
LargeEA: Aligning Entities for Large-scale Knowledge Graphs
Congcong Ge, Xiaoze Liu, Lu Chen, Yunjun Gao

College of Computer Science
Zhejiang University, Hangzhou, China
{gcc,xiaoze,luchen,gaoyj}@zju.edu.cn

Baihua Zheng
School of Computing and Information Systems
Singapore Management University, Singapore

bhzheng@smu.edu.sg

ABSTRACT
Entity alignment (EA) aims to find equivalent entities in different
knowledge graphs (KGs). Current EA approaches suffer from scal-
ability issues, limiting their usage in real-world EA scenarios. To
tackle this challenge, we propose LargeEA to align entities between
large-scale KGs. LargeEA consists of two channels, i.e., structure
channel and name channel. For the structure channel, we present
METIS-CPS, a memory-saving mini-batch generation strategy, to
partition large KGs into smaller mini-batches. LargeEA, designed
as a general tool, can adopt any existing EA approach to learn enti-
ties’ structural features within each mini-batch independently. For
the name channel, we first introduce NFF, a name feature fusion
method, to capture rich name features of entities without involv-
ing any complex training process; we then exploit a name-based
data augmentation to generate seed alignment without any human
intervention. Such design fits common real-world scenarios much
better, as seed alignment is not always available. Finally, LargeEA
derives the EA results by fusing the structural features and name
features of entities. Since no widely-acknowledged benchmark is
available for large-scale EA evaluation, we also develop a large-
scale EA benchmark called DBP1M extracted from real-world KGs.
Extensive experiments confirm the superiority of LargeEA against
state-of-the-art competitors.

PVLDB Reference Format:
Congcong Ge, Xiaoze Liu, Lu Chen, Baihua Zheng, Yunjun Gao. LargeEA:
Aligning Entities for Large-scale Knowledge Graphs. PVLDB, 15(2):
237-245, 2022.
doi:10.14778/3489496.3489504

1 INTRODUCTION
A knowledge graph (KG) consists of various entities and relations.
KGs are the backbone of many real-world knowledge-driven ap-
plications, such as semantic search [47] and recommendation sys-
tems [55]. Since real-world KGs (e.g., YAGO3 [24]) are known to be
highly incomplete, how to expand KGs to improve the quality of
the knowledge-driven applications becomes increasingly important.
EA is a prerequisite for expanding the coverage of a unified KG. It
aims to find entities from two KGs that refer to the same real-world
object, according to the following three steps: (i) taking two input
KGs and collecting seed alignment; (ii) training an EA model guided
by the seed alignment; and (iii) aligning the equivalent entities
between the two input KGs based on the trained EA model.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.
doi:10.14778/3489496.3489504

Existing solutions to EA mainly rely on the structural features of
entities [26, 32, 36]. They assume that the neighbors of two equiv-
alent entities in KGs are equivalent as well [23]. Besides, recent
studies have shown that incorporating side information of KGs
(e.g., entity names [54]) facilitates the structure-based EA [23, 31],
as equivalent entities usually have similar side information. Ex-
isting EA methods have demonstrated considerable performance
on several representative benchmarks (such as DBP15K [33] and
IDS100K [37]). However, we find out that they suffer from scala-
bility issues. They cannot effectively align entities in real-life KGs
that are much larger than the existing benchmarks. For example,
among all the popular EA benchmarks, the largest KG contains only
100, 000 entities. [57] has indicated that current EA methods, when
handling 100, 000 entities, either (i) require a huge memory space or
(ii) have low efficiency. Nevertheless, the magnitude of real-world
KGs is much larger. For instance, a real-world KG YAGO3 includes
∼17 million entities, while one of the largest existing benchmarks
IDS100K [37] only extracts ∼0.6% entities from YAGO3.

To scale up the EA methods for aligning entities in large-scale
KGs, a prevalent approach is to train them on a cluster of machines.
Nonetheless, the cost of training an EAmodel on a cluster of machines
is prohibitory. First, it is unaffordable for many users to purchase a
cluster of machines. Second, it is challenging for ordinary users to
deal with cluster management and unpredictable emergencies [17].
Third, distributed EA necessitates collecting the training results
from different machines, and such overhead is not negligible.

The obstruction with distributed computing provokes us to parti-
tion an EA dataset into multiple mini-batches and train the samples
in each mini-batch independently. It greatly saves the hardware
cost as a stand-alone machine equipped with a GPU is able to run
the EA model when the input dataset (i.e., a mini-batch) is of small
or moderate size. Furthermore, it requires zero coordination among
multiple machines since all the training results are stored locally.
Despite these benefits, aligning entities for large-scale KGs in a
mini-batch fashion, however, is still a challenging endeavor.
Challenge I: How to effectively generate mini-batches? A straight-
forward method is to partition the entire dataset into several ran-
dom subsets. Because of its simplicity, it is a common practice
used in various tasks, e.g., word translation [18] and text classifi-
cation [14]. In those tasks, a dataset can be randomly divided into
several mini-batches due to the mutual independence between data.
On the contrary, EA is highly related to the structures of KGs. Ran-
dom partition destroys KG’s structure and thus adversely affects
the EA results, as verified in the experiments to be presented in
Section 3.4. Apart from the importance of maintaining the structure
of each KG when generating mini-batches, it is equally crucial to
allocate the possibly equivalent entities to the same mini-batch. If
two equivalent entities are placed into different mini-batches, they

237

https://doi.org/10.14778/3489496.3489504
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489504

cannot be aligned. However, maintaining the graph structure and
meanwhile allocating the potentially equivalent entities to the same
mini-batch is very challenging, as demonstrated by Example 1.1.

Example 1.1. Figure 1 depicts two KGs (i.e., 𝐾𝐺𝐸𝑁 and 𝐾𝐺𝐹𝑅)
containing equivalent entities. Each KG is divided into two mini-
batches. Entities highlighted in the same color should be assigned
to the same mini-batch. 𝐾𝐺𝐸𝑁 and 𝐾𝐺𝐹𝑅 are heterogeneous. It is
worth noting that there is a wide range of highly heterogeneous
KGs in real-life. Two partition strategies are used to generate mini-
batches, represented by red dotted lines and blue dotted lines re-
spectively. The red dotted line indicates that each KG is divided
by minimizing edge-cut to minimize the structural loss. Due to
the graph heterogeneity, some equivalent entities are assigned to
different mini-batch in this case, such as “T-Minus (producer)” of
𝐾𝐺𝐸𝑁 and “T-Minus” of𝐾𝐺𝐹𝑅 . The blue dotted line symbolizes that
each KG is divided by preserving the equivalent entities into the
same mini-batch. Nonetheless, many edges are cut, leading to the
loss of structural features and poor EA results.
Challenge II:How to recoup the loss of accuracy inevitably caused by
themini-batch generation? Since different real-world KGs are hetero-
geneous, even a perfectly designed mini-batch generation method
will inevitably lose seeds or destroy KG’s structures, thereby reduc-
ing the EA performance, as mentioned in Example 1.1. Meanwhile,
it is widely acknowledged that the name information of entities
undoubtedly improves the EA performance [23, 38, 54]. Also, [57]
has stated that several real-life entities are difficult to be aligned
based purely on their structural features but are easy to be matched
by their name information. In addition, it is common that real-life
entities from different KGs (e.g., YAGO and DBpedia) share the same
naming convention, which further makes it practical to utilize en-
tities’ name information for EA. The power of name information
inspires us to explore that whether the use of the entity name could
complement the seeds or the alignment features for mini-batch
training. The existing name-based EA methods [10, 23, 45, 54] tend
to use a pre-trained language model (e.g., BERT [10]) to initialize
entity embeddings with their name features and then fine-tune
these informative embeddings. As mentioned before, training an
EA model with large-scale KGs is challenging, making it impracti-
cal to fine-tune the name-based entity embeddings for large-scale
EA. Accordingly, we are required to exploit the name features to
facilitate large-scale EA in an efficient and lightweight way.

To address these challenges, we propose LargeEA to align entities
between large-scale KGs. LargeEA consists of two pivotal channels:
(i) structure channel, which is introduced to learn the structural
features of entities in a mini-batch fashion; and (ii) name channel,
which is presented to efficiently augment the alignment results
based on the entities’ name features. Thereafter, LargeEA fuses
both the structural features and the name features to produce the
final EA results. Our contributions are summarized as follows:

• Large-scale EA framework. LargeEA [3] is the first EA frame-
work that aligns entities between large-scale KGs by fusing
features from structure channel and name channel. Any EA
model suffering from scalability issue can be easily integrated
into LargeEA to deal with large-scale EA (Section 2.1).

• Memory saving EA channels. In the structure channel, we
propose a memory saving METIS-CPS strategy to support
mini-batch training under the premise of minimizing the

Contempo
rary R&B

T-Pain
Revolver
(T-Pain
album)

T-Minus
(producer)

Drake
(rapper)

Long.
Live.
ASAP

RnB
contempo

rain

T-Pain
Revolver
(album de
T-Pain)

T-Minus

Drake
(rappeur)

Long.
Live.
ASAP

KGEN KGFR

Figure 1: Example of mini-batch generation for EA

loss of structural features and seed alignment (Section 2.2).
In the name channel, we introduce NFF and a name-based
data augmentation to make effective use of name features
without any complex training process (Section 2.3).

• Large-scale EA benchmark. Since no public large-scale EA
benchmark is available, we develop DBP1M [3], a large-scale
EA benchmark extracted from real-world KGs (Section 3).

• Extensive experiments. We conduct comprehensive experi-
mental evaluation on EA tasks against state-of-the-art ap-
proaches over both the existing EA benchmarks and newly
proposed DBP1M. Extensive experimental results demon-
strate the superiority of LargeEA (Section 3).

2 OUR FRAMEWORK
2.1 Problem Statement and LargeEA Overview
A knowledge graph (KG) can be denoted as𝐺 = (𝐸, 𝑅,𝑇), where 𝐸 is
the set of entities, 𝑅 is the set of relations, and 𝑇 = {(ℎ, 𝑟, 𝑡) | ℎ, 𝑡 ∈
𝐸, 𝑟 ∈ 𝑅} is the set of triples, each of which represents an edge
flowing from an entity ℎ to another entity 𝑡 via a relation 𝑟 . Entity
alignment (EA) [37] aims to find the 1-to-1 mapping of entities𝜓
from a source KG 𝐺𝑠 = (𝐸𝑠 , 𝑅𝑠 ,𝑇𝑠) to a target KG 𝐺𝑡 = (𝐸𝑡 , 𝑅𝑡 ,𝑇𝑡).
Formally,𝜓 = {(𝑒𝑠 , 𝑒𝑡) ∈ 𝐸𝑠 × 𝐸𝑡 | 𝑒𝑠 ≡ 𝑒𝑡 }, where 𝑒𝑠 ∈ 𝐸𝑠 , 𝑒𝑡 ∈ 𝐸𝑡 ,
and ≡ means an equivalence relation between 𝑒𝑠 and 𝑒𝑡 . In most
cases, a small set of equivalent entities𝜓 ′ ⊂ 𝜓 is known beforehand
and can be used as seed alignment (training data). A representative
experimental study [37] has indicated that, using a small set of
seed alignment (e.g., 20% of the total number of aligned entities) as
training data conforms to the real-world.

We summarize the main components of the framework LargeEA
in Figure 2 to provide an overview. LargeEA takes as inputs a source
KG 𝐺𝑠 and a target KG 𝐺𝑡 , and performs EA with the help of the
structure channel and the name channel. In the structure channel,
both𝐺𝑠 and𝐺𝑡 are divided into 𝐾 subgraphs via the proposed mini-
batch generation method METIS-CPS. It is designed to increase
entity locality so that most entities can find their equivalence within
the same mini-batch. After generating mini-batches, we use an
EA model to learn the structural similarities between entities in
each mini-batch locally. In the name channel, LargeEA presents a
name feature fusion approach (NFF) to evaluate the name similarity
between entities. Besides, we use a simple but highly effective data
augmentation to generate pseudo seeds, which can complement the
loss of seeds caused by the mini-batch generation process in the
structure channel. Finally, we further fuse the structural similarity
and the name similarity between entities to derive the EA results.

238

Dataset

Name Feature

Fusion (NFF)

Name Channel

Name-based

Data Augmentation

Structure-

based

EA Model

Name Feature Matrix Mn

Structural Feature
Matrix Ms

Structure Channel

Gs

Gt

Gs

Gt

EA

Results

Mini-batch
Generation

Mini-batch
Training

Gt
1

Gt
1

Gs
1

Gs
1

Gt
K

Gt
K

Gs
K

Gs
K

...

Gt
2

Gt
2

Gs
2

Gs
2

Pseudo Seeds

Figure 2: LargeEA framework

2.2 Structure Channel
2.2.1 Mini-batch Generation. Training an EA model in a mini-
batch fashion is associated with the following two conditions: (i)
partitioning a large-scale KG into 𝐾 subgraphs; and (ii) placing
every entity and its potential equivalence in the same mini-batch.
To generate mini-batches under these conditions, we introduce two
strategies, i.e., the vanilla partition strategy (VPS) and the METIS-
based collaborative partition strategy (METIS-CPS).
VPS. It first allocates the seed alignment 𝜓 ′ into 𝐾 mini-batches
equally and then randomly adds the remaining entities from 𝐺𝑠
and 𝐺𝑡 into the 𝐾 mini-batches. The time and space complexities
of VPS are both 𝑂 (|𝐸𝑠 | + |𝐸𝑡 |). VPS ensures that each mini-batch
contains the same number of seeds, as an imbalanced distribution
of seeds leads to poor training performance of the EA model in
some mini-batches, e.g., it is unable to train the EA model without
any seed alignment in a mini-batch.
METIS-CPS. Although simple, VPS relies on random partitioning,
which may destroy the structure of each KG. To this end, we present
METIS-CPS. The workflow is shown in Figure 3.

We first review the main idea of METIS [15], from which our
strategy is derived. METIS aims to divide a graph into 𝐾 subgraphs
that obey the modularity maximization principle. Following this
principle, METIS guarantees that the sum of the weights of the
edge-cuts is minimized. Thus, each entity and its neighbors can be
clustered into the same partition to a large extent, while irrelevant
entities are located in different partitions. For simplicity, we denote
the weight of an edge between entities 𝑒𝑖 and 𝑒 𝑗 as𝑤 (𝑒𝑖 , 𝑒 𝑗), and
suppose all the edges in a KG share an equal weight. In the current
implementation, we set every 𝑤 (𝑒𝑖 , 𝑒 𝑗) = 1. The time complexity
and space complexity of METIS are 𝑂 (|𝐸 | + |𝑇 | + 𝐾𝑙𝑜𝑔(𝐾)) and
𝑂 (|𝐸 | + |𝑇 |), respectively [48].

We then detail the partition process of METIS-CPS in the fol-
lowing. First, we deploy METIS [15] to split 𝐺𝑠 into 𝐾 subgraphs
𝐺𝑖𝑠 , 𝑖 ∈ {1, 2, ..., 𝐾}. We denote 𝐿𝑖𝑠 the set of entities belonging
to the seed alignment 𝜓 ′ that are contained in 𝐺𝑖𝑠 . Take Figure 3
as an example. After performing METIS, 𝐺𝑠 is partitioned into 2
subgraphs, i.e., 𝐺1

𝑠 and 𝐺2
𝑠 . We have 𝐿1𝑠 = {𝑒1𝑠 , 𝑒2𝑠 , 𝑒3𝑠 } ∈ 𝐺1

𝑠 and
𝐿2𝑠 = {𝑒4𝑠 , 𝑒5𝑠 , 𝑒6𝑠 } ∈ 𝐺2

𝑠 . Next, we explain how to partition 𝐺𝑡 into 𝐾
subgraphs 𝐺𝑖

′
𝑡 , 𝑖

′ ∈ {1, 2, ..., 𝐾}. Let 𝐿𝑖′𝑡 be the set of entities in 𝐺𝑡
that are equivalent to the entities in 𝐿𝑖𝑠 . It is preferable that entities
in 𝐿𝑖

′
𝑡 are all included by 𝐺𝑖

′
𝑡 . To achieve this goal, we re-assign

appropriate weights to the edges in 𝐺𝑡 in two phases.

Phase 1: Increasing weight for relevant entities.According to the mod-
ularity maximization principle, entities connected by high weighted
edges in a dense graph are not likely to be partitioned. As a result,
a plausible intuition for preventing entities to be divided into dif-
ferent mini-batches is that, we can generate a connected graph 𝐶𝐺𝑖

with high weighted edges for entities 𝐿𝑖
′
𝑡 . Specifically, given a set

of entities 𝐿𝑖
′
𝑡 whose equivalent entities 𝐿𝑖𝑠 belong to the same

subgraph 𝐺𝑖𝑠 , we randomly select 𝑞 entities from 𝐿𝑖
′
𝑡 , denoted as

Q = {𝑒1, 𝑒2, ..., 𝑒𝑞}, and make sure all those 𝑞 entities are able to
reach all the other entities in (𝐿𝑖

′
𝑡 − Q) by adding a virtual edge

between each 𝑒𝑖 ∈ Q and each 𝑒 𝑗 ∈ 𝐿𝑖
′
𝑡 − {𝑒𝑖 } iff there is no edge

between them to make the connected graph 𝐶𝐺𝑖 much denser.
Thereafter, we reset the weight of each edge of 𝐶𝐺𝑖 to𝑤 ′ ≫ 1 to
prevent the entities of 𝐿𝑖

′
𝑡 from being assigned to different mini-

batches. Since the time cost of the mini-batch generation depends
on 𝑞, we set 𝑞 = 1 in the implementation to save time. This is
because empirically 𝑞 = 1 is able to achieve satisfactory partition
results in our experiments. Note that, the virtual edge is only used
to assist the METIS-CPS in graph partition but not to change the
graph structure of the original KG. In Figure 3, since all the equiv-
alent entities of 𝑒1

′
𝑡 , 𝑒

2′
𝑡 , and 𝑒

3′
𝑡 belong to 𝐿1𝑠 ∈ 𝐺𝑠 , we need to

put the three entities into the same subgraph to avoid the destroy
of seed alignment. Thus, we add a virtual edge between 𝑒1

′
𝑡 and

𝑒3
′
𝑡 to form a connected graph 𝐶𝐺1, and re-assign the weight of
edges in 𝐶𝐺1 to 𝑤 ′. Therefore, 𝑒1

′
𝑡 , 𝑒

2′
𝑡 , and 𝑒

3′
𝑡 are unlikely to be

partitioned into different subgraphs. The time complexity of this
phase is 𝑂 (|𝜓 ′ | + 1

𝐾
× |𝜓 ′ |2).

Phase 2: Reducing weight for irrelevant entities. Let (𝑒𝑖𝑠 , 𝑒𝑖
′
𝑡) and

(𝑒 𝑗𝑠 , 𝑒
𝑗 ′

𝑡) denote two seed alignments, respectively. Here, 𝑒𝑖𝑠 , 𝑒
𝑗
𝑠 ∈ 𝐸𝑠

and 𝑒𝑖
′
𝑡 , 𝑒

𝑗 ′

𝑡 ∈ 𝐸𝑡 . Assume that 𝑒𝑖𝑠 and 𝑒
𝑗
𝑠 are located in different sub-

graphs after partitioning, and there is an edge between 𝑒𝑖
′
𝑡 and 𝑒 𝑗

′

𝑡 . It
is possible that the entities 𝑒𝑖

′
𝑡 and 𝑒 𝑗

′

𝑡 are assigned into the same sub-
graph by graph partitioning. Accordingly, it is required to prevent
them from being gathered into the same subgraph to guarantee that
those seed alignments are well preserved even after partitioning. To
achieve this purpose, a simple but effective method is to assign zero
weight to the edge, i.e.,𝑤 (𝑒𝑖′𝑡 , 𝑒

𝑗 ′

𝑡) = 0. In Figure 3, we are required
to assign 𝑤 (𝑒1′𝑡 , 𝑒4

′
𝑡) = 0, 𝑤 (𝑒3′𝑡 , 𝑒5

′
𝑡) = 0, and 𝑤 (𝑒3′𝑡 , 𝑒6

′
𝑡) = 0. After

performing this phase, we are ready to divide the target KG𝐺𝑡 into
subgraphs by executing the METIS strategy. The time complexity
of this phase is 𝑂

(
(𝐾−1) |𝜓 ′ |2

𝐾2 + |𝐸𝑡 | + |𝑇𝑡 | + 𝐾𝑙𝑜𝑔(𝐾)
)
.

Finally, each mini-batch can be generated by putting together a
subgraph of 𝐺𝑠 and another subgraph of 𝐺𝑡 that contain the most
number of seed alignments. The total time complexity and space
complexity of METIS-CPS are 𝑂 (|𝜓 ′ | + (2𝐾−1) |𝜓 ′ |2

𝐾2 + |𝐸𝑠 | + |𝐸𝑡 |
+|𝑇𝑠 | + |𝑇𝑡 | + 𝐾𝑙𝑜𝑔(𝐾)) and 𝑂 (|𝐸𝑠 | + |𝐸𝑡 | + |𝑇𝑠 | + |𝑇𝑡 |), respectively.

2.2.2 Mini-batch Training. LargeEA treats mini-batch training as
a black box and users have the flexibility to utilize any existing EA
model to learn a set of embeddings that can be used to represent the
structural features of entities. For the EA task, many GNN-based
methods [19, 22, 23, 36] have achieved promising performance by
propagating the alignment signal to the entity’s neighbors. Inspired
by this, we propose to incorporate GNN-based models into LargeEA.

239

Gs

Gt

Datasets METIS-CPS Mini-batches

Gs Gt

w w'
w'

w' w'

w'

w

w

w

w

w
w

Gs
1Gs
1

Gs
2Gs
2

Gt
1Gt
1

Gt
2Gt
2

Seed alignment

Edge-cut

Virtual edge

An edge linking irrelevant entities

An entity of the first mini-batch

An entity of the second mini-batch

es
1es
1

es
3es
3

es
2es
2

es
4es
4

es
5es
5es

6es
6

et
1'

et
2'

et
4'

et
3'

et
5'et

6'

Figure 3: A toy example of METIS-CPS workflow. For simplicity, we only depict how entities contained in the seed alignment
are partitioned, although all entities in the two input KGs are actually involved in this workflow.

Our current implementation includes two representative GNN-
based EA models, i.e., GCN-Align [42] and RREA [26].

For ease of understanding, we sketch the core idea of how LargeEA
employs the existing GNN-based EA models. Generally, the GNN-
based models generate each entity’s embedding as follows [16,
26, 40]. Formally, 𝒉𝑙−1N𝑒

𝑒𝑖

= 𝑓 ({𝒉𝑙−1𝑒𝑘
,∀𝑒𝑘 ∈ {𝑒𝑖 } ∪ N𝑒

𝑒𝑖
}); 𝒉𝑙𝑒𝑖 =

𝜎 (𝑾𝑙−1 · 𝒉𝑙−1N𝑒
𝑒𝑖

). Here, 𝑓 (·) is to aggregate information from the
neighbors of every entity; N𝑒

𝑒𝑖
represents the set of neighboring

entities around 𝑒𝑖 ;𝑾𝑙−1 is the transformation matrix of layer 𝑙 − 1;
and 𝒉𝑙𝑒𝑖 denotes the embedding of 𝑒𝑖 after performing 𝑙-layer GNNs.

To maximize the similarities of equivalent entities in each mini-
batch, GNN-based EA models often use triplet loss. Formally, L =∑

(𝑒𝑖𝑠 ,𝑒𝑖
′
𝑡) ∈𝜓 ′

[
𝑓𝑝 (𝒉𝑒𝑖𝑠 ,𝒉𝑒𝑖′𝑡) + 𝛾 − 𝑓𝑛 (𝒉𝑒𝑖𝑠 ,𝒉𝑒𝑖′𝑡)

]
+
. Here, 𝒉𝑒𝑖𝑠 and 𝒉

𝑒𝑖
′
𝑡

represent the embeddings of 𝑒𝑖𝑠 and 𝑒𝑖
′
𝑡 learned by a structure-based

EA model, respectively; 𝑓𝑝 (·, ·) represents the distance between 𝒉𝑒𝑖𝑠
and 𝒉

𝑒𝑖
′
𝑡
; 𝑓𝑛 (·, ·) denotes the distance of a negative entity pair de-

rived from 𝑒𝑖𝑠 and 𝑒𝑖
′
𝑡 , generated by replacing either 𝒉𝑒𝑖𝑠 or 𝒉𝑒𝑖′𝑡 with

a new embedding according to the nearest neighbor sampling [26];
[𝑥]+ =𝑚𝑎𝑥{0, 𝑥}; and 𝛾 > 0 is a margin hyper-parameter.

We denote 𝑴𝒔 the total structure-based entity similarity matrix,
where each value is computed by the Manhattan distance. 𝑴𝒔 is
highly sparse. With independent mini-batch training, all non-zero
similarity values lie on the diagonal blocks of 𝑴𝒔 . It saves memory
cost for coping with large-scale EA. The memory cost of storing𝑴𝒔

is O(|𝐸𝑠 |), i.e., the number of entities in the source KG. The time
and space complexities of the entire mini-batch training process are
𝑂 (|𝜓 ′ | × (|𝑇𝑠 | + |𝑇𝑡 |)) and𝑂 (|𝐷𝑠𝑡𝑟 | × (|𝐸𝑠 | + |𝐸𝑡 |) + |𝑇𝑠 | + |𝑇𝑡 |), re-
spectively. Here, |𝐷𝑠𝑡𝑟 | denotes the dimension of every entity em-
bedding learned by the mini-batch training.

2.3 Name Channel
In this section, we first present a name feature fusion method; we
then introduce a name-based data augmentation; and we finally
describe how to fuse name channel and structure channel for EA.
Name Feature Fusion. As performing the independent training
within each mini-batch inevitably causes the loss of certain struc-
tural features of KGs, it is essential to incorporate other procedures
to complement the loss caused by graph partitioning. In this work,
we propose to consider entities’ name features as an effective ap-
proach, namely NFF, to improve the EA performance. Given two

entity sets 𝐸𝑠 ∈ 𝐺𝑠 and 𝐸𝑡 ∈ 𝐺𝑡 , NFF computes the name simi-
larities between 𝐸𝑠 and 𝐸𝑡 by fusing the name features from both
semantic aspect 𝑴𝒔𝒆 and string aspect 𝑴𝒔𝒕 . Mathematically, 𝑴𝒏

(= 𝑴𝒔𝒆 + 𝛾𝑴𝒔𝒕) represents the fused matrix, where 𝛾 ∈ (0, 1]
is a hyper-parameter controlling the contribution of the string-
based name similarity to 𝑴𝒏 . In the current implementation, we
set 𝛾 = 0.05 since many studies [20, 27] have argued that semantic
feature is much more important than string-based feature. In the
following, we detail SENS and STNS, the two functions to get name
similarity according to the above two aspects, respectively.

Function SENS is to get semantic name similarity. Concretely,
we use BERT [1] to transform each entity name into a sequence
of tokens. Thereafter, the semantic embedding of each entity can
be generated by applying max-pooling, which assigns each token
an embedding with fixed-dimension for each entity and then picks
the maximum value in each dimension among all embedded tokens
(related to the entity) to form a new embedding representing the en-
tity. Let 𝑺𝒔 /𝑺𝒕 denote the semantic embedding matrix of 𝐸𝑠 /𝐸𝑡 . Each
embedding 𝒉𝑒 can be normalized by the equation 𝒉𝑒 =

𝒉𝑒
∥𝒉𝑒 ∥2+𝜖

,
where 𝒉𝑒 is an entity embedding from 𝑺𝒔 or 𝑺𝒕 , and 𝜖 > 0 is to
prevent the denominator from being zero. Since the embeddings
of name features are mutually independent, we can randomly split
the semantic embedding matrix (𝑺𝒔 or 𝑺𝒕) into 𝐾 segments for sav-
ing memory. Then, we iteratively find the top-𝑘 semantic similar
entity pairs (denoted as 𝑴 𝒊𝒋

𝒔𝒆) between any two segments 𝑺 𝒊𝒔 and
𝑺𝒋𝒕 , where 𝑖, 𝑗 ∈ {1, 2, ..., 𝐾}, by Faiss [13], an efficient similarity
search method with GPU(s) that can cope with large-scale data.
Here, we use Manhattan distance to measure the semantic similar-
ity. Finally, the complete semantic matrix 𝑴𝒔𝒆 can be obtained by
only collecting the semantic similarity results computed by Faiss.
The time and space complexities of SENS are𝑂 (|𝐷𝑠𝑒 | × |𝐸𝑠 | × |𝐸𝑡 |)
and 𝑂 (|𝐷𝑠𝑒 | × (|𝐸𝑠 | + |𝐸𝑡 |)), respectively. Here, |𝐷𝑠𝑒 | denotes the
dimension of every entity embedding obtained from BERT. Though
the time complexity seems high, the GPU-based Faiss greatly speeds
up the similarity computation process.

We would like to highlight that it is essential to consider the
top-𝑘 , but not all, pairs of entities with high similarity scores for
the EA task. Specifically, entity pairs with low similarity scores
are probably the erroneous alignment and they are not expected
to provide any useful information for the name-based EA task. In
addition, filtering out the low scores of entity pairs but retaining the
top-𝑘 similarity scores in the similarity matrix𝑴𝒔𝒆 notably reduces

240

Table 1: Statistics of the datasets used in experiments

Datasets #Entities #Relations #Triples

IDS15K EN-FR 15,000-15,000 267-210 47,334-40,864
EN-DE 15,000-15,000 215-131 47,676-50,419

IDS100K EN-FR 100,000-100,000 400-300 309,607-258,285
EN-DE 100,000-100,000 381-196 335,359-336,240

DBP1M EN-FR 1,877,793-1,365,118 603-380 7,031,172-2,997,457
EN-DE 1,625,999-1,112,970 597-241 6,213,639-1,994,876

the memory cost from O(|𝐸𝑠 | |𝐸𝑡 |) to O(𝑘 |𝐸𝑠 |), with 𝑘 ≪ |𝐸𝑡 |.
Here, O(|𝐸𝑠 | |𝐸𝑡 |) refers to the cost of storing the similarity scores
of all the candidate entity pairs (in total |𝐸𝑠 | |𝐸𝑡 |), which is clearly
impractical for large-scale KGs.

Function STNS is to measure the string-based name similarity
(i.e, Levenshtein distance in the implementation) between entities.
It is well-known that calculating Levenshtein distance for large-
scale entity pairs is time-consuming and computationally expen-
sive. Given two sets of entities 𝐸𝑠 and 𝐸𝑡 , the time and space com-
plexities of Levenshtein-distance-based similarity computation are
both 𝑂

(
|𝐸𝑠 | × |𝐸𝑡 | ×𝑀𝑎𝑥 (𝑙𝑒𝑛𝐸𝑠) ×𝑀𝑎𝑥 (𝑙𝑒𝑛𝐸𝑡)

)
in general. Here,

𝑀𝑎𝑥 (𝑙𝑒𝑛𝐸𝑠) (w.r.t.𝑀𝑎𝑥 (𝑙𝑒𝑛𝐸𝑡)) denotes the maximum length of an
entity’s name from the set 𝐸𝑠 (w.r.t. 𝐸𝑡). Our solution is to filter out
the pairs that are extremely different, as entity pairs with different
names are less likely to be aligned. Motivated by the efficiency of
the datasketch library [2] for finding similar entities per entity, we
deploy the datasketch library for this purpose. Concretely, the datas-
ketch library employs MinHash-LSH to reduce the computational
cost of finding similar entity pairs. The time complexity of datas-
ketch is 𝑂 (|𝐸𝑠 |). We only retain the entity pairs 𝑃 whose Jaccard
similarities are above 𝜃 , the lower bound of the string difference.
Then, we compute the string similarity for each entity pair in 𝑃 by
Levenshtein distance. We denote the string-based similarity matrix
as𝑴𝒔𝒕 . Similarly, the benefits of using the threshold 𝜃 are to (i) save
the memory space of storing 𝑴𝒔𝒕 and (ii) reduce the total number
of entity pairs that require Levenshtein distance computation.
Name-based Data Augmentation. Recall that some seed align-
ments in the training data may be missing after mini-batch gener-
ation. To this end, we describe how we apply data augmentation
(DA) based on the similarity between entities’ name features to
generate seed alignment automatically. We are inspired by the idea
of cycle consistency from word translation [6], which states that, if
two sentences from different languages can be translated to each
other, they have the same meaning. Therefore, we generate pseudo
seed alignment in accordance with the constraints that two entities
are mutually the most similar to each other.
Channel Fusion for Aligning Entities. As highlighted by mas-
sive prior studies [23, 53, 54, 57], the name feature and structural
feature can complement each other in the task of EA. Motivated
by this, we fuse the name similarity matrix 𝑴𝒔 and the structure
similarity 𝑴𝒏 derived from name channel and structure channel,
respectively. To balance the importance of both structure channel
and name channel, we combine 𝑴𝒔 and 𝑴𝒏 with equal weights,
and derive the final similarity matrix between 𝐸𝑠 and 𝐸𝑡 , denoted as
𝑴 . Formally, 𝑴 = 𝑴𝒔 +𝑴𝒏 . Though simple and intuitive, this ap-
proach effectively fuses the features from both name and structure
aspects. We will demonstrate the effectiveness of channel fusion
via experimental study to be presented in Section 3.3.

3 EXPERIMENTS
In this section, we conduct extensive experiments to verify the ef-
fectiveness and efficiency of LargeEA, using six datasets, i.e., (i) four
small-scale datasets provided by the state-of-the-art benchmark
IDS [37]; and (ii) two large-scale datasets newly generated by us.

3.1 Experimental Settings
Datasets and Evaluation Metrics. We conduct experiments on
datasets with different scales from two cross-lingual EA bench-
marks, i.e., IDS [37] and DBP1M. Table 1 lists the detailed statistics.

(i) IDS. Recent work [37] indicates that several EA benchmarks
(e.g., DBP15K [33] and DWY100K [34]) contain much more high-
degree entities than real-world KGs do. Consequently, they gen-
erate IDS, which contains four cross-lingual datasets, i.e., English
and French (IDS15K𝐸𝑁−𝐹𝑅 and IDS100K𝐸𝑁−𝐹𝑅), and English and
German (IDS15K𝐸𝑁−𝐷𝐸 and IDS100K𝐸𝑁−𝐷𝐸).

(ii) DBP1M. We create two large-scale cross-lingual datasets ex-
tracted from a well-known real-world KG, i.e., DBpedia [4]. Con-
cretely, we retrieve ∼1M ground truth of EA by utilizing the inter-
language links (ILLs) and owl:sameAs among DBpedia’s multilin-
gual versions, i.e., English and French (DBP1M𝐸𝑁−𝐹𝑅), and English
and German (DBP1M𝐸𝑁−𝐷𝐸). Unlike the IDS benchmark that en-
sures the number of entities from one KG is equivalent to that from
another KG, we allow KGs to have different number of entities.
For example, the English KGs of our proposed DBP1M benchmark
contains more entities. This conforms to the real-world KGs since
the English version of DBpedia is more complete than the versions
in other languages. To simulate the real-world EA scenarios, we
also inject unknown entities, which cannot find any equivalence
based on the EA ground truth, into every dataset of DBP1M. This
is because, it is common that only partial entities can find their
equivalence in an EA dataset in real life. Specifically, we add un-
known entities that have at least 5 entities (each of which has its
equivalent entity in corresponding ground truth datasets) in their
neighborhood into each KG, following Sun et al. [33].

We follow [37] to use 20% as training data, which conforms to the
real world. The remaining data (80%) is to test the EA performance.
We use Hits@𝑁 (𝑁=1, 5, H@𝑁 for short), Mean Reciprocal Rank
(MRR), running time (in seconds for small-scale datasets and hours
for large-scale ones), and the maximum GPU Memory cost (Mem.
for short, in GB) as the evaluation metrics. Here, the running time
means the training time of every EA approach. Higher Hits@N
and MRR indicate better performance. We use the NVIDIA Nsight
Systems to monitor the usage of GPU memory.
Competitors.We compare LargeEA with several widely used EA
models, which have presented promising EA performance: (i) GC-
NAlign [42], an attribute-powered EAmodel that uses vanilla GCNs
and entity attributes to learn entity embeddings for alignment; (ii)
MultiKE [56], a side-information-based EA model that unifies mul-
tiple views of entities; (iii) RDGCN [44], an EA model that first uses
entity names to initialize entity embeddings and then learns these
embeddings via a relation-aware dual graph convolutional network;
(iv) RREA [26], a GNN-based EA model that leverages relational
reflection transformation to obtain relation specific embeddings for
each entity; and (v) BERT-INT [38], which leverages BERT [10] to
discover the semantic features contained in the side information of
entities instead of considering the graph structure of KGs.

241

Table 2: Overall EA results on IDS15K and IDS100K

Methods IDS15K𝐸𝑁−𝐹𝑅 IDS15K𝐸𝑁−𝐷𝐸 IDS100K𝐸𝑁−𝐹𝑅 IDS100K𝐸𝑁−𝐷𝐸

H@1 H@5 MRR Time Mem. H@1 H@5 MRR Time Mem. H@1 H@5 MRR Time Mem. H@1 H@5 MRR Time Mem.
GCNAlign 33.8 58.9 0.45 20.29 0.13G 48.1 67.9 0.57 21.60 0.13G 23.0 41.2 0.32 1225.03 1.00G 31.7 48.5 0.40 1639.49 1.00G
MultiKE 74.9 81.9 0.78 290.58 6.52G 75.6 80.9 0.78 350.85 10.52G 62.9 68.0 0.66 1277.73 16.08G 66.8 71.2 0.69 1765.08 16.08G
RDGCN 75.5 85.4 0.80 554.31 8.02G 83.0 89.5 0.86 739.72 8.02G 64.0 73.2 0.68 2852.70 16.02G 72.2 79.4 0.76 3511.14 16.02G
RREA 80.8 96.3 0.88 139.34 4.07G 85.8 96.8 0.91 137.08 4.07G – – – – – – – – – –
BERT-INT 94.2 96.4 0.95 969.61 14.07G 93.5 95.0 0.94 1044.28 14.07G 92.0 94.4 0.93 6991.65 14.07G 90.8 93.3 0.92 6999.01 14.07G
LargeEA-GEN→L 88.4 92.2 0.90 77.00 1.54G 89.2 93.4 0.91 74.81 1.54G 83.9 87.5 0.86 465.10 1.74G 85.6 89.1 0.87 465.26 1.74G
LargeEA-GL→EN 89.9 92.9 0.91 75.86 1.54G 90.8 94.2 0.92 75.89 1.54G 84.7 87.8 0.86 450.29 1.74G 85.8 89.2 0.87 452.48 1.74G
LargeEA-REN→L 88.7 91.9 0.90 95.43 1.54G 89.2 94.0 0.91 96.32 1.54G 84.4 88.0 0.86 552.84 4.04G 83.4 86.7 0.85 574.00 4.04G
LargeEA-RL→EN 89.8 92.7 0.91 98.33 1.54G 91.1 94.9 0.93 96.31 1.54G 84.3 87.5 0.86 559.51 4.04G 86.4 89.6 0.88 577.88 4.04G
1 The symbol “–” indicates that the EA model is NOT able to perform the EA task by using the GPU in the experimental conditions because of the memory limitation.
2 The results of all the competitors are obtained by our re-implementation with their publicly available source code.
3 L represents the non-English language. For instance, EN → L denotes that the language of source KG is English and that of target KG is non-English.

Table 3: Overall EA results on DBP1M

Methods DBP1M𝐸𝑁−𝐹𝑅 DBP1M𝐸𝑁−𝐷𝐸

H@1H@5MRRTime Mem. H@1H@5MRRTime Mem.
LargeEA-GEN→L 51.8 58.3 0.55 3.36 6.61G 55.3 60.8 0.58 2.59 4.59G
LargeEA-GL→EN 50.6 56.5 0.53 3.39 8.00G 55.5 61.3 0.58 2.63 5.36G
LargeEA-REN→L 52.8 58.7 0.56 3.58 21.15G 56.1 61.3 0.59 2.88 16.01G
LargeEA-RL→EN 51.5 57.0 0.54 3.71 21.17G 56.2 61.8 0.59 2.91 16.01G

Variants of LargeEA. Note that both GCNAlign and RREA pro-
vide variants that purely utilize the structural features to align
entities. The former includes a vanilla GCN to learn structural fea-
tures. The latter provides a GNN-based model that achieves the
state-of-the-art EA performance. Since LargeEA can be easily inte-
grated with structural-based EA models, we present two versions
of LargeEA, i.e., LargeEA-G that includes the variant of GCNAlign
and LagreEA-R that incorporates the variant of RREA.
Implementation Details. We detail the hyper-parameters used
in LargeEA as follows. All the hyper-parameters are set without
special instructions. In the name channel, we set the string-based
similarity threshold 𝜃 = 0.5 and the semantic-based similarity
threshold 𝜙 = 50 in NFF. Also, we fix the dimension of every entity
embedding obtained by BERT (i.e., 𝐷𝑠𝑒) to be 768. In the structure
channel, we set the number of mini-batches 𝐾 = 5 for IDS15K,
𝐾 = 10 for IDS100K, and 𝐾 = 20 for our DBP1M dataset by default.
Unless explicitly specified, we use RREA as the default EA model in
the structure channel and optimize it with Adam for 100 epochs in
each mini-batch. Besides, following the settings in [10, 42], we set
the dimension of every entity embedding generated by the structure
channel |𝐷𝑠𝑡𝑟 | = 200 for LargeEA-G and |𝐷𝑠𝑡𝑟 | = 100 for LargeEA-
R. All experiments were conducted on a personal computer with an
Intel Core i9-10900K CPU, an NVIDIA GeForce RTX3090 GPU and
128GB memory. The programs were all implemented in Python.

3.2 Overall Performance
3.2.1 Performance on IDS. Table 2 summarizes the EA performance
on IDS15K and IDS100K. We first focus on the accuracy evalu-
ation for the two variants of LargeEA and its competitors. First,
both variants of LargeEA perform better than the existing EA mod-
els that also explore both name features and structural features.
It validates the superiority of the way how the name feature and
structural feature are fused in our framework. Second, compared to
BERT-INT, which achieves state-of-the-art accuracy on the small-
scaled datasets (i.e., IDS15K and IDS100K), LargeEA gains up to 9x

GPU memory saving. The reason is that BERT-INT highly relies
on BERT [10] that has a much more complex model structure and
needs to store more parameters in the training process. Moreover,
BERT-INT suffers from scalability issue due to the models’ inherent
characteristics. Different from the other competitors that mainly
utilize GPU for model training, the complex model design of BERT
forces BERT-INT to store a part of parameters into RAM; other-
wise, BERT-INT cannot run successfully because of limited GPU
memory. To be more specific, for IDS15K, BERT-INT requires 14GB
GPU memory and 7GB CPU memory on average. For IDS100K,
BERT-INT requires 14GB GPU memory and 58GB CPU memory on
average. Although the usage of GPU memory seems to be stable
on datasets with different scales (since we set the same number of
mini-batches for BERT-INT on both IDS15K and IDS100K datasets,
as suggested by its original paper), the bottleneck of BERT-INT is
the tremendous CPU memory requirement. As expected, it needs at
least 580GB RAM for handling a large-scale dataset (e.g., DBP1M)
whose size is more than 10 times that of IDS100K. To further verify
the above observation, we have tried to run BERT-INT on DBP1M
but failed even with a 128GB of RAM. Third, we can observe that
the influence of the source KG selection on H@1 varies from 0.1%
to 3%. Since different KGs are heterogeneous, it is common that
selecting different KGs as sources leads to different EA accuracy
(up to 4.7% on some existing models), as confirmed by DGMC [11].

We now turn our attention to the running time evaluation.
We can observe that the training of LargeEA (both variants) is
faster than that of other existing EA models. Particularly, LargeEA
runs more than 10x faster than BERT-INT, the state-of-the-art EA
model. Recall that BERT-INT is extremely complex in the model
structure. It is time-consuming to obtain reliable parameters in
the process of training such a complex model. This shows the
superiority of LargeEA in terms of running time. One exception is
the performance of GCNAlign in IDS15K benchmark. The running
time of LargeEA-G is larger than that of the GCNAlign alone. The
reason is that LargeEA-G effectively captures the entity name’s
features, which requires additional running time. Despite the fast
running time of GCNAlign in the small-scale IDS15K benchmark,
LargeEA-G accelerates the running time up to 3.5x than GCNAlign
when performing EA in IDS100K, a relatively larger benchmark.

3.2.2 Performance on DBP1M. Table 3 reports the overall EA per-
formance of LargeEA-G and LargeEA-R on DBP1M. Note that the
EA results produced by LargeEA’s competitors are not reported, as

242

METIS-CPS Mini-batch trainingSTNSSENS

1

10
1

10
2

10
3

10
4

10
5

Dataset

R
u

n
n
in

g
 t

im
e

(s
)

IDS15K IDS100K DBP1M

(a) EN-FR

1

10
1

10
2

10
3

10
4

10
5

Dataset

R
u

n
n
in

g
 t

im
e

(s
)

IDS15K IDS100K DBP1M

(b) EN-DE

Figure 4: Scalability analysis vs. datasize

LargeEA w/o structure channel

LargeEA w/o name channelLargeEA

LargeEA w/o name-based DA

0

0.2

0.4

0.6

0.8

1

Dataset

H
@
1

IDS15K IDS100K DBP1M
0

0.2

0.4

0.6

0.8

1

Dataset

H
@
1

IDS15K IDS100K DBP1M

(a) EN-FR

0

0.2

0.4

0.6

0.8

1

Dataset

H
@
1

IDS15K IDS100K DBP1M

(b) EN-DE

Figure 5: Ablation studies

all the competitors fail to perform EA task for any dataset of the
large-scale DBP1M in the experiments. The main reason is that they
all require a substantial amount of memory space. In contrast, it is
observed that LargeEA is capable of scaling the current EA models
to deal with large-scale entity alignment tasks. As discussed in
Section 2.2.2, the reason is that the mini-batch training of LargeEA
greatly saves the memory cost.

3.2.3 Scalability Evaluation. To further investigate the scalabil-
ity of our LargeEA framework, we evaluate the running time of
each channel of LargeEA on datasets with different scales. For the
structure channel, we report the running time of computing en-
tities’ semantic name similarities (SENS) and that of computing
entities’ string-based name similarities (STNS), respectively. For
the structure channel, we report the running time of mini-batch
generation strategy (i.e., METIS-CPS) and that of EAmodel training.
As depicted in Figure 4, we observe that the running time of each
component increases almost linearly as dataset size grows. This
confirms the scalability of LargeEA.

3.3 Ablation Study
We conduct ablation studies on all datasets, with results plotted
in Figure 5. By removing the structure channel, the accuracy of
LargeEA drops on𝐻@1. This verifies that the structure channel is an
indispensable part of LargeEA. We also observe that the structural
channel has less influence for EA on DBP1M, compared to IDS. It is
attributed to the following two reasons. First, the different number
of entities from each side easily leads to more heterogeneous KGs,
compared to the IDS where the source KG and the target KG share
the same number of entities. Since the performance of structure-
based EA methods highly relies on the graph isomorphism [11], it
is more challenging to learn reliable EA signals from heterogeneous
KGs, and thus results in relatively worse EA performance. Second,
DBP1M contains unknown entities, which further exacerbate the

IDS15K with VPS IDS15K w/o p. IDS15K with METIS-CPS

IDS100K with METIS-CPS IDS100K w/o p. IDS100K with VPS

0

0.2

0.4

0.6

0.8

Seed alignment ratio

H
@

1

30% 50%10% 20% 40%

(a) EN-FR

0

0.2

0.4

0.6

0.8

Seed alignment ratio

H
@

1

30% 50%10% 20% 40%

(b) EN-DE

Mini-batch training with VPS (15K)

Mini-batch training w/o p. (15K)

Mini-batch training with METIS-CPS (15K)

Mini-batch training with METIS-CPS (100K)

Mini-batch training w/o p. (100K)

Mini-batch training with VPS (100K)

METIS-CPS (15K)

VPS (15K)

METIS-CPS (100K)

VPS (100K)

R
u

n
n
in

g
 t

im
e(

s)

Seed alignment ratio

30% 50%10% 20% 40%
0

40

120

80

160

(c) EN-FR

0

40

120

80

160

R
u

n
n
in

g
 t

im
e(

s)

Seed alignment ratio

30% 50%10% 20% 40%

(d) EN-DE

Figure 6: METIS-CPS performance vs. seed alignment

heterogeneity of the source KG and the target KG. By removing the
name channel, it is observed that the accuracy decline varies from
3% to 37% on different benchmarks. This verifies that capturing
name features of entities and generating pseudo seed alignment
greatly improve alignment results. By removing the name-based
data augmentation (DA), the accuracy decline varies from 2% to
14% on different benchmarks. In particular, the accuracy drops
more significantly on IDS15K and IDS100K, compared to that on
DBP1M. This is because IDS15K and IDS100K have richer structural
features than DBP1M. Specifically, the name-based DA is used to
provide more seeds for improving the EA results of the structural
channel. The richer the structural features of a KG, the greater
the improvement of EA performance that can be brought by seeds.
Furthermore, EA accuracy on DBP1M is lower than that on IDS15K,
attributed to the huge amount of unknown entities. Normal entities
may be aligned to these unknown entities, incurring the drop of
𝐻@1when evaluating the EA results according to the ground truth,
which only contains known equivalent entities.

3.4 Mini-batch Generation Analysis
We explore the effect of the amount of seed alignment on METIS-
CPS and VPS. We report the H@1 and the running time produced
by solely using the structural channel for EA when varying the
seed alignment ratio from 10% to 50%. Figure 6(a) and Figure 6(b)
report the results of the alignment accuracy. First, we observe that
the H@1 of both METIS-CPS and VPS improves almost linearly as
the number of seed alignment increases. It is natural that more seed
alignment provides more informative training signals to learn a
reliable EA model. Second, it is observed that METIS-CPS performs
consistently much better than VPS no matter how the number
of seed alignment changes. This is because, METIS-CPS ensures
that the more the seed alignment, the less destruction the KG’s

243

Table 4: Unsupervised EA results on DBP1M

Methods DBP1M𝐸𝑁−𝐹𝑅 DBP1M𝐸𝑁−𝐷𝐸

H@1H@5MRRTime Mem. H@1H@5MRRTime Mem.
LargeEA-GEN→L 51.8 58.3 0.55 3.39 8.00G 55.3 60.8 0.58 2.59 4.59G
LargeEA-GL→EN 50.6 56.5 0.53 3.40 8.00G 55.6 61.3 0.58 2.64 5.37G
LargeEA-REN→L 52.8 58.7 0.56 3.61 21.17G 56.1 61.3 0.59 2.87 21.17G
LargeEA-RL→EN 51.5 57.0 0.54 3.72 21.17G 56.2 61.8 0.59 2.93 16.01G

structure. Therefore, more structure features can be reserved to
improve the EA performance produced by the structural channel.
On the contrary, VPS mainly relies on random partitioning, which
greatly destroys the structure of a KG and thus results in minor
accuracy increase. Figure 6(c) and Figure 6(d) show the results
of the running time required. As expected, the running time of
VPS is shorter than that of METIS-CPS. This is because, the time
complexity of VPS is lower than that ofMETIS-CPS, as mentioned in
Section 2.2. Although VPS is faster, it greatly destroys the structure
of a KG.Wewant to highlight that usingMETIS-CPS as the partition
strategy can help the structural channel obtain higher alignment
accuracy, which is much more critical for the task of EA.

Besides, one may be curious about the results of alignment accu-
racy and running time before and after the mini-batch generation.
In terms of accuracy, as expected, the alignment accuracy after par-
tition (w.r.t. METIS-CPS and VPS) is inferior to that before partition
(w/o p. for short). This is because, graph partition inevitably cuts
KG’s edges and destroys the structure of a KG, thereby reducing
the alignment accuracy. In terms of running time, it is observed
that the running time of the structural channel with METIS-CPS
is much shorter than that without partition. The reason is that the
subgraphs within each mini-batch (after performing METIS-CPS)
are much smaller than the entire KG without partition. This leads
to shorter training time for learning a reliable structure-based EA
model in the structural channel, compared to the training process
of the structural channel without partition. To sum up, we want to
emphasize the effectiveness of METIS-CPS for KG partition from
the following two perspectives: (i) Acceptable accuracy decline. The
average drop of alignment accuracy is around 8% by performing
METIS-CPS, compared against that without partition. (ii) Faster
training process. Compared with the training process without parti-
tion, performing METIS-CPS can save up to 4x training time.

3.5 Case Study: Unsupervised EA Performance
To demonstrate the superior performance of LargeEA even when
seed alignment is not available, we present a case of applying
LargeEA to conduct unsupervised EA on DBP1M by using the pro-
posed data augmentation strategy to generate seed alignment auto-
matically. Specifically, the data augmentation automatically gener-
ates 528,040 and 476,527 seeds onDBP1M𝐸𝑁−𝐹𝑅 andDBP1M𝐸𝑁−𝐷𝐸
respectively, with the accuracy of 93.86% and 93.85%, respectively.
In this way, the proposed data augmentation can automatically gen-
erate sufficient high-quality seed alignment for EA. Table 4 reports
the corresponding EA results. We can observe that LargeEA is able
to achieve an accuracy that is comparable with that under super-
vised EA. This reflects that the name-based data augmentation can
produce reliable pseudo seeds, which are able to provide positive
input as real seeds. This further confirms the superiority of the
proposed LargeEA for coping with real-world EA scenarios.

4 RELATEDWORK
Early entity alignment (EA) methods rely on hand-crafted fea-
tures [24], crowdsourcing [41, 60], and OWL semantics [12]. They
are unrealistic for real-world EA scenarios with symbolic or linguis-
tic heterogeneity. Current EA approaches find equivalent entities
by measuring the similarity between the embeddings of entities.

Structures of KGs are the basis for the embedding-based EA
methods. Representative EA approaches that purely rely on KGs’
structures can be clustered into two categories, namely Trans-
lational-based EA [9, 21, 29, 30, 34, 35, 39, 58] and GNN-based
EA [7, 19, 25, 32, 36, 42, 44, 59]. The former incorporates the trans-
lational KG embedding models (e.g., TransE [5]) to learn entity
embeddings; the latter learns the entity embeddings by aggregating
the neighbors’ information of entities. Though GNN-based mod-
els have demonstrated their outstanding performance, they suffer
from poor scalability as they highly rely on the structure of KG, as
mentioned in Section 1. Therefore, LargeEA is developed to scale
up these EA methods to align entities between large KGs.

Besides, lots of approaches have revealed that side information of
KGs can facilitate the EA performance, including entity names [11,
23, 25, 26, 28, 33, 38, 45, 46, 49–51, 54, 56], descriptions [8, 38, 51, 56],
images [22], and attributes [23, 33, 38, 39, 42, 43, 51, 52, 56]. They
could be considered as complements to, but not competitors of, the
structure-based EAmodels. Since every entity has its own name and
the use of name information does not require any pre-processing,
users/researchers tend to use the name information to promote EA.
Other studies also reveal that entities’ descriptions, attributes, and
images contain more information than entities’ name. However,
these studies are either labor-intensive or error-prone and thus
restrict the scope of their real-world applications. To this end, we
incorporate name information in LargeEA.

5 CONCLUSIONS
In this paper, we present LargeEA to align entities between large-
scale knowledge graphs. LargeEA introduces both structure channel
and name channel to collaboratively align entities from large-scale
KGs. In the structure channel, we propose METIS-CPS to generate
multiple mini-batches and then learn the structural features of en-
tities within each mini-batch independently. In the name channel,
we explore the name features of entities from both string-based
aspect and semantic aspect without any complex training process
via our proposed NFF. Additionally, we exploit a name-based data
augmentation to enrich the seed alignment for EA. The EA re-
sults of LargeEA are derived from the fused features of names and
structures. To simulate real-world EA scenarios, we also develop a
large-scale EA benchmark named DBP1M for evaluating EA perfor-
mance. Considerable experimental results on EA benchmarks with
different data magnitudes demonstrate the superiority of LargeEA.
In the future, we would like to explore scalable EA approaches that
only rely on the KG’s structure, to support EA between KGs whose
entities do not share the same naming convention.

ACKNOWLEDGMENTS
This work was supported by the NSFC under Grant No. 62025206,
61972338, and 62102351, and also supported by AZFT. Yunjun Gao
is the corresponding author of the work.

244

REFERENCES
[1] The source code of BERT. https://github.com/huggingface/transformers.
[2] The source code of datasketch. https://github.com/ekzhu/datasketch.
[3] The source code of LargeEA. https://github.com/ZJU-DBL/LargeEA.
[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary G. Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In ISWC.
722–735.

[5] Antoine Bordes, Nicolas Usunier, Alberto García-Durán, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In NIPS. 2787–2795.

[6] Richard W Brislin. 1970. Back-translation for cross-cultural research. Journal of
cross-cultural psychology 1, 3 (1970), 185–216.

[7] Yixin Cao, Zhiyuan Liu, Chengjiang Li, Zhiyuan Liu, Juanzi Li, and Tat-Seng
Chua. 2019. Multi-Channel Graph Neural Network for Entity Alignment. In ACL.
1452–1461.

[8] Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven Skiena, and Carlo Zaniolo.
2018. Co-training Embeddings of Knowledge Graphs and Entity Descriptions for
Cross-lingual Entity Alignment. In IJCAI. 3998–4004.

[9] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2017. Multilingual
Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment. In IJCAI.
1511–1517.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT. 4171–4186.

[11] Matthias Fey, Jan Eric Lenssen, Christopher Morris, Jonathan Masci, and Nils M.
Kriege. 2020. Deep Graph Matching Consensus. In ICLR.

[12] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011. LogMap: Logic-Based
and Scalable Ontology Matching. In ISWC. 273–288.

[13] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[14] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomás Mikolov. 2017. Bag
of Tricks for Efficient Text Classification. In EACL. 427–431.

[15] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 20, 1 (1998),
359–392.

[16] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[17] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale
Graph Computation on Just a PC. In OSDI. 31–46.

[18] Guillaume Lample, Alexis Conneau, Marc’Aurelio Ranzato, Ludovic Denoyer,
and Hervé Jégou. 2018. Word translation without parallel data. In ICLR.

[19] Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, and Tat-Seng Chua. 2019.
Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and
Cross-graph Model. In EMNLP. 2723–2732.

[20] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60.

[21] Xixun Lin, Hong Yang, Jia Wu, Chuan Zhou, and Bin Wang. 2019. Guiding
Cross-lingual Entity Alignment via Adversarial Knowledge Embedding. In ICDM.
429–438.

[22] Fangyu Liu, Muhao Chen, Dan Roth, and Nigel Collier. 2020. Visual Pivoting for
(Unsupervised) Entity Alignment. arXiv preprint arXiv:2009.13603 (2020).

[23] Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, and Tat-Seng Chua. 2020.
Exploring and Evaluating Attributes, Values, and Structures for Entity Alignment.
In EMNLP. 6355–6364.

[24] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M. Suchanek. 2015. YAGO3: A
Knowledge Base from Multilingual Wikipedias. In CIDR.

[25] Xin Mao, Wenting Wang, Huimin Xu, Man Lan, and Yuanbin Wu. 2020. MRAEA:
An Efficient and Robust Entity Alignment Approach for Cross-lingual Knowledge
Graph. InWSDM. 420–428.

[26] Xin Mao,WentingWang, Huimin Xu, YuanbinWu, andMan Lan. 2020. Relational
Reflection Entity Alignment. In CIKM. 1095–1104.

[27] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep Learning for Entity Matching: A Design Space Exploration. In SIGMOD.
19–34.

[28] Hao Nie, Xianpei Han, Le Sun, Chi Man Wong, Qiang Chen, Suhui Wu, and Wei
Zhang. 2020. Global Structure and Local Semantics-Preserved Embeddings for
Entity Alignment. In IJCAI. 3658–3664.

[29] Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang Zhang. 2019. Semi-
Supervised Entity Alignment via Knowledge Graph Embedding with Awareness
of Degree Difference. InWWW. 3130–3136.

[30] Shichao Pei, Lu Yu, and Xiangliang Zhang. 2019. Improving Cross-lingual Entity
Alignment via Optimal Transport. In IJCAI. 3231–3237.

[31] Fabian M. Suchanek, Serge Abiteboul, and Pierre Senellart. 2011. PARIS: Prob-
abilistic Alignment of Relations, Instances, and Schema. PVLDB 5, 3 (2011),

157–168.
[32] Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang, Jian Dai, and Wei Zhang.

2020. Knowledge Association with Hyperbolic Knowledge Graph Embeddings.
In EMNLP. 5704–5716.

[33] Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-Lingual Entity Alignment via
Joint Attribute-Preserving Embedding. In ISWC. 628–644.

[34] Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu. 2018. Bootstrapping
Entity Alignment with Knowledge Graph Embedding. In IJCAI. 4396–4402.

[35] Zequn Sun, JiaCheng Huang, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. TransEdge: Translating Relation-Contextualized Embeddings for
Knowledge Graphs. In ISWC. 612–629.

[36] Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and
Yuzhong Qu. 2020. Knowledge Graph Alignment Network with Gated Multi-Hop
Neighborhood Aggregation. In AAAI. 222–229.

[37] Zequn Sun, Qingheng Zhang, Wei Hu, ChengmingWang, Muhao Chen, Farahnaz
Akrami, and Chengkai Li. 2020. A Benchmarking Study of Embedding-based
Entity Alignment for Knowledge Graphs. PVLDB 13, 11 (2020), 2326–2340.

[38] Xiaobin Tang, Jing Zhang, Bo Chen, Yang Yang, Hong Chen, and Cuiping Li. 2020.
BERT-INT: A BERT-based Interaction Model For Knowledge Graph Alignment.
In IJCAI. 3174–3180.

[39] Bayu Distiawan Trisedya, Jianzhong Qi, and Rui Zhang. 2019. Entity Alignment
between Knowledge Graphs Using Attribute Embeddings. In AAAI. 297–304.

[40] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR. OpenRe-
view.net.

[41] Denny Vrandecic and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledgebase. Commun. ACM 57, 10 (2014), 78–85.

[42] Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. 2018. Cross-lingual
Knowledge Graph Alignment via Graph Convolutional Networks. In EMNLP.
349–357.

[43] Zhichun Wang, Jinjian Yang, and Xiaoju Ye. 2020. Knowledge Graph Alignment
with Entity-Pair Embedding. In EMNLP. 1672–1680.

[44] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, Rui Yan, and Dongyan Zhao.
2019. Relation-Aware Entity Alignment for Heterogeneous Knowledge Graphs.
In IJCAI. 5278–5284.

[45] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2019.
Jointly Learning Entity and Relation Representations for Entity Alignment. In
EMNLP. 240–249.

[46] Yuting Wu, Xiao Liu, Yansong Feng, Zheng Wang, and Dongyan Zhao. 2020.
Neighborhood Matching Network for Entity Alignment. In ACL. 6477–6487.

[47] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit Semantic Ranking
for Academic Search via Knowledge Graph Embedding. InWWW. 1271–1279.

[48] Hongteng Xu, Dixin Luo, and Lawrence Carin. 2019. Scalable Gromov-
Wasserstein Learning for Graph Partitioning and Matching. In NeurIPS. 3046–
3056.

[49] Kun Xu, Linfeng Song, Yansong Feng, Yan Song, and Dong Yu. 2020. Coordinated
Reasoning for Cross-Lingual Knowledge Graph Alignment. In AAAI. 9354–9361.

[50] Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, and Dong
Yu. 2019. Cross-lingual Knowledge Graph Alignment via Graph Matching Neural
Network. In ACL. 3156–3161.

[51] Hsiu-Wei Yang, Yanyan Zou, Peng Shi, Wei Lu, Jimmy Lin, and Xu Sun. 2019.
Aligning Cross-Lingual Entities with Multi-Aspect Information. In EMNLP. 4430–
4440.

[52] Kai Yang, Shaoqin Liu, Junfeng Zhao, Yasha Wang, and Bing Xie. 2020. COTSAE:
CO-Training of Structure and Attribute Embeddings for Entity Alignment. In
AAAI. 3025–3032.

[53] Weixin Zeng, Xiang Zhao, Jiuyang Tang, and Xuemin Lin. 2020. Collective Entity
Alignment via Adaptive Features. In ICDE. 1870–1873.

[54] Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, and Zhen Tan. 2020. Degree-
Aware Alignment for Entities in Tail. In SIGIR. 811–820.

[55] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.
2016. Collaborative Knowledge Base Embedding for Recommender Systems. In
SIGKDD. 353–362.

[56] Qingheng Zhang, Zequn Sun, Wei Hu, Muhao Chen, Lingbing Guo, and Yuzhong
Qu. 2019. Multi-view Knowledge Graph Embedding for Entity Alignment. In
IJCAI. 5429–5435.

[57] Xiang Zhao, Weixin Zeng, Jiuyang Tang, Wei Wang, and Fabian M. Suchanek.
2020. An experimental study of state-of-the-art entity alignment approaches.
TKDE 10 (2020).

[58] Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2017. Iterative Entity
Alignment via Joint Knowledge Embeddings. In IJCAI. 4258–4264.

[59] Qiannan Zhu, Xiaofei Zhou, Jia Wu, Jianlong Tan, and Li Guo. 2019.
Neighborhood-Aware Attentional Representation for Multilingual Knowledge
Graphs. In IJCAI. 1943–1949.

[60] Yan Zhuang, Guoliang Li, Zhuojian Zhong, and Jianhua Feng. 2017. Hike: A
Hybrid Human-Machine Method for Entity Alignment in Large-Scale Knowledge
Bases. In CIKM. 1917–1926.

245

https://github.com/huggingface/transformers
https://github.com/ekzhu/datasketch
https://github.com/ZJU-DBL/LargeEA

