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ABSTRACT
When considering uncertain bipartite networks, the number of

instances of the popular graphlet structure the butterfly may be

used as an important metric to quickly gauge information about

the network. This Uncertain Butterfly Count has practical usages in

a variety of areas such as biomedical/biological fields, E-Commerce

and road networks. In this paper we formally define the uncertain

butterfly structure (in which the existential probability of the but-

terfly is greater than or equal to some user-defined threshold 𝑡 ) as

well as the Uncertain Butterfly Counting Problem (to determine

the number of unique instances of this structure on any uncertain

bipartite network). We then examine exact solutions by propos-

ing a non-trivial baseline (𝑈𝐵𝐹𝐶) as well as an improved solution

(𝐼𝑈𝐵𝐹𝐶) which reduces the time complexity and employs heuristics

to further reduce the runtime in practice. In addition to exact so-

lutions, we propose two approximate solutions via sampling,𝑈𝐵𝑆

and 𝑃𝐸𝑆 , which can be used to quickly estimate the Uncertain But-

terfly Count, a powerful tool when the exact count is unnecessary.

Using a range of networks with different edge existential probabil-

ity distributions, we validate the efficiency and effectiveness of our

solutions.
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1 INTRODUCTION
Uncertain (or Probabilistic) Networks are graphs aimed atmodelling

real-world networks in which connections between users or entities

can only be assumed with differing levels of uncertainty [3, 26].

Recently, these networks have grown to become a highly interesting

area of exploration due to the real-world applications they provide

[31, 34, 37].

Extending on this concept, uncertain bipartite networks are used

to examine uncertain networks in which the nodes are broken

cleanly into two separate groups. Notable uncertain bipartite net-

work use cases include uncertain links in biological/biomedical
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networks [7, 18, 27] or in user-item networks where edges may rep-

resent confidence in a recommendation [24] or a trust-prediction

based on user ratings [11]. Even delivery problems [25, 35] can be

modelled as uncertain bipartite networks based on the likelihood

the courier can reach a target within a certain time frame.

On deterministic (or certain) bipartite networks the butterfly

(sometimes referred to as a ‘rectangle’ in the literature), a fully con-

nected subgraph containing exactly two nodes from each partition,

is perhaps the most important graphlet structure [22, 28, 29]. But-

terflies may be used to indicate closely connected nodes, which are

useful in tasks such as community search [22] as well as forming the

foundation of key community structures such as the bitruss [30, 40]

or biclique [36]. In that respect, butterflies play a very similar role

to that of the triangle on a unipartite graph [2, 5, 32].

Whilst butterfly counting has been studied on deterministic

bipartite networks [22, 28, 29], they have yet to be extended to

uncertain bipartite networks which limits their current applicability.

This is unlike the triangle (and triangle counting problem) which

has already been extended to uncertain scenarios due to similar

reasoning [9, 41]. With the structure holding such importance on

bipartite graphs, being able to determine the number of butterflies

in uncertain bipartite networks can lead to significant insights into

the inherent structure and properties of the network.

Use Case Scenario [Host-Parasite Network]: Host-Parasite net-

works track which parasites latch onto which hosts in a natural

environment. In some work, such uncertain networks have been

built which also consider host-parasite combinations which could

(but not have provably been shown to) exist in nature [27]. By

counting the butterflies on such networks, the potential likelihood

and impact of cross-host parasite transaction could be examined

before introducing such hosts to the same environment. As a result,

action should be taken to minimise the uncertain butterfly count

on any such environment.

Use Case Scenario [Recommendation Network]: Another use case
example is a recommendation user-item network, where edges

can exist without certainty where the existential probability is the

likelihood a user would enjoy or purchase an item. These recom-

mendation networks can be formed using multiple well-established

techniques such as Collaborative Filtering [24]. The uncertain but-

terflies and their respective count could be used to recommend items

which would result in the emergence or reinforcement of strong

communities (i.e. bitruss-based [40]). Additionally, general statis-

tics such as a bipartite clustering coefficient [13] can be gleamed

using the uncertain butterfly count. Furthermore, by comparing

the resulting counts of two different recommendation strategies, a

relatively cheap method of comparing potential impacts of strate-

gies beyond simply an increased number of edges becomes viable.

That is, the method resulting in the higher count is more promising

for future network health.
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Figure 1: An example uncertain bipartite networkwith a red
and blue partition. Each edge has a corresponding existen-
tial probability, with the threshold value 𝑡 = 0.6.

1.1 Our Contributions
In this paper we formally define the Uncertain Butterfly Counting

Problem, in which we wish to determine the number of butterflies

that exist on an uncertain bipartite network with existential prob-

ability greater than or equal to a threshold value 𝑡 . Figure 1 is an

example uncertain bipartite network, where the threshold is set

to be 𝑡 = 0.6. The butterflies 𝐵(𝐴, 𝐵, 𝐸, 𝐹 ) and 𝐵(𝐵,𝐶, 𝐹,𝐺) both
have existential probabilities (the product of the existential proba-

bility of their four edges) greater than 𝑡 (0.72 and 0.63 respectively)

whilst the butterfly 𝐵(𝐶, 𝐷,𝐺,𝐻 ) does not (with probability 0.2).

Therefore, the uncertain butterfly count on this network is 2.

Existing butterfly counting techniques on deterministic graphs

cannot realistically be transferred directly to this new setting as they

treat each edge (and wedge) with the same importance, something

that is evidently not true in the uncertain setting. Additionally, in

these methods it is not possible to add in a trivial step in which each

butterfly is evaluated as either satisfying or failing the threshold

as the deterministic method aggregates a batch of butterflies at the

same time. It is possible to enumerate all possible worlds, count

the number of certain butterflies in each world and aggregate the

result but such an approach is extremely unrealistic in practice.

In this paper we propose two exact solutions to the Uncertain

Butterfly Counting Problem. Firstly, we create a baseline solution

𝑈𝐵𝐹𝐶 which adapts the current best solution for the Butterfly

Counting problem on deterministic graphs and modifies it as neces-

sary such that it is satisfactory to our problem. Then, we propose an

improved solution 𝐼𝑈𝐵𝐹𝐶 which reduces the time complexity (from

𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢)2, 𝑑𝑒𝑔(𝑣)2}) to 𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢)
log(𝑑𝑒𝑔(𝑢)), 𝑑𝑒𝑔(𝑣) log(𝑑𝑒𝑔(𝑣))})) without any change in the mem-

ory complexity by improving the manner in which wedges are

found and combined to find uncertain butterflies. We additionally

add heuristics, such as early edge discarding, to further improve

the performance of the algorithm.

We also propose two estimation via sampling solutions which

trade accuracy in return for significantly improved running times.

Minor sacrifices in accuracy in return for major reductions in cost

can be highly attractive when a quick examination is needed for

recommendation strategies as an example.

Our first algorithm, Uncertain Butterfly Sampling (𝑈𝐵𝑆), samples

vertices/edges without replacement determining the number of

uncertain butterflies each vertex/edge is a part of. By extrapolating

and averaging the solution we can derive an estimation of the

count with high confidence as the sample size increases. Our second

algorithm, Proportion Estimation Sampling (𝑃𝐸𝑆), estimates the

proportion of butterflies with existential probability ≥ 𝑡 and then

uses a faster deterministic sampling technique to quickly estimate

the number of uncertain butterflies.

Finally we demonstrate the effectiveness of our exact solutions

and the efficiency/effectiveness trade-off shown by our sampling

approaches by performing experiments on multiple uncertain bi-

partite networks.

Our contributions are summarised as following:

• We formally define the Uncertain Butterfly and Uncertain

Butterfly Counting Problem

• We propose a non-trivial baseline and introduce an improved

algorithm which reduces the time complexity of the solution

at no increased memory costs

• Wepropose two fast alternate approximation strategies using

sampling

• We validate our algorithms via extensive experiments

To outline the remaining paper, we first examine related works to

this topic (Section 2) before formally defining the notation and the

problem itself (Section 3). We then introduce a non-trivial baseline

exact solution (Section 4) and follow up with key improvements

which reduce the time complexity of the solution in combination

with powerful heuristics (Section 5). We also propose two sampling

solutions which provide approximate results (Section 6). Following

this we examine the efficiency and effectiveness of our algorithms

(Section 7) before concluding the paper (Section 8).

2 RELATEDWORKS
Butterflies: The butterfly (sometimes referred to as a rectangle or

4-cycle) [22, 28, 29] is perhaps the most fundamental structure that

exists on bipartite networks [39]. Similar to the role that triangles

play on unipartite graphs [2, 5, 32], butterflies are utilised in many

areas to either quickly gauge information on the network [22] or

help to find more complex structures such as the biclique [15, 19],

𝑘/𝑘∗-Partite Clique [20, 38] and bitruss [30, 40].

There has been a recent boom in the area of butterfly counting. In

particular, a baseline deterministic solution for counting the number

of butterflies on a regular bipartite network [28] with multiple

improvements to that algorithm [22] resulting in the current best

solution being a vertex priority approach [29] has been studied.

In addition, the butterfly counting problem has been tackled in

different settings with parallel [28] and cache-aware solutions [29]

considered and estimation solutions [22] proposed. Furthermore,

butterfly counting in a streaming setting has also been a recent

area of research [23]. To the best of our knowledge, we are the first

to consider the butterfly (and subsequently the butterfly counting

problem) on an uncertain setting and thus we require different

solutions to deal with the increased requirements presented by the

new problem.

Bipartite Networks: Bipartite networks in particular have re-

cently seen a surge in research popularity due to the real-world

applicability of the network type in modelling information [7, 11,

18, 24, 27]. The problems being studied that closely relate to our

work is those that regard in the counting, enumeration or search

of a particular subgraph structure in the network.
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Table 1: Key Notation and Definitions

Notation Definition
𝐺 = (𝑉 = 𝐿 ∪ 𝑅, 𝐸, 𝑃) Uncertain bipartite graph

𝑃𝑟 (.) Existential probability

W Set of all possible worlds

𝑊𝑖 Possible world 𝑖

𝑊𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 ,𝑊1 Backbone world/graph

𝑡 Threshold value

𝐵 Deterministic butterfly

𝐵𝑡 Uncertain butterfly

∠ Deterministic wedge

∠𝑡 Uncertain wedge

𝐶 Deterministic butterfly count

𝐶𝑡 Uncertain butterfly count

𝑝 (𝑢) Vertex priority of node 𝑢

𝛼 𝐶𝑡/𝐶
𝛼 An estimated value of 𝛼

Such structures include the well-studied biclique [15, 19, 36] in

which each node in one partition of the structure must be connected

to every node from the other partition. The butterfly is effectively

a (2 x 2) biclique (that is a biclique with two nodes in each parti-

tion). Another structure is the (𝛼, 𝛽)-core [14] which models the

popular 𝑘-core on the bipartite setting. Perhaps the most important

structure to us is the bitruss, a structure in which each edge in the

bitruss is a part of 𝑘 butterflies in the subgraph [30, 40]. Due to

the requirement of being able to count butterflies, advancements

in butterfly counting can often directly result in improvements to

bitruss algorithms.

Uncertain Networks: Uncertain (probabilistic) graphs as a sub-

genre have received attention from various problems, often by

taking traditional graph problems and transferring them into the

setting (e.g. k-Nearest Neighbour [21], Core Decomposition [6],

Shortest Path [33]). On uncertain graphs, a popular choice is to use

Possible World Semantics [1], which breaks the system down into

separate instances of the graphwith non-zero existential probability.

As many problems theoretically require the analysis of all possible

worlds, which is expensive, research has been conducted to narrow

the scope by finding a good representative possible world [17] or by

sampling a set of possible worlds [8, 10, 12] to estimate the result.

There does exist one notable work on motif counting (including

butterflies) on uncertain (unipartite) networks (LINC) [16] however

their problem formulation differs from ours (they wish to output

the probability mass function of counts across all possible worlds)

as ours finds all butterfly instances whose existential probability is

above a specific threshold.

3 PROBLEM DEFINITION
We give the formal definitions of our problem as well as the key

notation used in our paper. The key notation used in this paper can

be found in Table 1.

3.1 Uncertain Bipartite Networks
Definition 3.1. Uncertain Bipartite Network: An uncertain bipar-

tite network 𝐺 = (𝑉 = 𝐿 ∪ 𝑅, 𝐸, 𝑃) is a network in which any node

𝑢 ∈ 𝐿 may only be connected to node 𝑣 given that 𝑣 ∈ 𝑅 or vice

versa. 𝑃 : 𝐸 → (0, 1] maps an edge 𝑒𝑢,𝑣 ∈ 𝐸 to a non-zero existential

probability 𝑃𝑟 (𝑒𝑢,𝑣) ∈ (0, 1].

On a given uncertain bipartite network 𝐺 , a possible world

𝑊𝑖 = (𝑉 , 𝐸𝑊𝑖
) is a single possible network outcome after fairly

and randomly determining if each edge 𝑒 ∈ 𝐸 exists in𝑊𝑖 based on

𝑃𝑟 (𝑒) [1]. Like existing work on uncertain networks [1, 9, 16, 41],

we assume the existential probability of each edge is independent

of each other. Each possible world𝑊𝑖 on 𝐺 exists with existential

probability:

𝑃𝑟 (𝑊𝑖 ) =
∏

𝑒∈𝐸𝑊𝑖

𝑃𝑟 (𝑒) ·
∏

𝑒∈𝐸\𝐸𝑊𝑖

(1 − 𝑃𝑟 (𝑒)) (1)

For any𝐺 , there exists 2
|𝐸 |

possible worlds. The set of all possible

worlds is defined asW = {𝑊1, . . . ,𝑊2
|𝐸 | } and via the Law of Total

Probability 𝑃𝑟 (W) = ∑𝑛
𝑖=1 𝑃𝑟 (𝑊𝑖 ) = 1. Additionally, we call the

possible world in which all edges are selected to exist the backbone

graph of 𝐺 , denoted by𝑊𝑏𝑎𝑐𝑘𝑏𝑜𝑛𝑒 . This may also be thought of

as the deterministic variant of the network. Furthermore it can be

trivially proven that the total sum of existential probabilities for all

worlds a single edge 𝑒 exists in is equal to 𝑃𝑟 (𝑒). That is, given a

randomly sampled world𝑊𝑖 the probability 𝑒 ∈ 𝐸 (𝑊𝑖 ) is equal to
𝑃𝑟 (𝑒).

3.2 Butterfly Counting
In certain bipartite networks, butterflies are considered as one of

the key fundamental building block graphlet structures due to the

cohesive relationships they represent [22, 28, 29]. On certain graphs,

we may define the butterfly as following:

Definition 3.2. Butterfly:Abutterfly𝐵 consisting of nodes𝑢1, 𝑢2 ∈
𝐿 and 𝑣1, 𝑣2 ∈ 𝑅 exists if and only if there exists edges from 𝑢1 to

𝑣1 and 𝑣2 as well from 𝑢2 to 𝑣1 and 𝑣2. We may use the notation

𝐵(𝑢1, 𝑢2, 𝑣1, 𝑣2) to denote a butterfly containing nodes 𝑢1, 𝑢2, 𝑣1, 𝑣2.

We extend the idea of the butterfly to the uncertain bipartite

network setting.

Definition 3.3. Uncertain Butterfly: Given a randomly sampled

possible world𝑊𝑖 ∈ W and a probability threshold 𝑡 (0 ≤ 𝑡 ≤ 1), an
Uncertain Butterfly 𝐵𝑡 is a butterfly whose existential probability

is greater than or equal to 𝑡 (i.e. 𝑃𝑟 (𝐵𝑡 ) ≥ 1).

The existential probability of a butterfly can be calculated by

𝑃𝑟 (𝐵𝑡 ) =
∏

𝑒∈𝐸𝐵𝑡 𝑃𝑟 (𝑒).

Definition 3.4. Butterfly Count and Uncertain Butterfly Count: The
(deterministic) butterfly count 𝐶 on a certain bipartite graph is the

number of unique butterflies on the graph. Similarly, the uncertain

butterfly count𝐶𝑡 on an uncertain bipartite graph is the number of

unique uncertain butterflies on that network.

Figure 2 illustrates three uncertain butterflies and their respective

existential probabilities. For 𝑡 = 0.4, 𝐵1 and 𝐵2 would be counted

towards the uncertain butterfly count whilst 𝐵3would not resulting

in a final uncertain butterfly count of 2.
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Figure 2: Three uncertain butterflies and their correspond-
ing existential probabilities

Additionally, we need to introduce the idea of the Wedge and

Uncertain Wedge.

Definition 3.5. Wedge and Uncertain Wedge: A Wedge ∠(𝑢, 𝑣,𝑤)
is a two-hop path consisting of two different endpoint vertices 𝑢,𝑤

from the same partition of the uncertain bipartite network and

a middle vertex 𝑣 from the other partition. An Uncertain Wedge

∠𝑡 is a Wedge that, on a randomly sampled world𝑊𝑖 , exists with

𝑃𝑟 (∠𝑡 ) ≥ 𝑡 ∈ [0, 1].

Notably, any butterfly consists of four wedges which means but-

terfly counting techniques often use wedges as one of the building

blocks in finding butterflies. If a butterfly 𝐵 contains a wedge ∠, we
use the notation ∠ ∈ 𝐵 (and the same for ∠𝑡 ∈ 𝐵𝑡 ).

We note that there can be an alternate definition of the uncer-

tain butterfly in which each edge in the butterfly must hold an

existential probability greater than some threshold. However, in

this scenario we may simply prune all edges which fail to meet

this threshold and then perform any certain/deterministic butter-

fly counting technique. Additionally, there could be an alternate

problem formulation, in a similar vein to [16], in which instead of a

threshold value, the mean and variance of the butterfly count over

all possible worlds are derived. Due to the removal of the threshold,

the problem would become #P-Hard and as a consequence this

hampers the usability of any exact algorithm in a practical setting.

3.3 Problem Statement
We formally define the Uncertain Butterfly Counting Problem as

following:

Definition 3.6. Uncertain Butterfly Counting Problem: For an undi-

rected, unweighted bipartite graph 𝐺 = (𝑉 = 𝐿 ∪ 𝑅, 𝐸, 𝑃) and a

threshold value 𝑡 , the Uncertain Butterfly Counting Problem is to

determine the count 𝐶𝑡 of all uncertain butterflies 𝐵𝑡 on𝐺 (where

𝑃𝑟 (𝐵𝑡 ) ≥ 𝑡 ).

4 EXACT ALGORITHMS - BASELINE
In this section we propose a baseline for exact solutions to the

Uncertain Butterfly Counting Problem

Given no baseline exists specifically for the Uncertain Butterfly

Counting Problem, the trivial baseline would be to permute all

combinations of four edges and check if it is an Uncertain Butterfly

satisfying our threshold, taking 𝑂 (𝐸4) time. However, given prior

work exists on the deterministic variation of our problem, we will

instead utilise a baseline that finds butterflies on the backbone

graph and examines if each individually satisfies the existential

probability threshold environment.

Our baseline is a modified version of the Vertex Priority Butterfly

Counting (𝐵𝐹𝐶-𝑉𝑃 ) algorithm provided by Wang et al [29] for

the deterministic problem, with the critical difference being how

wedges are handled in order to find uncertain butterflies. We call

our baseline𝑈𝐵𝐹𝐶 . A core idea in this algorithm is that of vertex

priority.

Definition 4.1. Vertex Priority [29]: The vertex priority of any

node 𝑢 ∈ 𝑉 in comparison to any other node 𝑣 ∈ 𝑉 is defined as

𝑝 (𝑢) > 𝑝 (𝑣) if:
(1) 𝑑𝑒𝑔(𝑢) > 𝑑𝑒𝑔(𝑣)
(2) 𝑖𝑑 (𝑢) > 𝑖𝑑 (𝑣) if 𝑑𝑒𝑔(𝑢) = 𝑑𝑒𝑔(𝑣)

where 𝑖𝑑 (𝑢) is the vertex ID of 𝑢.

Vertex priority is effectively a method that allows for a structured

ranking of all nodes in𝐺 to avoid the same butterfly being counted

multiple times. Additionally, as shown in [29], the usage of a vertex

priority approach reduces the running cost of the algorithm.

Algorithm 1:𝑈𝐵𝐹𝐶

Input :𝐺 : Input Uncertain Bipartite Network

𝑡 : Uncertainty Threshold

Output :𝐶𝑡 : Uncertain Butterfly Count

1 𝑊1 ← Extract Backbone Graph;

2 Sort 𝑁 (𝑢) of each 𝑢 ∈ 𝑉𝑊1
by vertex priority;

3 𝐶𝑡 ← 0;

4 foreach 𝑢 ∈ 𝑉𝑊1
do

5 Create 𝐻 (𝑤) for each Node𝑤 in same partition as 𝑢;

6 foreach 𝑣 ∈ 𝑁 (𝑢) : 𝑝 (𝑣) < 𝑝 (𝑢) do
7 foreach𝑤 ∈ 𝑁 (𝑣) : 𝑝 (𝑤) < 𝑝 (𝑢) do
8 𝐻 (𝑤).𝑎𝑝𝑝𝑒𝑛𝑑 (𝑣);
9 foreach Node𝑤 : |𝐻 (𝑤) | > 1 do

10 foreach Nodes 𝑣1, 𝑣2 ∈ 𝐻 (𝑤), 𝑣1 ≠ 𝑣2 do
11 if 𝑃𝑟 (𝐵(𝑢,𝑤, 𝑣1, 𝑣2)) > 𝑡 then
12 𝐶𝑡 ← 𝐶𝑡 + 1;

Algorithm 1 details the baseline solution. We use the backbone

graph𝑊1 (Line 1) in order to extract vertices and edges to find

butterflies before checking whether they satisfy the uncertainty

threshold. For each node, we sort its neighbours by (increasing)

vertex priority (Line 2).

Then, for each node 𝑢 ∈ 𝑉𝑊1
we perform the baseline uncertain

counting algorithm. Firstly, we initialise a Hashmap 𝐻 which will

be used to store all wedges containing 𝑢. For each node𝑤 , which is

a two-hop neighbour of 𝑢 (thus forming at least one wedge with 𝑢),

we initialise a list in 𝐻 which will refer to as 𝐻 (𝑤) (Line 5). Then,
for each nodes 𝑣 ∈ 𝑁 (𝑢) : 𝑝 (𝑣) < 𝑝 (𝑢), we find its neighbours

𝑁 (𝑣). For each node 𝑤 ∈ 𝑁 (𝑣) : 𝑝 (𝑤) < 𝑝 (𝑢), we add 𝑣 to 𝐻 (𝑤)
since there exists a wedge ∠(𝑢, 𝑣,𝑤) (Lines 6-8). The vertex priority
constraints ensure no redundancy in our algorithm, that is nowedge

will be ever added to any list twice.

One important difference between the existing deterministic

algorithm and our uncertain baseline is that the deterministic

method does not need to store previously discovered wedges as

it can quickly determine the number of butterflies at this point

via the operation

(𝑛
2

)
where 𝑛 is the number of wedges with the

same start and end vertices, whereas in the uncertain version each
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combination of wedges needs to be examined to check if the re-

sulting butterfly satisfies the probability requirement. As a result

the deterministic method does not maintain a list but instead a

simple number representing the total number of wedges for each

𝑢,𝑤 combination. However, given that we need to consider exis-

tential probabilities and need to thus know the wedges we keep,

our method instead maintains the list 𝐻 (𝑤). For each combina-

tion of two nodes 𝑣1, 𝑣2 ∈ 𝐻 (𝑤), 𝑣1 ≠ 𝑣2, we check if the butterfly

𝐵(𝑢,𝑤, 𝑣1, 𝑣2) is an uncertain butterfly 𝐵𝑡 . If it is, we increase 𝐶𝑡
(Lines 9-12). This management and combining of wedges sets our

baseline algorithm for the uncertain butterfly counting problem

apart from the deterministic variant.

4.1 Algorithm Complexity
We now examine both the time and space complexity of the baseline

algorithm.

Theorem 4.2. The time complexity of𝑈𝐵𝐹𝐶 is
𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢)2, 𝑑𝑒𝑔(𝑣)2}).

Proof. Wang et. Al proved in their work that the determinis-

tic algorithm runs in 𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)}) time [29].

Notably, their proof examines the cost of wedge discovery (Algo-

rithm 1 Lines 5-10) which makes up the dominating part of their

algorithms time complexity.

In the deterministic variant, the remaining cost of the algorithm

is done in 𝑂 (1) time which is different from our uncertain version.

In our uncertain version we further have to determine the exis-

tential probabilities of the subsequent butterflies given the wedges

(Algorithm 1 Lines 9-12).

Due to the Vertex Priority approach, we know that the start

vertex of any wedge we discover must have a degree of size greater

than or equal to the degree of the mid and end vertex. As a result,

the total number of wedges that can be uncovered by our algorithm

containing a start vertex 𝑢 and an end vertex𝑤 is 𝑑𝑒𝑔(𝑤), which
means the total combination of two wedges containing 𝑢 and𝑤 is

𝑑𝑒𝑔(𝑤)2. As a result, the cost of determining all wedge combina-

tions of node 𝑢 and𝑤 is 𝑂 (𝑑𝑒𝑔(𝑤)2). Thus, the time complexity of

𝑈𝐵𝐹𝐶 is 𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢)2, 𝑑𝑒𝑔(𝑣)2}. □

Theorem 4.3. The memory complexity of𝑈𝐵𝐹𝐶 is
𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢), 𝑑𝑒𝑔(𝑣)}.

Proof. As noted in the proof for Theorem 4.2, the maximum

number of wedges discovered for a start vertex 𝑢 is 𝑑𝑒𝑔(𝑢). □

5 EXACT ALGORITHMS - IMPROVEMENTS
In this section, we examinemethods of improving the exact solution,

ultimately reducing the running time as well as proposing heuristic

techniques to speed up the algorithm in practice.

5.1 Early Edge/Wedge Discarding
One notable area of wasted operations is when examining or con-

sidering wedges that are unlikely to, or simply cannot, be a part of

any uncertain butterfly for a given 𝑡 .

Lemma 1. If there exists an edge 𝑒 with existential probability
𝑃𝑟 (𝑒) < 𝑡 , 𝑒 cannot be a part of any uncertain butterfly.

Proof. Given that all probabilities must be ≤ 1, this can be

proven trivially. □

Lemma 1 means that we can simply ignore any edge that exists

with probability < 𝑡 . Additionally, this same logic can be applied

to any graphlet structure (specifically a wedge) with existential

probability < 𝑡 that can be found within a butterfly. Therefore, a

simple pruning heuristic we adopt is that if at any point an edge or

wedge has an existential probability lower than the threshold, we

ignore it for future considerations.

In the case where no edge 𝑒 ∈ 𝐸 exists with 𝑃𝑟 (𝑒) = 1, we may

adjust the pruning threshold to be higher (𝑡/max𝑒∈𝐸 {𝑃𝑟 (𝑒)}) to
account for the higher required existential probabilities to compen-

sate.

5.2 Improved List Management
Another area of improvement over the baseline is in how the list 𝑙

containing found wedges is handled, noting that currently finding

all uncertain butterflies from 𝑙 is done in𝑂 ( |𝑙 |2) time, which in turn

is a major increase to the runtime of the baseline algorithm acting

as one bottleneck.

Lemma 2. To determine if an uncertain butterfly exists, containing
nodes (𝑢1, 𝑢2, 𝑣1, 𝑣2), the only information we need is the existential
probability of any two unique wedges sharing the same end points
(either 𝑢1 and 𝑢2 or 𝑣1 and 𝑣2) and 𝑡 .

Proof. Firstly recall that two wedges ∠1, ∠2 with the same end-

points that are found in the same butterfly 𝐵 contain all the edges in

the butterfly, two from each wedge totalling four unique edges. This

is a fundamental truth which serves as the foundation of nearly all

butterfly counting techniques [22, 28].

The same extends to the existential probabilities of wedges and

butterflies. That is, 𝑃𝑟 (𝐵) = 𝑃𝑟 (∠1) ∗ 𝑃𝑟 (∠2). With this information

and 𝑡 , we can easily check if an uncertain butterfly exists from these

nodes. Given that we are not enumerating, we don’t actually need

to store any nodes given that the shared end points are assured and

wedge probabilities are stored instead. □

Lemma 2 allows us to modify the content of our lists and our

wedge combination algorithm. Firstly, instead of 𝑙 storing themiddle

node of the wedgewe instead have it store the existential probability

of the wedge. Secondly, we keep the list sorted upon the insertion

of a new wedges information.

Before we fully explain the new Uncertain Butterfly Counting

algorithm for the sorted list 𝑙 , we need to note some properties of

the list.

Lemma 3. If two wedges ∠1, ∠2 : 𝑃𝑟 (∠1) > 𝑃𝑟 (∠2) form an Un-
certain Butterfly, then all wedges before ∠1 in 𝑙 forms an Uncertain
Butterfly with all wedges before ∠2 in 𝑙 .

Lemma 4. If two wedges ∠1, ∠2 : 𝑃𝑟 (∠1) > 𝑃𝑟 (∠2) do not form
an Uncertain Butterfly, then all wedges after ∠1 in 𝑙 do not form an
Uncertain Butterfly with all wedges after ∠2 in 𝑙 .

Proof. As 𝑙 is a sorted list by existential probability, both Lemma

3 and 4 can trivially be shown with basic probability theory. □
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Both Lemma 3 and 4 allow us to quickly validate the existence

of Uncertain Butterflies using 𝑙 without having to actually calculate

their existential probabilities. These ideas form the foundation of

our improved algorithm for extracting an Uncertain Butterfly count

from 𝑙 .

Algorithm 2: ImprovedListCount

Input :𝑙 : Sorted List of Existential Probabilities

𝑡 : Uncertainty Threshold

Output :𝐶𝑡 : Uncertain Butterfly Count

1 𝐶𝑡 ← 0, 𝑖 ← 0, 𝑗 ← 1, 𝐹 ← 𝑓 𝑎𝑙𝑠𝑒;

2 while 𝑗 < |𝑙 | do
3 if 𝑙 [𝑖] ∗ 𝑙 [ 𝑗] < 𝑡 then
4 𝐹 ← 𝑡𝑟𝑢𝑒;

5 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡/𝑙 [ 𝑗];
6 𝑖 ← 𝐺𝑇𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑙, 0, 𝑖 − 1, 𝑡𝑎𝑟𝑔𝑒𝑡);
7 if 𝑖 < 0 then
8 𝐵𝑟𝑒𝑎𝑘 ;

9 𝐶𝑡 ← 𝐶𝑡 + 𝑖 + 1;
10 𝑗 ← 𝑗 + 1;
11 if 𝐹 = 𝑓 𝑎𝑙𝑠𝑒 then
12 𝑖 ← 𝑖 + 1;

Algorithm 2 details our improved technique for determining the

number of Uncertain Butterflies from the wedges in 𝑙 . Given that

𝑙 is a sorted list of existential probabilities, we initialise 𝑖 = 0 and

𝑗 = 1 to be two indexes on the list. The algorithm continues until

𝑗 == |𝑙 | or another break condition is reached.

If 𝑙 [𝑖] ∗ 𝑙 [ 𝑗] ≥ 𝑡 this implies that the current wedges being rep-

resented form an uncertain butterfly, which means determining

values for 𝑖 and 𝑗 are the key in reducing the runtime of the al-

gorithm. As the algorithm begins, as long as 𝑙 [𝑖] ∗ 𝑙 [ 𝑗] ≥ 𝑡 we

increment the count by 𝑖 + 1 (due to Lemma 3) and then increment

by 𝑖 and 𝑗 by 1 (Lines 9-12).

However, after the first time 𝑙 [𝑖] ∗ 𝑙 [ 𝑗] < 𝑡 , we no longer need

to continue to increment 𝑖 due to Lemma 4. This is reflected in

our algorithm by a boolean flag 𝐹 (Lines 1, 4, 11-12). When 𝑖 and

𝑗 fail to form an uncertain butterfly, we need to find the value of

𝑖 which can form an uncertain butterfly algorithm with 𝑗 done

by finding a minimum uncertain probability value 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡/𝑙 [ 𝑗]
(Line 5). We then give 𝑖 the largest index (smallest existential proba-

bility) in which 𝑙 [𝑖] > 𝑡𝑎𝑟𝑔𝑒𝑡 , done via a variation of Binary Search

called𝐺𝑇𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝑙𝑖𝑠𝑡, 𝑙𝑒 𝑓 𝑡𝐼𝑛𝑑𝑒𝑥, 𝑟𝑖𝑔ℎ𝑡𝐼𝑛𝑑𝑒𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡) on the

existential probabilities in index 0 to 𝑖 − 1 (Line 6). If no such value

of 𝑖 exists, we terminate our algorithm as no further wedges can be

found (Line 7-8).

Theorem 5.1. Algorithm 2 produces the correct uncertain butterfly
count.

Proof. Our algorithm can be thought of as iterating through

all values of 0 < 𝑗 < |𝑙 | and finding the largest value of 𝑖 < 𝑗

which forms an uncertain butterfly. Then, using Lemma 3, we know

that there exist 𝑖 + 1 uncertain butterflies in 𝑙 which satisfy the

𝑖 < 𝑗 condition for 𝑗 . This is done for all 𝑗 which will result in the

exact uncertain butterfly count with no redundancy. Furthermore,

whenever 𝑙 [𝑖] ∗ 𝑙 [ 𝑗] < 𝑡 , we know that no future value of 𝑖 can

be greater than the current value of 𝑖 as 𝑗 increases due to Lemma

4. □

Theorem 5.2. Algorithm 2 takes 𝑂 (( |𝑙 |) + log( |𝑙 |!/
⌈
|𝑙 |
2

⌉
!)) time.

Proof. We iterate 𝑗 from 1 to |𝑙 | − 1 assuming no early termina-

tion which accounts for the𝑂 ( |𝑙 |) portion of the time complexity. If

we were to perform𝐺𝑇𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ |𝑙 | − 1 times on the entire list

𝑙 then our time complexity would be 𝑂 (( |𝑙 | − 1) log( |𝑙 |). However,
since the segment of |𝑙 | in which 𝐺𝑇𝐵𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ (𝐺𝑇𝐵𝑆) must

operate is capped the first time the function is called and future

calls search on an even smaller space due to Lemma 4.

If𝐺𝑇𝐵𝑆 is called when 𝑗 = |𝑙 | − 1, then the total cost of all𝐺𝑇𝐵𝑆

calls is 𝑂 (log( |𝑙 | − 1)). If 𝐺𝑇𝐵𝑆 is called when 𝑗 = |𝑙 | − 2, the total
possible cost of all𝐺𝑇𝐵𝑆 must be𝑂 (log( |𝑙 | − 2) + log( |𝑙 | − 3)). The
most number of 𝐺𝑇𝐵𝑆 calls is capped at when 𝑗 = ⌈ |𝑙 |

2
⌉ with a

total possible cost of𝑂 (log(⌈ |𝑙 |
2
⌉) + log(⌈ |𝑙 |

2
⌉ − 1) + · · · + log(1)) =

𝑂 (log(⌈ |𝑙 |
2
⌉!)). The total possible 𝐺𝑇𝐵𝑆 cost of any smaller value

of 𝑗 must be smaller than this value.

Given this, the total possible cost of 𝐺𝑇𝐵𝑆 for list 𝑙 is

𝑂 (max

{ 𝑗=
⌈
|𝑙 |
2

⌉
,..., |𝑙 |−1}

{
log(((∏ |𝑙 |−𝑗

𝑘=1
( 𝑗 − 𝑘))!)

}
) <

𝑂 (log( |𝑙 |!/
⌈
|𝑙 |
2

⌉
!)) time. □

Despite Theorem 5.2 appearing expensive due to the factorial,

it is still distinctly smaller than 𝑂 (( |𝑙 | − 1) log( |𝑙 |) = 𝑂 (( |𝑙 | − 1) +
log( |𝑙 | ( |𝑙 |−1) )) time which in turn is obviously smaller than the

baseline of 𝑂 ( |𝑙 |2). In most realistic scenarios with the early ter-

mination clause and the size of the𝐺𝑇𝐵𝑆 search space potentially

reducing by much more than a single item, the realistic cost of

Algorithm 2 can be significantly smaller than the worst case that is

Theorem 5.2. All operations in Algorithm 2 can be done in 𝑂 ( |𝑙 |)
space, which can be verified trivially.

5.3 Improved Algorithm
Adopting all mentioned improvements, we now present our Im-

proved Uncertain Butterfly Counting Algorithm (𝐼𝑈𝐵𝐹𝐶).

Algorithm 3: 𝐼𝑈𝐵𝐹𝐶

Input :𝐺 : Input Uncertain Bipartite Network

𝑡 : Uncertainty Threshold

Output :𝐶𝑡 : Uncertain Butterfly Count

1 𝑊1 ← Extract Backbone Graph;

2 𝑅𝑒𝑚𝑜𝑣𝑒𝑈𝑛𝑢𝑠𝑎𝑏𝑙𝑒𝐸𝑑𝑔𝑒𝑠 (𝑊1, 𝑡);
3 Sort 𝑁 (𝑢) of each 𝑢 ∈ 𝑉𝑊1

by vertex priority;

4 𝐶𝑡 ← 0;

5 foreach 𝑢 ∈ 𝑉𝑊1
do

6 Create 𝐻 (𝑤) for each Node𝑤 in same partition as 𝑢;

7 foreach 𝑣 ∈ 𝑁 (𝑢) : 𝑝 (𝑣) < 𝑝 (𝑢) do
8 foreach𝑤 ∈ 𝑁 (𝑣) : 𝑝 (𝑤) < 𝑝 (𝑢) do
9 if 𝑃𝑟 (∠(𝑢, 𝑣,𝑤)) ≥ 𝑡 then

10 𝐻 (𝑤).𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑠𝑒𝑟𝑡 (𝑃𝑟 (∠(𝑢, 𝑣,𝑤)));
11 foreach𝑤 : |𝐻 (𝑤) | > 1 do
12 𝐶𝑡 ← 𝐶𝑡 + 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐿𝑖𝑠𝑡𝐶𝑜𝑢𝑛𝑡 (𝐻 (𝑤), 𝑡);
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Algorithm 3 details our improved algorithm, adopting the previ-

ously mentioned improvements. The first deviation from the base-

line solution is an additional step after extracting the backbone

graph where all edges with 𝑃𝑟 (𝑒) < 𝑡 are removed from𝑊1 for the

purposes of wedge (and butterfly) discovery as per Lemma 1 (Line

2).

We sort by vertex priority (Line 3) and then continue using a

similar wedge discovery approach as the baseline using the new

priority (Lines 5-8). One notable difference from the baseline is the

wedge lists store the wedge existential probability value instead

of the actual nodes. When a wedge ∠(𝑢, 𝑣,𝑤) is discovered it is

inserted (if 𝑃𝑟 (∠(𝑢, 𝑣,𝑤)) ≥ 𝑡 (Lemma 1)) such that the list at𝐻 (𝑤)
remains sorted (Lines 9-10).

Finally, our alternate list management strategy allows us to utilise

the improved list count strategy detailed in Algorithm 2 (Lines 11-

12).

We now examine the changes to space and time complexity of

the algorithm compared to our baseline.

Theorem 5.3. The time complexity of 𝐼𝑈𝐵𝐹𝐶 is
𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢) log(𝑑𝑒𝑔(𝑢)), 𝑑𝑒𝑔(𝑣) log(𝑑𝑒𝑔(𝑣))}).

Proof. Once all wedge existential probabilities in 𝑙 have been

inserted, the cost of having kept it sorted is 𝑂 ( |𝑙 | log( |𝑙 |)). As any
wedge list for start vertex 𝑢 and end vertex 𝑣 is capped at size

𝑑𝑒𝑔(𝑣) ≤ 𝑑𝑒𝑔(𝑢), as shown in the proof for Theorem 4.2, the cost

of keeping a wedge list sorted for 𝑢 and 𝑣 is 𝑂 (𝑑𝑒𝑔(𝑣) log(𝑑𝑒𝑔(𝑣)).
As shown in Theorem 5.2, the time complexity of our new wedge

list algorithm is less than𝑂 (𝑑𝑒𝑔(𝑣) log(𝑑𝑒𝑔(𝑣)) time for𝑢 and 𝑣 . □

The memory complexity of 𝐼𝑈𝐵𝐹𝐶 is unchanged from 𝑈𝐵𝐹𝐶

(Theorem 4.3).

5.4 Sorting by Vertex Priority vs. Existential
Probability

Vertex Priority is an important tool in the deterministic variation

of the problem as it ensures, in total, each edge is only examined

one time for each wedge it is a part of. This not only minimises

the cost of the algorithm but also reduces redundancy. However,

this idea was formed under the assumption that all butterflies (and

wedges) are required in the final solution which is evidently not

true in our uncertain variant.

Currently, in our improved solution, nodes are sorted by increas-

ing vertex priority (Algorithm 3 Line 3) and a check is made for

each wedge to determine if it satisfies the existential probability

constraints (Algorithm 3 Lines 7-10). Of course, since the nodes

are sorted by priority, we can terminate the iteration through the

neighbour list after the first node which fails the priority check

in Lines 7 and 8, which serves as an important part of both the

baseline and our improved solution in terms of suppressing the cost

in this step.

However, we may consider an approach which comes at this

problem from an alternate viewpoint. Instead of sorting by (increas-

ing) vertex priority we instead sort by (decreasing) edge existential

probability. We can leverage the fact if edges 𝑒1 and 𝑒2 do not form

a wedge with existential probability ≥ 𝑡 , no edges with existential

probability smaller than 𝑃𝑟 (𝑒2) forms a satisfactory wedge with

𝑒1 and vice versa using the same logic as Lemma 4. The same is
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Figure 3: A graph and the order in which the Vertex Prior-
ity (𝑉𝑃) approach and Edge Probability (𝐸𝑃) approach checks
nodes. A green node is one in which the vertex priority con-
strain is satisfied and a red node is one in which it is not.
A circle around the node in the order list indicates that the
node also satisfied the alternate requirement constraint.

true for wedge combinations with higher existential probability

(following Lemma 3). We will refer to the method in which nodes

are sorted by vertex priority as 𝑉𝑃 and the method in which nodes

are sorted by edge probability as 𝐸𝑃 .

Algorithm 4: 𝑆𝑜𝑟𝑡𝐵𝑦𝐸𝑑𝑔𝑒𝑃𝑟𝑜𝑏

1 foreach 𝑢 ∈ 𝑉𝑊1
do

2 foreach 𝑣 ∈ 𝑁 (𝑢) do
3 foreach𝑤 ∈ 𝑁 (𝑣) do
4 if 𝑃𝑟 (∠(𝑢, 𝑣,𝑤)) ≥ 𝑡 then
5 if 𝑝 (𝑣) < 𝑝 (𝑢) && 𝑝 (𝑤) < 𝑝 (𝑢) then
6 𝐻 (𝑤) .𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑠𝑒𝑟𝑡 (𝑃𝑟 (∠(𝑢, 𝑣,𝑤)));
7 else
8 𝑏𝑟𝑒𝑎𝑘 ;

Algorithm 4 shows the modified method for wedge discovery

assuming sorted 𝐸𝑃 . For an edge 𝑒 (𝑢, 𝑣), we examine nodes 𝑤 ∈
𝑁 (𝑣) and determine if 𝑃𝑟 (𝑒 (𝑢, 𝑣)) ∗ 𝑃𝑟 (𝑒 (𝑣,𝑤)) ≥ 𝑡 (Line 4). If this

probability constrain satisfied, we add the wedge if the priority

constraint is also satisfied (Line 5-6). If the probability constraint is

not satisfied, we know that there are no more satisfactory wedges

containing 𝑒 (𝑢, 𝑣) and we move on in our search (Line 7-8).

Figure 3 illustrates the order in which the two techniques ac-

cesses nodes from the given graph. In the graph, a green node

indicates the vertex satisfies the priority constraint whilst a red

node indicates that the vertex does not satisfy the priority con-

straint. In the case of𝑉𝑃 , the nodes are sorted in alphabetical order.

Using 𝑉𝑃 , nodes A, B and C are checked in that order with only

node A satisfying the existential probability check. Since node D

fails the vertex priority requirement, the wedge discovery process

is terminated. When using 𝐸𝑃 on the other hand, nodes E and A are

checked in that order with only node A satisfying the vertex prior-

ity check. Since node C results in a wedge with lower existential

probability than 𝑡 , the wedge discovery process is terminated.

Both 𝑉𝑃 and 𝐸𝑃 ensures that each wedge is only added to a list

once during the entire algorithm so the final result will remain the
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same. What the methods do control is the number of times an edge

reaches the alternate check (wedge probability for 𝑉𝑃 and vertex

priority for 𝐸𝑃 ) step. In 𝑉𝑃 , each edge reaches the alternate check

step once for each wedge it is a part of. Alternatively, in 𝐸𝑃 each

edge reaches the alternate check step twice for each wedge with

existential probability ≥ 𝑡 and zero times otherwise.

Theorem 5.4. The time complexity of 𝐸𝑃 is
𝑂 (∑𝑒 (𝑢,𝑣) ∈𝐸 min{𝑑𝑒𝑔(𝑢) log(𝑑𝑒𝑔(𝑢)), 𝑑𝑒𝑔(𝑣) log(𝑑𝑒𝑔(𝑣))}
+ Γ(𝑒)) where Γ(𝑒) is the number of wedges ∠ containing 𝑒 where
𝑃𝑟 (∠) ≥ 𝑡 .

Proof. The numbers of wedges that will be passed into a list as

well as the size of each list is unchanged from Theorem 5.3. The only

change is that for each edge 𝑒 ∈ 𝐸 it will be checked an additional

time for each uncertain wedge it is contained in. □

The memory complexity of 𝐸𝑃 is unchanged compared to 𝑉𝑃 .

Of course the better method to use between𝑉𝑃 and 𝐸𝑃 is highly

graph and threshold value dependant. The break-point in which

𝐸𝑃 is the superior method is when less than 50% of the wedges in

𝑊1 post pruning have an existential probability ≥ 𝑡 . Furthermore,

the larger the percentage favours in one direction indicates the

corresponding method is more efficient by that margin. When the

percentage skews towards 100%𝑉𝑃 is significantly better and when

it skews towards 0% 𝐸𝑃 is significantly better. Furthermore, it is

possible for 𝐸𝑃 to become more expensive than even the baseline if

there is minimal or no pruning and a large percentage of the wedges

have an existential probability ≥ 𝑡 due to the nature of reaching

the check step twice as opposed to once for each wedges on𝐺 than

an edge is apart of in the baseline. Thus, it is recommended for low

𝑡 values relative to the edge probability distributions to select 𝑉𝑃 .

It should be noted that whilst both𝑈𝐵𝐹𝐶 and 𝐼𝑈𝐵𝐹𝐶 are both

designed for the Uncertain Butterfly Counting problem, with mini-

mal variations to the algorithm both methods can be easily adapted

into enumeration algorithms at no increased memory cost, and in

the case of𝑈𝐵𝐹𝐶 no added time complexity.

6 SAMPLING ALGORITHMS
Whilst exact algorithms are indeed important for determining the

exact uncertain butterfly count on a network, approximate solutions

may also provide significant insights at a fraction of the time cost.

In this section, we introduce two local sampling techniques aimed

at solving the Uncertain Butterfly Counting problem. The first

technique Uncertain Butterfly Sampling (𝑈𝐵𝑆) operates by local

sampling the number of uncertain butterflies each vertex is a part

of. The second technique Proportion Estimation Sampling (𝑃𝐸𝑆)

uses a local sampling approach which determines the number of

certain butterflies and estimates the proportion of butterflies on 𝐺

which are uncertain.

6.1 Uncertain Butterfly Sampling (UBS)
For the first approximate solution we utilise a local sampling ap-

proach to determine the number of uncertain butterflies containing

a sampled vertex or edge. We then propagate that number outwards

accordingly to the entire network and as the number of samples

grows the average value converges to the true result. This approach

is adapted from a local sampling deterministic solution proposed

by Sanei-Mehri [22] with the added task of needing to monitor and

check existential probabilities to ensure each uncertain butterfly is

valid.

Algorithm 5: 𝑣𝑈𝐵𝐿𝑆

Input :𝐺 : Input Uncertain Bipartite Network

𝑡 : Uncertainty Threshold

𝑢: Selected Vertex

Output :𝐶𝑒
𝑡 (𝑢): Extrapolated Uncertain Butterfly Count of

𝑢

1 𝐶𝑒
𝑡 (𝑢) = 0;

2 Create 𝐻 (𝑤) for each Node𝑤 in same partition as 𝑢;

3 foreach 𝑣 ∈ 𝑁 (𝑢) do
4 foreach𝑤 ∈ 𝑁 (𝑣) do
5 if 𝑃𝑟 (∠(𝑢, 𝑣,𝑤)) ≥ 𝑡 then
6 𝐻 (𝑤).𝑠𝑜𝑟𝑡𝑒𝑑𝐼𝑛𝑠𝑒𝑟𝑡 (𝑃𝑟 (∠(𝑢, 𝑣,𝑤)));
7 foreach Node𝑤 : |𝐻 (𝑤) | > 1 do
8 𝐶𝑡 (𝑢) ← 𝐶𝑡 (𝑢) + 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝐿𝑖𝑠𝑡𝐶𝑜𝑢𝑛𝑡 (𝐻 (𝑤), 𝑡);
9 𝐶𝑒

𝑡 (𝑢) ←
𝐶𝑡 (𝑢) |𝑉 |

4
;

Algorithm 5 illustrates a local sampling algorithm for the number

of uncertain butterflies containing a selected vertex 𝑢. Our algo-

rithm follows the deterministic variation [22] with the key changing

being the usage of our ImprovedListCount technique introduced

by us in Algorithm 3 (Lines 1-8), in the same way our baseline

exact algorithm 𝑈𝐵𝐹𝐶 was modified from the exact deterministic

algorithm.

Theorem 6.1. The time complexity of Algorithm 5 is
𝑂 (𝑑2 log(𝑑) where 𝑑 = max𝑣∈𝑉 {𝑑𝑒𝑔(𝑣)}

Proof. As the idea of vertex priority does not apply in local

search, the maximum number of wedges for a shared start and end

point is the maximum degree of any vertex (𝑑 = max𝑣∈𝑉 {𝑑𝑒𝑔(𝑣)})
on 𝐺 . As proven in Theorem 5.3, the Improved List Management

technique takes 𝑂 (𝑑 log(𝑑)) time thus our final time complexity is

𝑂 (𝑑2 log(𝑑)) as any start node can only have ≤ 𝑑 end nodes. □

Theorem 6.2. The memory complexity of Algorithm 5 is 𝑂 (𝑑2)
where 𝑑 = max𝑣∈𝑉 {𝑑𝑒𝑔(𝑣)}

Proof. The total number of wedges that any given vertex in𝐺

can be a part of is 𝑑2. □

With the known number of uncertain butterflies containing

𝑢, 𝐶𝑡 (𝑢), we extrapolate that number to the entire network 𝐶𝑒
𝑡 (𝑢)

(Line 9). We can do this as in there deterministic sampling approach,

it is shown thatE[𝐶𝑒 (𝑢)] = 𝐶 and𝑉𝑎𝑟 (𝐶𝑒 (𝑢)) ≤ |𝑉 |
4
(𝐶+𝑝𝑣) where

𝐶 is the certain butterfly count and 𝑝𝑣 is the number of pairs of

butterflies in 𝐺 that share at least a single node [22]. Extending on

their proof and excluding butterflies which do not satisfy 𝑡 , we can

trivially show that E[𝐶𝑒
𝑡 (𝑢)] = 𝐶𝑡 (i.e. the estimator is unbiased)

and 𝑉𝑎𝑟 (𝐶𝑒
𝑡 (𝑢)) ≤

|𝑉 |
4
(𝐶𝑡 + 𝑝𝑣𝑡 ) where 𝑝𝑣𝑡 is the number of pairs

of uncertain butterflies in 𝐺 that share at least a single node. We

thus implement this in our algorithm.
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Algorithm 6: 𝑣𝑈𝐵𝑆

Input :𝐺 : Input Uncertain Bipartite Network

𝑡 : Uncertainty Threshold

𝑡𝑖𝑚𝑒 : Time Allocation

Output :𝐶𝑡 : Estimated Uncertain Butterfly Count

1 𝐶𝑡 ← 0;

2 𝑖 ← 0;

3 while 𝑡𝑖𝑚𝑒 has not elapsed do
4 𝑢 ← Unsampled Vertex from 𝐺 ;

5 𝐶𝑒
𝑡 (𝑢) ← 𝑣𝑈𝐵𝐿𝑆 (𝐺, 𝑡,𝑢);

6 𝐶𝑡 ←
𝑖𝐶𝑡+𝐶𝑒

𝑡 (𝑢)
𝑖+1 ;

7 𝑖 ← 𝑖 + 1;

Algorithm 6 details our vertex-centric Uncertain Butterfly Sam-

pling (𝑣𝑈𝐵𝑆) method. For a graph 𝐺 , threshold 𝑡 and a time alloca-

tion/budget, our method estimates the uncertain butterfly count𝐶𝑡 .

We sample a node 𝑢 without replacement and determine 𝐶𝑒
𝑡 (𝑢) us-

ing 𝑣𝑈𝐵𝐿𝑆 (Algorithm 5) (Line 4-5). We then adjust 𝐶𝑡 accordingly

(Lines 6-7). We continue this process until the time allocation is

depleted. Furthermore, as extended from the deterministic version,

if the algorithm is run for 𝑂

(
|𝑉 |
𝐶𝑡
(1 + 𝑝𝑣

𝑡

𝐶𝑡
)
)
iterations, it provides

an (𝜀, 𝛿)-estimator [22].

Whilst we have only detailed the vertex-centric algorithm, a

similar algorithm which is edge-centric is also implemented for the

purposes of experimentation. This method holds the same proper-

ties and utilises the same algorithm as the vertex-centric approach

except with references of vertices replaced with edges.

6.2 Proportion Estimation Sampling (PES)
Our second sampling approach utilises a different problem formu-

lation as its basis. One notable difference between local certain

and uncertain butterfly counting techniques for a selected vertex

or edge is that the certain solution is theoretically less expensive

in both time and space requirements. As we are interested in a

sampling, and thus approximate, solution perhaps an approach

in which we leverage the speed of certain sampling and correctly

adapt those values to our problem is of interest.

To accomplish this, let us think of another way of formulating

the Uncertain Butterfly Counting problem. Suppose we have the

deterministic butterfly count on the Backbone Graph 𝐶 . Then the

uncertain butterfly count can be formulated as 𝐶𝑡 = 𝛼𝐶 where 𝛼 is

the proportion of butterflies with existential probability ≥ 𝑡 .

Using this logic, if we can find 𝛼 we can use deterministic local

sampling approaches to quickly estimate 𝐶 and thus estimate 𝐶𝑡 .

Essentially, we can think of each butterfly as a Bernoulli trial 𝐵𝑒𝑟 (𝛼)
in regards to succeeding if the existential probability satisfies the

threshold 𝑡 .

Of course determining 𝛼 exactly is extremely costly and unfea-

sible as it requires the discovery of all butterflies, which in itself

already contains the solution to our problem. Instead, if we can

find a way to estimate 𝛼 we can utilise the deterministic sampling

solution to quickly approach the uncertain butterfly count. Our

estimation method relies on the following observation.

Lemma 5. The PDF of Butterfly Existential Probabilities (𝐵-𝑃𝐷𝐹 )
can be thought of as a “random” sample of the PDF of the product
of existential probabilities of in 𝐺 for all permutations of four edges
(𝐸4-𝑃𝐷𝐹 ).

Proof. Of course, since a butterfly is a structure which contains

exactly four edges, the set of all butterflies is located inside the set

of all permutations of four non-identical edges. Noting that edge

probabilities are independent, we can think of 𝐵-𝑃𝐷𝐹 as a sample

of size𝐶 from 𝐸4-𝑃𝐷𝐹 . Notably, 𝐸4-𝑃𝐹𝐷 can be ‘known’ in that all

relevant information can be computed in 𝑂 (𝐸4) time. That is, no

assumptions need to be made about the model distribution. □

Given Lemma 5, using the Margin of Error (in percentage points)

statistic for a set of Bernoulli trials [4] we can determine how much

the proportion from 𝐵-𝑃𝐷𝐹 can deviate from the proportion from

𝐸4 − 𝑃𝐷𝐹 with a set confidence (i.e. a confidence interval). The

Margin of Error (𝑀) equation is as follows:

𝑀 = 𝑧

√
𝛼 (1 − 𝛼)

𝑛
(2)

where 𝑧 is the z-table confidence interval value (e.g. 2.576 for 99%

confidence) and𝑛 is the size of the sample set (i.e.𝐶). This essentially

means the estimated value of 𝛼 is within the range (𝛼 −𝑀,𝛼 +𝑀)
99% (or other chosen confidence) of the time for a sample of size 𝑛.

With this we can calculate, with a confidence interval, the like-

lihood of a sample set of size 𝐶 being with a certain Margin of

Error using the proportion 𝛼 of the 𝐸4− 𝑃𝐷𝐹 . Of course we cannot
know 𝐶 with certainty but we can estimate it 𝐶 via a deterministic

sampling technique. A quirk of the Margin of Error equation is

that small changes in the sample size provides negligible results.

It is also known that the as the sample size increases, the relative

change in the reduction𝑀 decreases.

We determine 𝐶 using a vertex-centric deterministic butterfly

count and extrapolation sampling technique (𝑣𝐵𝐹𝐶 , Algorithm 7)

devised by Sanei et. al[22]. In this counting technique, the hashmap

hold only a single integer for each end-node and once wedges are

discovered the butterfly counting step can be done in 𝑂 (1) time. In

the same work, it is also shown that E[𝐶𝑒 (𝑢)] = 𝐶 (i.e. unbiased),

𝑉𝑎𝑟 (𝑒𝐶 (𝑢)) ≤ 𝑉
4
(𝐶 + 𝑝𝑣) where 𝑝𝑣 is the pairs of butterflies that

share one vertex.

Algorithm 7: 𝑣𝐵𝐹𝐶
Input :𝐺 : Input Uncertain Bipartite Network

𝑢: Selected Vertex

Output :𝐶𝑒 (𝑢): Extrapolated Deterministic Butterfly

Count of 𝑢

1 𝐶 (𝑢) ← 0;

2 Create 𝐻 (𝑤) ← 0 for each Node𝑤 in same partition as 𝑢;

3 foreach 𝑣 ∈ 𝑁 (𝑢) do
4 foreach𝑤 ∈ 𝑁 (𝑣) do
5 𝐻 (𝑤) ← 𝐻 (𝑤) + 1;
6 foreach Node𝑤 : |𝐻 (𝑤) | > 1 do
7 𝐶 (𝑢) ← 𝐶 (𝑢) +

(𝐻 (𝑤)
2

)
;

8 𝐶𝑒 (𝑢) ← 𝐶 (𝑢) |𝑉 |
4

;
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From this, we can estimate the uncertain butterfly count as𝐶𝑡 =

𝛼𝐶 .

Algorithm 8: 𝑣𝑃𝐸𝑆
Input :𝐺 : Input Uncertain Bipartite Network

𝑡 : Uncertainty Threshold

𝑡𝑖𝑚𝑒 : Time Allocation

Output :𝐶𝑡 : Estimated Uncertain Butterfly Count

1 𝛼 ← 𝐸4𝑃𝑟𝑜𝑝𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝐺, 𝑡);
2 𝐶𝑡 ,𝐶 ← 0;

3 𝑖 ← 0;

4 while 𝑡𝑖𝑚𝑒 has not elapsed do
5 𝑢 ← Unsampled Vertex from 𝐺 ;

6 𝐶𝑒 (𝑢) ← 𝑣𝐵𝐹𝐶 (𝐺,𝑢);
7 𝐶 ← 𝑖𝐶̃+𝐶𝑒 (𝑈 )

𝑖+1 ;

8 𝑖 ← 𝑖 + 1;
9 𝐶𝑡 ← 𝛼𝐶;

Our vertex-centric Proportion Estimation Sampling (𝑣𝑃𝐸𝑆) algo-

rithm is detailed in Algorithm 8. We first calculate 𝛼 by determining

the proportion of the 𝐸4-𝑃𝐷𝐹 with existential probability greater

than 𝑡 in 𝑂 ( |𝐸 |4) time (Line 1). Then, for was long as our time

allocation allows, we sample vertices without replacement and es-

timate the deterministic butterfly count 𝐶 (Lines 4-8). Finally, we

output our estimated uncertain butterfly count 𝐶𝑡 = 𝛼𝐶 (Line 9).

We can then calculate the Margin of Error 𝛼 using 𝛼 = 𝛼, 𝑛 = 𝐶 ,

with a given confidence value (Equation 2) then extrapolating this

to confidence interval to𝐶𝑡 . Following other Monte-Carlo sampling

approaches, this method is unbiased.

Once again, a similar edge-centric algorithm exists with minimal

adjustment to Algorithms 7 and 8 whose detail we have opted to

exclude in interest of space.

6.2.1 Further Proportion Estimation Sampling.
Of course, whilst gains have been made using 𝑣𝑃𝐸𝑆 compared

to 𝑣𝑈𝐵𝑆 in regards to the cost of each sample allowing for 𝑣𝑃𝐸𝑆

to sample more nodes in a shorter timeframe, the trade-off of a

𝑂 ( |𝐸 |4) proportion estimation step is too much in reality without

a dedicated system which stores the 𝐸4-𝑃𝐷𝐹 . In that regard, if we

can further estimate 𝛼 we can adopt the cheaper sampling process

with less associated overhead.

We instead estimate the proportion by sampling from the 𝐸4-

𝑃𝐷𝐹 , which results in a trade-off of an increased margin of error

for a set confidence in return for a potentially significant decrease

in the cost of the process.

Our new 𝛼 estimation is simple. For a given time budget, we

randomly select four edges and determine if the product of their

existential probabilities is less ≥ 𝑡 . After the time budget depletes,

having conducted𝑚 samples, we have estimated 𝛼 . We can also

determine the Margin of Error 𝑀𝑆 of this sampling process using

Equation 2. Aside from this modification to Line 2, Algorithm 8

proceeds unchanged. Alternatively, given user-defined 𝑀𝑆 and 𝑧

values, it is possible to rearrange Equation 2 to determine the num-

ber of samples 𝑛. Each sample trivially takes 𝑂 (1) time and space.

It should be noted this estimator is unbiased, where the proof is

available in our implementation repository.

With the 𝑀𝑆 and also the Margin of Error estimated from the

𝐵-𝑃𝐷𝐹 as described previously (now denoted as𝑀𝐵 ). The Margin

of Error of our final result can be calculated as𝑀 =
√
𝑀𝑆

2 +𝑀𝐵
2

assuming the same confidence value was selected for both𝑀𝑆 and

𝑀𝐵 . It should be noted that via the Law of Large Numbers the

number of samples required is not linear to the number of edges in

the graph.

7 EXPERIMENTATION
In this section we examine the efficiency and effectiveness of our

proposed algorithms on a diverse range of graphs with different

edge probability distributions and threshold values. When appro-

priate, we will preface an algorithm with 𝑣 if it is vertex-centric or

𝑒 if it is edge-centric (e.g. 𝑣𝑈𝐵𝑆 is vertex-centric𝑈𝐵𝑆).

7.1 Experiment Settings
Table 2 holds the details of all datasets used in this section. In the

Edge Prob. column, if the value is a distribution this means we as-

signed a synthetic weight from that distribution to each edge based

on the popular Normal and Uniform distributions. The parameters

for normally distributed edge probabilities vary between datasets

to add variety to each individual network. Alternatively, for values

that say “Collaborative Filtering” we utilised existing ratings on

the network to estimate the likelihood a user would to buy another

item using a Collaborative Filtering Item Recommender [24]. For

these networks (where |𝐸 | and AvgDeg are denoted with *), we

append the number of edges whose probability was estimated to

the end for each experiment. For example, if for the CD dataset

our experiment utilised a million edges we would label the dataset

‘CD1M’. All raw datasets can be found from the Konect project
1

Our code
2
is written in standard C++11 and compiled using g++.

Our experimental environment is an Intel Xeon Gold 6240R CPU

@ 2.40GHz with 1007GB of memory.

7.2 Exact Algorithms Efficiency
In this section we examine the efficiency of both variants of 𝐼𝑈𝐵𝐹𝐶

(𝐼𝑈𝐵𝐹𝐶-𝑉𝑃 and 𝐼𝑈𝐵𝐹𝐶-𝐸𝑃 in Section 5) and compare their run-

times with our proposed baseline𝑈𝐵𝐹𝐶 (Section 4). Since they are

exact solutions the effectiveness need not be compared. If an algo-

rithm did not conclude after 100 hours of being run, we terminated

it. All instances of this will be noted as required.

The runtime of each algorithm for a set of datasets is visible in

Figure 4 (where 𝑡 = 0.8). Clearly both our improved algorithms are

faster than the baseline (𝑈𝐵𝐹𝐶 for LJ and OK both did not finish

after 100 hours) due to our improvements. It is also notable that

average degree has a much greater impact on runtime than the

number of nodes or edges (as highlighted most notably with the

comparison between FL and DBLP). Our exact algorithms struggle

on the larger datasets, indicating the need for our exact methods.

Figure 5 illustrates that as 𝑡 approaches 1, the runtime of both

𝐼𝑈𝐵𝐹𝐶-𝑉𝑃 and 𝐼𝑈𝐵𝐹𝐶-𝐸𝑃 both become significantly smaller than

the baseline. Notably the runtime of 𝐼𝑈𝐵𝐹𝐶-𝐸𝑃 starts higher but

1
http://konect.cc/

2
Available at https://github.com/AlexanderTZhou/IUBFC
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Table 2: Dataset Information (* indicates variable number)

Dataset Edge Prob. |𝐿 | |𝑅 | |𝐸 | AvgDeg

YouTube (YT) Uniform 94,238 30,087 293,360 4.719

Teams (TM) Normal
˜
(0.8, 0.2) 901,166 34,461 1,366,466 2.921

IMDB Normal
˜
(0.6, 0.3) 303,617 896,302 3,782,463 6.229

Flickr (FL) Uniform 395,979 103,631 8,545,307 34.208

DBLP Normal
˜
(0.7, 0.1) 1,953,085 5,624,219 12,282,059 3.241

LiveJournal (LJ) Normal
˜
(0.5, 0.2) 3,201,203 7,489,073 112,307,385 21.011

Orkut (OR) Normal
˜
(0.5, 0.25) 2,783,196 8,730,857 327,037,487 56.807

CiaoDVD (CD) Collaborative Filtering 21,019 71,633 * *

BookCrossing (BC) Collaborative Filtering 77,802 185,955 * *

Figure 4: Runtime Comparison of exact algorithms on mul-
tiple datasets (𝑡 = 0.8).

Figure 5: The change in runtime as the threshold value 𝑡

changes.

drops in a march sharper manner and ultimately becomes faster

than 𝐼𝑈𝐵𝐹𝐶-𝑉𝑃 , as the number of uncertain wedges rapidly dimin-

ishes reducing the added costs on 𝐼𝑈𝐵𝐹𝐶-𝐸𝑃 that do not exist on

𝐼𝑈𝐵𝐹𝐶-𝑉𝑃 whilst maintaining the benefits (see Section 5.4).

Figure 6 examines the change in runtime as the number of edges

(and subsequently average degree) changes on our Collaborative

Filtering datasets. It is evident that both 𝐼𝑈𝐵𝐹𝐶-𝑉𝑃 and 𝐼𝑈𝐵𝐹𝐶-𝐸𝑃

are both much more scalable than the the baseline.

7.3 Sampling Algorithms Effectiveness
We examine the effectiveness of our two sampling algorithms 𝑈𝐵𝑆

(Section 6.1) and 𝑃𝐸𝑆 (Section 6.2) using the Further Proportion

Figure 6: The change in runtime against the number of edges

Figure 7: The average percentage error after 100 samples as
𝑡 increases. Corresponding 𝛼 values are also included.

Estimation method (Section 6.2.1). For all 𝑃𝐸𝑆 experiments, we set

the desired Margin of Error𝑀𝑆 for Further Proportion Estimation

Sampling at 0.01 and z value at 2.56.

Figure 7 details the change in percentage error as the value of 𝑡

increases (and subsequently the proportion 𝛼 decreases). It can be

seen that all variants of𝑈𝐵𝑆 are highly effective, whilst variants of

𝑃𝐸𝑆 at lower 𝑡 values are also efficient.There is no notable difference

in effectiveness between vertex and edge-centric algorithms.

One noticeable effect is that as 𝑡 increases and 𝛼 grows smaller,

the error of 𝑃𝐸𝑆 ultimately increases. This is due to the Further

Proportion Estimation technique having a set Margin of Error (𝑀𝑆 )

on 𝛼 , which in our experimentation was set to 0.01. This of course

means that our sampled proportion is allowed to deviate from the

true proportion by up to that much, which is not an issue for most

𝛼 values. However, for small 𝛼 values this can allow for a large

relative difference in acceptable 𝛼 values. For example if the true
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Figure 8: Average running time of a single sample for a
dataset with the input threshold in square brackets.

Figure 9: The change in runtime per sample as the threshold
value 𝑡 changes.

𝛼 value is 0.02, an 𝛼 value between 0.01 and 0.03 is within our

allowed range despite being able to create up to a 50% change in

the estimated uncertain butterfly count. As a result 𝑈𝐵𝑆 should be

favoured when the 𝛼 value becomes extremely small. It should be

noted that a very high 𝛼 value will not effect the Error % of the

final count in the same way. Both algorithms are similarly effective

for larger 𝛼 values.

7.4 Sampling Algorithms Efficiency
We now investigate the efficiency of our sampling algorithm and

consider situations in which one may be preferred over the other.

The average running cost of single sample of each algorithm

on a variety of different datasets and 𝑡 values is visible on Figure

8. In general, the cost of a sample for all algorithms scales with

the average degree of the network and not the total number of

vertices or edges which means it is highly scalable for most real-

world systems. It can also be observed that for each dataset, either

𝑈𝐵𝑆 or 𝑃𝐸𝑆 is faster for both the vertex-centric approach and the

edge-centric approach (we explore this below). Additionally, in

general, the edge-centric algorithm is similar or faster than the

vertex-centric approach. This is unsurprising as sampling an edge

is equivalent to sampling two vertices as opposed to one. However,

as shown in ‘OR[.5]’, there do exist datasets in which it is possible

that the edge-centric approach can be slower. This largely occurs

when a majority of edges are in a dense subgraph with a relatively

smaller proportion of vertices.

Figure 9 illustrates the effect that an increasing 𝑡 value (by in-

crements of 0.1) has on the runtime of our sampling algorithms.

Both 𝑃𝐸𝑆 algorithms have a stable runtime for all 𝑡 values which

is unsurprising given how both methods look at all butterflies re-

gardless of existential probabilities. However, as 𝑡 → 1,𝑈𝐵𝑆 (both

vertex and edge variations) becomes the faster option due to our

improved list management method as well as not adding in any use-

less edges into any lists. This indicates a strong preference towards

𝑈𝐵𝑆 algorithms for high 𝑡 values.

From our sampling experiments, we can infer that on larger 𝑡

values 𝑈𝐵𝑆 should be favoured due to its improved list manage-

ment and edge/wedge discarding techniques resulting in a faster

runtime than 𝑃𝐸𝑆 . On the other hand, 𝑃𝐸𝑆 may be favoured for

lower 𝑡 values (with an appropriate subsequent 𝛼 value) as the

runtime is stable for all values of 𝑡 and can be cheaper than𝑈𝐵𝑆 as

deterministic butterfly counting is less expensive than uncertain

butterfly counting even after factoring in the cost associated with

Further Proportion Estimation. Additionally, for lower 𝑡 values 𝑃𝐸𝑆

does not encounter the problems associated with a very small 𝛼

value which means the subsequent estimated Uncertain Butterfly

Count is similar in accuracy to𝑈𝐵𝑆 .

8 CONCLUSION
In this paper we have examined the Uncertain Butterfly Counting

Problem on uncertain bipartite networks. We formally defined both

the uncertain butterfly and uncertain wedge as well as proposed a

non-trivial baseline for the exact solution based on the state-of-the-

art solution for the deterministic variant of the problem. We then

proposed two improved algorithms which can drastically reduce

the runtime of the algorithm. Additionally, when an efficiency for

effectiveness trade-off is desired we propose two alternate sam-

pling solutions which quickly converge near the true value. Our

experiments examine all our algorithms and we also detail in which

scenarios one of the methods may be preferred to the other.

As this is the first work on butterfly counting on uncertain bi-

partite networks there exists multiple directions to take this and

similar problems, such as parallel or cache-friendly approaches.

A robust heuristic which can decide which exact or approximate

method to use after quickly examining a graph may be useful to

avoid additional human decisionmaking. Additionally, the core idea

behind Proportion Estimation may be of interest in other uncertain

problems with cheaper certain variations.
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