomes𝑂 (1) since each position is calculated by the regression
models. For example, a set of continuous integer keys (e.g., the
keys from 1 to 100M) are stored in a piece of continuous positions
(e.g., the positions from 1 to 100M). The CDF is represented as
𝑦 = 𝑥 , where 𝑥 and 𝑦 are keys and positions. Thus, the prediction
granularity is 1 to accurately predict the positions without any
errors. However, in real-world applications (e.g., managing the data

1The source code is available at https://github.com/iotlpf/FINEdex

322

https://github.com/iotlpf/FINEdex

Position

Key

Model 1.1

Model 2.1 Model 2.2

Model 3.1 Model 3.2 Model 3.3

(a) RMI structure (b) Insertion in the trained data array

St
ag

e
1

St
ag

e
2

St
ag

e
3

Pos

Key

+max_err

-max_err
f(x)

a

b

xa

xb

xa'

a'
actual

Data loss

Figure 2: The RMI structure in the learned indexes.

of smart meters [55], the petabyte scale storage systems of Face-
book [6]), the CDFs can’t be obtained in advance and some CDFs
become extremely complex or even impossible to be represented
via known regression models [37]. In these situations, we don’t
need to reduce the prediction granularity to 1, since the length of
the leaf node in B+-tree has never been set to 1, which simplifies
the prediction operations: regression models only need to approxi-
mately represent the CDF and reduce the prediction granularity to
the same size like the leaf nodes in the B+-tree.

Using a single ML model to reduce the prediction granularity
(e.g., from 100M to 10) is difficult, which results in complex ML
models. In the meantime, it is hard to design and train this type of
models due to the unacceptable training overheads. The learned
indexes propose a recursive model index (RMI) [37, 51] to improve
the prediction accuracy, which gradually reduces the prediction
granularity from 100M to 10K, then from 10K to 100, via multiple
small MLmodels. Themain idea of RMI is to build a model hierarchy
and predict the positions of keys via trained models [37]. As shown
in Figure 2a, the RMI consists of 3 stages, respectively containing
1, 2 and 3 ML models. These models are trained in the order of
hierarchical relationships, each of which is trained with different
training data. For example, Model 1.1 in the top level is trained first
with the whole dataset. Based on the prediction results of Model
1.1, either Model 2.1 or 2.2 is selected and the entire dataset is also
divided into two subdatasets according to the selection results. The
two models in the second stage are trained with their individual
subdatasets. The next stage follows the similar training process. In
order to accurately find the queried key, the learned indexes store
the absolute𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 for each model in the last stage, which is
calculated as follows:

𝑚𝑎𝑥_𝑒𝑟𝑟 =𝑚𝑎𝑥 (𝑎𝑏𝑠 (𝑦𝑖 − 𝑓 𝑗𝐿 (𝑥))) ∀𝑖 ∈ 𝑆𝐿.𝑗 , 𝑗 ∈ 𝑀𝐿 (1)

where 𝑦𝑖 represents the true position of each key in the subdataset
𝑆𝐿.𝑗 , 𝑓

𝑗

𝐿
(𝑥) represents the prediction result of 𝑗𝑡ℎ model in the last

stage L and there are 𝑀𝑙 models in stage 𝑙 . If 𝑚𝑎𝑥_𝑒𝑟𝑟 is larger
than the predefined threshold, the ML model becomes invalid to be
replacedwith a B+-tree. Finally, learned indexes show the prediction
granularity [𝑝𝑟𝑒𝑑 −𝑚𝑎𝑥_𝑒𝑟𝑟, 𝑝𝑟𝑒𝑑 +𝑚𝑎𝑥_𝑒𝑟𝑟] if the picked ML
model is valid, otherwise searching the B+-tree.

The learned indexes [37] implement a 2-stage RMI index with a
small neural network (NN) on the top and a large amount of linear
regression models at the bottom. In the learned indexes, a simple
(0 hidden layer) to semi-complex NN model (2 hidden layers) on
the top becomes more efficient than other configured NN models
(i.e., more hidden layers). It is not cost-efficient to execute complex

Table 1: The limited scalability of existing schemes.

Schemes Insertion without keep all concurrency
data loss data sorted write retrain

Learned index [37] % ! % %

FITing-tree [24] ! % % %

XIndex [53] ! % ! !

ALEX [19] ! ! % %

PGM-index [23] ! ! % %

FINEdex ! ! ! !

models at the bottom since the simple linear regression models are
accurate enough to learn the small subdatasets.

2.2 The Scalability Requirements
The learned indexes [37] are trained on the statically distributed
data and assume that the data are uniformly accessed with a single
thread, which do not consider the case that the data distribution
changes along with time. It is important for the learned indexes to
meet the following requirements to support high scalability.

Insertion without data loss. The foundational requirement for
insertion is to guarantee that all data can be found, including the
data that is farthest from the central functions (i.e., trained models).
For the learned indexes, the new data should not be directly inserted
into the trained data array to avoid the error that some data can
not be found due to the data movements. For example, as shown
in Figure 2b, the blue line represents the actual data distribution,
the red line represents one of the linear regression models, and the
black points are the data covered by this model. Since𝑚𝑎𝑥_𝑒𝑟𝑟 (i.e.,
the max error of the model) is calculated via Equation 1, the error
𝑥𝑎 of point 𝑎 meets the condition:

𝑎𝑏𝑠 (𝑥𝑎) ≤ 𝑚𝑎𝑥_𝑒𝑟𝑟
where 𝑎𝑏𝑠 () returns the absolute value. Point 𝑎 is found by the
model since the true position meets the condition:

𝑎 ∈ [𝑝𝑟𝑒𝑑_𝑎 −𝑚𝑎𝑥_𝑒𝑟𝑟, 𝑝𝑟𝑒𝑑_𝑎 +𝑚𝑎𝑥_𝑒𝑟𝑟]
where 𝑝𝑟𝑒𝑑_𝑎 represents the prediction result of 𝑎. Not all the
covered points can be found when there are some newly inserted
data. For example, when the inserted data is smaller than 𝑎, we
need to move point 𝑎 to 𝑎′ to keep all data sorted, thus leading to
an error:

𝑎′ ∉ [𝑝𝑟𝑒𝑑_𝑎′ −𝑚𝑎𝑥_𝑒𝑟𝑟, 𝑝𝑟𝑒𝑑_𝑎′ +𝑚𝑎𝑥_𝑒𝑟𝑟]
due to the new error 𝑎𝑏𝑠 (𝑥 ′𝑎) > 𝑚𝑎𝑥_𝑒𝑟𝑟 .

Keep all data sorted for efficient range query. As an ordered
index structure, all data need to be kept sorted during insertion for
efficient range query performance. Otherwise, we need to search
the queried data multiple times, which decreases the range query
performance.

Efficient concurrency. Providing concurrent operations be-
comes important in the systems that scale to a large number of cores
and threads. No or few thread collisions are generally helpful to
improve concurrent performance, especially for the learned indexes
to insert and retrain new data at runtime. We also need to avoid
the data inconsistency, i.e., no data are lost or redundant. However,
it is non-trivial to concurrently retrain the learned indexes, since

323

Model Layout (RMI)

Linear Models Linear Models

Trained Data Array

Delta Buffer

……

Model Layout (Btree_opt)

Linear Models Linear Models

Trained Data Array…
1 1 1 0
1 4 65 90 …

LBLB …LB … …
23 30 120 …

ro
ot

ch

ild

5 7

Insert 16A. Initialization Insert 16A. Initialization Insert 20B. Split

10

5

7

16

18

…

C. Priority insertion

Allocate
as neededLe

ve
l B

in

Tags
1 4 65 90

M
od

el
 P

ar
t

D
at

a
Pa

rt

 The inserted data

18 16

5

7

10

18

20

…
u

v
w

10

(a) The structure of XIndex (b) The structure of FINEdex

LBLB LBLB LBLB LBLB LBLB LBLB LBLB

Figure 3: The structures of XIndex and FINEdex. FINEdex consists of model and data parts.

the retraining consumes a long time to block other operations on
resorting and retraining the data.

2.3 The Limited Scalability of Existing Schemes
Various learned indexes leverage different strategies to support
scalability, including FITing-tree [24], ALEX [19], PGM-index [23]
and XIndex [53], which however show limited scalability, as shown
in Table 1. Specifically, FITing-tree and XIndex handle inserts in the
delta-buffers. Their differences are that XIndex uses a concurrent
delta-buffer (i.e., Masstree [40]) and supports concurrent retraining,
as shown in Figure 3a. Although handling inserts in the delta-buffer
won’t affect the trained data and guarantees the data correctness
during insertion, such design is inefficient due to storing the data
in two different structures. XIndex [53] shows that the search per-
formance decreases about 3× when the delta-buffer becomes large,
due to checking both learned indexes and delta-buffer in each index
operation. Moreover, when scaling to multiple threads, the use of
delta-buffer increases the thread collisions due to being shared by
all the data covered by the model. The delta-buffer is a tree-based
structure, which has high dependency among inner nodes during
traversing the tree. To improve the performance, XIndex proposes
a Two-Phase-Compact technique to enable concurrent retraining,
which concurrently compacts the delta-buffer in the learned in-
dexes without blocking the systems. However, such design still
suffers from the inefficient delta-buffer, which handles inserts by
constructing another delta-buffer during retraining.

ALEX and PGM-index preserve empty slots in the trained data
array to handle inserts in-place. During insertion, existing data
in the trained data array are moved backward to the empty slots
for the new data. At the same time, we check the trained model
and expand the prediction error as needed to avoid the error that
some data are moved out of the prediction range. In this way, ALEX
and PGM-index ensure the data correctness during insertion, as
well as keeping all data sorted for high range query performance.
However, such design is inefficient when scaling to multiple threads,
since different threads compete for the shared empty slots during
insertion. Moreover, when there are insufficient empty slots, ALEX
and PGM-index expand the trained data array, redistribute the data
into the new trained data array and retrain new models. Before
the retraining completes, we cannot concurrently insert new data,
since the new model under retraining fails to perceive the error that
some data are moved out of the prediction range during insertion.
To guarantee the data consistency, the thread conducting retraining

blocks the system for a long time, which significantly decreases the
concurrent performance.

3 THE FINEDEX DESIGN
In this section, we present the design of FINE-grained scalable
learned index, or FINEdex, for concurrent memory systems. The
key insight of achieving high concurrent performance is to reduce
the dependency among data, as well as mitigating conflicts among
threads. Based on these principles, FINEdex handles inserts in the
non-shared level bins and concurrently retrains models in two gran-
ularities, including the level-bin retraining and model retraining.
Specifically, the level bins are 2-level sorted arrays appended be-
hind each trained data, as shown in Figure 3b. Such flattened data
structure significantly reduces the numbers of thread collisions,
since the level bins behind different trained data have no data de-
pendencies. The new data are inserted into the level bins according
to the order to keep all data sorted. At the same time, existing
trained data are not affected by the new data, which guarantees
that no data are lost during insertion. When the level bins are full,
we concurrently retrain the data in two granularities to adjust to
the new data distribution at runtime, including the level-bin re-
training and model retraining. The former retrains the full level
bins to obtain a small model, while the latter merges small models
to improve the performance. After retraining, the old models are
easily replaced with the new ones, since all models in FINEdex
are independent. Through these designs, FINEdex achieves high
concurrent performance using multiple threads.

To clearly present our approach, we divide our design into the
model and data parts, as shown in Figure 3b. For the model part,
we train independent models and optimize the model layout (i.e.,
the organization structure of the models) to improve the perfor-
mance (Section 3.1). The independent models are flexible to adjust
to the new data distributions through concurrent retraining. For
the data part, we handle inserts in the level bins (Section 3.2), which
are two-level sorted arrays under each trained data and support
low-overhead retraining. For the case that the data distribution
dynamically changes, FINEdex efficiently adjusts the structures to
fit the new data distribution at runtime, as well as ensuring the data
consistency (Section 3.3). Moreover, FINEdex supports the practi-
cal operations (e.g., search, update, insert, and remove) with low
overheads, as shown in Section 3.4. In concurrent systems, FINEdex
provides high concurrent performance due to the few thread colli-
sions caused by the flattened data structures (Section 3.5).

324

(a) Normal distribution. (b) Lognormal distribution. (c) Weblogs. (d) DocumentID. (e) YCSB zipfian.

Figure 4: The prediction errors on different workloads. 𝑅𝑀𝐼_# represents that the model number in the 2nd stage of RMI is #
times than that in the LPA. The horizon yellow line represents the predefined threshold.

(a) Single model.

dense part sparse part

(b) RMI learning.

dense part sparse part

(c) Uniform learning. (d) Learning probe algorithm.

Th
ro

ug
hp

ut
 (1

06 o
ps

/s
)

(e) Search throughput.

Figure 5: (a-d) shows the learning effects of various algorithms. (e) shows the search throughput of different schemes.

3.1 Model Part
We propose Learning Probe Algorithm (LPA) to train independent
models, as well as optimizing the model layout (i.e., the organization
structure of the models) to access the models.

3.1.1 Improving the Model Accuracy.
A model with high accuracy incurs a low model error, i.e., the
farthest distance between the prediction result and the real position,
which is represented as 𝜖 in this paper. Existing schemes [19, 37, 53]
construct the RMI structure to train models. However, the model
accuracy is tightly related with the data distributions of training
models. In fact, it is non-trivial to efficiently train sufficient models
with small model errors [7, 12, 14, 45, 57].

Unlike them, we present Learning Probe Algorithm (LPA) to
adaptively train models according to the data distribution, which
ensures that all model errors are smaller than the given threshold.
The idea is to find the parallelogram of 2𝜖 width in the vertical
direction such that no trained data are placed outside of the paral-
lelogram, as shown of the gray block in Figure 2b. We thus obtain
the linear regression model by using the line that intersects the two
vertical sides of the parallelogram and bisects the parallelogram.
We first show the drawbacks of RMI and then show more details of
LPA in Section 3.1.2.

To show the model accuracy on different distributions, we exam-
ine RMI on various workloads, and the CDFs of these workloads
are shown in Figure 1b. In this experiment, we implement a 2-stage
RMI [37] and train more models for the second stage than that
in LPA. We train all models on 106 keys and set the maximum
threshold of model errors to 32, where 32 is a suitable trade-off
between the prediction accuracy and the model numbers based on
the evaluation results. In general, a small threshold provides high
prediction accuracy but requires a large number of models, which
is time/space-consuming to search/store these models. The results

of the prediction errors (i.e., the distances between the prediction
results and the real positions) are shown in Figure 4, and we have
the following observations.

(OB#1) RMI requires a large number of models to improve the
accuracy, depending on the data distribution. The RMI structure fails
to learn the data distribution well like LPA with the same number
of models, since many prediction errors exceed the predefined
threshold. In some cases, in order to improve the accuracy, RMI
has to use more than two-orders-of-magnitude models than LPA,
as shown in Figures 4b and 4d.

(OB#2) The model accuracies become diverse even in the same
distribution. RMI poorly performs on lognormal distribution with
a small number of models, as shown in Figure 4b. To gain more
insights, we further examine different schemes on learning 10K
lognormal distributed data with 10 models (since 10 models are
enough to show the learning effects of different schemes), and the
results are shown in Figures 5(a-d).

As shown in the yellow lines in Figure 5a, we observe that it is
impossible to perfectly represent the lognormal distribution by only
using one regression model, since the distributions in real-world
applications are more complex than the linear distribution [37]. We
then examine RMI to learn the data distribution, which partitions
the dataset based on the prediction results of the previous stage.
Formally, each ML model is essentially treated as a mathematical
function 𝑓 (𝑥), in which 𝑥 is the given lookup key. If we use 𝑓𝑙 (𝑥)
to denote ML models in different stages, the calculation process is
described as follows:

𝑓𝑙 (𝑥) = 𝑓
(⌊𝑀𝑙 𝑓𝑙−1 (𝑥)/𝑁 ⌋)
𝑙

(𝑥) 𝑓1 (𝑥) = 𝑦 (2)

where 𝑥 represents the input, 𝑁 represents the number of positions
in stage 𝑙 , 𝑦 ∈ (0, 𝑀2] represents the prediction result of the first
model, and there are 𝑀𝑙 models in stage 𝑙 . The idea to select the
next model is normalization, represented as ⌊𝑀𝑙 𝑓𝑙−1 (𝑥)/𝑁 ⌋. This

325

Algorithm 1: LPA Algorithm
Input: int 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,int 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 ,float 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ,
dataType 𝑟𝑒𝑐𝑜𝑟𝑑 [𝑁]
Output: trained 𝐹𝐼𝑁𝐸𝑑𝑒𝑥

1 while not reach the end of the dataset record[N] do
2 add 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 data into dataset 𝑆 from 𝑟𝑒𝑐𝑜𝑟𝑑 ;
3 train a linear regression𝑚𝑜𝑑𝑒𝑙 on 𝑆 ;
4 𝑒𝑟𝑟𝑜𝑟 = max(|𝑚𝑖𝑛_𝑒𝑟𝑟𝑜𝑟 |, |𝑚𝑎𝑥_𝑒𝑟𝑟𝑜𝑟 |) ;
5 while 𝑒𝑟𝑟𝑜𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
6 add next 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 data into dataset 𝑆 from 𝑟𝑒𝑐𝑜𝑟𝑑 ;
7 train a new𝑚𝑜𝑑𝑒𝑙 on 𝑆 ;
8 end
9 while 𝑒𝑟𝑟𝑜𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 do
10 𝑠𝑡𝑒𝑝=int(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 ∗ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒𝑛) ;
11 remove 𝑠𝑡𝑒𝑝 data from the end of dataset 𝑆 ;
12 train a new𝑚𝑜𝑑𝑒𝑙 on 𝑆 ;
13 end
14 𝐹𝐼𝑁𝐸𝑑𝑒𝑥 .append(𝑚𝑜𝑑𝑒𝑙);
15 clean data from dataset 𝑆 for next probing;
16 end

formulation represents that the model 𝑓𝑙 (𝑥) to be used in stage 𝑙 is
based on the results of model 𝑓𝑙−1 (𝑥) in stage 𝑙 − 1.

The results of using learned indexes to learn the CDF are shown
in Figure 5b. We find that the accuracy of each model varies signifi-
cantly depending on the data distribution. For example, the densely
distributed data are not well learned while it is much better for the
sparse part. Densely distributed data are likely to be divided into
the same subdataset according to Equation 2, even if these data
are not linearly distributed, resulting in poor learning accuracy.
Increasing the number of models allows these densely distributed
data to be partitioned into multiple subdatasets, thus allowing more
models to be used to improve the accuracy. However, adding more
models also divides the well-learned parts into more subdatasets
according to Equation 2, resulting in these added models to be
redundant, since these well-learned parts have the similar linear
patterns. Moreover, we have no prior knowledge of the data distri-
bution, which increases the difficulty for configuring the number
of models.

Moreover, we uniformly partition the dataset so that each sub-
dataset has the same amount of data and the results are shown in
Figure 5c. This strategy improves the learning accuracy for densely
distributed data since these data are divided into multiple sub-
datasets and can be learned by more models. However, this strategy
reduces the learning accuracy for sparsely distributed data, since
we have to add some data from densely distributed data into sparse
parts to achieve the same amount of data, even if these data are not
linearly distributed.

The two strategies are inefficient to learn CDF well, since the
two methods can’t adaptively configure models according to the
data distribution, which motivates us to propose the learning probe
algorithm (LPA). As shown in Figure 5d, LPA learns the CDF better
than the previous strategies, since LPA partitions the dataset ac-
cording to the data distribution. Only the same linearly distributed
data are divided into the same subdataset that is easy to learn by a
linear regression model.

3.1.2 The Learning Probe Algorithm.
To overcome the shortcomings of previous strategies, our paper
proposes the learning probe algorithm (LPA), which uses the greedy

strategy to adaptively partition the data according to the data dis-
tribution. In LPA, only the same linearly distributed data are di-
vided into the same subdataset. Therefore, each subdataset is easily
learned by a linear regression model. The criterion for judging
whether the data have the same distribution is to examine if the
error of the obtained model exceeds a predefined threshold. If the
error of obtained model is smaller than this threshold, LPA will
add more data to the subdataset, otherwise remove a small amount
of data in the order from back to front until the remaining data
are linearly distributed. The complete process of LPA is shown in
Algorithm 1.

Before using LPA, we need to configure some parameters includ-
ing 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 and 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 , where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
is the max 𝑒𝑟𝑟𝑜𝑟 of the model we can tolerate, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 and
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 are used to determine the learning speed. As shown
in Algorithm 1, the main component of LPA works like a probe,
which first walks forward for a large step of length 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 ,
i.e., add 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 data from the training dataset 𝑟𝑒𝑐𝑜𝑟𝑑 into a
small dataset 𝑆 (line 2). Then, we obtain a linear regression model
on dataset 𝑆 and calculate the prediction 𝑒𝑟𝑟𝑜𝑟 of the model (lines 3
and 4), where𝑚𝑖𝑛_𝑒𝑟𝑟 and𝑚𝑎𝑥_𝑒𝑟𝑟 are calculated by Equation 1.
The prediction error of the obtained model determines the next op-
eration of the probe. If 𝑒𝑟𝑟𝑜𝑟 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the probe keeps moving
forward to another 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 to obtain a new model until the
error of obtained model is not smaller than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (lines 5-8).
When 𝑒𝑟𝑟𝑜𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , the probe keeps moving backward with a
smaller step until the prediction error of the obtained model is not
larger than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (lines 9-13). The smaller step is determined
as follows:

𝑠𝑚𝑎𝑙𝑙_𝑠𝑡𝑒𝑝 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 ∗ 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒𝑛 (3)

where 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ∈ (0, 1), and 𝑛 ∈ (1, 2, 3...) represents that the
probe iteratively moves backward with much smaller steps. Finally,
LPA appends the model to FINEdex and cleans the dataset 𝑆 for
next probing (lines 14 and 15).

Unlike RMI, all the model errors in LPA are smaller than the
predefined threshold, as shown in Figure 4. The main reason is
that LPA trains data according to the data distribution and only
the model whose prediction error is not larger than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can
be appended to FINEdex, while RMI fails. The max-error of each
obtained model is controlled by the predefined parameter 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .

3.1.3 Optimized Model Layout.
The model layout is interpreted as the organization structure for
storing models, which affects the scalability and the performance
of finding models. Unlike RMI that has heavy model dependency
among different levels, our FINEdex trains independent models to
enable high scalability. However, the obtained piecewise models
need to be checked via one-by-one comparisons, which delivers
low search performance in a poor model layout.

To obtain an efficient model layout, we compare the search per-
formance among the learned index [37] (2-stage RMI with 10𝐾 mod-
els in the second stage), stx::btree [4] (using default configuration as
the original implementation) and the cache-/SIMD-optimized btree
(i.e., align the btree node with cacheline and search the node with
SIMD instructions, represented as btree_opt) on different datasets.
As shown in Figure 5e, we observe that (OB#3) the learned index is

326

Table 2: The numbers of models of different schemes
on various workloads.

Workloads Normal Lognormal Weblogs DocID YCSB
Number of Data 200M 200M 127M 10M 100M
Number LPA 57,835 58,027 38,355 50,260 25,532
of Models RMI 250,000 250,000 250,000 250,000 250,000

not always the best choice. For example, the learned index trains 10𝐾
models on 1𝐾 data to achieve competitive search performance with
btree_opt when the number of data is small. However, the learned
index delivers low performance when failing to train enough mod-
els(e.g., 10𝐾 models on 100𝑀 data). Moreover, the btree supports
scalability while the learned indexes fail.

The total number of models trained by LPA is small, as shown
in Table 2. Hence, we store the piecewise models as btree_opt to
enable system scalability and deliver high performance. The models
are stored as < 𝑘𝑒𝑦,𝑚𝑜𝑑𝑒𝑙 > pairs, where 𝑘𝑒𝑦 is the largest trained
data covered by each model and𝑚𝑜𝑑𝑒𝑙 is a pointer to the model.
The number of models in RMI is manually set, since RMI fails
to adaptively assign the number of models according to the data
distribution. As XIndex shows that 250K models in RMI achieve
the best performance, we also configure 250K models to facilitate
fair comparisons.

3.2 Data Part
We propose to use a flattened data structure to store the new data,
which simultaneously meets the following design principles.

No data loss. The trained data array is not used for processing
inserts to avoid the data-loss errors in Figure 2b.

Keep all data sorted for range query. One drawback of the
shared delta-buffer is the data overlapping between the trained data
array and delta-buffer, which hinders the range query performance.
Unlike it, FINEdex processes inserts in the structure under each
trained data without data overlapping, hence keeping all data sorted
during insertion.

Alleviate the data dependency for high concurrency. FINEdex
alleviates the data dependency via the flattened data structure, i.e.,
each trained data has its own small-sized buffer to process the mod-
ifications, rather than sharing one big buffer with tens of thousands
of trained data. Moreover, we bound the buffers to small sizes at run-
time via fine-grained retraining to keep low data dependency. Such
designs significantly reduce the thread collisions and improve the
concurrent performance as shown in our experimental evaluations.

We propose the structure of level bins under trained data to
process the modifications. The structure of the level bins is a modi-
fied two-level B-tree as shown in Figure 3b. The horizontal blocks
represent the root bins and the vertical blocks represent the child
bins. When the two-level bins are not full, the new data are inserted
like a B-tree with the difference that the data are prioritized to be
inserted into the previous child bin. The full level bins do not grow
to higher levels to avoid high data dependency in the tree-based
structures. Instead, we propose fine-grained retraining with two
granularities to accommodate more data.

Specifically, Figure 3b shows how the level bins process inserts.
At the beginning, only one bin is placed under the trained data

for space savings and other bins are constructed as needed. For
example, we construct two child bins to insert 16 when the root
bin is full. As more data are inserted, the data are prioritized to be
inserted into the previous child bin to improve the space utilization.
Moreover, to insert 20, we move existing data forward to the first
child bin to keep all data sorted. In this case, we move at most (𝑛+1)
data, where 𝑛 is the length of the child bin. When the previous child
bin becomes full, the data is inserted like a two-level B-tree, which
moves at most (𝑚 + 𝑛/2) data in the worst case, where𝑚 and 𝑛
respectively represent the number of slots in the root and child bins.
Each bin has 8-16 slots in our experiments to achieve an efficient
tradeoff between scalability and access efficiency. We bound the
level bins to two levels to alleviate the data dependency among
levels, and retrain the full level bins to accommodate more data.
Our experimental results show that the maximum load factor (i.e.,
the number of occupied slots divided by the total number of slots)
of FINEdex is about 82%, which is higher than 75% in the B-tree.

When scaling to multiple threads, the level bins behind different
trained data won’t block each other due to the low data dependency,
which incur few thread collisions. When the learned structures
learn the data distribution, the inserted data are likely to exhibit
the same patterns [37], and hence are inserted evenly into all level
bins. In this case, FINEdex handles nearly (𝑚 ∗ 𝑛) times more than
the trained data. When the data distribution changes, FINEdex
concurrently retrains the level bins to fit the new data distribution,
as shown in Section 3.3.

3.3 Concurrent Retraining
In general, some level bins are full when more data are inserted
or the data distribution changes, e.g., the skewed workloads (i.e.,
the data are modified in certain ranges). Instead of reconstructing
the indexes from scratch with high overheads, FINEdex performs
retraining to adjust to the new data distribution.

The challenge is how to ensure the data consistency without
blocking concurrent operations. For example, retraining a model on
one million data consumes up to several seconds [37], which blocks
the systems for a long time. As shown in Figure 6, if we retrain
the model in a sequential manner, the data covered by the model
(including the trained data array and all level bins) are blocked
until the retraining is completed, which incurs high overheads in
the concurrent system. On the other hand, the data inconsistency
occurs during concurrent retraining. As shown in Figure 6, the new
data 𝑎 is successfully inserted into the old models during retraining
(i.e., 𝑡1 to 𝑡3). However, the new models can’t find 𝑎 since the new
models fail to train 𝑎 when the retraining begins at 𝑡1. Moreover,
it is hard to identify which data are inserted during retraining,
since the newly inserted data are mixed with existing data during
reordering. Processing the inserts in an extra delta-buffer separates
the newly inserted data with existing data, which however fails to
keep all data sorted and degrades the overall performance with the
growth of buffer size.

To address these challenges, FINEdex performs retraining in
two granularities, including the level-bin retraining and model
retraining. The former generates more space by retraining full level
bins and the latter merges small models to improve the model
accuracy and search performance.

327

t1 t3

Old models New models
Timeline

Insert retry!Blocked

t1 t3

Old models New models

new models: LOST

Non-concurrent

Concurrent

Retraining phase

Timeline

old models: SUCCESS

Retraining phase

t2: Insert a

t2: Insert a

Figure 6: The challengs of different retraining strategies.

3.3.1 Level-Bin Retraining.
Retraining a model needs to retrain all the covered data in the
trained data array and the level bins. Hence, it is expensive to
retrain the whole model even if the level bins of only one trained
data are full. To address this issue, we retrain a new model based on
the data of the full bins, while other data in the trained data array
and the level bins are not retrained. The new model is appended
under the corresponding trained data, and new level bins are created
under the new model to process the inserts, as shown in Figure 7.

Level-bin retraining achieves high concurrent performance since
only the full level bins are locked for the data consistency, while
other data are not related.Moreover, performing level-bin retraining
is cost-efficient (e.g., 27𝜇𝑠 in our experiments), since the full level
bins contain no more than𝑚 ∗ 𝑛 data, where𝑚 and 𝑛 respectively
represent the number of slots in the root and child bins.

3.3.2 Model Retraining.
The system performance decreases when a large number of small
models are iteratively created via the level-bin retraining. In this
case, FINEdex merges these small models through the model re-
training to maintain high performance.

As shown in Figure 7, FINEdex conducts model retraining by
compacting the trained data arrays of different models (i.e., the
large and covered small models, including the smaller ones). New
models are trained on the covered trained data arrays, which are
not modified by the new data according to the design principles in
Section 3.2. The retraining process is performed in the background
to hide the latency in the concurrent system. During retraining, the
level bins are not affected and concurrently process the in-place
modifications without blocking the overall system. We directly
append the pointers of the level bins under the newly trained data
array. After the new models are retrained, FINEdex uses the RCU-
barrier [53] to ensure that all threads access the new models. The
RCU-barrier is a synchronizationmechanism of concurrent systems,
which enables all readers to access the new data structures, rather
than the old ones, in a shared memory. Since both new and old
models point to the same level bins and the modifications during
retraining are processed in-place in the level bins, any concurrent
modification during the model retraining is not lost.

The model retraining is triggered when the small model needs
to retrain a smaller model. For skewed workloads, FINEdex assigns
the level bins in the data-intensive parts via retraining, which flat-
tens the data-intensive parts after several retrains. The new data
are inserted into the flattened data structure with low data depen-
dency. Moreover, the overall data distribution is convergent with
the growth of data according to the Law of Large Numbers [30].
Hence, FINEdex gradually adapts to the new data distribution along
with time.

Linear Model

Trained Data Array

LB LBLB LBLB LB…

Full LB3Linear Models

Trained Data Array

LB
1

LB
2

LB
4

LB
4

LB
5

LB
5

LB
3

Linear Models

Trained Data Array

LB
1

LB
2

LB
4

LB
5

LB
3

New Linear Models

Trained Data Array

LB
1

LB
2

LB
4

LB
4

LB
5

LB
5

LBLB LBLB…
level-bin

retraining

Model retraining
• LB: Level bin

Figure 7: Concurrent retraining. Level-bin retraining
retrains full bins. Model retraining merges the small models.

3.4 Practical Operations
Search: Figure 3b shows a complete searching process for item 7
using a single thread. Stage ❶: Find the model that covers the
item 7 in the model layout. Stage ❷: Search in the prediction range,
which is calculated by the obtained model 𝑓 (𝑥). Stage ❸: FINEdex
completes the search if finding the given key in the prediction range,
otherwise FINEdex searches the level bins or the small models.

Insert: FINEdex searches the whole structure to identify if the
given data exists, and only the unique data are inserted into the
level bins as elaborated in Sections 3.2 and 3.3.

Update: If a given key exists in the structure, FINEdex updates
the corresponding value via atomic writes, which is easily imple-
mented since the value is a 64-bit pointer referring to the real data.

Remove: As shown in Figure 3b, we use the tokens (i.e., 0 and 1)
to indicate whether the trained data are removed, which avoids the
data-loss errors in Figure 2. The data in the level bins are directly
removed, since changing the data within the level bins won’t affect
the model accuracy.

3.5 Concurrency
Concurrent data structures become important to existing systems
that scale to a large number of cores and threads. The thread colli-
sion probability of FINEdex is rather low due to the flattened data
structure. The conflicts only occur when different threads concur-
rently write/write or read/write the bins under the same trained
data. We use the version control [40] and allocate fine-grained locks
to enable FINEdex to support concurrent operations.

3.5.1 Write/Write Conflicts.
The write/write conflicts occur when different threads modify the
same trained data or the same bin. FINEdex allocates the per-record
locks for the trained data and the per-bin locks for the bins to
enable concurrent writes. For example, according to the princi-
ple of the modification operations (Section 3.4), FINEdex first up-
dates/removes the matching record (i.e., whose key is equal to the
given key) in the trained data array, and the per-record lock of
the corresponding record ensures the concurrent writes. FINEdex
further modifies the data in the level bins when failing to match a
record in the trained data array. The per-bin lock is used to enable
concurrent bin to be updated and split. Specifically, FINEdex locks
the child bin which is determined to process the modification, while
the root bin is locked as needed (i.e., when child bin splits or the
largest data in the child bin changes).

Existing schemes use delta-buffers or preserve empty slots to
enable scalability, which however incur high overheads due to the
data dependency. For example, many locks are needed when the

328

tree in the delta-buffer becomes large. For the schemes preserving
empty slots, we need to lock all data covered by the same model to
enable correct data movements for resorting. Unlike them, FINEdex
decreases the conflict probability, since different threads that modify
the level bins under different trained data don’t block each other.

3.5.2 Read/Write Conflicts.
Instead of using the locks during reading, FINEdex uses the version
control [9, 40] to ensure that the obtained data is consistent and
latest. FINEdex allocates the version numbers for each trained data
and bin, and increases the version count when the data are modified.
During reading, if a record in the data structure matches the given
key, FINEdex maintains the version 𝑣 in the form of snapshot before
obtaining the value. The obtained value becomes valid if the version
doesn’t change (i.e., the version after reading the value becomes
equal to 𝑣) and the data is not locked. Otherwise, the latest value is
not read, since other threads are updating the value during the data
locking. FINEdex repeats to read the current and next child bins
until obtaining the valid value, since the data are possibly moved
to the next child bins if the current bin is split.

4 REAL SYSTEM IMPLEMENTATIONS
Existing systems, such as NoSQL [32, 48], IBM DB2 [31], Lev-
elDB [25] and PostgreSQL [28], construct tree-based structures
to keep the data sorted for range queries. While supporting range
queries, we coalesce FINEdex with the in-memory Redis [48] for
efficient data access, where Redis has been widely used in the event-
driven key-value store.

Our proposed FINEdex provides a scalable learned index scheme
for in-memory systems. The coalescing design with Redis only in-
volves the basic data structure of the sorted set. Other components
(e.g., transaction, cluster, client and server, etc.) are not modified.
The implementation of FINEdex provides an interface with 6 easy-
to-use APIs, including TRAIN, GET, PUT, UPDATE, REMOVE and
SCAN. Specifically, we implement the LPA algorithm in Redis to
train the models. During the runtime, we allocate 4 retraining-
purpose threads in the background to concurrently execute the
model retraining, while the level-bin retraining is executed by the
worker threads (i.e., the threads to execute the APIs). To prevent the
un-retrained models affected by the retrained one due to data move-
ments, the trained data arrays of different models are not stored
together. FINEdex leverages the following three steps to complete
the index operations (e.g., read and write), including searching the
models, calculating the range and operating in the level bins, as
demonstrated in Section 3.4.

Instead of using the binary searching in the prediction range
and level bins, we optimize the search performance with SIMD
instructions, i.e., Intel AVX2, which processes 256-bit data with one
instruction. FINEdex is efficient to leverage SIMD, due to searching
the data in a short continuous memory (e.g., small prediction range,
and small level bins), which meets the needs of Intel AVX2 [2].

5 PERFORMANCE EVALUATION
We run experiments on a Linux server (kernel version v4.19.91) that
contains one 12-core Intel(R) Xeon(R) CPU @2.50GHz (each core
with 32KB L1 instruction cache, 32KB L1 data cache and 1024KB

Th
ro

ug
hp

ut
 (1

06 o
ps

/s
)

Th
ro

ug
hp

ut
 (1

06 o
ps

/s
)

YCSB workloads

Figure 8: Throughputs on YCSB with various workloads.

L2 cache) and 48GB DRAM. We run all schemes with 24 threads to
evaluate the concurrent performance by default.

Counterparts for Comparisons.We compared our proposed
FINEdex with state-of-the-art schemes. For the tree-based struc-
tures, we compare FINEdex withMasstree [40], which is a variant of
scalable concurrent B+-tree. The sorted set in Redis is not included,
since it is implemented as a skip list and has the similar data access
performance with tree-based structures [48]. Due to different design
goals, B𝜖 -tree [44] is not compared since it is optimized for less disks
I/Os, rather than the memory access in our scheme. Moreover, for
the learned index schemes, we enable the original learned index [37]
to support scalability by adding a delta-buffer (denoted as LI+Δ),
where the buffer is implemented as a Masstree [40]. We compare
FINEdex with XIndex [53] and LI+Δ [37], where their difference
is that LI+Δ fails to support concurrent retraining. FITing-tree is
not compared due to failing to support concurrent operations, e.g.,
concurrent writing and retraining. We run the codes of ALEX and
PGM-index with a single thread, but do not run them with multi-
ple threads due to the thread collisions that come from their slot
contentions [19, 23]. The core dump occurs when there are insuffi-
cient empty slots, since different threads construct multiple trained
data arrays, respectively redistribute data and retrain new models,
which incur severe data inconsistency issues.

Configurations. For the compared counterparts, we directly
run their source codes with the default configurations. The learned
index is implemented with a 2-stage RMI following the original
work [37], and the second stage configures 250K models like the
setting in XIndex [53] to facilitate fair comparisons. In FINEdex,
we use the predefined threshold 32 (which is a suitable trade-off
to obtain high prediction accuracy and small number of models),
to train the models. The root and child bins respectively contain
8 and 16 keys to obtain a suitable tradeoff between the insertion
capacity and search efficiency.

Benchmarks. (1) YCSB, a benchmark with six different work-
loads (A-F), including update heavy (A), read mostly (B), read only
(C), read latest (D), short ranges (E) and read-modify-write (F). All
workloads contain 100 million data with both Uniform and Zipfian
distributions. (2)Weblogs contains 127 million unique log entries
and we use the timestamps as the indexes. (3) DocId contains five
text collections in the form of bags-of-words, which has nearly 10

329

In
se

rt
Th

ro
ug

hp
ut

(1
06 o

ps
/s

)

(a) Different numbers of threads.

In
se

rt
th

ro
ug

hp
ut

 (1
06 o

ps
/s

)

(b) Different numbers of the data.

In
se

rt
Th

ro
ug

hp
ut

 (1
06 o

ps
/s

)

(c) The throughput timeline.

Se
ar

ch
 th

ro
ug

hp
ut

 (1
06 o

ps
/s

)

(d) Search throughput after inserts.

Figure 9: The scalability throughput in various scenarios, which are evaluated on the lognormal dataset.

Th
ro

ug
hp

ut
 (1

06 o
ps

/s
)

Figure 10: The throughputs on various workloads.
Th

ro
ug

hp
ut

 (1
06 o

ps
/s

)

 T
hr

ou
gh

pu
t (

10
6 o

ps
/s

)

(a) Insert (b) Search after inserts

Figure 11: The throughputs on skewed workloads.

million instances in total. We also use 2 synthetic datasets with
200 million items to evaluate the behavior of FINEdex in depth: (4)
Normal distribution with 𝜇=4 and 𝜎=2, and (5) Lognormal distribu-
tion with 𝜇=0 and 𝜎=2. All generated keys are scaled up to [0, 1012]
as integers for evaluations. The CDFs of the used benchmarks are
shown in Figure 1b. We configure all benchmarks with 8-byte keys
and value-pointers (i.e., the pointers refer to the variable-length
values), since existing systems support up to 8-byte computations
for ML models [37, 53].

5.1 The Throughput via YCSB
Figure 8 shows the throughput of different schemes on YCSB with
Uniform and Zipfian distributions. In general, FINEdex signifi-
cantly improves the throughput on dynamic workloads over other
schemes, as well as achieving higher throughput on static work-
loads due to the optimized model layout and high model accuracy.

Static workloads (YCSB A, B, C, F). The data distributions
of the static workloads won’t change during runtime, since most
requests are reading (e.g., workload C) or updating the values (e.g.,
workloads A, B, and F). In these cases, FINEdex achieves compara-
ble (even a little better) throughput than LI+Δ and XIndex, since
FINEdex searches fewer models in the optimized layout and effi-
ciently finds the data with higher model accuracy, as shown in
Figures 4 and 5.

Dynamic workloads (YCSB D, E). FINEdex delivers higher
throughput than other schemes on the dynamic workloads. Specif-
ically, FINEdex outperforms LI+Δ, XIndex, and Masstree by 1.7×,
1.6×, and 2.3× on workload D. Because FINEdex incurs few data
movements and has low-probability thread collisions during inser-
tion, while LI+Δ, XIndex, and Masstree incur high overheads to
traverse the trees. Moreover, FINEdex further improves the through-
put by up to 3.2×, 2.7×, and 2.1× over LI+Δ, XIndex, and Masstree
on workload E. The main reason is that LI+Δ and XIndex handle

new inserts in the delta-buffer, which has data overlapping with
the original trained data array and fails to keep all data sorted.

5.2 The Throughput with Heavy Writes
We evaluate the scalability throughput under heavy writes. In the
experiments, we randomly sample a fraction of data to train the
learned structures, and the data distribution doesn’t change during
insertion. We also insert these sampled data into Masstree for fair
comparisons.

The number of threads. Figure 9a shows the insert throughput
with different threads. We observe that FINEdex improves the insert
throughput by up to 1.6×, 1.3×, and 2.0× over LI+Δ, XIndex, and
Masstree when the number of threads increases. FINEdex obtains
more performance improvements with more threads, since FINEdex
reduces the thread collisions by inserting the data into the flattened
level bins.

The number of the inserted data. The number of the inserted
data to the trained data is defined as Insert Factor, which clearly
differentiates the inserted data from the trained data for the learned
structures. Figure 9b shows the throughput of inserting different
numbers of data. We observe that the insert throughput of FINEdex
is low at the beginning due to consuming time on allocating the
level bins for each trained data. When inserting more data, FINEdex
improves the throughput by up to 1.5×, 1.2×, and 1.3× over LI+Δ,
XIndex, and Masstree. The main reason is that the level bins in-
cur few data movements during insertion and handle inserts up
to nearly (𝑚 ∗ 𝑛) times (𝑚 and 𝑛 represent the slot numbers of
root and child bins) more than the trained data without retraining.
However, the delta-buffer in LI+Δ and XIndex incurs high over-
heads to iteratively split the nodes with massive data movements.
The data dependency among nodes further hinders the concurrent
performance during insertion.

330

Th
ro

ug
hp

ut
 (1

06 o
ps

/s
)

(a) Static seach throughput.
La

te
nc

y
(n

s)
Insert factor

(b) Insert latency.

La
te

nc
y

(n
s)

Insert factor

(c) Point query after inserts.
Insert factor

(d) Range query after inserts.

DB

Time (s)

LB

(e) The retraining frequency.

Figure 12: The performance analysis. DB represents the delta-buffer, and LB represents the level bins. The number # in
𝐷𝐵 − #/𝐿𝐵 − # represents the used threads. The 1/0 in figure (e) represents that the retraining is/isn’t required.

Insertion with frequent retraining. Figure 9c shows the
throughput timeline when inserting more than 1000× data than
the trained data. In this case, the learned models are frequently
retrained to learn the new data distribution for high accuracy. We
observe that FINEdex improves the insert throughput by about 1.8×
over other schemes. Because FINEdex concurrently adapts to the
new distribution by efficiently executing the level-bin retraining
and model retraining.

5.3 Throughput with Read-Write Workloads
The search performance after inserts. The learned structures
offer high search performance on the static workloads, which are
important even after inserting a large number of data. Figure 9d
shows the search throughput after inserting different numbers
of data. We observe that LI+Δ and XIndex decrease the search
performance after heavy writes, since they have to spend extra time
on searching the delta-buffers. The performance further decreases
when the buffer becomes large. The performance of FINEdex also
decreases after inserts, since the size of the level bins increases
when we constantly insert data. However, FINEdex provides higher
search performance than other schemes, since we bound the level-
bins to two levels via retraining. We have the similar observations
and insights on other benchmarks, as shown in Figure 10.

Different read/write ratios. Figures 13 and 14 respectively
show the throughput and latency with various read/write ratios.
We have the similar observations with previous evaluation results,
i.e., FINEdex delivers high performance on both static and write-
intensive workloads.

5.4 Throughput with Skewed Workloads
The data distribution may change, e.g., reading/writing data in a
certain range, rather than accessing the data evenly following the
trained pattern. The accessed range divided by the range of trained
data is defined as Hotspot Ratio, where the smaller hotspot ratio
represents the larger skewness. Figure 11 shows the insert and
search throughputs on the skew workloads. We observe that both
FINEdex and XIndex show low performance when the skewness is
large, since more thread collisions occur and more retrainings are
necessary. As the skewness decreases, FINEdex achieves higher per-
formance than other schemes, due to retraining the data-intensive
part and assigning a large amount of level bins. After several re-
trainings, FINEdex flattens the skewed data and adjusts to the new
data distribution, thus decreasing the thread collisions.

5.5 In-depth Analysis for FINEdex
To examine where the performance improvements come, we lever-
age Control Variates [43] to evaluate different components of FINEdex,
and the results are shown in Figure 12. In general, the most benefits
come from the flattened data part and concurrent retraining.

Model part. Figure 12a shows the performance of the model
part. In this experiment, all data are stored in the trained data array
and we won’t insert any data. We observe that FINEdex doesn’t
obtain significant performance improvements, compared with other
learned schemes, since the models of all learned structures keep
high accuracy when there are no inserts.

Data part. Figures 12b-d show the performance of the data
part. In these experiments, we only use one model to mitigate the
influence from the model layout. From Figure 12b, we observe that
the level bins improve the insertion performance by about 1.8×
than the delta-buffer with a single thread, and further improves
about 2× with more threads. The reason is that the non-shared
level bins have low data dependency among each other and incur
few thread collisions in concurrent systems. After a large number
of inserts, the level bins respectively improve about 2.1× and 3.2×
point/range query performance than the delta-buffer, as shown in
Figures 12c and 12d, since the level bins keep all data sorted.

Retraining frequency. Figure 12e shows the retraining fre-
quency when new data are constantly inserted. We observe that the
scheme with a delta-buffer incurs more retrainings than FINEdex,
since the delta-buffer is shared by all data covered by one model
and becomes large during the insertions. Unlike it, FINEdex adjusts
to the new data distribution after several retrainings and requires
less retrainings later. Because FINEdex amortizes the insertions
into multiple small-sized level bins and processes more inserts with
high performance.

5.6 Overheads Analysis
5.6.1 Training Latency.
Figure 15 shows the latency to train different structures, and the
latency to train Masstree is evaluated by inserting the trained data
into the tree. We observe that FINEdex incurs low latency to train
the model, which outperforms LI+Δ and XIndex by up to 1.3× and
8.9×. Specifically, the LPA algorithm [57] only needs to traverse
all data once during training. However, the learned index needs to
traverse all data multiple times due to the level-by-level training
strategy [37]. The complexity to train XIndex is higher than RMI,
depending on the data distributions, since XIndex needs to train
RMI multiple times to improve the accuracy.

331

Th
ro

ug
hp

ut
 (1

0⁶
 o

ps
/s

)

Figure 13: The throughput with
various read/write ratios.

Read/Write Ratio (%)

La
te

nc
y

(n
s)

Figure 14: The latency with
various read/write ratios.

La
te

nc
y

(s
)

Figure 15: Training latency
on various workloads.

Si
ze

 (M
B)

116.3 115.8 73.5

Figure 16: Memory overhead
of models/inner nodes.

To dynamically adapt to the new data distribution, FINEdex per-
forms retraining in two granularities, including level-bin retraining
and model retraining. The level-bin retraining consumes 27𝜇𝑠 to
train the full level bins in our experiments. Although model re-
training consumes more time (e.g., 1.5𝑚𝑠 on 10K data), the latency
doesn’t affect other concurrent operations, since we perform the
model retraining in background.

5.6.2 Memory Overheads.
The memory overheads consist of metadata and data parts. The
metadata refers to the ML models in the learned structures and
the inner nodes in tree-based structures, while the data refers to
the real values. Different schemes require almost the same space
to store the data due to the same amount of real values. Moreover,
Section 3.2 shows that FINEdex allocates bins as needed and has a
little higher maximum load factor than the tree-based structures to
store the newly inserted data. Hence, FINEdex incurs the same (or
a little lower) storage overhead for the data part.

The main difference in memory overhead of different schemes
is the metadata overhead. As shown in Figure 16, we evaluate
the sizes of ML models in the learned structures and the memory
consumptions of inner nodes in Masstree for fair comparisons.
From the results, we observe that all learned structures consume
less memory thanMasstree by up to two orders-of-magnitude, since
one linear regression model is enough to index the same linearly
distributed data. Moreover, FINEdex obtains more memory savings
than the learned indexes and XIndex by up to 10× due to generating
less models, as shown in Table 2.

6 RELATEDWORK
The Learned Structures for Memory Systems. The learned in-
dex [37] leverages the powerful calculations to replace the tradi-
tional expensive memory consumption. To support the insertion
operation, ALEX [19] reserves the slots for new inserts and syn-
chronously allocates a new data array when there are no enough
slots. PGM-index [23] obtains the temporal and spatial trade-off via
an optimal number of linear models. FITing-tree [24] uses B+-tree as
a buffer to process the inserts. In practice, the needs for concurrency
become increasingly important [49]. XIndex [53] uses the concur-
rent Masstree [40] as the delta-buffer and concurrently compacts
the buffer with the trained model at runtime. Unlike them, RadixS-
pline [36] builds the index structure fast, as well as showing efficient
lookup performance. SOSD [35, 41] and CDFShop [42] show the
advantages of learned structures over tree-based structures. Instead
of using the workload-driven approach, DeepDB [29] proposes a

new data-driven approach for learned DBMS. In the KV systems,
BOURBON [17] coalesces the learned index with the LSM-based
key-value store to deliver high performance. XSTORE [54] leverages
the learned index to improve the performance of network-attached
in-memory key-value store. Moreover, Tsunami [20] achieves ef-
ficient search performance by using learned multi-dimensional
indexes, while LISA [38] learns the spatial data.

Tree-based Structures for Memory Systems. Traditional tree-
based structures have been implemented with the support of hard-
ware, including cache, SIMD and GPUs [33, 34, 34, 46, 47, 50]. B𝜖 -
tree [44] improves write performance via asynchronous writes to
disks with less I/Os. Masstree [40] uses fine-grained locks to provide
concurrent operations. Wormhole [56] replaces the inner nodes
of B+-tree with a hash-table encoded Trie to process the variable
lengths of keys. 𝜇Tree [15] shows low tail latency than other tree-
based schemes on persistent memory. Several schemes focus on
compressing indexes to reduce the sizes of keys via prefix/suffix
truncation, dictionary compression and key normalization [5, 26].

FINEdex achieves higher performance than other schemes in the
case that there are intensive inserts with multiple threads, which
however doesn’t obtain significant performance improvements in
the following cases. For the static workloads, i.e., the case that has
no inserts, FINEdex achieves competitive search performance with
other schemes, since the models of all learned structures keep high
accuracy when there are no inserts. Moreover, PGM-index achieves
more space-savings than FINEdex via the model compression tech-
niques. For the disk-based storage system, LSM achieves higher
performance than FINEdex due to the efficient sequential writes.

7 CONCLUSION
In this paper, we propose a fine-grained learned index scheme to
exploit the concurrency benefits for scalable in-memory systems,
called FINEdex. To achieve the scalability, the inserts are processed
in the level bins under each trained data. Moreover, FINEdex con-
currently adapts to the new data distribution with non-blocking re-
training, as well as ensuring the data consistency. Our experimental
results show that FINEdex respectively improves the performance
by up to 1.8× and 2.5× over the learned-based and tree-based struc-
tures. We have released the source codes for public use in GitHub.

ACKNOWLEDGMENTS
This work was supported in part by National Natural Science Foun-
dation of China (NSFC) under Grant No. 62125202. Yu Hua is the
corresponding author.

332

REFERENCES
[1] 2017. Symas lightning memory-mapped database. http://www.lmdb.tech/doc/
[2] 2020. Intel AVX2. https://www.intel.com/content/www/us/en/homepage.html
[3] Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-tree: approximate tree in-

dexing. In Proceedings of the 40th International Conference on Very Large Databases
(VLDB).

[4] Timo Bingmann. 2007. Stx b+tree c++ template classes. http://panthema.net/
2007/stx-btree/

[5] Matthias Boehm, Benjamin Schlegel, Peter Benjamin Volk, Ulrike Fischer, Dirk
Habich, and Wolfgang Lehner. 2011. Efficient in-memory indexing with general-
ized prefix trees. Database systems for Business, Technology and Web (BTW) 180
(2011), 227–246.

[6] Dhruba Borthakur. 2013. Petabyte scale databases and storage systems at face-
book. In Proceedings of the 2013 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD). 1267–1268.

[7] Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. 2007. Space
efficient streaming algorithms for the maximum error histogram. In 2007 IEEE
23rd International Conference on Data Engineering (ICDE). IEEE, 1026–1035.

[8] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,
modeling, and benchmarking RocksDB key-value workloads at Facebook. In
18th USENIX Conference on File and Storage Technologies (FAST). 209–223.

[9] Sang Kyun Cha, Sangyong Hwang, Kihong Kim, and Keunjoo Kwon. 2001. Cache-
conscious concurrency control of main-memory indexes on shared-memory
multiprocessor systems. In VLDB, Vol. 1. 181–190.

[10] Helen HW Chan, Chieh-Jan Mike Liang, Yongkun Li, Wenjia He, Patrick PC Lee,
Lianjie Zhu, Yaozu Dong, Yinlong Xu, Yu Xu, Jin Jiang, et al. 2018. HashKV: En-
abling Efficient Updates in𝐾𝑉 Storage via Hashing. In USENIX Annual Technical
Conference (ATC). 1007–1019.

[11] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[12] Danny Z Chen and Haitao Wang. 2009. Approximating points by a piecewise
linear function: I. In International Symposium on Algorithms and Computation
(ISAAC). Springer, 224–233.

[13] Jiqiang Chen, Liang Chen, Sheng Wang, Guoyun Zhu, Yuanyuan Sun, Huan Liu,
and Feifei Li. 2020. HotRing: A Hotspot-Aware In-Memory Key-Value Store. In
18th USENIX Conference on File and Storage Technologies (FAST). 239–252.

[14] Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. 2007. Index-
able PLA for efficient similarity search. In Proceedings of the 33rd international
conference on Very large data bases (VLDB). 435–446.

[15] Youmin Chen, Youyou Lu, Kedong Fang, Qing Wang, and Jiwu Shu. 2020. 𝜇Tree:
a Persistent B+-Tree with Low Tail Latency. Proc. VLDB Endow. 13, 11 (2020),
2634–2648. http://www.vldb.org/pvldb/vol13/p2634-chen.pdf

[16] Douglas Comer. 1979. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11, 2
(1979), 121–137.

[17] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. Fromwisckey to bour-
bon: A learned index for log-structured merge trees. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI). 155–171.

[18] Biplob Debnath, Sudipta Sengupta, Jin Li, David J Lilja, and David HC Du. 2011.
BloomFlash: Bloom filter on flash-based storage. In 2011 31st International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, 635–644.

[19] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
et al. 2020. ALEX: an updatable adaptive learned index. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (SIGMOD).
969–984.

[20] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[21] Bin Fan, David G Andersen, and Michael Kaminsky. 2013. Memc3: Compact
and concurrent memcache with dumber caching and smarter hashing. In Pre-
sented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). 371–384.

[22] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technologies
(CoNEXT). 75–88.

[23] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proceedings of the
VLDB Endowment (VLDB) 13, 8 (2020), 1162–1175.

[24] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. Fiting-tree: A data-aware index structure. In Proceedings of the
2019 International Conference on Management of Data. 1189–1206.

[25] Sanjay Ghemawat and Jeff Dean. 2011. LevelDB. https://github.com/google/
leveldb

[26] Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. 1998. Compressing
relations and indexes. In Proceedings 14th International Conference on Data Engi-
neering (ICDE). IEEE, 370–379.

[27] Goetz Graefe and P-A Larson. 2001. B-tree Indexes and CPU Caches. In Proceed-
ings 17th International Conference on Data Engineering (ICDE). IEEE, 349–358.

[28] The PostgreSQL Global Development Group. 1996-2021. PostgreSQL. https:
//www.postgresql.org/

[29] Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kris-
tian Kersting, and Carsten Binnig. 2020. DeepDB: Learn from Data, not from
Queries! Proc. VLDB Endow. 13, 7 (2020), 992–1005. https://doi.org/10.14778/
3384345.3384349

[30] Pao-Lu Hsu and Herbert Robbins. 1947. Complete convergence and the law of
large numbers. Proceedings of the National Academy of Sciences of the United
States of America (PNAS) 33, 2 (1947), 25.

[31] IBM Inc. 2020. IBM DB2. https://www.ibm.com/analytics/db2
[32] MongoDB Inc. 2021. MongoDB. https://www.mongodb.com/
[33] Krzysztof Kaczmarski. 2012. B+-tree optimized for GPGPU. In OTM Confederated

International Conferences" On the Move to Meaningful Internet Systems" (OTM).
Springer, 843–854.

[34] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony DNguyen,
Tim Kaldewey, VictorW Lee, Scott A Brandt, and Pradeep Dubey. 2010. FAST: fast
architecture sensitive tree search on modern CPUs and GPUs. In Proceedings of
the 2010 ACM SIGMOD International Conference onManagement of data (SIGMOD).
339–350.

[35] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for Learned
Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

[36] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, aiDM@SIGMOD 2020, Portland,
Oregon, USA, June 19, 2020, Rajesh Bordawekar, Oded Shmueli, Nesime Tatbul,
and Tin Kam Ho (Eds.). ACM, 5:1–5:5. https://doi.org/10.1145/3401071.3401659

[37] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD). 489–504.

[38] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
2119–2133. https://doi.org/10.1145/3318464.3389703

[39] Yongkun Li, Chengjin Tian, Fan Guo, Cheng Li, and Yinlong Xu. 2019. ElasticBF:
elastic bloom filter with hotness awareness for boosting read performance in
large key-value stores. In USENIX Annual Technical Conference (ATC). 739–752.

[40] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache craftiness
for fast multicore key-value storage. In Proceedings of the 7th ACM european
conference on Computer Systems (EuroSys). 183–196.

[41] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and TimKraska. 2020. Benchmarking Learned
Indexes. Proc. VLDB Endow. 14, 1 (2020), 1–13. https://doi.org/10.14778/3421424.
3421425

[42] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020, online conference
[Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM,
2789–2792. https://doi.org/10.1145/3318464.3384706

[43] Sean Meyn. 2008. Control techniques for complex networks. Cambridge University
Press.

[44] William Jannen Rob Johnson Bradley C Kuszmaul Donald E Porter Jun Yuan
Michael A Bender, Martin Farach-Colton and Yang Zhan. 2015. And introduction
to Be-trees and write-optimization. Login; Magazine 40, 5 (2015).

[45] Joseph O’Rourke. 1981. An on-line algorithm for fitting straight lines between
data ranges. Commun. ACM 24, 9 (1981), 574–578.

[46] Jun Rao and Kenneth A. Ross. 1999. Cache conscious indexing for decision-
support in main memory. VLDB 99 (1999), 78–89.

[47] Jun Rao and Kenneth A Ross. 2000. Making B+-trees cache conscious in main
memory. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data (SIGMOD). 475–486.

[48] redislabs. 2021. Redis. https://redis.io/
[49] Srinath Setty, Sebastian Angel, Trinabh Gupta, and Jonathan Lee. 2018. Proving

the correct execution of concurrent services in zero-knowledge. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI). 339–356.

333

http:// www.lmdb.tech/doc/
https://www.intel.com/content/www/us/en/homepage.html
http://panthema.net/2007/stx-btree/
http://panthema.net/2007/stx-btree/
http://www.vldb.org/pvldb/vol13/p2634-chen.pdf
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.14778/3384345.3384349
https://doi.org/10.14778/3384345.3384349
https://www.ibm.com/analytics/db2
https://www.mongodb.com/
https://doi.org/10.1145/3401071.3401659
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.14778/3421424.3421425
https://doi.org/10.1145/3318464.3384706
https://redis.io/

[50] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2016. A hybrid b+-tree as
solution for in-memory indexing on cpu-gpu heterogeneous computing plat-
forms. In Proceedings of the 2016 International Conference on Management of Data
(SIGMOD). 1523–1538.

[51] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. 2017. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In International Conference on Learning
Representations 2017 (ICLR).

[52] Yuanyuan Sun, Yu Hua, Zhangyu Chen, and Yuncheng Guo. 2019. Mitigating
asymmetric read and write costs in cuckoo hashing for storage systems. In
USENIX Annual Technical Conference (ATC). 329–344.

[53] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie
Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore
data storage. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP). 308–320.

[54] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered
Key-Value Store using Remote Learned Cache. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 117–135.

[55] Tom Wilcox, Nanlin Jin, Peter Flach, and Joshua Thumim. 2019. A Big Data
platform for smart meter data analytics. Computers in Industry 105 (2019), 250–
259.

[56] XingboWu, Fan Ni, and Song Jiang. 2019. Wormhole: A Fast Ordered Index for In-
memory Data Management. In Proceedings of the Fourteenth EuroSys Conference
2019 (EuroSys). 1–16.

[57] Qing Xie, Chaoyi Pang, Xiaofang Zhou, Xiangliang Zhang, and Ke Deng. 2014.
Maximum error-bounded piecewise linear representation for online stream ap-
proximation. The VLDB journal (VLDB) 23, 6 (2014), 915–937.

[58] Huanchen Zhang, David G Andersen, Andrew Pavlo, Michael Kaminsky, Lin
Ma, and Rui Shen. 2016. Reducing the storage overhead of main-memory OLTP
databases with hybrid indexes. In Proceedings of the 2016 International Conference
on Management of Data (SIGCOM). 1567–1581.

334

