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Today’s users of data processing systems come from different do- o Eﬁ : ‘ ‘ ‘ X ‘
mains, have different levels of expertise, and prefer different pro- % -
gramming languages. As a result, analytical workload requirements g E
shifted from relational to polyglot queries involving user-defined =g

functions (UDFs). Although some data processing systems support
polyglot queries, they often embed third-party language runtimes.
This embedding induces a high performance overhead, as it causes
additional data materialization between execution engines.

In this paper, we present Babelfish, a novel data processing engine
designed for polyglot queries. Babelfish introduces an intermediate
representation that unifies queries from different implementation
languages. This enables new, holistic optimizations across operator
and language boundaries, e.g., operator fusion and workload spe-
cialization. As a result, Babelfish avoids data transfers and enables
efficient utilization of hardware resources. Our evaluation shows
that Babelfish outperforms state-of-the-art data processing systems
by up to one order of magnitude and reaches the performance of
handwritten code. With Babelfish, we bridge the performance gap
between relational and multi-language UDFs and lay the foundation
for the efficient execution of future polyglot workloads.
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1 INTRODUCTION

Over the last decades, the complexity of data processing workflows
drastically increased. Today, interdisciplinary teams of data scien-
tists, web-developers, and application developers build complex
data processing pipelines that combine different programming lan-
guages [5]. As a result, analytical workloads have evolved from
relational queries towards complex data processing pipelines in-
volving polyglot queries. Polyglot queries extend the relational al-
gebra and combine relational operations with user-defined func-
tions (UDFs). UDFs enable users to express arbitrary business logic
in their preferred programming language [83], to leverage 3rd-party
libraries [108], and to increase modularity and testability [8]. Today,
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many data processing engines support such polyglot queries [15,
101, 122], e.g., in the form of Java, Python, or JavaScript UDFs.
Although polyglot queries provide a large degree of freedom,
their advantages come with a high performance penalty compared
to traditional relational queries. This overhead is present across tra-
ditional database systems [19, 54, 67, 92] and big data processing
frameworks [1, 72, 96]. The performance penalty originates from the
underlying impedance mismatch between the declarative paradigm
of SQL and the imperative paradigm of UDFs [98]. As aresult, the pro-
cessinglogicis scattered between the native execution engine and the
language runtime, adding a level of indirection and preventing query
optimization. Consequently, database experts often recommend
avoiding the use of polyglot UDFs whenever possible [34, 56, 72].
To cope with the inefficiency of polyglot queries, three differ-
ent approaches have been proposed. First, multiple approaches
study the translation of UDFs to semantically equivalent SQL state-
ments [22, 28, 29, 32, 52, 53, 59, 98, 106]. However, these transforma-
tions are not always possible or lead to deep and complex operator
trees, which are hard to execute efficiently [98]. Second, domain-
specific languages for UDF-based data processing have been pro-
posed [2, 6, 45, 55, 70]. These languages enable advanced optimiza-
tions to improve the performance of UDF-based queries but lack the
generality of languages like Python. Third, the direct embedding
of UDFs in native query execution engines was extensively stud-
ied[17, 25, 26, 58,97,101]. These approaches are applied in many sys-
tems but have two critical limitations. First, they only target the em-
bedding of specific language runtimes. Thus, they require additional
work to support multiple UDF languages. Second, they mainly focus
on reducing the invocation overhead of the language runtime. Thus,
they still suffer from data conversion or UDF execution overhead.
In Figure 1, we compare the overhead of polyglot queries across
two open-source (MonetDB, Postgres) and two commercial (DBX,
DBY) relational database systems, two big data engines (Spark, Flink),
and a hand-written implementation based on Typer [63]. As a work-
load, we extend TPC-H Query 6 by a Python UDF similar to Ra-
machandra et al. [98]. For each system, we present the execution
time with and without the Python UDF and illustrate the resulting
performance overhead. All systems under test embed polyglot execu-
tion runtimes in their native execution engine, i.e., utilizing the third
approach described above. Thus, they have to copy data between the
native and the polyglot execution engine. Overall, we notice three
aspects. First, we observe a significant overhead of the UDF-based
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query across all systems in contrast to the SQL implementation.
Second, this overhead depends on the concrete execution engine
and varies between 3.6x and 124x. Third, especially on systems with
efficient SQL implementations, e.g., MonetDB and Typer, the Python
UDF eliminates their performance advantage.

In this paper, we propose Babelfish!, a novel polyglot data process-
ing engine. Babelfish unifies the execution of relational operators
and UDFsin a single engine to overcome the performance limitations
of current systems. In particular, Babelfish addresses the impedance
mismatch in polyglot queries in three steps. 1) Babelfish combin-
ing relational operators and UDFs from different programming lan-
guages in one unified intermediate representation, the Babelfish-IR.
2) Babelfish leverages this IR to apply traditional and new query
optimizations to polyglot queries in a holistic and operator agnostic
fashion. 3) Babelfish utilizes query compilation to translate polyglot
queries into highly efficient code fragments. As a result, Babelfish sig-
nificantly reduces the overhead of polyglot queries and outperforms
all systems under test in Figure 1 by at least one order of magnitude.
In summary, our contributions are as follows:

(1) We define and formalize the foundational impedance mis-
match between operators of polyglot queries.
We introduce Babelfish, a novel query execution engine to
improve the efficiency of polyglot queries.
We propose a unified intermediate representation for oper-
ators that is independent of their implementation language.
We introduce holistic optimizations for our query represen-
tation to eliminate the overhead of polyglot operators.
We evaluate Babelfish across different workloads and reach
the performance of hand-written implementations.

The remainder of this paper is structured as follows. First, we
introduce a formal representation of polyglot queries in Section 2.
Then, in Sections 3, we introduce a concept for the efficient execution
of polyglot queries. Based on this concept, we describe Babelfish in
detail in Section 4. In Section 5, we present optimizations to execute
polyglot queries efficiently. Finally, we present our experiments in
Section 6, related work in Section 7, and conclude in Section 8.

@)
(3)
4)
®)

2 POLYGLOT QUERIES

Polyglot queries extend the relational algebra with UDFs and allow
users to express processing logic in their preferred programming lan-
guage. Listing 1 shows an exemplary polyglot query that calculates
the profit per user of a car-sharing business. The query combines
three relational operators with two UDFs in Python and JavaScript.
The distance () UDF embeds a 3rd-party library to calculate the dis-
tance between a start and end location. The tripProfit() defines
the central business logic to compute the profit for a particular trip.
Both UDFs consume input records as native data types of their pro-
gramming languages, perform computations, and produce results.

In the remainder of this section, we use the previous example
to define polyglot queries formally. This enables us to identify and
address the structural limitations of such queries in current systems.
First, Section 2.1 introduces a formal description of the structure of
polyglot queries and individual operators. Based on this, Section 2.2
studies the data exchange between polyglot operators.

!Babelfish: the oddest thing in the Universe. Effectively removes all barriers to
communications between different cultures and races [3].
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-- SQL Query —--

SELECT sum(tripProfit(t))

FROM trips t

WHERE distance(t.start, t.end) > 0.5
GROUP BY t.user_id

# Python distance function
from haversine import haversine, Unit
def distance(start, end):
return haversine(start, end, Unit.KILOMETERS))
// JavaScript profit function
function tripProfit(t){
let price;
if(t.date.before("2020-01-01")){
price = t.duration * 0.5;
} else {
price = distance(t.start, t.end) * 0.3;

Operator
Boundaries

return t.hasVoucher ? price * -1: price;
3}
Listing 1: Polyglot Example Query.

2.1 Modeling Polyglot Queries

Polyglot queries combine relational operators and UDFs in different
programming languages. To derive a formal definition, we extend
the tree-structured query representation of traditional data process-
ing systems. Following Neumann et al. [81], we represent polyglot
queries as trees of operators. A query treeis a directed, acyclic graphs
G = (V,E),|E| = |V| = 1 with one root node vy € V, such that all
v € V\{vg} are reachable from vy. Each vertex of the tree represents a
polyglot operator PO; that exchanges data via an edge with operator
POj. Figure 2 illustrates the query tree of Listing 1 that exchanges
data across five polyglot operators, from the initial scan to the sink.
In general, polyglot operators represent an arbitrary computation
step in a query, i.e., in the form of a relational operation, a UDF,
or a combination of both. For instance, the projection in Figure 2,
embeds the tripProfit() UDF. During query processing, poly-
glot operators consume input data, execute arbitrary computations,
may manipulate intermediate state, and produce output data. Based
on this, we define polyglot operators formally as the following tu-
ple: (InputType t;, OutputType 1o, StateType s, f({i},s) — {o}).
Thus, an operator defines a function f that consumes input i of type
InputType 7, accesses a state s of type StateType 75, and produces
an output o of type OutputType 7,. Each type corresponds to a spe-
cific data type 7 that is defined for the execution environment I' of
a particular operator. In other words, I represents the data types
that an operator potentially can process. For relational operators, T
corresponds to the types of the SQL standard [30] and for UDFs T
is defined by the UDF language, e.g., the JavaScript type system.
Besides the description of the data types of i, s, and o0 we define their
physical representation. For instance, a Numeric data type in Python
has a different physical representation than a Numeric in JavaScript.
To this end, we introduce the native data representation (NDR) of
an operator. The NDRpo, captures the physical representation in
which the operator PO; receives and produces data. The presented
model enables us to define arbitrary polyglot queries consisting of
polyglot operators. In the next section, we extend this model with
arepresentation of data exchange between operators.

Figure 2: Query Tree.

2.2 Modeling Data Exchange

Data exchange among polyglot operators defined in different pro-
gramming languages requires data conversion. In the example query
from Listing 1, the JavaScript-based projectionreceives data froma
Python-based selection operator. Thus, a system has to convert all
input records to JavaScript objects before executing the selection



operator. The necessity of this data conversion is a direct conse-
quence of the impedance mismatch of polyglot queries and a source
of inefficiency in current polyglot systems.

To formalize the data exchange between two operators, we ex-
tend our query model and introduce the common data representa-
tion (CDR). In contrast to the NDR of an individual operator, the
CDR describes the form in which data is represented between two
connected operators PO; and POj41. To exchange data, an operator
has to convert data from its internal NDR to the CDR. Thus, data
exchange between two operators OP; and OP;,; is a transformation
from the NDR of OP; to the NDR of OP;,1 via a CDR. In particular,
this transformation maps each field in the NDR to a corresponding
field in the CDR (NDRop, — CDR— NDRop,,,).

In general, we can identify three data exchange types. In a two-
sided native data exchange the NDR of both operators is equal to
the CDR (NDRpp,; = CDR = NDRp(,+1). Thus, both operators ex-
change data without any transformation. This corresponds to data
exchanges between two built-in operators. In a one-sided native data
exchange, the NDR of only one operator corresponds to the CDR
(NDRpp,=CDR# NDRp(,+1)- Thus, a transformation between its
CDR and the NDR is required. One example is the embedding of Java
UDFs, which requires the deserialization of Java Objects from raw
data [43, 101]. In a foreign data exchange, both operators transform
their NDR to the CDR by serializing and deserializing intermedi-
ate data (NDRpg, # CDR# NDRp(,1). For example, one operator
writes its output data to an intermediate format, e.g., CSV or Arrow,
which another operator consumes. In the following, we utilize this
model to describe the data exchange among polyglot operators.

3 THE CASE FOR POLYGLOT QUERIES

Many data processing systems support polyglot queries, e.g., Mon-
etDB [97], Postgres [94], Exasol [75], Impala [117], or Flink [15].
These systems embed third-party language runtimes into their ex-
ecution engines. Thus, they convert data from their internal data
format to the NDR of the language runtime. Consequently, the data
exchange between the execution engine and the language runtime,
results in substantial performance overhead, as we saw in Figure 1.In
the following, we first identify and analyze the main bottlenecks of
polyglot query execution in current systems, see Section 3.1. Based
on our analysis, we formulate design principles for a polyglot exe-
cution engine that addresses these bottlenecks, see Section 3.2.

3.1 Bottleneck Analysis for Polyglot Queries

In contrast to relational queries, polyglot queries introduce in many
systems a boundary between the execution engine and the polyglot
runtime. This boundary requires the following three additional pro-
cessing steps for executing a polyglot query. 1) The system has to
transform each data record to the NDR of the polyglot operator, in
order to make it accessible by the UDF. 2) The system has to hand
over the execution to the language runtime, whereby data crosses
the operator boundary. 3) The system receives processing results
from the language runtime and has to translate them back into the
system’s NDR. These additional processing steps introduce three
bottlenecks that limit the efficiency of polyglot queries.
Bottleneck 1: Runtime Invocation. The execution of polyglot
operatorsrequires the invocation of alanguage runtime, e.g., the JVM
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Figure 3: Polyglot query representation of Listing 1.

over JNI [74]. Each invocation causes a substantial performance over-
head due to virtual function calls that decrease code locality [101].
Research proposed to reduce the number of runtime invocations by
batching the invocation of polyglot operators [97,101]. However, call-
ing the runtime is still required and decreases code efficiency. Further-
more, it introduces overhead for data exchange and data conversion.

Bottleneck 2: Data Exchange. The boundary between the ex-
ecution engine and the language runtime introduces data exchange.
Before invoking a polyglot operator, the execution engine has to
allocate memory, serialize intermediate results, and deserialize them
in the language runtime. As a result, the engine introduces data
copies that decrease data locality and memory efficiency.

Bottleneck 3: Data Conversion. Polyglot operators define cus-
tom data types, see Section 2. This requires the execution engine to
convert intermediate records from the CDR to the NDR of a particular
operator before invoking it. Thus, the execution engine has to access
each field and convert it to the target data type, which introduces ad-
ditional computations and data copies. Especially, the translation of
complex data types, e.g., Point, Date, or Text, introduces a significant
translation overhead. As a result, code efficiency decreases.

In general, operator boundaries in polyglot queries introduce func-
tion calls, data exchange, and data conversion that decrease code
and memory efficiency. Consequently, the design of a new polyglot
query execution engine should address these bottlenecks.

3.2 Efficient Polyglot Query Execution

Section 3.1 has shown that operator boundaries introduce several
bottlenecks that reduce the efficiency of polyglot queries in current
systems. To address these bottlenecks, we define three design goals,
which mitigate the overhead of operator boundaries. As a running
example, we visualize these design goals in Figure 3 using the query
from Listing 1. In general, we aim for a holistic representation @,
optimization @), and execution @) of polyglot queries.

Design Goal (@): Unified Representation. Polyglot queries com-
bine diverse operators that follow unique semantics for the represen-
tation of data and computations. For instance, the query depicted in
Figure 3 combines relational operations with Python and JavaScript
UDFs. To analyze and optimize polyglot queries across operator
boundaries, it is essential to represent operators in a unified interme-
diate representation (IR). Such IR has to model the unique properties
of diverse polyglot operators and the data exchange among them
in a common representation. Furthermore, the IR should represent
queries across different levels of abstraction to support optimizations,
i.e., from the initial logical query plan down to the final machine code.
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Figure 4: Multi-level Babelfish-IR for example query.

Design Goal 2): Holistic Optimization. The unified represen-
tation of polyglot queries (DG1) enables the holistic optimization
of queries and operators independent of their definition language.
Based on that, optimizations can address the query structure (e.g.,
reordering or operator fusion) as well as the implementation of indi-
vidual operators (e.g., vectorization or predication). In particular, for
polyglot queries, the execution engine can analyze and optimize data
exchange and conversion between individual operators to mitigate
the bottlenecks discussed in Section 3.1. For example, the optimizer
could eliminate all operator boundaries for the query in Figure 3.

Design Goal @): Adaptive Execution. The holistic optimization
of polyglot queries (DG2) enables the mitigation of the operator
boundary overhead. However, polyglot queries often involve dy-
namic languages, e.g., Python and JavaScript, that are hard to analyze
and optimize before execution [10]. Especially, the optimization of
the data exchange between operators requires knowledge of the
operator’s input and output types, which is only available at run-
time. Consequently, for the efficient execution of polyglot queries
involving dynamic programming languages, it is required to support
adaptive optimizations at runtime.

Overall, these design goals are independent a of concrete imple-
mentation and could be incorporated into any engine to improve
the efficiency of polyglot queries. Thus, they represent the first step
towards efficient polyglot query execution.

4 BABELFISH

This section introduces Babelfish?, our novel data processing engine
for polyglot queries. Babelfish applies the design principles from
Section 3 to mitigate the overhead of polyglot query execution.

In particular, Babelfish introduces the Babelfish-IR as a unified
representation of polyglot queries (DG1), performs holistic optimiza-
tions across operators (DG2), and applies just-in-time query com-
pilation (DG3) to generate efficient data-centric [79] machine code.
This enables, Babelfish to support polyglot queries, which combine
relational operators and stateful Java, Python, and JavaScript UDFs,
seamless and efficient in a single engine. To achieve this, Babelfish
applies traditional database optimizations to the problem of polyglot
queries and specializes query processing to specific requirements of
polyglot queries. Furthermore, Babelfish relies on Truffle [120] and
Graal [27] as technological foundation for just-in-time compilation
and provides extensions for the efficient support of polyglot queries.

In the remainder, we present two aspects of Babelfish in detail. In
Section 4.1, we introduce the Babelfish-IR and discuss the transfor-
mation of polyglot queries from the logical query plan to the final

2The source code is available at https://github.com/TU-Berlin-DIMA/babelfish.
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machine code. In Section 4.2, we introduce BFRecords to unify the
data exchange among operators.

4.1 Query Representation

In Section 3.2, we have stated the desideratum of a unified and lan-
guage independent representation of operators (DG1). To achieve
this design goal, Babelfish introduces the Babelfish-IR as a unified
intermediate representation of built-in operators and UDFs. Fig-
ure 4 illustrates the Babelfish-IR for a polyglot query consisting of
aselection,a join, and an aggregation. The Babelfish-IR repre-
sents queries in four levels of abstraction, the Logical Query Plan @
(see Section 4.1.1), the Physical Query Plan @) (see Section 4.1.2), a
set of Physical Operators @) (see Section 4.1.3), and the Instruction
Graph @ (see Section 4.1.4).

4.1.1  Logical Query Plan. The first abstraction level of the Babelfish-
IR @ represents queries as logical query plans (LQPs). LQPs combine
relational operators and UDFs in a unified operator tree, whereby
data flows from the leaves to the root (illustrated with dashed-purple
arrows). For UDFs, Babelfish differentiates between standalone UDFs
that implement complete operators, i.e., they receive and produce
records, and embedded UDFsthat extend relational operators, e.g., the
selection in Figure 4 embeds a Python-based UDF as a predicate. From
the LQP, Babelfish derives physical operators, segments the tree into
pipelines (illustrated with dashed boxes), and creates the PQP.

4.1.2  Physical Query Plan. The second abstraction level @) of the
Babelfish-IR represents the query as a physical query plan (PQP).
The PQP represents the control-flow (illustrated with dashed-red
arrows) between individual physical operators of a query. The query
executor at its root, manages the query execution, and invokes in-
dividual pipelines sequentially. Each pipeline starts with a scan over
the data source, invokes a sequence of operators, and terminates
with an operator that materializes results, i.e., a pipeline breaker like
ajoin build or an aggregation. Thus, Babelfish follows a data-centric
push-based execution model where data is pushed from the root of a
pipeline, e.g., the scan, to the leaf operator, i.e., the pipeline breaker.
To implement the PQP, Babelfish leverages Truffle [120]. Truffle
provides an implementation framework for programming languages,
e.g., GraalJS [86] and Graal-Python [85]. Based on Truffle, Babelfish
represents the PQP, provides implementations of relational opera-
tors, and handles the interaction between operators and UDFs.

4.1.3  Physical Operators. The third abstraction level @) of the Ba-
belfish-IR represents individual physical operators. Each operator
corresponds to a Java implementation using the Truffle framework.



In particular, Babelfish differentiates between one of three operator
kinds, i.e, built-in, UDF-based, or primitive operators.

Built-in Operators: Built-in operators are provided by Babel-
fish and refer to the implementation of specific logical operators,
e.g., JoinBuild for the build-side of a relational join. Similar to
the Volcano Model [48], built-in operators define three functions,
open(), close(), and execute(). Open() and close() initialize
and finalize the operator state. In contrast, execute() defines the
processing logic of the operator and receives input records.

UDF-based Operators: Babelfish represents standalone and em-
bedded UDFs as individual operators in the PQP. In Figure 4, we
sketch a selection operator that embeds a UDF as a predicate. This op-
erator receives a record, evaluates the UDF, and executes the next op-
erator if the predicate matches. For the execution of UDFs, Babelfish
relies on Truffle-based JavaScript [86] and Python [85] implementa-
tions. Each language implementation defines special Truffle nodes to
capture language semantics. To integrate the UDFs with Babelfish’s
type system and semantics, Babelfish wraps the invocation of UDFs
and handles the data transfer between build-in operators and UDFs.

Primitives: The Babelfish-IR introduces primitives to generalize
common data processing operations across different operator im-
plementations. For instance, the physical JoinBuild and GroupBy
operators use the same primitive to access a hash-map. This reduces
complexity and improves the maintainability of operator implemen-
tations, as complex operators assemble multiple primitives.

In general, physical operators unify the implementation of oper-
ators independent of their kind. Based on this, Babelfish constructs
the instruction graph to enable holistic optimizations.

4.1.4  Instruction Graph. The fourth abstraction level @ of the Ba-
belfish-IR represents the implementation of physical operators on
the instruction graph. In contrast to the PQP, the instruction graph
represents individual instructions or specific operations, e.g., mem-
ory accesses. As a foundation, Babelfish relies on the Graal IR [27],
whichis a graph-based IR for generic programs in static single assign-
ment (SSA) form [24]. Thus, each node represents a specific operation,
which may depend on input nodes and produces at most one value.
Between individual operations, the graph captures the control-flow
(red arrows downwards) and the data-flow dependencies (blue ar-
rows upwards). Babelfish extends the Graal IR with custom nodes to
represent primitive operations, e.g., the BFLoad node loads a record
field and takes knowledge about the underlying memory layout into
account, or the StartTransaction node protects the entry point of
a critical section. In Figure 4, we show in @ the instruction graph of
the UDF-based selection operator. It consists of a conditional branch
and two function calls, one to the UDF and one to the next operator.

The instruction graph enables Babelfish to analyze and optimize
individual operator implementations holistically across built-in op-
erators and UDFs. During the optimization phase (DG2), Babelfish
modifies the instruction graph and performs several optimizations,
e.g., operator fusion, loop unrolling, or elimination of intermediate
values (see Section 5). During execution, Babelfish applies just-in-
time compilation (DG3) and translates the instruction graph to exe-
cutable machine code using Graal. In general, the instruction graph
provides fine-grained control over the final machine code, which is
crucial to exploit modern hardware efficiently.
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4.2 Data Representation

In the previous section, we introduced the representation of polyglot
queries on our Babelfish-IR. During execution, operators process
data in their respective NDR. For instance, the Python-based se-
lection in Figure 4 operates on Python objects. To exchange data
between arbitrary operators, Babelfish introduces BFRecords as a
general CDR. BFRecords serves three different goals. 1) BFRecords
unifies data exchange among operators independent of their defi-
nition language. 2) BFRecords supports different data types to en-
ables a wide range of workloads. 3) BFRecords decouples logical
and physical representation of data. In the remainder, we first in-
troduce BFRecords in detail (see Section 4.2.1). Based on this, we
present PolyRecords for the data exchange among built-in opera-
tors and UDFs (see Section 4.2.2). Finally, we describe the mapping
of BFRecords to a physical memory layout (see Section 4.2.3).

4.2.1 BFRecords. Babelfish introduces BFRecords to represent data
exchange between operators. BFRecords are record types [16] that
defineacollection of fields and each field consists ofaname and a type,
i.e., ri:(name;:type;). In the instruction graph, Babelfish represents
accesses of individual fields with BFReadField and BFWriteField
nodes. These nodes capture field information, i.e., the field index and
the field type. This enables Babelfish to analyze and optimize the data
exchange between operators, e.g., identifying if PO; stores a value
that PO; reads. For the data types of BFRecords fields, Babelfish
differentiates between primitive, collection, and composed types.
Primitive Types. Babelfish supports common primitive data
types, e.g., Boolean, Int, or Double. These types build the foundation
for composed data types and are crucial for primitive expressions,
e.g., linenumber > 2. Operations on these types usually directly
correspond to hardware operations in the final machine code.
Collection Types. Babelfish supports multidimensional collec-
tions of values in the form of fixed-sized arrays and variable-length
lists. To operate on these types, Babelfish introduces LoadIndex,
StorelIndex, and GetLength nodes on the instruction graph. Fur-
thermore, Babelfish represents text as a special collection type with
efficient support for common text operations, e.g., substring.
Composed Types. Babelfish leverages compositions to define
complex domain types, e.g., date, numeric, or point. Compositions
consist of fields and allow the definition of type-specific operations.
For instance, the date type is represented as (timestamp : Long) and
defines custom operations, e.g., before(date), or from(text).
In general, BFRecords enable Babelfish to represent different data
types in a common data representation that is agnostic of the def-
inition language of operators.

4.2.2  PolyRecords. Before executinga UDF, Babelfish has to convert
BFRecords to a data type defined by the particular UDF language,
e.g., a Python object. To this end, Babelfish leverages Truffle’s For-
eign Message Interface [49] and wraps BFRecords in PolyRecords.
PolyRecords integrate seamlessly with a particular UDF language
and behave as native objects for a user. To reduce conversion over-
head, Babelfish introduces two strategies. For primitive data types,
Babelfish substitutes accesses to PolyRecord’ s with corresponding
instruction graph nodes, e.g., BFReadField. This enables the UDF
to bypass data conversion and to operate on BFRecords directly. For
complex types, e.g., collections or compositions, Babelfish applies
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duck-typing? and defines proxy data types. These proxies substitute
the functionality of particular data types and redirect all operations
directly to the underling BFRecords without any data conversion.
For instance, Babelfish defines a proxy for Python strings that
substitutes common operations, e.g., substring, or split.

As a result, PolyRecords enable users to rely on a familiar pro-
gramming interface of native objects while it accesses intermediate
data directly without any additional data conversion.

4.2.3  Physical Data Representation. OperatorsinBabelfish exchange
data in the form of BFRecords. Thus, they are independent of the
physical data representation. This improves flexibility and maintain-
ability as operators make no assumptions about the representation
of data in memory. At pipeline boundaries, Babelfish (de)serializes
BFRecords to and from memory according to a layout descriptor.
This descriptor either corresponds to a third-party data format (e.g.,
CSV or Arrow) or is generated by Babelfish (following a DSM or NSM
layout). For both cases, it defines the format in which the individual
fields are stored in memory, how much space values occupy, and an
access strategy. For generated layouts, Babelfish introduces special
ReadValue and WriteValue nodes on the instruction graph. These
nodes encapsulate particular field access information, e.g., for offset
calculation, resulting in very efficient code for memory accesses.

In general, BFRecords decouple operators and UDFs from the
physical data representation. During the optimization phase, Babel-
fish eliminates all BFRecords and access memory directly.

5 OPTIMIZING POLYGLOT QUERIES

In the previous section, we have introduced our Babelfish-IR as a uni-
fied representation for polyglot queries. In this section, we leverage
the Babelfish-IR to introduce holistic optimizations across built-in
and UDF-based operators. In particular, we focus on eliminating the
structural boundaries between operators in polyglot queries (DG2).
To this end, we propose the following optimizations to mitigate
specific limitations in common polyglot workloads. In Section 5.1,

3Uses duck-test to determine if a function can be called on an object. "If it looks like
a duck and quacks like a duck, it must be a duck" [37]
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we present operator fusion to eliminate operator boundaries. Based
on this, we propose three exemplary cross-operator optimizations
that are possible with our Babelfish-IR and overcome bottlenecks of
common polyglot queries. First, we present polyglot predication to
optimize selective UDFs in polyglot queries in Section 5.2. Second,
we introduce latch-reduction to improve the efficiency of stateful
polyglot operators in concurrent environments in Section 5.3. Third,
we present workload specializations to improve the efficiency of raw
and textual data processing in Section 5.4.

5.1 Eliminating Operator Boundaries

In Section 3.1, we have outlined that boundaries between operators
are one of the major bottlenecks of polyglot queries. These bound-
aries introduce function calls, branches, and redundant data copies
that lead to decreased instruction and data locality. To address these
issues in relational data processing engines, Neumann [79] proposed
a data-centric execution strategy. To this end, he leverages code gen-
eration and fuses multiple operatorsinto efficient code blocks. Asare-
sult, data may reside longer in CPU registers, without any indirection.
This technique has been utilized in multiple data processing systems
and demonstrated high-performance benefits [13, 50, 80, 81, 91].

In contrast to traditional, code generation-based operator fusion,
we leverage our Babelfish-IR and propose IR-based operator fusion.
This has two main advantages. First, IR-based operator fusion is inde-
pendent of the language used to define the operators. Thus, Babelfish
can fuse pipelines of built-in operators and arbitrary UDFs. Second,
IR-based operator fusion manipulates the Babelfish-IR directly and
generates no intermediate source code or external IR. This improves
maintainability and increases the impact of further optimizations.

In general, Babelfish’s IR-based operator fusion aims for two goals,
the elimination of function calls between operators and the elimina-
tion of intermediate allocations. In Figure 5, we illustrate operator
fusion for the build pipeline from Figure 4. The pipeline consists
of three physical operators, a Scan, a PolyglotSelection, and a
JoinBuild. In Figure 5a, we visualize the initial instruction graph
and the boundaries between operators (boxes). To eliminate these
boundaries, Babelfish performs IR-based operator fusion within
three steps: specialization, inlining, and scalar replacement.

1) Specialization. The initial instruction graph of an operator
corresponds directly to its implementation. Thus, it may capture
execution paths that are never taken. For example, a division requires
different implementations for each input data type. This increases
instruction graph complexity and hinders optimizations.

To reduce this complexity, Babelfish leverages Truffle’s partial
evaluation [121]. Partial evaluation combines the code of a generic
program with runtime constant input data to create a specialized
program [42, 60]. This specialized program produces the same out-
put but eliminates all computations that depend on the constant
input. For example, partial evaluation specializes divisions to Shift
instructions if the divisor is a constant power of 2 [119].

Babelfish applies partial evaluation to specialize operator imple-
mentations according to runtime parameters, e.g., the PQP structure,
operator properties, or the physical data layout. In particular, spe-
cialization enables Babelfish 1) to analyze and de-virtualize function
calls between operators, 2) to bind data types to variables accord-
ing to the data schema, and 3) to optimize the data accesses for a



specific physical data layout. As a result, specialization reduces the
complexity of Babelfish’s instruction graph.

2) Inlining. In this step, Babelfish utilizes the specialized instruc-
tion graph and inlines all function calls between operators within
a pipeline. For the pipeline in Figure 5b, Babelfish creates a com-
pact instruction graph that contains all connected operators. Thus,
the pipeline follows a data-centric execution model and contains
no function calls. Within individual operators, Babelfish relies on
the inlining heuristics of Graal [73], e.g., to inline calls to 3rd-party
libraries within a UDF. As a result of this step, Babelfish fuses the
individual operators and derives a unified instruction graph without
boundaries between operators.

3) Scalar Replacement. In the previews steps, Babelfish has
reduced the complexity of the instruction graph by applying special-
ization and inlining. However, the instruction graph still contains
intermediate objects, e.g., BFRecords. This causes unnecessary mem-
ory allocations and data copies. To avoid those, Babelfish applies
Scalar Replacement [88, 121]. Scalar replacement eliminates inter-
mediate objects by rewriting accesses to objects with local variables.
This removes allocations and intermediate objects. In contrast to a
general-purpose compiler, Babelfish can guarantee that allocations
within a pipeline never escape the scope, i.e., they can not be stored
in external states except the operator state variables. Consequently,
scalar replacement eliminates all intermediate BFRecords during
compilation. Furthermore, Babelfish rewrites all field accesses with
pointers to the actual memory location. Asshown in Figure 5b, scalar
replacement eliminates the intermediate BFRecords and replaces all
BFReadFieldnodes with BFReadValue nodes. As a result, operators
directly access raw memory, data reside longer in CPU registers, and
the code follows a data-centric structure [79].

Overall, IR-based operator fusion eliminates the boundary be-
tween built-in operators and UDFs, independent of their definition
language. To this end, Babelfish specializes operators, inlines func-
tion calls, and eliminates intermediate objects. As aresult, processing
pipelines perform no function calls, allocate no intermediate objects,
and access memory directly. Additionally, operator fusion in Babel-
fish enables further cross-operator optimizations to improve the
efficiency of polyglot queries, e.g. predication and loop unrolling.

5.2 Optimizing Polyglot Predicates

Predicates are an important primitive in relational operators and
UDFs to filter or manipulate data depending on conditions. In UDFs,
filter conditions are usually implemented using a conditional branch
instruction. Depending on the branch selectivity, miss-predictions
may occur. This can induce a high runtime overhead [125]. To
mitigate this overhead in relational data processing engines, re-
search proposed branch-free operator implementations, using pred-
ication [14, 102, 127]. However, this technique requires the modifi-
cation of all operator implementations in a pipeline. Consequently,
it is challenging to apply predication on polyglot queries with UDFs.
To overcome this challenge, we introduce IR-based predication.
IR-based predication. Our approach identifies and eliminates
predicates across operators directly on the instruction graph in two
steps. First, Babelfish identifies all predicates and utilizes profiling
information to derive the filter selectivity. Second, Babelfish elim-
inates the predicate and leverages predicated CPU instructions to
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rewrite data manipulations. Predicated instructions allow the CPU
to perform operations depending on the outcome of a condition, e.g.,
the CMOV instruction only performs a MOV if a condition is valid.
Overall, IR-based predication demonstrates the benefits of Babel-
fish-IR for query optimization. It leverages profiling information
to eliminate conditional branches, independent of the definition
language of operators. Furthermore, this reduces the control-flow
complexity, which is beneficial for further compiler optimizations.

5.3 State Management

Babelfish supports stateful operators and UDFs to model complex
business logic. These operators maintain and manipulate local state
thatlivesbeyond a single operator invocation. Thus, the execution en-
gine has to ensure the correct concurrent execution of such operators.
To this end, many systems use external state-backends, e.g., RocksDB,
to support stateful operators [7, 15]. The state-backend coordinates
concurrent state accesses and decouples concurrency management
from data processing. This improves maintainability, but often hin-
ders optimizations. In contrast, Babelfish models state accesses di-
rectly on the instruction graph (see Figure 6a). TransactionStart
and TransactionEnd nodes mark the critical section of a state ma-
nipulation. For all operations within this critical section, Babelfish
uses latches to guarantee mutual exclusion. During execution, each
thread acquires a latch to protect the state variable from concurrent
manipulations, as shown in Figure 6b. With high contention, latches
may cause a significant overhead [12]. To mitigate this, Babelfish in-
troduces latch-reduction and replaces latches with atomic operations.

Latch-reduction. To eliminate latches, Babelfish manipulates the
instruction graph in two steps. In the first step, Babelfish analyses the
critical section and extracts all distinct state modifications. Distinct
state modifications do not depend on a common input value and
thus Babelfish can optimize them independently. For example, the
instruction graph in Figure 6b performs two distinct modifications,
i.e.,the ADD of count and the conditional Write onmax. In the second
step, Babelfish translates each data manipulation into an atomic op-
eration (see Figure 6c). For arithmetic operations, Babelfish creates
individual nodes, e.g., AtomicIncrement. For complex control flow,
Babelfish generates compare and swap loops. If latch reduction is
not possible, Babelfish falls back to spin-locks.

Overall, latch-reduction improves the execution performance of
stateful UDFs under contention (see the experiment in Section 6.3.3).



5.4 Workload Specialization

Modern data analytic workloads drastically differ from traditional re-
lational queries. They often contain text-heavy computations [116]
or directly process raw data [62]. To support these workloads in a
polyglot execution engine efficiently, Babelfish relies on the strict
separation of physical and logical data processing. This enables
Babelfish to optimize workloads independent of operator definition
languages. In the following, we present Babelfish’s handling of tex-
tual data in Section 5.4.1 and the support of raw data in Section 5.4.2.

5.4.1 TextProcessing. UDFs often analyze or manipulate text values,
e.g., word-count, tokenization, or n-gram computation [70]. In lan-
guages like Java or Python, these operations cause a high overhead
as they represent text as immutable String objects. For instance,
String concatenation in a Java UDF performs three memory copies,
i.e., 1) the creation of a String object from the input, 2) the concate-
nation with another String, and 3) the materialization to the output.
To mitigate this overhead, Babelfish introduces PolyglotRopes to
enable efficient text manipulations.

Polyglot Ropes. A Ropes is a data-structure to represent text as a
tree of text fragments and operations [9]. Text manipulations result
in tree transformations, e.g., the concatenation of two text fragments
results in a concat node with the fragments as children. Babelfish
leverages this concept and defines PolyglotRopes to represent text
across operators. PolyglotRopes differentiate between leaf ropes
and operation ropes. Leaf ropes reference fragments of the overall
textata particularlocation, i.e.,aPointerLeaf references a memory
region on the input data, or a ConstantLeaf references a constant
text sequence. In contrast, operation ropes express text manipula-
tions, e.g., the concatenation of two ropes results in a ConcatRope.
This allows Babelfish to evaluate text operations lazily and materi-
alizes ropes only if required, e.g., if the text is written to the output.
As aresult, Babelfish performs the concatenation of two texts with
only a single data copy, i.e., it reads both input texts only once and
writes them directly to the output without any allocations.

Overall, PolyglotRopes reduce data copies by executing text op-
erations lazily. Combined with PolyRecords, Babelfish can substi-
tute text operations across arbitrary UDF languages with Polyglot-
Ropes. As a result, this optimization improves the performance of
text-heavy polyglot workloads significantly (see Section 6.3.4).

5.4.2  Raw Data Processing. Modern data processing workloads of-
ten directly process raw files in third-party data formats, e.g., CSV
or Arrow [39]. Before processing, most systems convert raw data to
an internal data format. This requires data parsing and materializa-
tion, which induces a high overhead [57]. To mitigate this, Babelfish
proposes lazy parsing and interleaves parsing with query processing.

Lazy Parsing. In Section 4.2, we have introduced BFRecords to
separate the physical data representation from the operator imple-
mentations. BFRecords also enable Babelfish to process raw data
transparently. In the Scan operator, Babelfish parses the raw data, ini-
tiates BFRecords, and passes them to the processing pipeline. Then
operator fusion eliminates the intermediate BFRecords and inter-
leaves parsing and query processing. On the resulting IR, Babelfish
performs two additional optimizations. First, Babelfish eliminates
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the parsing for fields that are not accessed. This is beneficial for work-
loads that only access a subset of the raw data. Second, Babelfish de-
lays the parsing of individual fields. This is beneficial as field accesses
often depend on conditions. Furthermore, it reduces the distance
between data parsing and access, which reduces register pressure.
Overall lazy parsing interleaves raw data parsing and query pro-
cessing. This enables Babelfish to eliminate or delay the parsing of
particular fields. As aresult, Babelfish is able to significantly improve
query processing performance over raw data (see Section 6.3.5).

6 EVALUATION

In this section, we experimentally evaluate different aspects of Babel-
fish. We introduce our experimental setup in Section 6.1. After that,
we conduct two sets of experiments. In Section 6.2, we compare
the performance of Babelfish across multiple workloads to state-of-
the-art data processing systems. In Section 6.3, we perform micro-
experiments to study specific aspects of Babelfish.

6.1 Experimental Setup

Throughout our evaluation, we use the hardware and software con-
figurations that are described in Section 6.1.1 and run the workloads
on the datasets that are described in Section 6.1.2.

6.1.1 Hardware and Software. We execute all experiments on an
Intel Xenon Gold 6126 processor with 2.6 GHz and 12 physical cores.
Each physical core has a dedicated 32 KB L1 cache for data and in-
structions. Additionally, each core has 1MB L2 cache and all cores
share a 19.25 MB L3 cache. The test system consists of 755 GB of
main memory and runs Ubuntu 20.04. The C++ implementations
are compiled with GCC 9.2 and Babelfish’s implementation runs on
the community edition of GraalVM 20.3. If not stated otherwise, we
execute all measurements using a single processing thread.

6.1.2  Datasets. Throughout this evaluation, we use the following
datasets (stored in memory in a columnar format). To evaluate the
OLAP performance, we use queries from the TPC-H with a scale fac-
tor of one, which results in ~1GB of data For data-science queries, we
use the Airline On-Time Performance Dataset [82], which was used
in multiple publications to assess the performance of big data sys-
tems on common data science workloads [70, 95, 115]. This dataset
contains data about flights between 2018-2020 and additional infor-
mation, e.g., departure time or origin/destination. After cleaning, it
contains ~2GB of data.

6.2 System Comparisons

In this set of experiments, we study the performance of Babelfish
and representative data processing systems on relational queries
(see Section 6.2.1), data science workloads (see Section 6.2.2), and
UDFs that embed 3rd-party libraries (see Section 6.2.3).

6.2.1 Relational Workloads. Inthisexperiment, we investigate Babel
fish’s performance across four TPC-H queries, i.e., Q1, Q3, Q6, and
Q18. These queries represent different workload characteristics, e.g.,
aggregations or joins, and have been used before to assess the effi-
ciency of data processing engines [63]. Similar to Ramachandra et
al. [98], we replace operators with either Python, JavaScript, or Java
UDFs within Babelfish. As baselines, we evaluate all queries without
UDFs on MonetDB [11], a general-purpose DBMS, Pandas [76], a
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Figure 7: Comparison of Babelfish with hand optimized baselines across workloads.

common data processing framework, and Typer/Tectorwise [63] as
hand-optimized C++ implementations of the above queries.
Results. Figure 7a shows execution times of MonetDB, Pandas,
Typer, Tectorwise, and Babelfish for the selected queries. Across
all queries, Babelfish outperforms MonetDB/Pandas by up to one
order of magnitude and reaches similar performance to Typer and
Tectorwise. In contrast to MonetDB and Pandas, Babelfish benefits
from operator fusion and the elimination of intermediate results. In
comparison to Typer and Tectorwise, our results are in line with the
general observation of Kersten et al. [63]. For compute-heavy queries
(e.g., TPC-H Q1) Typer and Babelfish benefit from the data-centric
execution model that holds data within registers. As a result, they
improve performance by up to 2.4x compared to Tectorwise. For
join-heavy queries (e.g., TPC-H Q3) Tectorwise has a performance
advantage of up to 1.3x compared to Typer, and Babelfish, as the vec-
torized execution model hides cache misses. Furthermore, our results
show only a negotiable performance difference between individual
UDF languages on Babelfish. This indicates an advantage of the
Babelfish-IR as it allows optimizations across operator boundaries.
Summary. This experiment shows that Babelfish outperforms
MonetDB and Pandas by up to an order of magnitude and reaches the
performance of hand-written query implementations proposed by
Kersten et al. [63]. Furthermore, we saw that the performance varia-
tions between different UDF implementation languages in Babelfish
are negligible. As a result, Babelfish closes the gap between purpose
programming languages and the performance of hand-written code.

6.2.2  Data Science Workloads. In this experiment, we examine the
performance of Babelfish across two common data science building
blocks i.e., word-count and 2-gram computation, as well as two real-
world workloads, i.e., Airline Delay and Airline ETL. Following the
implementation of Lara et al. [95], we implement each query as a
sequence of Python, JavaScript, and Java UDFs. As a baseline, we eval-
uate the selected queries on Spark [123] and Pandas [76], as common
data science frameworks, and a hand-written C++ implementation.

Results. In Figure 7b we observe that Spark induces the highest
execution time. This is in line with previous observations that Spark
utilizes the hardware resources of single-node setups poorly [33, 126].
In contrast, Pandas offloads computations to efficient C++ exten-
sions and performs the word-count and 2-gram queries up to 4x
faster than Spark. However, on the Airline queries, our hand-written
C++ implementation outperforms Pandas by up to 6x as it reduces
function calls and avoids intermediate materialization.

Babelfish applies operator fusion to reach the same code efficiency.
As a result, Babelfish outperforms Spark and Pandas by up to one
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order of magnitude. In comparison to the hand-written C++ base-
line, Babelfish achieves a performance improvement between 3x to
11x due to workload specialization. Especially, the word count and
the 2-gram computation cause many string allocations, i.e., each
input record results in multiple output strings. Babelfish leverages
PolyglotRopes to eliminate string intermediate materialization.
Consequently, Babelfish even outperforms the hand-written C++
implementation by 10x on the word count and 2-gram query.

In general, we observe a slight performance variance (max. 20%) be-
tween Java, Python, and JavaScript. This is mainly caused by specific
implementation artifacts of the particular language. For instance, for
iterative computations, e.g., word count, the Truffle implementations
of Python, Java, and JavaScript result in different code after loop
unrolling was applied. We expect that such performance differences
will vanish in the future if Truffle becomes more mature. Overall,
Babelfish outperforms all baselines, regardless of the UDF language.

Summary. This experiment showed that Babelfish reaches high
performance on data science workloads. Babelfish benefits from the
optimization of polyglot queries, which fuse operators, eliminate
allocations, and specialize operations within UDFs. As a result, Babel-
fish outperforms data science frameworks like Spark and Pandas.

6.2.3 Embedding 3rd-party libraries in UDFs. A common use case
of UDFs is the embedding of 3rd-party libraries [108]. Therefore,
we evaluate seven queries [89, 95] with Python UDFs that embed
different libraries. The first three queries embed Arrow, Haversine,
and Re, which are implemented purely in Python. In contrast, the
remaining four queries leverage NumPy, and Pandas, which heav-
ily use native Python extensions. To investigate Babelfish’s impact,
we use three baseline, i.e., CPython [36] (the standard Python run-
time), PyPy [10, 111] (a high performance Python JIT-Compiler), and
GraalPython (Babelfish’s underlying Python runtime).

Results. Figure 7c shows that Babelfish outperforms CPython
across all queries, whereby the speedups depends on the actual work-
load. Queries that embed pure Python libraries benefit from JIT com-
pilation, i.e., PyPy outperforms the other Python runtimes by up to
5x. Due to the prototypical state of GraalPython, it can not to deliver a
similar performance. In particular, calls into the standard library, e.g.,
for regular expressions or date calculation, cause a high-overhead
in the current version. Babelfish mitigates this overhead with its
efficient memory layout and optimizations for string processing.

For queries that embed native Python extensions, JIT compilers
have to (re)implement the C-API of CPython [38]. As a result, PyPy
suffers from a high overhead, and GraalPython fails to execute the
queries. This is a known problem of Python JIT compilers [107] and is
a focus of the HPy project [112]. To mitigate this problem, Babelfish
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leverages the BFRecords to substitute calls into these libraries with
build-in Babelfish functions. This approach is similar to Weld [89]
and enables Babelfish to fuse operations, optimize data accesses,
and eliminate intermediate materializations. As a result, Babelfish
outperforms CPython by up to two orders of magnitude.

Summary. This experiment showed that Babelfish efficiently
executes queries that embed 3rd-party libraries. Babelfish benefits
from its efficient memory layout and can apply optimizations across
the library code. Furthermore, Babelfish substitutes library calls to
mitigate the limitations of GraalPython.

6.3 Micro Experiments

In the previous experiment section, we have demonstrated that Babel-
fish achieves high performance for end-to-end workloads. In this
section, we focus on particular workload details that impact the per-
formance of Babelfish. First, we evaluate the embedding of different
language runtimes in a data execution engines, to validate Babel-
fish’s core design principle in Section 6.3.1. Based on this, we study
the effect of Babelfish’s JIT compilation on execution performance
and warm-up time in Section 6.3.2. Then, we evaluate the handling of
stateful UDFs in multi-core environments in Section 6.3.3. Finally, we
analyze Babelfish’s performance for specific workloads, i.e., string
operations in Section 6.3.4 and raw data processing in Section 6.3.5.

6.3.1 Language Runtimes. In our initial experiment in Figure 1, we
revealed a high overhead of polyglot queries on modern data pro-
cessing systems. Based on this observation, we derived that a unified
representation of polyglot queries should be one major design goal
foran efficient polyglot execution engine (see Section 3). In this exper-
iment, we revisit the embedding approach to validate our assumption.
To this end, we extend the Typer implementation of TPC-H Q6 and
the C++ implementation of the Airline ETL query as representative
workloads from Section 6.2 with state-of-the-art language runtimes.
In particular, we use CPython [36] and PyPy [10, 111] for Python
UDFs, V8 [47] and Duktape [114] for JavaScript UDFs, and HotSpot
JNI [88] and GraalNative [84] for Java UDFs.

Results. In Figure 8, we show the overhead of all runtimes nor-
malized to the execution time of the Typer/C++ implementation
without UDFs.The experiment confirms our assumption that the
embedding of language runtimes causes a substantial overhead of up
to 112x in Python, 103x in JavaScript, and 58x in Java. When leverag-
ing JIT compilation, PyPy and V8 improve performance by up to 5x
compared to the interpreted counterpart. However, in comparison
to the C++ baseline, they still cause an overhead of at least one order
of magnitude. Furthermore, GraalNative compiles Java UDFs ahead-
of-time into shared-libraries, which can be directly embedded in a
data execution engine. This reduces the overhead of Java UDFs to
5x on average compared to the native Java implementation.
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Figure 9: Impact of adaptive query compilation.

In contrast, Babelfish does not embed a foreign language runtime.
Instead, Babelfish unifies built-in operators and UDFs in one exe-
cution engine and performs holistic optimizations across operator
boundaries. As a result, Babelfish at least matches the performance
of the hand-written baselines, independent of the UDF language.

Summary. Overall, this experiment validates our initial assump-
tion. Across all language runtimes, we have observed a significant
performance overhead. As a result, those runtimes cannot exploit
the performance advantage of modern hardware. In contrast to em-
bedding, Babelfish introduces a unified representation for polyglot
queries. This enables Babelfish to optimize polyglot queries holis-
tically, which results in a peak performance that is on par with
hand-optimized, hand-written query implementations.

6.3.2 Just-in-Time Compilation. Babelfish leverages JIT compila-
tion for query execution. First, it collects profiling information by in-
terpretation and then leverages it during query compilation (see Sec-
tion 4). In this experiment, we evaluate the impact of JIT compilation
with respect to peak performance and warm-up time, i.e., the time it
takes to reach peak performance after query submission. To this end,
we evaluate different relational queries with varying complexity.

Results. In Figure 9a, we evaluate TPC-H Q6 that consists of a
single pipeline with three compiler configurations: 1) interpretation,
2) compilation of individual operators, and 3) compilation in combi-
nation with Babelfish’s operator fusion. First, interpretation-based
execution results in the highest query execution time. Second, the
compilation of individual operators improves performance by up to
20x, as the code efficiency of individual operators increases. Third,
operator fusion further improves performance by up to 40x, as it
eliminates function calls and intermediate objects. As a result, we
see that holistic optimizations are crucial to reach high performance.

In Figure 9b, we show the warm-up time of Babelfish on three
queries with different numbers of operators. Our observations are
two-fold. First, the warm-up time highly depends on the UDF lan-
guage. Thus, Java and JavaScript-based queries reach peak perfor-
mance after 100ms to 800ms. In contrast, Python UDFs cause a very
high warm-up time of several seconds. Second, the warm-up time
depends on the query complexity and increases with the number
of operators and predicates, e.g., Q1 and Q3. Overall, Babelfish’s
warm-up times are comparable to other Java-based query compilers
like LB2 [109] and DBLAB [105]. However, we expect warm-up times
to improve in the future as the Graal compiler becomes more mature.

Summary. In this experiment, we have shown that query com-
pilation improves the performance of polyglot queries significantly.
Furthermore, we have seen that Babelfish has on average a warm-up
time below one second. This is in line with other high-level query
compilation approaches [109]. Consequently, Babelfish is applicable
for a wide range of UDF-based use-cases.
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6.3.3  Scalability. In this experiment, we study two aspects of Babel-
fish’s scalability in multi-core environments with stateful queries.
First, we compare the performance of Babelfish, Typer, Tectorwise,
and MonetDB on TPC-H Q6 with scale-factor 10 and different de-
grees of parallelism. Second, we study the impact of Babelfish’s latch-
reduction optimization for stateful UDFs, as proposed in Section 5.4.1.

Results. In Figure 10, we evaluate the scalability across all sys-
tems with 1 to 24 execution threads. Overall, Babelfish achieves a
similar speedup as Typer and Tectorwise (up to 10x). In contrast,
the performance of MonetDB with 24 threads only improves by 5x
compared to single-threaded execution. In comparison to Tectorwise
and Typer, Babelfish causes only a slight performance degeneration
of up to 30% and 60%. These results show that Babelfish is capable
of utilizing multi-core environments efficiently.

In Figure 11, we study the performance impact of latch-reduction
for stateful-UDFs with different levels of contention. To this end, we
perform a grouped aggregation and increase the number of distinct
keys. For alow number of keys (1-100), we see that the conversion of
traditional latches to atomics using latch-reduction resultsin a signifi-
cant performance advantage (up to 25x for single key aggregates). For
increasing key ranges, contention decreases and the atomic version
performs similar to a latch-based version. Overall, we see that latch-
elimination mitigates the overhead in contention limited workloads.

Summary. In this experiment, we have identified two scalability
characteristics. First, Babelfish scales with the degree of parallelism,
outperforms MonetDB, and reaches a similar performance, com-
pared to Typer and Tectorwise. Second, Babelfish’s latch-reduction
improves the performance of stateful UDFs in workloads with high
contention. As a result, Babelfish efficiently executes UDF-based
polyglot queries even in multi-core environments.

6.3.4  Text Processing. Textmanipulation causesahigh performance
overhead in current data processing systems, as shown in Figure 7b.
To mitigate this bottleneck, Babelfish introduces PolyglotRopes to
perform text processing lazily (see Section 5.4). In this experiment,
we evaluate eight common text operations and compare the perfor-
mance of three text processing approaches. 1) Naive is used by com-
mon data processing systems and materializes text values as interme-
diate string objects before invoking UDFs. 2) Eager passes text values
as pointers to UDFs but performs all text manipulations eagerly, e.g.,
areverse allocates an intermediate string object. (3) Lazy leverages
Babelfish’s PolyglotRopes and executes text manipulations lazily.

Results. In Figure 12, we observe that across all queries, Naive
reaches the lowest performance, as it introduces additional string
copies. For read-only text operations, i.e., equals and copy, Eager
eliminates these allocations and operates directly on the raw point-
ers, which results in a 10x speedup. However, this benefit vanishes

B BEager

BecsvE 2 Arrow

Naive [ B Eager B aNsMAADsM

Lazy

Figure 12: Text processing.
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for text manipulations, e.g., concat, reverse, or split. For these
manipulations, only Lazy is able to eliminate all intermediate string
objects. As aresult, Lazy outperforms the Naive approach by at least
10x across all text operations.

Summary. In this experiment, we have demonstrated that Babel-
fish’s PolyglotRopes improve the performance of text operations
by at least one order of magnitude. This observation explains the
performance advantage of Babelfish across the data science work-
loads in Section 6.2. As a result, Babelfish is applicable for a wide
range of data science tasks, which are usually very text-heavy.

6.3.5 Raw Data Processing. Polyglot workloads often process raw
data[57], e.g.,CSV or Arrow files. To enable high performance across
different data formats, Babelfish interleaves data parsing and process-
ing (see Section 5.4.2). To investigate the impact of this optimization,
we execute TPC-H Q3 (three source relations) and Q6 (one source
relations) across four data formats, i.e., CSV, Arrow, NSM, and DSM.
For CSV and Arrow, we differentiate between an Eager (parses and
de-serializes all data before processing) and Lazy (delays parsing if
possible) execution mode. To exclude the overhead of I/O operations,
we load all data to a memory buffer before processing.

Results. In Figure 13, we make three observations. First, process-
ing CSV data causes the highest execution time, as Babelfish scans
the whole file to infer record boundaries and field accesses require
costly de-serialization. Second, even though Arrow is an efficient
memory format, it causes a 2x overhead compared to Babelfish, e.g.,
to convert Arrow data types to the Babelfish type system. Third, for
CSV and Arrow, Lazy skips parsing, de-serialization, and material-
ization of unused fields. As a result, Lazy reduces query execution
time significantly, i.e., up to 4x for CSV and 10x for Arrow.

Summary. This experiment has demonstrated that interleaving
data parsing and processing significantly improves performance
by up 4x on CSV and 10x on Arrow, independent of the number of
source relations. Consequently, this optimization improves Babel-
fish’s applicability for a wide range of use-cases.

6.4 Discussion

Our evaluation has shown that Babelfish accelerates the execution
of polyglot queries significantly. In the majority of cases, Babelfish
reaches the performance of hand-written C++ implementations, such
as Typer and Tectorwise, without losing the generality of generic
polyglot queries. Furthermore, we have demonstrated that Babel-
fish’s performance optimizations, e.g., operator fusion, workload
specialization, and latch-reduction, improve query performance sig-
nificantly. For specific workloads, e.g., text manipulations, Babelfish
even outperforms hand-optimized implementations as Babelfish is
able to perform optimizations across operator boundaries.



7 RELATED WORK

In this section we contrast Babelfish to related work in the areas of
query compilation and polyglot queries execution

Query Compilation. Query compilation was extensively studied
by Rao et al. [99], Krikellas et al. [68], and Neumann [79]. Over the
last decade, it was applied in many data processing systems [4, 40,
68,77,79, 80,90, 91, 118] and to different workloads, e.g., stream [50,
113, 124] and spatial data processing [110]. Babelfish leverages query
compilation to execute polyglot queries efficiently. In contrast to
many query compilation approaches, Babelfish does not directly
generate intermediate code, e.g., Java, C++, or LLVM IR. Instead,
operators in Babelfish are implemented in standard Java classes.
At runtime Babelfish tightly integrates query processing with the
Graal compiler to generate efficient machine code. Similar to LegoB-
ase [65] and DBLAB [105], Babelfish defines the Babelfish-IR as a
central representation of queries. Similar to LB2 [109], Babelfish
leverages partial evaluation to specialize operators regarding query
and data parameters. In contrast to these works, our Babelfish-IR
captures operators beyond the relational algebra, e.g., UDFs, and
enables holistic optimizations. Another line of research focused on
reducing the time required for query compilation [41, 64, 66]. Sim-
ilar to Kohn et al. [66], Babelfish applies JIT compilation. Overall,
Babelfish leverages query compilation as a building block to enable
the holistic optimization and efficient execution of polyglot queries.

Supporting Polyglot Queries. The efficient execution of poly-
glot queries and UDFs has been an active field of research [100]. In
general, we can differentiate between three different approaches,
i.e., the translation of UDFs to SQL statements, the introduction of
domain-specific languages, or the embedding of polyglot runtimes in
the execution engine. The first line of research focuses on the trans-
lation of complete UDFs [20-22, 28, 29, 31, 32, 98, 106] or particular
3rd-party libraries [53, 59, 61] to equivalent relational expressions.
With the integration of Froid [98] in Microsoft’s SQL Server [87], this
approach received a lot of attention. Froid converts loop-free UDFs
into plain SQL queries. Based on this, Gupta et al. [52] proposed
Aggify to optimize loops in UDFs. Duta et al. [28, 29] follow the same
goal and convert PL/SQL UDFs to recursive common table expres-
sions to support complex control flow, e.g., loops and recursions. In
general, the translation of UDFs to SQL queries is a promising solu-
tion, as it eliminates UDFs. However, current approaches are limited
to a subset of a particular UDF language or specific 3rd-party APIs. It
is still unclear how complex language constructs could be supported,
e.g., virtual function calls. Furthermore, translation can result in
complex SQL queries, e.g., involving recursion, which could be hard
to optimize [98]. In contrast, Babelfish embeds polyglot operators
in different languages directly in the execution engine, supports all
language constructs, and enables holistic optimization.

A second line of research proposed domain specific languages as
UDF-based query languages [2, 6, 44-46, 51, 55, 69]. They utilize
an IR to enable advanced query optimizations, e.g., loop fusion and
dead code elimination [2], selection pushdown [51], optimizations
for distributed dataflows [6, 44—46], or the integration of different
algebras [69]. However, DSLs limit users to a restricted set of pro-
gramming constructs and operations. In contrast, Babelfish intro-
duces optimizations for the efficient execution of polyglot queries
with general-purpose UDFs in Java, JavaScript, and Python.
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A third line of research focused on embedding polyglot operators
directly in data processing systems [18, 25, 35,43,70,75,78,97]. These
approaches mainly differ in the level of integration between the data
processing system and the language runtime. Naive approaches
pass tuples individually to the language runtime [75], which causes
a high overhead for calling the external runtime. More advanced
approaches leverage strided execution models to reduce this over-
head [97, 101]. In contrast, Babelfish embeds polyglot operators
directly in the physical execution plan to eliminate these bound-
aries. Ishizaki et al. [58], Trill [17, 18], and Gerenuk [78] manipulate
the source code of UDFs to remove object allocations and optimize
memory access patterns. In contrast, Babelfish performs such op-
timizations independently of a UDF language on the Babelfish-IR.
Schuele et al. [104] and Tupleware [23] translate UDFs to LLVM-IR
and fuse them with built-in operators. These approaches reach opti-
mal performance, but have two main drawbacks. First, LLVM-IR is a
low-level assembly-like IR. This makes it hard to perform traditional
database optimizations across operators, as it requires extracting
data operator semantics from low-level IR [93]. Second, the transla-
tion of UDF languages to LLVM-IR is a challenging problem by itself.
Even a mature LLVM-based compiler like Numba [71] only supports
alimited subset of Python. In contrast, our Babelfish-IR enables com-
plex optimizations across operators and supports JavaScript, Python,
and Java UDFs without restrictions. Additional work utilized Truffle
to optimize data processing pipelines. In contrast to Babelfish, these
approaches are limited to specific aspects of the overall data process-
ing job, e.g., embedding R scripts [70], specializing CSV parsing [103],
applying predication on JavaScript programs [127]. However, Babel-
fish is a complete execution engine for polyglot queries. In particular,
Babelfish leverages Truffle and Graal as a foundation and proposes
cross-operator optimizations to enable efficent execution.

8 CONCLUSION

In this paper, we have presented Babelfish, a novel data processing
engine optimized for polyglot workloads. Babelfish combines built-
in operators and UDFs across different programming languages in
one unified intermediate representation. This enables Babelfish to
apply traditional database optimizations to the problem of polyglot
queries and to specialize query processing to the specific require-
ments of polyglot queries. As a result, Babelfish enables the efficient
execution of polyglot queries independent of the definition language
of individual operators. Our evaluation demonstrates that Babelfish
outperforms traditional approaches for embedding polyglot opera-
tors by at least one order of magnitude and reaches the performance
of hand-optimized implementations across various workloads. Thus,
Babelfish bridges the performance gap between relational and poly-
glot queries and lays the foundation for the efficient execution of
future polyglot workloads. As future work, we plan to incorporate
Babelfish in our new data processing platform NebulaStream [124].
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