ParChain: A Framework for Parallel Hierarchical Agglomerative
Clustering using Nearest-Neighbor Chain

Shangdi Yu Yiqiu Wang Yan Gu Laxman Dhulipala Julian Shun
MIT CSAIL MIT CSAIL UC Riverside MIT CSAIL MIT CSAIL
shangdiy@mit.edu yiqiuw@mit.edu ygu@cs.ucr.edu laxman@mit.edu jshun@mit.edu
ABSTRACT There is a rich literature on designing hierarchical agglomerative

This paper studies the hierarchical clustering problem, where the
goal is to produce a dendrogram that represents clusters at varying
scales of a data set. We propose the ParChain framework for design-
ing parallel hierarchical agglomerative clustering (HAC) algorithms,
and using the framework we obtain novel parallel algorithms for
the complete linkage, average linkage, and Ward’s linkage crite-
ria. Compared to most previous parallel HAC algorithms, which
require quadratic memory, our new algorithms require only linear
memory, and are scalable to large data sets. ParChain is based on
our parallelization of the nearest-neighbor chain algorithm, and en-
ables multiple clusters to be merged on every round. We introduce
two key optimizations that are critical for efficiency: a range query
optimization that reduces the number of distance computations
required when finding nearest neighbors of clusters, and a caching
optimization that stores a subset of previously computed distances,
which are likely to be reused.

Experimentally, we show that our highly-optimized implemen-
tations using 48 cores with two-way hyper-threading achieve 5.8—
110.1x speedup over state-of-the-art parallel HAC algorithms and
achieve 13.75-54.23x self-relative speedup. Compared to state-of-
the-art algorithms, our algorithms require up to 237.3x less space.
Our algorithms are able to scale to data set sizes with tens of mil-
lions of points, which existing algorithms are not able to handle.
PVLDB Reference Format:

Shangdi Yu, Yigiu Wang, Yan Gu, Laxman Dhulipala, and Julian Shun.
ParChain: A Framework for Parallel Hierarchical Agglomerative Clustering
using Nearest-Neighbor Chain. PVLDB, 15(2): 285 - 298, 2022.
doi:10.14778/3489496.3489509

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/yushangdi/parChain.

1 INTRODUCTION

Clustering is an unsupervised machine learning method that has
been widely used in many fields including computational biol-
ogy, computer vision, and finance to discover structures in a data
set [2, 6, 24, 32, 39, 46, 64, 68]. To group similar objects at all res-
olutions, a hierarchical clustering can be used to produce a tree
that represents clustering results at different scales. The resulting
hierarchical cluster structure is called a dendrogram, which is a tree
representing the agglomeration of clusters, as shown in Figure 1(b).
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489509

285

clustering (HAC) algorithms [46]. Unfortunately, exact HAC algo-
rithms usually require Q(n?) work, since the distances between
all pairs of points have to be computed. To accelerate exact HAC
algorithms due to their significant computational cost, there have
been several parallel exact HAC algorithms proposed in the liter-
ature [23, 31, 33, 41, 42, 58, 66, 70], but most of them maintain a
distance matrix, which requires quadratic memory, making them
unscalable to large data sets. The only parallel exact algorithm that
works for the metrics that we consider and uses subquadratic space
is by Zhang et al. [70], but it has not been shown to scale to large
data sets. In this paper, we propose the ParChain framework for
designing parallel exact HAC algorithms that use linear memory,
based on the classic nearest-neighbor chain algorithm.

The nearest-neighbor chain (NNC) algorithm [45] is a popular
algorithm that can be used for a wide range of HAC metrics [5,
19, 28, 34, 53]. A nearest-neighbor chain (NNC) is a linked list
of nodes, where each node represents a cluster and all except at
most one node have a pointer to its nearest neighbor (its successor).
The chain can start from an arbitrary cluster. If a node does not
have a pointer, its nearest neighbor is not yet computed, and this
node is called a terminal node. If we follow the pointers on the
nodes, we obtain a "chain" of clusters, which either terminates at a
terminal node, or at a reciprocal nearest neighbor (R-NN) pair,
which is a pair of clusters that are each other’s nearest neighbor.
The sequential NNC algorithm [5, 19] works by iteratively adding a
node to a single chain through finding the nearest neighbor of the
terminal node until an R-NN pair is found. Each point is initially a
singleton cluster and a terminal node of a single-node chain. The
sequential algorithm picks an arbitrary node to start growing from.
After an R-NN pair is found, the R-NN pair is then merged, and the
chain is grown again to find another R-NN pair to merge. After n—1
merges, the algorithm finishes, producing a hierarchy of clusters.
Example. We now give an example of the definitions above by
briefly describing running our ParChain framework for parallel
HAC on the small data set in Figure 1. This example uses the com-
plete linkage metric, where the distance between two clusters is
the distance of the farthest pair of points, one from each cluster.

Our framework is based on the key insight that all R-NN pairs
can be merged simultaneously, which provides parallelism. On each
round, it merges all R-NN pairs in parallel (breaking ties lexico-
graphically! to prevent cycles). Before the first round, each point
in{a, ..., f} is represented by a chain with only one node, and all
points are singleton terminal nodes. The R-NN pairs are found by
finding the nearest neighbors of all terminal nodes, which by defi-
nition are the clusters whose nearest neighbors are unknown at the

!We use the ID of the lexicographically first point in each cluster as the cluster’s ID.

https://doi.org/10.14778/3489496.3489509
https://github.com/yushangdi/parChain
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489509
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(a) ‘ ‘

10
=
P &
d e

<)

‘ ,@,
BRR dmmn
Complete Linkage Complete Linkage
Round 1 Round 2

BN

)
Complete Linkage
Round 3

J\é\

Complete Linkage
Round 4

000000

Figure 1: (a) The four rounds of the nearest-neighbor chain algorithm on a six point data set using the complete linkage metric. The black circles are
clusters containing more than one point. An arrow from point x to point y means that x’s cluster’s nearest neighbor is y’s cluster. The orange arrows are new
neighbors found on this round; the green arrow means the nearest neighbor is not updated on this round due to the reducibility property. On Round 2, we
avoided a nearest neighbor search for cluster {f}. The numbers on the arrows between pairs of points are the distances between the clusters that the points
belong to according to the complete linkage metric (furthest distance between a pair of points, one from each cluster). Ties are broken lexicographically. (b)
The dendrogram for complete linkage clustering. The label on each internal node corresponds to the furthest point pair in the two clusters that are merged in
the algorithm, and its distance is equal to the node’s height in the dendrogram.

beginning of a round. On the first round, we find the nearest neigh-
bors for all points in parallel. Now we have two chains, {f, e, d, c}
and {a, b}. {e}, for example, is {f} s successor. (g, b) and (c, d) are
two R-NN pairs, and so we merge them in parallel and create den-
drogram nodes for clusters {a, b} and {c, d}. At the beginning of
the second round, {a, b}, {c, d}, and e are terminal nodes. After we
find their nearest neighbors and grow the chain, ({a, b}, e) is the
only R-NN pair (we broke the tie for e’s two nearest neighbors,
{a,b} and f, by choosing {a, b}), and so we merge it and create a
dendrogram node for cluster {a, b, e}. We do not need to find the
nearest neighbor of f in this round, because it is not a terminal
node and we know that its nearest neighbor e will not change (due
to the reducibility property which will be defined more formally in
Section 2). On the third round, {a, b, e}, {c,d}, and f are terminal
nodes. We find the nearest neighbors for them and merge the R-NN
pair ({a, b, e}, {c,d}). Finally, on the fourth round, the R-NN pair
({a,b,c,d, e}, f) is merged.

ParChain achieves high space efficiency and parallelism, which
enables it to scale HAC to large data sets that are orders of mag-
nitude larger than those used in previous work. There are two
challenges in achieving both space efficiency and high parallelism.
The first challenge is to maintain all chains and merge recipro-
cal nearest neighbor clusters correctly and efficiently in parallel.
Unlike Jeon and Yoon’s algorithm [33], which is based on locks
(and has limited parallelism for large core counts), we use lock-free
approaches based on filtering and atomic operations (Section 3).
The second challenge is to efficiently find the nearest neighbors
of clusters when growing the chain, without storing the distance
matrix. We introduce a range query optimization that significantly
reduces the number of distance computations used to find the near-
est neighbor of a cluster for low-dimensional data sets in Euclidean
space (Section 4), as well as a new caching technique that stores a
subset of previous distance computations that are likely to be reused
to further accelerate nearest neighbor searches (Section 5). In the
example in Figure 1, the range query optimization avoids comput-
ing the distance between clusters {e} and {c, d} in round 2 when
{e} searches for its nearest neighbor, because only clusters {a, b}
and {f} will be within the range. The caching technique avoids
storing all pairs of distances among the six points. In contrast, many
previous methods [23, 31, 33, 51, 52, 58] require a quadratic-space
distance matrix and compute distances to all other clusters when
searching for the nearest neighbor of a cluster.

286

We apply ParChain to develop new linear-space parallel HAC
algorithms for the complete, Ward’s, and average linkage criteria.
Our framework can be applied for any linkage criteria that satisfies
the reducibility property, which ensures that the nearest neighbor
distance of clusters can never be smaller as clusters merge (defined
more formally in Section 2).

Though the worst case time complexity of our algorithms is
0(n?), we observe that the running time is close to quadratic in
practice on low-dimensional data sets because the range query is
able to filter out many clusters. Many spatial, sensor, and computer
vision data sets, where HAC is applicable, are low dimensional.
In Section 6, we show experimentally on a variety of real-world
and synthetic data sets (up to 16 dimensions) that our algorithms
achieve 13.75-54.23x self-relative speedup on a 48-core machine
with two-way hyper-threading. We also achieve 5.8-110.1x speedup
over the state-of-the-art parallel implementations. Our algorithms
use up to 237.3x less space than existing implementations, and are
able to scale to larger data sets with tens of millions of points, which
existing algorithms are not able to handle.

We summarize our contributions below:

e The ParChain framework for parallel HAC using linear space.

o A range query optimization for fast nearest neighbor search for
the complete, Ward’s, and average linkage criteria.

e A cache table optimization for reducing the number of cluster

distance computations.

Experiments showing that the algorithms in ParChain achieve

significant speedups over state-of-the-art.

2 BACKGROUND

The input to the hierarchical agglomerative clustering (HAC)
problem is a data set to be clustered and a linkage criteria that
specifies how distances between clusters are computed. The out-
put of HAC is a tree called a dendrogram, where the height of
each dendrogram node represents the dissimilarity between the
merged two clusters according to the desired linkage criteria. A
flat clustering, which assigns the same ID to every object in the
same cluster and different IDs to objects in different clusters, can be
obtained by cutting the dendrogram at some height. Thus, cutting
the dendrogram at different heights gives clusterings at different
scales. An example of a dendrogram is shown in Figure 1(b). In
the rest of the section, we present our notations, the three linkage
criteria considered in this paper, and some relevant techniques used
by our algorithm.

Notation. Let v be a length-d vector in d-dimensional space, and

let ||o|| denote the Ly norm of o, i.e., ||v|| = Zld:l |o[i]|? where
v[i] is the i’th coordinate of v. X4 denotes the centroid of cluster A,
ie, X4 = ﬁ D xeA X, where the x’s are points in cluster A. Var(A)

denotes the variance of cluster A, where Var(A) = Y ,.c4 [|x—%all?.
A(A, B) denotes the distance between clusters A and B, and its
formula depends on the linkage criteria.

2.1 Linkage Criteria

We now formally define the linkage criteria considered in this paper.
We use the Euclidean distance metric for all linkage criteria. For
average linkage, we also consider the squared Euclidean distance
metric. The definitions of cluster distance under each linkage cri-
teria and distance metric are included in Table 1. We also include
the work of each distance computation, the radius, and criteria-
specific optimizations used in our range query optimization for
different linkage criteria. The radius and optimizations will be dis-
cussed in more detail in Section 4. We use comp, Ward, avg-1, and
avg-2 to refer to complete linkage, Ward’s linkage, average linkage
with Euclidean distance metric, and average linkage with squared
Euclidean distance metric, respectively.

Complete Linkage. In complete linkage [51, 58], the distance
between two clusters is the maximum distance between a pair of
points, one from each cluster.

Ward’s Linkage. In Ward’s linkage [55, 67], or minimum variance
linkage, the distance between two clusters is the increase in total
variance if the two clusters merge.

Unweighted Average Linkage. In unweighted average linkage [39,
62], the distance between two clusters is the average distance be-
tween pairs of points, one from each cluster.

For Ward’s linkage and average linkage with the squared Eu-
clidean distance metric, we can be more space-efficient and compute
the distance between two clusters in constant time by storing the
mean and variance of every cluster, which takes only linear space
overall. The newly merged cluster’s mean and variance can be com-
puted in constant time, where the new cluster’s mean is an average
of the means of the two original clusters, weighted by their sizes,

|A

L _ Bl . .
ie., XAUB = THIBIXA + mx}g. The variance is:
|AlllIx4 — %ausll* +|BllIXs — Xausll*
Var(AUB) = A+ |B]
|A|Var(A) + |B|Var(B)
|A] + B

Lance-Williams Formula. Many clustering metrics can be de-
scribed using the Lance-Williams formula [38]. Given the distance
between three clusters A, B, and C, we can obtain the distance be-
tween AUB and C using the following formula, with the coefficients
for the metrics described above given in Table 2:

A(AUB, C) = a1 A(A, C)+azA(B, C)+bA(A, B)+c |A(A,C) — A(B,C)|

The Lance-Williams formula allows for constant time distance
computation if we have the distances among clusters A, B, and C.
However, maintaining all these distances requires a distance matrix
that takes quadratic space.

Reducibility. We say a metric has the reducibility property [8, 33,
53, 54] if we have A(A, B) < A(A U B,C) when A(A, B) < A(A, C)

287

or A(A, B) < A(B,C). All of the metrics introduced above satisfy
the reducibility property. The reducibility property ensures that
the nearest neighbor of a cluster does not change unless one of
the clusters merged is its nearest neighbor. For metrics that satisfy
the reducibility property [53], we can perform clustering using the
nearest-neighbor chain algorithm [5, 19, 28, 33, 34, 53] introduced in
Section 1. The reducibility property provides the parallelism in the
nearest-neighbor chain algorithms since we can merge multiple
reciprocal pairs simultaneously.

2.2 Relevant Techniques

kd-tree. A kd-tree is a binary spatial tree where each internal node
contains a splitting hyperplane that partitions the points contained
in the node between its two children. The root node contains all of
the points, and the kd-tree is constructed by recursing on each of
its two children after splitting, until a leaf node is reached. A leaf
node contains at most ¢ points for a predetermined constant c. The
kd-tree can be constructed in parallel by performing the split and
constructing each child in parallel. The bounding box of a node is
the smallest rectangular box that encloses all of its points.
Nearest-Neighbor Query. A nearest-neighbor query takes a
set of points # and a query point g, and returns for q its nearest
neighbor in P (besides itself if ¢ €). An all-nearest-neighbor
query takes a set of points $, and returns for all points in P its
nearest neighbor in # besides itself. The all-nearest-neighbor query
can be performed efficiently using a dual-tree traversal [14, 15, 47],
which we have parallelized.

Range Query. A range query takes a set of points $, constructs a
data structure to store the points, and reports or counts all points
in some range B. In this paper, we use balls to represent the ranges,
and we use kd-trees to store the points.

Other Parallel Primitives. A parallel filter takes an array A and
a predicate function f, and returns a new array containing a € A
for which f(a) is true, in the same order that they appear in A. A
parallel reduce takes as input a sequence [aj, ay, ...,a,] and an
associative binary operator @, and returns the overall sum (using
®) of the elements (a1 ®az @ ... D ay). A parallel hash table stores
key-value pairs, and supports concurrent insertions, updates, and
finds. WRITEMIN is a priority concurrent write that takes as input
two arguments, where the first argument is the location to write
to and the second argument is the value to write; on concurrent
writes, the smallest value is written [61]. WRITEMAX is similar but
writes the largest value.

3 THE PARCHAIN FRAMEWORK

In this section, we present our framework ParChain for parallelizing
the nearest-neighbor chain (NNC) algorithm, which works for all
linkage criteria that satisfy the reducibility property explained in
Section 2.1. The NNC algorithm exposes more parallelism than the
naive generic algorithm, where only the R-NN pair with minimum
distance is merged, by allowing multiple R-NN pairs to be merged
simultaneously. Hence, our framework grows multiple chains and
merges all R-NN pairs simultaneously in parallel.

Jeon and Yoon’s algorithm [33] uses a similar approach for to
grow multiple chains in parallel, but it does merges R-NN pairs
asynchronously. It designates some threads for updating chains, and
other threads for updating the cluster distances. Their algorithm

Table 1: Definitions, work, radius value, and optimizations used in our range query for different linkage criteria.

Linkage Cluster Distance A(A, B) Work Radius Optimizations

comp maXxeaxeB |1 — x| 0o(n?) p build kd-tree on all points

Ward \/2 (Var(A U B) — Var(A) — Var(B)) = Izzlﬁllg‘l lxa —xB|12 O(1) p % maintain cluster centroids and sizes

avgl b Deea Swe -l om) p -

avg-2 \Allﬁﬂ Svea Sarep llx = x| = |xa — xB]1% + VaerflA) Va‘rélB) 0(1) \/Z? maintain cluster centroids, variances, and sizes

Table 2: Coefficients for the Lance-Williams Formula [38].

a az b
: T T
Complete linkage 2 3 0
|Al+IC] [BI+|C| -1C]

Ward’s linkage BRIC]

0

o © wiHa

\A|+‘B|+|C\ |A\+‘B|+\C| [AJ+]
A B

Average linkage

|A[+[B] [A[+[B]

Algorithm 1: ParChain Framework

Input: n points P, distance structure D, and cache size s

Output: Dendrogram tree 7g

Initialize n dendrogram leaf nodes Cy, . .
singleton cluster (a point).

Initialize L, a set of n chain nodes, where each £; represents a
singleton cluster.

Initialize A = {Cy, ..., Cn-1}, the set of active clusters.

Create cache tables {H;} for clusters, each of size s.

Terminal nodes Z = { Lo, ..., Ln-1}.

T = kd-tree Tp

while |A| > 1do

& = find_nearest_neighbors(7, D, £, Z)

// Below, C; is the terminal node and C; is its

nearest neighbor.

par_for (C;,Cj,d) € E do

Lj.succ = j

WRITEMIN(L; .pred, (j,d))
minimum d is written.

M = parallel_filter(&, is_R-NN())

par_for (C;,Cj,d) € M do

Ci,j,new = merge(Ci, Cj, d)

if s > 0 then

17 par_for (C;,Cj,d) € M do
18 | update_cached_dists(C;, Cj,d)

19 D.update(7, M)

20 A = parallel_filter(A, not_in_M()) U

{Cijnew | (Ci,Cj,d) € M}

21 Z = parallel_filter(A, is_terminal())

22 return dendrogram root node

-

.,Cp—1 to each represent a

[S - T

10
11
12 // The pair with the
13
14
15
16

also uses locks and requires quadratic memory for maintaining
the distance matrix. In contrast, our algorithm proceeds in rounds
where on each round, all chains are grown and all R-NN pairs
are merged. Our algorithm is lock-free, and uses linear space as
we avoid using the distance matrix. In addition, Jeon and Yoon’s
algorithm searches for the nearest cluster naively by computing
the distances to all other clusters, whereas we have optimizations
for finding the nearest clusters when growing the chain, which will
be discussed in Sections 4 and 5.

3.1 ParChain Framework
We now formally describe the ParChain framework (Algorithm 1).
ParChain gives rise to fast and space-efficient HAC algorithms. The
main idea of ParChain is to avoid storing most cluster distances,
and compute them on the fly using an optimized range search that
considers only a small number of neighboring clusters. We also
cache some of the cluster distances to reduce computational cost.
The input to the algorithm is a set of n points P, a structure D
that is used to compute the distances between clusters based on the

288

linkage criteria, and an integer s > 0 for the cache size. We store
(cache) only O(ns) cluster distances for an integer s > 0 chosen at
run time. The highlighted parts of Algorithm 1 (Lines 4 and 16-18)
are only required for s > 0, and we will discuss them in Section 5.
D is able to compute the distance between two clusters, and may
maintain some extra data to accelerate distance computations, such
as the means and variances of clusters. It also specifies the Lance-
Williams formula if s > 0, which will be used for updating the
entries of cached distances between clusters.

Initialization. On Lines 1-6, the algorithm initializes the required
data structures. It first creates n dendrogram nodes (Line 1) and
L, a set of n chain nodes (Line 2). These nodes are used for the
singleton clusters at the beginning. We create a set of active clusters
A, initialized to contain all of the singleton clusters (Line 3). We
also create a parallel hash table for each cluster to cache cluster
distances if s > 0 (Line 4). In each chain node, we store its successor
(succ), its predecessor (pred), and the distance to its predecessor
(pred.d) if there is one. All chain nodes initially do not have any
successor or predecessor. Z represents the set of terminal nodes
at the beginning of the round, and is initialized to contain the n
singleton chains (Line 5). The algorithm also initializes a kd-tree
on the points P. The kd-tree (Line 6) is used to accelerate nearest
cluster searches.

Chain Growing and Merging. On Lines 8-15, in parallel we grow
all of the chains using the information in Z. We merge a node
in Z with its nearest neighboring cluster if they form an R-NN
pair. Specifically, on Line 8, to grow the chains we find the nearest
neighbors of all current terminal nodes in Z using a kd-tree range
search optimization, which will be described in Section 4. ParChain
can quickly compute the distances of a cluster to other clusters by
considering only a small number of candidates, without needing to
maintain a distance matrix. The nearest neighbors and the distances
are stored in &. On Lines 10-12, we update the successor and
predecessor of each terminal node in parallel to maintain the chains.
If a terminal node is the nearest neighbor of multiple clusters, the
WRITEMIN ensures that its predecessor is the cluster closest to it.
Then on Line 13, we find all R-NN pairs using a parallel filter by
checking for each terminal node if its successor has a successor
that is itself. All R-NN pairs are stored in an array M with their
distances. On Line 15, we create a new dendrogram node C; j new
to represent the merged cluster for each R-NN pair in M, which
will have C; and C; as children, and store the distance between the
merged clusters.

After the merges, we need to update the other data structures to
prepare for next round. On Lines 16-18, we update the cache tables
with new distances Section 5. On Line 19, we update the extra data
structures, such as the kd-tree and clusters’ mean and variance. On
Line 20, we update the set of active clusters by including active
clusters not in M (not merged this round) and the newly merged

Table 3: Worst-case work and space bounds of state-of-the-art HAC algo-
rithms. *The authors of [43, 57, 63] do not report the work complexity.

Algorithm Work Space Restrictions
ParChain o(n®) O(n) Reducibility
NN-Chain [33, 52, 65] 0O(n?*) 0O(n?) Reducibility

Generic [31,52,58,59] O(n?logn) O(n?) Lance-Williams
Althaus et al. [3] O(n®) O(n) Complete Linkage
Batch Processing [43, 57, 63] * O(n?) Disk-based

clusters from this round. Finally, on Line 21, we obtain the new set
of terminal nodes Z using a parallel filter on the active clusters A.
Work and Space Complexity. We summarize the time and space
complexity of the state-of-the-art algorithms in Table 3. ParChain
is the only algorithm that requires linear memory and works for
a broad set of linkage criteria (any that satisfy the reducibility
property). The main computational cost in our framework is in
finding the nearest neighbors of the terminal nodes on each round,
and updating the cache tables and other data structures maintained
by the distance structure D. Sections 4 and 5 present our novel
approaches for efficiently computing nearest neighbors efficiently
with low space.

We now analyze the work of our framework. Let Z; and A; be
the sets Z and A at the beginning of round i, respectively. The
initialization (Lines 1-6) take O(nlog n) work, dominated by the kd-
tree construction work on Line 6. Lines 10-18 and Lines 20-21 take
O(2 |Zil) work across all rounds, plus the cost of all cluster dis-
tance computations, denoted by D. Line 19 takes O(}; | A;| log | A;|)
work because we need to re-construct the kd-tree of cluster cen-
troids in this step. Finally, Line 8 takes O(3] |A;||Zi|) work because
for each terminal node, we need a range query on the kd-tree of clus-
ter centroids. Thus, we have that the work of ParChain is O(D + M),
where M =) | A;|(|Zi| +1og |A;|). In the worst case, the work is
O(n®), but we show in Section 6 that in practice both M and D are
close to quadratic and ParChain is orders of magnitude faster than
the O(n?) work algorithms [52], even using a single thread. We ex-
pect our algorithm to give improvements on most low-dimensional
data sets.

The space usage of our framework is O(n(1+s)) because all data
structures except the caches require linear memory, and the caches
require O(ns) memory. The kd-tree requires memory linear in the
number of points in the tree.

4 NEAREST-NEIGHBOR FINDING

We will now describe how to efficiently perform nearest-neighbor
finding (Line 8 of Algorithm 1) for the three linkage criteria: com-
plete, Ward’s, and average linkage. We assume that we compute
distances between clusters on the fly. We describe an optimization
in Section 5 that uses cache tables to store some of the distances.
While a standard nearest-neighbor search is done on points, we
are searching for nearest neighbors of clusters with distances based
on the linkage criteria. Our kd-trees store centroids of clusters of
points, which we use to find nearby clusters to our query cluster. We
then perform exact distance computations from our query cluster
to these clusters. Unlike in standard nearest-neighbor searches, it is
harder to prune in our case as the distances between clusters cen-
troids do not necessarily correspond to distances between clusters.
Instead, we compute a different search area for each cluster based
on an upper bound on the distance between the query cluster and

289

- Dataset = 10D-UCI4-100K Dataset = 2D-UniformFill-1M

1
‘llll IIII

comp Ward avg-1 avg-2 comp Ward avg-1 avg-2
Method Method

Figure 2: Runtimes on 48 cores with two-way hyper-threading of using
our optimized range query compared to not using the range query and
computing the distances to all other clusters on the fly to find the nearest
neighbor.

B ParChain-no-range
ParChain

runtime (sec)

Algorithm 2: Find Nearest Neighbor

Input: kd-tree 7, distance structure D, chains £, and set of
terminal nodes Z
Output: nearest neighbors of nodes in Z
1 Initialize & with a (Null, co) entry for each terminal node.
2 par_for C; € Z do
3 /* L; is the chain node of C;
if L;.pred # Null then
p = Lipred.d

*/

else

| B = distance to a nearby cluster
// range query updates &

9 range_query(C;, T, getBally (i, §), D, E)
10 return &

4
5
6
7
8

Algorithm 3: RangeQuery
Input: query node C;, kd-tree node Q, Ball, ®, &
1 if Q does not overlap with Ball then return

if Q is a leaf node then
3 ‘ for Xc; € Q and Xc; € Ball do update_nearest_neighbor(C;,

Y

Cj, E,D)
else
5 par_do (RangeQuery(C;, Q.left, Ball, D, &),

‘ RangeQuery(C;, Q.right, Ball, D, &))

Algorithm 4: Update Nearest Neighbor

Input: cluster C;, cluster Cj, distance structure D, cache tables H;
and H;, and set &
if s > 0 then
d = get_cached_dist(i, j)
if d # NOT_FOUND then
WRITEMIN (& [cID; |, (cIDj, d))
WRITEMIN (& [cID; |, (c1D;, d))
return
d = D.dist(C;, Cj)
if s > 0 then insert {cIp;, i} into H; and {cIp}, j} into H;
WRITEMIN (& [cID;], (c1Dj, d))
WRITEMIN (& [cID}], (cID;, d))

O N

=
5]

its nearest neighbor. This upper bound can be a distance between
the query cluster and any other cluster. We provide a novel heuris-
tic for finding a good upper bound on the distance to the nearest
cluster, and only search within this distance in Sections 4.1-4.3. In
Figure 2, we present the performance of using our optimized range
query compared to the naive method of computing the distances
to all other clusters to find the nearest neighbor. We see that our
optimized range query gives a 7.8-1892.4x speedup on the two
example data sets.
Algorithm. Given the kd-tree 7~ built on the centroid of clusters,
distance structure D, chain nodes £, and set of terminal nodes Z,
Algorithm 2 finds the nearest cluster and the distance to it for each
terminal node’s cluster and stores them in &.

When finding the nearest neighbor of cluster C;, we search all
points within some ball Ball(X¢,, r) obtained from getBallg (i, f),

which is a ball centered at centroid %c; with radius r. The radius
r depends on the linkage method of D and an distance f between
C; and another cluster (Lines 2-9 of Algorithm 2). Since we use
centroid distances, D rebuilds 7 to be a kd-tree of only the centroids
of current clusters at the end of each round of Algorithm 1 (Line 19
of Algorithm 1). If C; has a predecessor, we set the distance f
to be the distance between C; and its predecessor (Lines 4-5 of
Algorithm 2). Otherwise, we find the distance to another cluster for
computing the radius for the search. Specifically, we use the distance
to the cluster whose centroid is the closest to the current cluster,
which can be computed using a parallelized nearest-neighbor query
on the kd-tree of centroids [9] (Lines 6-7 of Algorithm 2).

For the range query on Line 9 of Algorithm 2, we use the parallel
range query in Algorithm 3. Given a query cluster C;, a kd-tree
node Q, a ball representing the range, a linkage function D, and
a set & of pairs of nearest neighbor candidates and distances of
terminal nodes, the algorithm processes all of Q’s points that are
in the ball to update the nearest neighbor candidates in &. Since
we only process the points in the ball, on Line 1, the range query
terminates if the bounding box of the tree node does not over-
lap with the query range. Otherwise, the range query will either
process all of the points both in the node and in the ball using the
update_nearest_neighbor subroutine (Algorithm 4) if it is a leaf node
(Lines 2-3 of Algorithm 3) or recurse on its two children in parallel
(Lines 4-6 of Algorithm 3).

In each update_nearest_neighbor(C;, Cj) call, we check if some
cluster Cj is closer to C; than its current nearest neighbor candidate,
and if so we update C;’s nearest neighbor in & with Algorithm 4.
We also update C;’s nearest neighbor to be C; if C; is closer to C;
than its current nearest neighbor candidate. In Algorithm 4, if s = 0,
we will compute the distance between C; and C; on the fly (Lines 7,
9, and 10). If s > 0, we will first check the cache and use a cached
distance if possible (we describe more details in Section 5).

As an optimization for the first round, we know that the dis-
tances between clusters is exactly the same as the distances between
their centroids in the first round, and thus we can efficiently prune
searches in the kd-trees. Therefore, we use an all-nearest-neighbor
query for the first round, which we implemented by parallelizing
the dual-tree traversal algorithm by March et al. [47]. At a high
level, our algorithm processes recursive calls of the dual-tree traver-
sal in parallel and uses WRITEMIN to update the nearest neighbors
of points. A dual-tree traversal allows more pruning than when
running individual nearest neighbor queries for each point.

In the rest of the section, we will describe the radius of the search
ball for each linkage method. We will show that a cluster’s nearest
neighbor must have its centroid inside the ball.

4.1 Ward’s Linkage

In Ward’s linkage, A(Cj, B)wara = \/féﬂﬁgl\ [Ixc, — %gl|?. For the
range query, we can use a ball with radius r = lzil‘;rll'é‘“l‘ where

B is the distance between C; and some cluster A and npy;y, is the size
of the smallest current cluster. We can obtain np;, using a parallel
reduce on the sizes of all clusters. Figure 3(a) illustrates the range
search for Ward’s linkage.

Since f = Awaa(Ci, A), any cluster B that is closer to C; than

\ng:”lgll . The right-hand side of

A must have ||x¢, - #Bl? < p?

290

Ward: 7 = BV(ICil + npin) / Crmin|Cil)

avg-1:r=p

avg-2:r =B
Figure 3: Search area ball with radius r in range queries for the linkage
metrics. The blue circles are clusters. The red points are cluster centroids.
The green arrows specify the predecessor A of C;, and the distance between
them is f5. The red boxes are the bounding boxes of a kd-tree node Q and
its four descendants. In (a), A(C;, B) is computed because X is in the ball;
however, A(C;, D) is not computed because Xp is outside the ball. npy;y, is
the size of the smallest current cluster. In (b), A(C;, B) is computed because
B is completely in the ball. A(C;, D) will not be computed, because the
three shaded bounding boxes of kd-tree nodes do not intersect with the
ball, and so some of D’s points will not be included in the count. We only
compute the distance to a cluster if all of its points are included in the count.

complete: r = 8

the inequality becomes smaller for larger |B|, thus we can upper
bound the distance between C;’s centroid and B’s centroid (i.e.,

= _ Ci|[+nmin
%, = %ll) by r = By filtras.
the ball centered at Xc; with radius r can be closer to C; than A,
and thus we only need to search for C;’s nearest neighbor inside

this ball.
4.2 Average Linkage
In average linkage, the distance between two clusters is the average

distance between all pairs of points, one from each cluster. For
the range query, we use a ball centered at Xc, with radius r = f8

Therefore, no cluster outside of

andr = \/B for Euclidean distance metric and squared Euclidean
distance metric, respectively. As before, f is the distance between
C;i and some cluster A. The nearest neighbor B of C; must have its
centroid inside the ball, i.e., [|Xc, — Bl < Aay-1(Ci, B). The proof
is provided in the full version of our paper [69].

Similarly, for the squared Euclidean metric, we have [|Xc, —
7% < Agvg-2(Ci, B), which leads to ||Xc, - x| < Agyg2(Ci, B) <
Dgg2(Ci, A) = B = r. |Eve —xg% < Agvg-2(Ci, B) holds since vari-
Var(C;)

ICi
. Figure 3(a) illustrates the range search for average linkage

ances are non-negative and A(Cj, B)ave-2 = ||Xc, — XB 1+ +

Var(B)
[BJ
with the Euclidean and squared Euclidean distance metrics.
4.3 Complete Linkage
In complete linkage, the distance between two clusters is the max-
imum distance between a pair of points, one from each cluster.
For the range query, we use a ball with radius r = f centered at
centroid X¢,, where f is the distance between C; and some cluster.
By definition of the complete linkage function, the cluster distance
must be no smaller than distance between their centroids, and so
the nearest neighbor of C; has its centroid within the search ball.
Range Query Optimization. For complete linkage, we can reduce
the number of cluster distance computations by only computing the
distance to a cluster if it is completely within the search ball. With
this observation, we can optimize the algorithm by keeping the
kd-tree to be 7p, the kd-tree of all points, and avoiding updating it
to be the kd-tree of centroids on every round. Figure 3(b) illustrates

the optimized range search for complete linkage. We will prove the
correctness of this optimization at the end of the subsection.

Since now 7 is always 7p, we need to slightly modify Algo-
rithm 2 and Algorithm 3. On Line 7 of Algorithm 2, we search
for the point p ¢ C; closest to X; in 7p, and let f be the distance
between C; and the cluster of this point. We can use a parallel
union-find structure [22] to ignore points in C;. For Algorithm 3,
the range query might be able to terminate before Line 2 if the tree
node satisfies some conditions. For each range search, we keep a
count that eventually upper bounds the number of points within
the ball for each cluster. In each for-loop on Line 3 of Algorithm 3,
we now loop over points p instead of centroids, and we atomically
increment the count for p’s cluster by 1 because this means we have
found one more point in this cluster that is within the ball. The
cluster IDs can also be maintained and queried using the parallel
union-find data structure. Right before Line 2 of Algorithm 3, if all
points in the kd-tree node Q are from the same cluster C, we atom-
ically increment the count of cluster C by the size of the node and
prune the search; otherwise, we continue the search and recurse on
the children. This gives an upper bound on the number of points in
the cluster within the ball, because the ball lies inside the kd-tree
bounding boxes traversed.

We preprocess the tree such that in the range search we can
determine in constant time if all points in the node are from the
same cluster, and if so which cluster it is. Specifically, we mark the
kd-tree nodes with a cluster ID if all points in the node are from
the same cluster, or with NULL if the points in the node belong to
multiple clusters. This can be computed by recursively checking
the ID of the two children of a node starting from the root, and
storing the cluster ID of the children if all of their points are from
the same cluster. We update this information on every round.

After processing a point or a node, if we incremented the count
of a cluster C, we check if the count of C is equal to the size of
C. If so, this means that all of C’s points may be within distance
r = . In this case, we compute the distance between the C; and
this cluster, and use a WRITEMIN to update the nearest neighbor of
Ci in & (Lines 7, 9, and 10 of Algorithm 4).

Finally, we show below that C;’s nearest neighbor B must be
a cluster completely within search area by claiming that clusters
with points outside the ball must have a distance larger than r to
C;. Since r is the distance between C; and some cluster, B must
have a distance no larger than r to C;. Suppose the distance of the
furthest point pair between C; and B is Acom (Ci, B) = d(p, g). Since
the average Euclidean distance between points in two clusters is
not smaller than the distance between their centroids (shown in
the full paper [69]), applying this property to C; and {q’} for any
point ¢’ € B, we see there must exists some p’ € C; such that
d(%c,,q") < d(p’,q’). Since (p, q) is the furthest point pair, we
have that d(%c,,q") < d(p’,q") < d(p,q). Thus, if Ay (Ci, B) =
d(p,q) < r, then all points in B must be within Ballom,(Xc,, 7). As
a result, we only need to consider a cluster as the nearest neighbor
candidate of C; and actually compute the distance to it if all of its
points are inside the ball.

Dual-Tree Traversal. When computing cluster distances (Line 7
of Algorithm 4) for complete linkage, we use our parallel dual-tree
traversal algorithm described earlier in the section. We need to find

291

2 Cache Size (Slot Num.)

~ w0 - 32
g1 - 64
£ - 128
2 - 16

2UIM 2GIM 5GIM HT
Figure 4: Running times of using ParChain with average linkage and the
Euclidean distance metric using 48-cores with two-way hyper-threading
for varying cache sizes (values of s). The data sets are labeled on the x-axis
and are described in Section 6 (caption of Table 4).

the distance of the farthest pair of points, and so we use WRITEMAX
instead of WRITEMIN for storing the farthest distance seen. In order
to perform the dual-tree traversals, D creates a kd-tree for each
cluster at the end of each round (Line 19 in Algorithm 1).

5 CACHING INTER-CLUSTER DISTANCES

For some linkage function and metric combinations, such as average
linkage with the Euclidean distance metric, computing inter-cluster
distances can be expensive. We can avoid some recomputations of
cluster distances by caching some previously computed distances
for each cluster C; using a cache table Hj, represented using a
parallel hash table. Users can specify a constant size s of each
cache based on the available memory. The total memory usage is
O(n(1+s)), which is less than the quadratic memory required by
the distance matrix approaches. Sometimes, a larger table will lead
to faster computations because we can cache more distances and
avoid more recomputations. Due to the optimizations in Section 4,
the distances that we compute will tend to be close to C;, and hence
stored in H;. These distances are more likely to be reused in future
nearest neighbor queries.

We present a comparison of running times of average linkage
with the Euclidean distance metric on several data sets using dif-
ferent cache sizes in Figure 4. We see that using caching improves
the running times by up to a factor of 8.98x compared to not using
caching. We found similar trends on other data sets. We will discuss
more about our implementation’s memory usage in Section 6.

In the rest of the section, we assume s > 0 and describe how to

query cluster distances from the cache tables, insert new entries
after computing cluster distances during nearest neighbor queries,
and update the tables after merging clusters.
Querying and Inserting Distances between Clusters. The cache
tables can be used to reduce cluster distance computations because
we can insert the computed distances to the tables and query for
them if we want to use them again. Now we describe how the cache
is used to update the nearest neighbor candidate in the nearest
neighbor search (Algorithm 4). With s > 0, we might have already
cached the distance A(C;, Cj) in one or both of the tables H; and
H; when we find C; in C;’s range. Therefore, we first query for the
distance in the cache tables (Line 2), and only compute the distance
if the return value is NOT_FOUND; otherwise we can directly use
the queried distance to update the nearest neighbor candidate in &
(Lines 3-6). If we compute the distance (Line 7), we will attempt
to insert it into both of the tables (Line 8). The insertion may fail
for a cache table if it is full, i.e., it already contains s entries. Since
we insert distances between C; and the clusters that are within its
search range in all rounds so far, the distances stored in H; are
likely to be between C; and nearby clusters. Thus in later rounds,
these cached distances are more likely to be queried. On Lines 9-10,
WRITEMIN updates the nearest neighbors of C; and Cj in &.

Algorithm 5: Updating Cached Distance

Input: Ci. merged from C; and Cj, and distance structure D

1 // C is either C; (from H;) or C; (from H;)
2 par_for (d' = A(C,Cy)) € H; U Hj do
3 if {C,C,} == {C;,Cj} then continue
4 if Cy is merged in this round then
5 Cy = the cluster that C, merged into
6 d =D computes A(Cy, Cy) from the distances among C;,
Cj, and the children of C4 using d’
7 else
8 Cg = C[
9 d =D computes A(Cg, Cy) from the distances among C;,
Cj, and C; using d’
10 Insert d into Hj and Hy,
d = A(Cy, Cr)
Hie
d = A(Cg, Ci)) Cynt
H_‘?
d_’__z A(Gi, C) Case 1: C; merged thisround Case 2: C; not merged this round
H; g=1

Figure 5: An illustration of the cache table update in Algorithm 5. The
gray boxes show an entry in each of cache tables Hj, H,, and H;. The
dark orange boxes are clusters merged in this round; the light orange boxes
are clusters merged in previous rounds. The blue lines connect dendrogram
children to their parent. The dotted green lines and boxes mark the cached
distance between clusters. In case (1), C, is merged in this round into Cg;
in case (2), Cy is not merged in this round, and it is the same as Cg.

When querying A(C;, Cj) with get_cached_dist(i, j) (Line 2), we

search for the entry with key i in Hj, and the entry with key j
in H;. If in a cache table, the key does not exist, then the query
fails. If the queries in both tables fail, we return NOT_FOUND. If
the search is successful in one of the tables, we return the distance
stored in the table. We search in both cache tables since the caches
are of limited size, and so the distance could potentially be stored
in just one of the two tables.
Updating Cache Tables after Merging Clusters. We now de-
scribe how to update the entries in the cache tables after clusters
are merged (Lines 16-18 of Algorithm 1). If during a round C; and
Cj are merged into a new cluster Cy, we will try to compute the dis-
tance between Cy. and all clusters Cy whose subclusters’ distance(s)
with C; or C; are stored in H; U #;. These distances can be used to
accelerate the computation of A(Cy, Cy) using the Lance-Williams
formula described in Section 2.1.

The update_cached_dists function called on Line 18 of Algo-
rithm 1 is presented in Algorithm 5. On Line 2, we loop over the
distances d’ in the cache tables of H; and H;. Without loss of gen-
erality, assume d’ = A(C;, Cy) is a distance in H; between C and
some cluster Cy (the case for an entry in H; is similar). Line 3 skips
over the entries that represent distances between C; and Cj, since
they are now merged. Otherwise, there are two cases. In case (1),
Cy is also a cluster merged in this round (Lines 4-6), and we let Cy
be the cluster that C; merged into. We compute the new distance
A(Cg,Cq) on Line 6 and insert the new distance into the caches
of both clusters Cy and C4 on Line 10. In case (2), C¢ is not a new
cluster merged in this round (Lines 7-9), and we have Cy = Cy. We
can also use d” to accelerate the computation of A(Cy, Cy). Figure 5

292

illustrates one loop of the algorithm where the entry being con-
sidered is d’ = A(C;, Cr) € H; (shown in the bottom gray box). In
both cases, we store entry d = A(Cg, Cy) computed from d” into
both Hj. and H, on Line 10.

Now we describe the update rule for computing d. For case (2), we
can just directly apply the Lance-Williams formula [38] introduced
in Section 2 and compute A(C; U Cj, Cy) from A(C;, Cy), A(Cj, Cy),
and A(C;, Cj). For case (1), we can apply the Lance-Williams for-
mula and compute A(C; U Cj,Cp U Cpr) = A(Ck,Cp U Cpr) from
A(Cy, Cp), A(C, Cpr), and A(Cy, Cpr), where Cpr is the cluster that
Cy merges with to form Cy. To compute A(Cy, Cr) and A(Cy, Cyr),
which are not cached since Cy. is a newly merged cluster, we can
apply the Lance-Williams formula again since Cj = C; U C;. Below
we give the update rule for average linkage with Euclidean distance
metric as an example. For case (2), where Cy = Cy, we have

el ICjl
|Ci| +1Cj ICi| + |G
For case (1), let Cy and Cpr be C;’s children. We have

ICr11Cy] ICr11Cy]
ICil|Cp| |Cj1ICer]

— —L A g1 (C C).
ICkl1Cyl ICilICql

If the distances between Cp (Cy) and one or both of C; and C;
are also cached in case (1) (case (2)), we can also query them and
accelerate the computation of d by avoiding some distance recom-
putation. For example, in update rule (1), if d’ = Agyg1(Ci, Cy) is

Aavg-l (Ci,Cg) + Aavg-l (C],Cg) (1)

d Aavgfl (Ci,C[) + Aavgfl (Cj> C{’)

Aavg-l (Cisc{”) + (2)

_ _ ¢
cached, we can compute d = Agy1(Cg, Cy) by d = \C,-|+|C_,-\d/ +
Gl Agye1(Cj,Cq). If A(Cj,C,) is also cached, we can quer
[Ci+IC;] R 1\ g J> 9 query

for it and compute d in constant time; otherwise, we need |C;||Cy|
point distance computations to find d, which is less than the |Cy || Cy|
point distance computation required by a brute force method.

During the nearest neighbor range search, two clusters C; and C;
might find each other as nearest neighbor candidates, and both want
to compute A(C;,Cj) in parallel. A similar situation can happen
when updating the cache entries for Cy and Cy. Our implementa-
tion avoids these duplicate distance computations by having each
cluster first insert a special entry into the hash table Hy;n(; ;) (or
Hax(i,j) if Hinin(s,j) is full), and then only compute the distance
if the insertion was successful. The special entry can only be suc-
cessfully inserted once for each pair of clusters C; and Cj, and so
A(Cy,Cj) will only be computed once.

6 EXPERIMENTS

Testing Environment. We perform experiments ona c5.24x1arge
machine on Amazon EC2, with 2 Intel Xeon Platinum 8275CL
(3.00GHz) CPUs for a total of 48 hyper-threaded cores, and 192
GB of RAM. By default, we use all cores with hyper-threading. We
use the g++ compiler (version 7.5) with the -03 flag, and use Cilk
Plus, which is supported in g++, for parallelism in our code [40].
For parallel experiments, we use numactl -i all to balance the
memory allocation across nodes. We also perform three runs of
each parallel experiment and report the smallest running time. We
allocate a maximum of 15 hours for each run of a running time test,
and do not report the times for tests that exceed this limit.

