
ETO: Accelerating Optimization of DNN Operators by
High-Performance Tensor Program Reuse
Jingzhi Fang

HKUST

jfangak@connect.ust.hk

Yanyan Shen

Shanghai Jiao Tong University

shenyy@sjtu.edu.cn

Yue Wang

Shenzhen Institute of Computing Sciences

yuewang@sics.ac.cn

Lei Chen

HKUST

leichen@cse.ust.hk

ABSTRACT
Recently, deep neural networks (DNNs) have achieved great success

in various applications, where low inference latency is important.

Existing solutions either manually tune the kernel library or utilize

search-based compilation to reduce the operator latency. However,

manual tuning requires significant engineering effort, and the huge

search space makes the search cost of the search-based compilation

unaffordable in some situations. In this work, we propose ETO, a

framework for speeding up DNN operator optimization based on

reusing the information of performant tensor programs. Specifically,

ETO defines conditions for the information reuse between two

operators. For operators satisfying the conditions, based on the

performant tensor program information of one operator, ETO uses

a reuse-based tuner to significantly prune the search space of the

other one, and keeps optimization effectiveness at the same time. In

this way, for a set of operators, ETO first determines the information

reuse relationships among them to reduce the total search time

needed, and then tunes the operators either by the backend compiler

or by the reuse-based tuner accordingly. ETO further increases

the reuse opportunities among the operators by injecting extra

operators as bridges between two operators which do not satisfy

the reuse conditions. Compared with various existing methods, the

experiments show that ETO is effective and efficient in optimizing

DNN operators.

PVLDB Reference Format:
Jingzhi Fang, Yanyan Shen, Yue Wang, and Lei Chen. ETO: Accelerating

Optimization of DNN Operators by High-Performance Tensor Program

Reuse. PVLDB, 15(2): 183 - 195, 2022.

doi:10.14778/3489496.3489500

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/Experiment-code/ETO.

1 INTRODUCTION
In recent years, various deep learning models have made great

success in many applications, where low latency in inference is

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 2 ISSN 2150-8097.

doi:10.14778/3489496.3489500

important (e.g., language translation [7]). To achieve efficient exe-

cution of DNNs, people either rely on the manually tuned kernel

libraries (e.g., cuDNN [6]) provided by the AI-hardware vendors,

or search-based compilation [1, 3–5, 27, 28] which automatically

optimizes an operator (or a set of operators connected with each

other). Since manually tuning kernel libraries requires significant

engineering effort, search-based compilation has attracted much

attention recently. In order to find performant tensor programs (low-
level programs), search-based compilation generally defines a huge

search space with comprehensive coverage of useful optimizations

for an operator (or a set of operators), which incurs high search

cost. For example, to optimize an operator, Ansor [27], a search-

based compilation method, needs about 1,000 measurement trials

to converge in general, which consumes thousands of seconds.

In practice, long compilation time is unaffordable in some sit-

uations and may limit the final optimization effect. For example,

some DNNs work on data sets which are updated periodically or

continuously, e.g., the graph taken by a graph neural network can

have updates to nodes or edges. The operators involved in the

models that take different input data shapes need to be optimized

accordingly when the data set changes. If the optimization process

is not efficient enough, we may not even finish it before the next

data set update arrives. Another example is BERT [7] for input

with dynamic shapes. Since the sequence length in input can be

any value (no greater than 512), the number of possible input data

shapes for an operator in BERT can be exponentially large [17]. In

this case, optimizing the operator for every input data shape is not

practical, and we may only do the tuning for some shapes, making

a trade-off between the search time and the optimization effect of

an operator in terms of its final inference performance. If the opti-

mization of an operator with a given input data shape can be done

more efficiently than the existing time-consuming compilers, we

can tune a dynamic operator for more different input data shapes

within a fixed time period, and potentially achieve higher inference

performance. The above facts lead to the following question: can

we accelerate the optimization process of DNN operators?

An idea to speed up the search-based compilation is making

use of the good tensor programs of well-optimized operators. An

important work is Selective Tuning (ST) [19]. ST is based on an

assumption that the transformation steps to get high-performance

tensor programs for similar operators can be the same. Therefore,

operators which are pairwise similar enough are put in the same

cluster, and they directly try the transformation steps in the per-

formant tensor programs of the selected operator in the cluster. To

183

https://doi.org/10.14778/3489496.3489500
https://github.com/Experiment-code/ETO
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3489496.3489500
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Operator similarity vs. the performance of a conv2d in
ResNet-50 adopting transformation steps of another conv2d in ST.

achieve good optimization effect, it is crucial to define a similarity

measure that is inversely proportional to the latency of an operator

after such transformation step sharing. However, the similarity

measure defined in ST, i.e., the overlap ratio of the search space

(transformation steps) between two operators, does not satisfy this

requirement as shown in Figure 1. In this way, ST fails to effectively

make use of the good tensor programs of other operators in opti-

mization. More importantly, transformation steps cannot be shared

between two operators that are not similar enough, and this may

limit the optimization efficiency of ST, e.g., ST puts the 20 conv2d

operators in ResNet-50 [10] in 7 groups in our experiments.

By analysing the good tensor programs of different operators,

we find that the their difference in the hardware resource utilization

information (e.g., the number of GPU blocks) is related to the corre-

sponding difference in the operator computation loops, and hence

we can prune the search space of an operator when given the per-

formant tensor program of another operator. Following this insight,

we aim to design a new method to accelerate the optimization of a

set of operators, which can make use of the performant tensor pro-

grams effectively and reach higher overall optimization efficiency.

To reach this goal, there are two challenges. First, we need to search

for a good tensor program of an operator efficiently based on the

performant tensor program information (about resource utilization)

of another operator. The information of the tensor program found

in this way can help optimize other operators again, which reduces

the number of operators to bootstrap the optimization of all the

operators. Second, when optimizing a set of operators, we should

estimate the optimization time needed and determine the informa-

tion reuse relationships among the operators to save the overall

optimization time based on our estimation.

To this end, we propose ETO, a framework for accelerating DNN

operator optimization. ETO currently focuses on GPU, which is

popular for DNN training and inference, and it has two major

components: the reuse-based tuner, the reuse pair selector. Two

conditions about the operator characteristics are proposed to decide

whether one operator can reuse the performant tensor program

information of another. For any two operators satisfying the two

conditions, the reuse-based tuner uses a hierarchical search method

to explore a pruned search space of the operator to be optimized,

based on the given performant tensor program information. To

optimize multiple operators, the reuse pair selector first determines

the information reuse relationships among them to reduce the

overall search time needed, based on the estimated search cost

in optimization. The operators with no operator to reuse would

be tuned by a backend compiler, while the others are optimized

by the reuse-based tuner. The reuse relationships form a tree in

the end, with operators and a special root (connecting operators

sent to the backend compiler) as nodes and reuse relationships as

edges. Besides, we propose to add extra operators, namely bridge

operators, to further accelerate the overall optimization process

when the operator pairs satisfying the conditions are insufficient.

Our framework reaches a trade-off between inference perfor-

mance and optimization efficiency. We evaluate the performance of

ETO in two levels: the reuse-based tuner, and the whole framework

(including the reuse pair selector). Experiments are conducted on

both popular DNN operators and DNN operator sets, where An-

sor [27] and ST [19] are baselines. Results show that, compared

with Ansor, the reuse-based tuner gets close or better inference

performance (94.7%− 257.1%×) but is 1.1− 12.1× faster; the overall

performance of ETO is good as well, achieving 91.4% − 101.3% in-

ference performance with 3.1 − 16.1× speedup in searching. ETO

also achieves a better trade-off than ST.

To summarize, ourmajor contribution in this paper is fourfold. (1)

We present a framework to accelerate DNN operator optimization.

(2) We propose an effective and efficient search method with reuse

conditions to find a good tensor program for an operator by reusing

the performant tensor program information of another. (3) We

design a method to increase reuse opportunities among operators

and then determine reuse relationships among operators to reduce

the overall search time. (4) We conduct extensive experiments with

various types of operators and operator sets on GPU which shows

ETO can achieve relatively good operator performance in a much

shorter time than the state-of-the-art methods.

2 BACKGROUND
This section is about the background knowledge of DNN operator

optimization: operator and loop nest, GPU tensor program pattern

and tensor program search space. Table 1 summarizes the notations.

Operator and loop nest. An operator conducts computation

specified by its type over the input values, for example, an operator

of type conv2d conducts 2D convolution. A loop nest is a set of loops

nested together. For an operator, there can be many tensor program

variants, i.e., different low-level programs. Each tensor program

has its latency (inference time) and can be written as a sequence

of loops nests. Figure 2a shows the naïve tensor program of a

conv2d operator, i.e., the tensor program without any optimization.

This naïve tensor program has 2 loop nests: the first one pads the

input data, while the second one computes convolution. We call the

loop nest in the naïve tensor program of an operator, which does

the major computation task, the major loop nest, e.g., the second
loop nest in Figure 2a. There are two kinds of loops in a loop nest:

space loop, denoted by 𝑠ℓ , and reduction loop, denoted by 𝑟 ℓ . 𝑠ℓs

are related to the output tensor after computation, while 𝑟 ℓs are

about the reduction in computation. In Figure 2a, the loops in line 6-

9 are 𝑠ℓs and the loops in line 10-12 are 𝑟 ℓs. The iteration space
of 𝑘 loops L = {ℓ1, ..., ℓ𝑘 }, denoted by I(L), is a 𝑘-dimensional

space where the 𝑖-th dimension corresponds to the iteration of

ℓ𝑖 . For example, the 𝑟 ℓs in the second loop nest of Figure 2a form

a 3D space of shape [512, 1, 1]. Each operator is associated with

an optimized tensor program, which is the best tensor program

found by an optimization method, like autoTVM [5], Ansor [27],

184

(a) The naïve tensor program. (b) A high-performance tensor program. (c) Data loading and parallel computing.

Figure 2: A conv2d example (in NCHW layout; input𝑋 of shape [1, 512, 28, 28]; kernel of shape [128, 512, 1, 1]; stride and dilation are 1; padding
is 0): the naïve tensor program, a performant tensor program and how it works.

Table 1: Notation Table.

Variable Description
𝛼, 𝛽,𝛾, ... operator

𝜏𝛼 operator type of 𝛼

ℓ ; 𝑠ℓ ; 𝑟 ℓ loop; space loop; reduction loop

L𝛼 major loop nest of 𝛼

𝑠L𝛼 ; 𝑟L𝛼 space loops of L𝛼 ; reduction loops of L𝛼

I(·) iteration space

𝑆𝛼 ; S𝛼 a tensor program of 𝛼 ; all tensor program of 𝛼

𝑆∗𝛼 optimized tensor program of 𝛼

𝜇 (𝑆𝛼) latency of 𝑆𝛼

K𝛼 ;K𝛼 a sketch of 𝛼 ; all sketches of 𝛼

A𝛼,K𝛼 an annotation combination of 𝛼 on K𝛼

𝔄𝛼,K𝛼 all annotation combinations of 𝛼 on K𝛼

𝑓 (𝛼,K𝛼 ,A𝛼,K𝛼) 𝑆𝛼 specified by 𝛼,K𝛼 ,A𝛼,K𝛼

and our reuse-based tuner which would be introduced in Section 5.

We define notations related to an operator below.

Definition 1 (operator). An operator 𝛼 is of type 𝜏𝛼 and
associated with: a major loop nest L𝛼 = 𝑠L𝛼 ∪𝑟L𝛼 where 𝑠L𝛼 is 𝑠ℓs
in L𝛼 and 𝑟L𝛼 is 𝑟 ℓs in L𝛼 ; corresponding iteration spaces I(L𝛼),
I(𝑠L𝛼), I(𝑟L𝛼); a set of all tensor program variantsS𝛼 ; an optimized
tensor program 𝑆∗𝛼 ∈ S𝛼 ; and a function 𝜇 : S𝛼 → R+ mapping each
𝑆𝛼 ∈ S𝛼 to its latency.

GPU tensor program pattern. The thread hierarchy of GPU

has two levels: thread block and thread [14]. Programmers often par-

tition the computation task into independent subtasks for thread

blocks to solve them in parallel, and further partition each sub-

task into smaller tasks for threads in the block to solve in parallel.

Threads in a block can work cooperatively, by sharing data through

shared memory and synchronizing execution for memory accesses

coordination. Optimizing tensor programs is essentially transform-

ing loop nests. A general pattern of optimizing loop nests on GPU

is first tiling them and then binding the iteration variables to GPU

thread indices, to make use of the massive parallelism provided by

GPU. Based on the general pattern, other optimization methods

can also be applied, like loop reordering and unrolling, cooperative

fetching (using all threads in a block to cache the input data the

block needs in shared memory [4]), memory load vectorization [27].

For example, the multi-level tiling method used in [27] tiles

the loop nests in an “SSSRRSRS” structure, where “S” means a tile

level of space loops and “R” means a tile level of reduction loops.

The iteration variables of the first three space loop tile levels are

bound respectively to BlockIdx, virtual threads (for reducing shared

memory bank conflicts [4]), and ThreadIdx in GPU. The first “R”

corresponds to the number of cooperative fetches. The loop tiles

on the last four “RSRS” levels are the workload for a single thread.

Using this multi-level tiling method on the conv2d in Figure 2,

denoted by𝛼 , if we tileL𝛼 = {nn, ff, yy, xx, rc, ry, rx} (listed from the

outermost loop to the innermost loop) in the way that, nn, ff, yy, xx
all have 5 tile levels which are [1, 1, 1, 1, 1], [4, 1, 8, 2, 2], [14, 1, 1, 1, 2],
[1, 1, 28, 1, 1] respectively, and rc, ry, rx all have 3 tile levels which

are [4, 64, 2], [1, 1, 1], [1, 1, 1] respectively, then after reordering the

loop tiles according to the “SSSRRSRS” structure, fusing loop tiles

on the same level and doing thread binding, we can get the major

part of the tensor program in Figure 2b. Figure 2c illustrates data

loading and parallel computing in that tensor program.

Tensor program search space. Tensor program search space

definition is not our focus in this paper. Instead, we use the search

space defined in an existing work [27], which has comprehensive

coverage of optimizations on tensor programs and enables flexible

optimization combinations. Please note that given other categories

of search spaces, like the template-based search space in [5], the

reuse-based optimization idea (Section 5) can also be applied.

The search space S𝛼 we use is hierarchical and has two levels:

sketch and annotation. A sketch K𝛼 is a high-level tensor pro-

gram structure derived by applying a sequence of transformations

to the naïve tensor program of 𝛼 (K𝛼 contains information like

loop tile structures, how to fuse loops, cache nodes [27]), and there

is a set of possible sketches for 𝛼 , denoted byK𝛼 .K𝛼 can also be ap-

plied to another operator 𝛽 of the same type. If a tensor program 𝑆𝛼
of 𝛼 using K𝛼 has more than one loop nest and each loop nest has

an individual high-level structure,K𝛼 is designated as a composite
sketch, and each individual high-level structure in K𝛼 is desig-

nated as a sub-sketch of K𝛼 . Annotations are concrete low-level

choices in a sketch (e.g., tile sizes, loop auto unrolling pragmas) [27].

Given K𝛼 , the search space of annotations for 𝛼 is determined, de-

noted by 𝔄𝛼,K𝛼
. Each 𝑆𝛼 ∈ S𝛼 is therefore determined by a sketch

K𝛼 ∈ K𝛼 and a set of annotations A𝛼,K𝛼
∈ 𝔄𝛼,K𝛼

, denoted by

𝑆𝛼 = 𝑓 (𝛼,K𝛼 ,A𝛼,K𝛼
). The size of K𝛼 is rather small, which can

be enumerated [27], e.g., |K𝛼 | = 1 for the conv2d in Figure 2. By

contrast, given 𝛼 andK𝛼 , the annotation search space size |𝔄𝛼,K𝛼
|

185

can be in the order of billions of possible annotation combinations.

Therefore, the major efforts of our reuse-based tuner (Section 5) is

spent on searching a good A𝛼 ∈ 𝔄𝛼,K𝛼
efficiently.

3 REUSE OPPORTUNITY
In this section, we illustrate the opportunity of reusing the per-

formant tensor program information, i.e., learning the hardware

preference for particular types of tensor programs from the high-

performance ones and using it to optimize other operators. Specifi-

cally, according to GPU architecture characteristics, three features

can be extracted from a tensor program of an operator, which are: (1)

𝐵, the number of thread blocks; (2) 𝑇 , the total number of threads

in all thread blocks; (3) 𝑀 , the total amount of shared memory

required by all thread blocks.

In order to analyse the feature relationship between the perfor-

mant tensor programs of two operators and find the information

reuse opportunity for one operator on the other one, we focus on

ordered operator pairs (𝛼, 𝛽) satisfying the reuse conditions that
the types and sketch sets of 𝛼, 𝛽 are the same, and L𝛼 dominates,

or is dominated by L𝛽 . We call such (𝛼, 𝛽) a reuse pair .
Definition 2 (Reuse condition). Given two operators, 𝛼, 𝛽 ,

there are two reuse conditions:
(1) 𝜏𝛼 = 𝜏𝛽 and K𝛼 = K𝛽 ;
(2) L𝛼 = {ℓ1, ..., ℓ𝑘 } andL𝛽 = {ℓ ′

1
, ..., ℓ ′

𝑘
} satisfy ∥I(ℓ𝑖) | ≤ |I(ℓ ′𝑖) |,

for 𝑖 = 1, ..., 𝑘 or |I(ℓ𝑖) | ≥ |I(ℓ ′𝑖) |, for 𝑖 = 1, ..., 𝑘 .

We want to show the following feature relationship exists be-

tween a performant 𝑆𝛼 and a performant 𝑆𝛽 :

𝑟𝐵 (𝑆𝛼 , 𝑆𝛽) ∈ [𝑟1, 𝑟2], 𝑟𝐵 (𝑆𝛼 , 𝑆𝛽) B 𝐵𝑆𝛼 /𝐵𝑆𝛽 (1)

𝑟𝑇 (𝑆𝛼 , 𝑆𝛽) ∈ [1, 𝑟2], 𝑟𝑇 (𝑆𝛼 , 𝑆𝛽) B 𝑇𝑆𝛼 /𝑇𝑆𝛽 (2)

𝑟𝑀 (𝑆𝛼 , 𝑆𝛽) ∈ [1, 𝑟2], 𝑟𝑀 (𝑆𝛼 , 𝑆𝛽) B 𝑀𝑆𝛼 /𝑀𝑆𝛽 (3)

where 𝑟𝐵, 𝑟𝑇 , 𝑟𝑀 denote three feature ratio between 𝑆𝛼 and 𝑆𝛽 re-

spectively; 𝑟1, 𝑟2 describes the difference between the iteration

spaces of 𝛼, 𝛽 (I(L𝛼), I(L𝛽)), i.e., 𝑟1 = |I(𝑟L𝛽) |/|I(𝑟L𝛼) |, 𝑟2 =

|I(L𝛼) |/|I(L𝛽) |. The reason for using 𝑟1, 𝑟2 to define the above

relationship is that different operators of the same type do the same

type of computation but in different iteration spaces, and hence

the iteration space difference can represent a part of the difference

between 𝛼 and 𝛽 . If such feature relationship exists, then we can

make use of it together with a high-performance 𝑆𝛽 (which is 𝑆∗
𝛽

in our method) to narrow down the feature value ranges for 𝛼 , and

only search 𝑆𝛼 s whose feature values are within these ranges to

save the time of optimizing 𝛼 .

To show the existence of feature relationships, we collect the

tensor programsmeasured on an NVIDIAGPU (P100) by an existing

deep learning compiler [27] during the process of optimizing a set

of conv2d operators from a DNN, SSD ResNet50. There are 106

ordered conv2d pairs satisfying the aforementioned conditions. We

compare the tensor program features of the two operators for each

pair. Before we present statistics, we first define some notations.

G𝛼 (𝑡) = {𝑆𝛼 : 𝜇 (𝑆𝛼) < 𝜇 (𝑆∗𝛼)/𝑡, 𝑆𝛼 ∈ S𝛼 } denotes the set of all
the tensor program variants of 𝛼 with 𝑡-performance compared

with 𝑆∗𝛼 , where 𝑡 is a constant controlling the quality of 𝑆𝛼 . We

set 𝑡 to 90% to get the following analysis results. For each ordered

operator pair (𝛼, 𝛽) satisfying the aforementioned conditions and

each 𝑆𝛼 ∈ G𝛼 (90%), we compute three feature ratios, 𝑟𝐵, 𝑟𝑇 , 𝑟𝑀 ,

between 𝑆𝛼 and 𝑆∗
𝛽
. To learn the relationship between the feature

ratios and the iteration space difference, for each above pair (𝛼, 𝛽),
we compute 3 sets:

Φ𝐵 (𝛼, 𝛽) = {𝑆𝛼 : 𝑟𝐵 (𝑆𝛼 , 𝑆∗𝛽) ∈ [𝑟1, 𝑟2], 𝑆𝛼 ∈ G𝛼 (90%)} (4)

Φ𝑇 (𝛼, 𝛽) = {𝑆𝛼 : 𝑟𝑇 (𝑆𝛼 , 𝑆∗𝛽) ∈ [1, 𝑟2], 𝑆𝛼 ∈ G𝛼 (90%)} (5)

Φ𝑀 (𝛼, 𝛽) = {𝑆𝛼 : 𝑟𝑀 (𝑆𝛼 , 𝑆∗𝛽) ∈ [1, 𝑟2], 𝑆𝛼 ∈ G𝛼 (90%)} (6)

where 𝑟1, 𝑟2 are defined as above. |Φ𝐵 (𝛼, 𝛽) | is the number of per-

formant 𝑆𝛼 in G𝛼 (90%) such that the ratio of 𝐵 between it and 𝑆∗
𝛽

is within the range of [𝑟1, 𝑟2]. Similarly, |Φ𝑇 (𝛼, 𝛽) | is the number of

performant 𝑆𝛼 in G𝛼 (90%) such that the ratio of 𝑇 between it and

𝑆∗
𝛽
is within the range of [1, 𝑟2]. |Φ𝑀 (𝛼, 𝛽) | is the number of per-

formant 𝑆𝛼 in G𝛼 (90%) such that the ratio of𝑀 between it and 𝑆∗
𝛽

is within the range of [1, 𝑟2]. We find that, of the 106 conv2d pairs,

87% satisfy that |Φ𝐵 (𝛼, 𝛽) | > 0; 92% satisfy that |Φ𝑇 (𝛼, 𝛽) | > 0; 89%

satisfy that |Φ𝑀 (𝛼, 𝛽) | > 0.

These results show that, even if we limit the search space of

tensor programs to those whose three features are within a nar-

rowed range based on Equations (1) to (3), denoted by S′𝛼 , S′𝛼 is

still very likely to contain an 𝑆𝛼 with relatively good performance

(90% inference performance of 𝑆∗𝛼). Therefore, we conclude that, it
is possible to learn the hardware preference for particular types of

tensor programs from the performant ones and make use of it to

speed up the optimization of other operators.

4 FRAMEWORK OVERVIEW
In this work, given a set of distinct operatorsA and the frequency

𝑤𝛼 of each 𝛼 ∈ A, our goal is to reach a trade-off between the

operator optimization effect, i.e., the total latency of the operators,

and the optimization efficiency, i.e., the total time in finding a good

tensor program for each 𝛼 ∈ A.

As illuminated in Section 3, to optimize an operator, our ETO

framework can reuse the tensor program information of another

optimized operator. Based on such information reuse, we design a

component in ETO, the reuse-based tuner , to achieve good opti-

mization effect on any reuse pair with shorter search time than the

time-consuming compilers. With the reuse-based tuner, given the

operators to be optimized, the next task is to determine the reuse

relationships among the operators, i.e., selecting reuse pairs for

the operators, and we design a component for this task, the reuse
pair selector . There are various ways to select the reuse pairs, and
different reuse pairs correspond to different search costs. Since we

rely on the reuse-based tuner to obtain good operator performance

on any reuse pair, the reuse pair selector is used to select the set

of reuse pairs with the minimum total search cost when using the

reuse-based tuner in ETO. The reuse pair selector considers extra

operators as well to further reduce the overall search time.

Figure 3 shows the architecture of ETO. The input is a set of

operators to be optimized. The reuse pair selector first generates a

set of reuse pairs and then selects a subset of them such that the

total search time is minimized. Then the operators involved with no

information to reuse are optimized by the backend compiler, whose

optimized tensor programs are stored in a database. The reuse-

based tuner optimizes the remaining operators involved. It takes a

selected reuse pair and the corresponding tensor program from the

186

Figure 3: Framework overview of ETO.

Figure 4: Example workflow of ETO.

database as input each time. The optimized tensor program is also

stored in the database for later reuse pairs to reuse its information.

Example 1. Figure 4 shows how ETO works. The given DNN has 5
different operators: 𝛼1 − 𝛼5 (𝛼1 appears twice). Suppose the reuse pair
selector generates 8 reuse pairs from the operators (no extra operators
in this example), which correspond to the edges in the second step
(e.g., the edge (𝛼1, 𝛼3) represents the reuse pair (𝛼3, 𝛼1)), and selects
3 of them (the red edges) to achieve the minimum total search time.
Then 𝛼1, 𝛼2 are tuned by the backend compiler, because they have no
information to reuse. Their best tensor programs after tuning are 𝑆∗𝛼1

and 𝑆∗𝛼2

, respectively, which are stored in a database. 𝑆∗𝛼1

would be
used for the two 𝛼1 in the DNN. The reuse-based tuner next takes the
reuse pair (𝛼3, 𝛼1) and 𝑆∗𝛼1

as input and generates 𝑆∗𝛼3

for 𝛼3, which
is also stored. 𝑆∗𝛼3

and the reuse pair (𝛼4, 𝛼3) are then taken by the
reuse-based tuner to optimize 𝛼4. 𝛼5 is also tuned by the reuse-based
tuner with the reuse pair (𝛼5, 𝛼2) and 𝑆∗𝛼2

as input.

5 REUSE-BASED TUNER
The reuse-based tuner optimizes an operator by reusing the infor-

mation of a performant tensor program of another operator. The

problem that the reuse-based tuner needs to solve is defined below.

Definition 3 (operator optimization). Given a reuse pair
(𝛼, 𝛽) and 𝑆∗

𝛽
, select a sketch K𝛼 ∈ K𝛼 and a set of annotations

A𝛼,K𝛼
∈ 𝔄𝛼,K𝛼

, such that 𝜇 (𝑓 (𝛼,K𝛼 ,A𝛼,K𝛼
)) is minimized.

Given a reuse pair (𝛼, 𝛽), since K𝛼 = K𝛽 , whatever |K𝛼 | is, the
reuse-based tuner would directly take the sketch used in 𝑆∗

𝛽
as the se-

lectedK𝛼 . Thus, the left optimization work is to find a good A𝛼,K𝛼

for the selected K𝛼 . Specifically, in this section, we first discuss

how to find A𝛼,K𝛼
for one important type of sketch (Section 5.1),

which has a multi-level tile structure. After that, we discuss the

optimization work for other types of sketches (Section 5.2).

5.1 Multi-Level Tile Sketch
The multi-level tile sketch is the type of sketch generated by

multi-level tiling [27], i.e., the sketch is tiled using the “SSSRRSRS”

structure (Section 2).Wemainly focus on this type of sketch because

(1) the “SSSRRSRS” tile structure can be applied to all the compute-

intensive dense operators in deep learning (like conv2d, matrix

multiplication) [27], and (2) it enables us to tile each loop flexibly

based on the hardware preference understanding and thus results

in an extremely large search space ofA𝛼,K𝛼
(on the order of billions

of possible annotation combinations).

From Section 3 we know it is likely that we prune the annotation

space𝔄𝛼,K𝛼
according to the feature ratio ranges (i.e., [𝑟1, 𝑟2], [1, 𝑟2])

in Equations (1) to (3) but still find a performant tensor program.

However, even the pruned search space𝔄′
𝛼,K𝛼

is too large to be enu-

merated due to the following two reasons: (1) for reuse pair (𝛼, 𝛽),
the size of the pruned feature space (𝐵,𝑇 ,𝑀) of 𝛼 is𝑂 (𝑑1 ×𝑑2 ×𝑑3),
where 𝑑𝑖 is the number of possible values such that the feature ratio

is within the specified range in Equations (1) to (3) for each feature,

and 𝑑𝑖 is related to |I(𝑟L𝛽) |/|I(𝑟L𝛼) |, |I(L𝛼) |/|I(L𝛽) | and |I(ℓ) |
of each involved loop ℓ of 𝛼 ; (2) multiple annotation combinations

can correspond to the same feature value combination. For the first

reason, we devise a hierarchical search method, which decomposes

the combination of the 3 features. For the second reason, we use

two cost models to guide the tile size selection given feature values.

Before introducing the solution, we first define some concepts

related to a tensor program. BShape, the block shape, is defined to

be the shape of the output tensor a thread block needs to compute.

TShape, the thread shape, is defined to be the shape of the out-

put tensor a thread needs to compute. The last concept, LShape,
the load number shape, is defined to be a list of the number of

cooperative fetches on each reduction loop. Below is an example.

Example 2. Suppose a conv2d operator 𝛼 has an output tensor of
shape [1, 4, 16, 16] (the shape dimensions correspond to batch size,
kernel number, height, width). Then if the BShape of an 𝑆𝛼 is [1, 4, 8, 8],
it means in 𝑆𝛼 a thread block needs to compute half of the height
and the width of each output channel in each batch, and there are 4
thread blocks in total. Given the above BShape, suppose the TShape
of 𝑆𝛼 is ([1, 2, 1, 1], [1, 1, 4, 4]). Then the first [1, 2, 1, 1] indicates the
second dimension of the BShape is divided into two parts by virtual
split [4, 27], and the second [1, 1, 4, 4] is the shape of the output tensor
in each subarea after virtual split a thread needs to compute. Therefore
a thread computes 32 points in the output tensor, and there are 8
threads in total. Since 𝛼 has 3 reduction loops (corresponding to input
channel number, kernel height, kernel width), suppose LShape of 𝑆𝛼
is [4, 1, 1]. Then it means a thread block of 𝑆𝛼 would do 4 cooperative
fetches, and each time only load the data for computing convolution
on 1/4 input channels but the whole kernel height and width.

Weuse 2 cost models to guide the selection of BShape and TShape

of a tensor program. The BShape cost is defined as the number

of cache line requests by all thread blocks to transfer data they

need from global memory to shared memory. The TShape cost
is defined as the number of separate conflict-free shared memory

requests by all threads in a block. Based on the cost models, the

main idea of the hierarchical search method is as follows. Instead

of enumerating all possible combinations of the 3 features 𝐵,𝑇 ,𝑀

mentioned in Section 3, for each 𝐵, we can compute the best BShape

according to the BShape cost. Then we compute a default 𝑀 (by

computing a default LShape) and enumerate𝑇 given 𝐵,𝑀 . For each

𝑇 , we compute the best TShape according to the TShape cost. We

next enumerate𝑀 (by enumerating LShape) given 𝐵 and the best𝑇

187

for 𝐵 we get previously. In the above process, other annotations (i.e.,

auto unrolling and memory load vectorization) are set to default

values adaptively, and after it, these annotations are enumerated in

order. We repeat these steps for each 𝐵 and return the best tensor

program during the search.

Algorithm 1: Hierarchical Search

Input: A reuse pair (𝛼 , 𝛽) and 𝑆∗
𝛽
.

Output: A high-performance 𝑆𝛼 .

1: 𝑆∗𝛼 ← None

2: 𝐵𝑆∗
𝛽
,𝑇𝑆∗

𝛽
, 𝑀𝑆∗

𝛽
← analyse 𝑆∗

𝛽

3: for 𝐵 in [𝐵𝑆∗
𝛽
× |I(𝑟L𝛽) |/ |I(𝑟L𝛼) |, 𝐵𝑆∗

𝛽
× |I(L𝛼) |/ |I(L𝛽) |] do

4: C ← ∅
5: 𝑆𝛼 ← None

6: BShape← GetBShape(𝐵)

7: LShape← GetLShape(BShape)

8: for𝑇 in [𝑇𝑆∗
𝛽
,𝑇𝑆∗

𝛽
× |I(L𝛼) |/ |I(L𝛽) |] do

9: TShape← GetTShape(𝑇 , BShape, LShape)

10: C ← C ∪ {𝐺𝑒𝑡𝑆 (𝐵𝑆ℎ𝑎𝑝𝑒,𝑇𝑆ℎ𝑎𝑝𝑒, 𝐿𝑆ℎ𝑎𝑝𝑒) }
11: 𝑆𝛼 ← BestS(C)
12: C ← ∅
13: BShape, TShape← BShape, TShape of 𝑆𝛼

14: for LShape s.t.𝑀 in [𝑀𝑆∗
𝛽
, 𝑀𝑆∗

𝛽
× |I(L𝛼) |/ |I(L𝛽) |] do

15: C ← C ∪ {𝐺𝑒𝑡𝑆 (𝐵𝑆ℎ𝑎𝑝𝑒,𝑇𝑆ℎ𝑎𝑝𝑒, 𝐿𝑆ℎ𝑎𝑝𝑒) }
16: 𝑆𝛼 ← BestS({C ∪ 𝑆𝛼 })
17: C ← Tune(different auto unrolling pragmas, 𝑆𝛼)

18: 𝑆𝛼 ← BestS(C ∪ {𝑆𝛼 })
19: for input X of 𝛼 do
20: A ← {vectorization lengths for loading X}
21: C ← Tune(A, 𝑆𝛼)

22: 𝑆𝛼 ← BestS(C ∪ {𝑆𝛼 })
23: 𝑆∗𝛼 ← BestS({𝑆𝛼 , 𝑆∗𝛼 })
24: return 𝑆∗𝛼

Algorithm 1 shows the details of the search method. Given a

reuse pair (𝛼, 𝛽) and 𝑆∗
𝛽
, 𝑆∗𝛼 tracks the best 𝑆𝛼 (line 1). We first

extract the 3 features from 𝑆∗
𝛽
: 𝐵𝑆∗

𝛽
,𝑇𝑆∗

𝛽
, 𝑀𝑆∗

𝛽
(line 2). Then we enu-

merate all 𝐵 within the range of [𝐵𝑆∗
𝛽
× |I(𝑟L𝛽) |/|I(𝑟L𝛼) |, 𝐵𝑆∗

𝛽
×

|I(L𝛼) |/|I(L𝛽) |] (line 3). 𝑆𝛼 tracks the best 𝑆𝛼 with specific 𝐵

(line 5). For each 𝐵, we use GetBShape to get the BShape with the

lowest cost (line 6), and GetLShape to get the default LShape (line 7).

These two operations are defined as follows.

GetBShape. Given a thread block number, GetBShape returns

the min-cost BShape of 𝛼 , assuming the input a block needs is

requested together at once and the cache line request number by

each block is the same as that by the first block.

GetLShape. Given a BShape, GetLShape computes an LShape

of 𝛼 , such that the amount of shared memory requested by a thread

block is close to that in 𝑆∗
𝛽
. This is because the maximum amount

of shared memory per thread block is limited by the hardware, and

such LShape makes the constaint more likely to be satisfied. To

simplify the computation, we set only one dimension of the LShape

to a value larger than 1. For example, the LShape for a conv2d

operator with 3 reduction loops cannot be [4, 2, 1] in our method.

Given the BShape and the LShape, we next enumerate all 𝑇

within the range of [𝑇𝑆∗
𝛽
,𝑇𝑆∗

𝛽
× |I(L𝛼) |/|I(L𝛽) |] (line 8). For each𝑇 ,

we use GetTShape to get the min-cost TShape (line 9), and collect

the 𝑆𝛼 generated by GetS with the BShape, the LShape and the

TShape (line 10). GetTShape and GetS are defined as follows.

GetTShape. Given the thread number of a block, a BShape and

an LShape, GetTShape returns the min-cost TShape of 𝛼 , assuming

the data a thread needs would only be loaded once by it from the

shared memory.

GetS. Given a BShape, a TShape, and an LShape, GetS outputs

an 𝑆𝛼 with other annotations set to default values. Specifically, the

first 4 tile levels of the “SSSRRSRS” tile structure can be determined

directly by the input. For other tile levels, we tile each loop in a

way such that, supposing the remaining loop length of it is 𝑥 , the

last tile size 𝑑 is min{𝑑 |𝑥/𝑑 ∈ Z, 𝑑 ≠ 1}, if such 𝑑 exists; otherwise,

we set 𝑑 to 1. Suppose for a space loop of length 16, the tile sizes

on the first 3 levels are 2. The remaining loop length is hence 2,

and the final tile sizes related to this loop is [2, 2, 2, 1, 2]. For other
annotations, we do not use vectorization in cooperative fetching

by default, which is controlled by tile sizes on data load loops, so

we set the related tile sizes to 1; we set the auto unrolling pragma

such that the number of registers needed by a thread, which is

approximated by the sum of the number of registers for the thread

(1) to store the final results and (2) to store the loaded input data in

the innermost loop after unrolling, is close to that in 𝑆∗
𝛽
. Then we

do the first round of measurement, and set 𝑆𝛼 to the min-latency

𝑆𝛼 in C (line 11). The second round of measurement is on 𝑆𝛼 s

generated by changing the LShape of 𝑆𝛼 such that𝑀 of 𝑆𝛼 is in the

range of [𝑀𝑆∗
𝛽
, 𝑀𝑆∗

𝛽
×|I(L𝛼) |/|I(L𝛽) |] (line 12-15).We update 𝑆𝛼 in

line 16. The third round of measurement is about changing the auto

unrolling pragma in 𝑆𝛼 with other annotations fixed (line 17-18).

We use the auto unrolling pragma options in the backend compiler

directly. Finally, we change the memory load vectorization length in

cooperative fetching of 𝑆𝛼 for the inputs of 𝛼 one by one, and keep

on updating 𝑆𝛼 (line 19-22). Since GPU global memory instructions

only support reading/writing words of 1, 2, 4, 8, or 16 bytes [14],

we use 16 bytes to bound the vectorization lengths. For example, if

the data type of 𝛼 is 32-bit float, then we only try 2 and 4 for the

vectorization length. When an iteration of 𝐵 is finished, we update

𝑆∗𝛼 using 𝑆𝛼 (line 23). In the end, 𝑆∗𝛼 is returned.

Example 3. Let 𝛽 denote the conv2d in Figure 2 and 𝛼 denote
another conv2d which is the same as 𝛽 except that its input channel
number is 256. Suppose 𝑆∗

𝛽
is the tensor program in Figure 2b, and we

need to optimize 𝛼 given the reuse pair (𝛼, 𝛽). The BShape, TShape,
LShape of 𝑆∗

𝛽
are [1, 32, 2, 28], ([1, 1, 1, 1], [1, 4, 2, 1]), [4, 1, 1], respec-

tively. We know 𝐵𝑆∗
𝛽
= 56,𝑇𝑆∗

𝛽
= 56×224,𝑀𝑆∗

𝛽
= 56×11264. The auto

unrolling pragma of 𝑆∗
𝛽
has a value of 1024. |I(𝑟L𝛽) |/|I(𝑟L𝛼) | = 2.

|I(L𝛼) |/|I(L𝛽) | = 1/2. The range for 𝐵 is [28, 112], and hence 𝐵 can
be {28, 32, 49, 56, 64, 98, 112}. We take the iteration of 𝐵 = 56 as an
example. When 𝐵 = 56, the best BShape is [1, 32, 2, 28]. The default
LShape is [2, 1, 1].𝑇 can be {56× 112, 56× 128, 56× 224}. The respec-
tive best TShapes are ([1, 1, 1, 1], [1, 4, 2, 2]), ([1, 1, 1, 1], [1, 2, 1, 7]),
([1, 1, 1, 1], [1, 4, 2, 1]). After the first round of measurement, 𝑆𝛼 is
set to the tensor program with 𝑇 = 56 × 224 and the TShape being
([1, 1, 1, 1], [1, 4, 2, 1]), which achieves 3303.31 GFLOPS. In 𝑆𝛼 , the
auto unrolling pragma value is set to 1024 adaptively and the vec-
torization lengths are set to 1. Then we change the LShape of 𝑆𝛼 to

188

[4, 1, 1], because𝑀 is in the range [𝑀𝑆∗
𝛽
/2, 𝑀𝑆∗

𝛽
] only when LShape

is [4, 1, 1] or [2, 1, 1]. After the second round of measurement, we try
to update 𝑆𝛼 . We next change the auto unrolling pragma value of 𝑆𝛼
to {0, 16} (the full options are {0, 16, 64, 512, 1024}, but only {0, 16}
have different unrolling effect from that of 1024). After this, we update
𝑆𝛼 again according to the results. Finally, we change the vectorization
length of loading data to {2, 4} (the vectorization length of loading
the kernel is not tuned because 2 or 4 cannot divide the number of
kernel data points a thread needs to load). 𝑆𝛼 is updated after this
round of measurement. Then we use 𝑆𝛼 to update 𝑆∗𝛼 .

Analysis. The time complexity of Algorithm 1 is 𝑂 (𝑑1 × (𝑑2 +
𝑑3)), and the space complexity is 𝑂 (𝑚𝑎𝑥 (𝑑2, 𝑑3)), where 𝑑1, 𝑑2, 𝑑3
are the number of 𝐵, 𝑇 and LShapes (hence𝑀) being enumerated,

respectively. The detailed analysis is in the technical report [8].

5.2 Other Sketch Types
Besides the multi-level tile sketch, there are also other types of

sketches, e.g., the cross-thread reduction sketch which does cross-

thread reduction [27] on an operator naïve tensor program, the

two-level tile sketch which fuses space loops and tile the fused

loop into 2 levels [27], the unroll-constant-tensor sketch which

unrolls loops of constant tensors and tiles the remaining space loops

into 2 levels [27]. Sketches on GPU all satisfy the general pattern

(Section 2) of partitioning a computation task into subtasks by loop

tiling and assigning them to threads. In fact, they can be regarded as

special cases of themulti-level tile sketch and the searchmethods for

them are simplified versions of Algorithm 1. We have summarized

the common cases in different types of sketches that would simplify

the search process, and each sketch may involve more than one

case. We provide more details in our technical report [8].

For an operator with a composite sketch, we deal with the sub-

sketches one by one. If a sub-sketch is a multi-level tile one, we

apply Algorithm 1 on it. Otherwise, the search method is a sim-

plified version of Algorithm 1 as mentioned above. For the search

method of each sub-sketch, a new major loop nest is chosen from

the related loop nests in the naïve tensor program to decide the

feature value ranges (Equations (1) to (3)).

6 REUSE PAIR SELECTOR
With the reuse-based tuner used in ETO, the reuse pair selector

solves the following problem.

Definition 4 (reuse pair selection). Given a set of operators
A, determine the reuse pairs forA to minimize the total time needed
by the backend compiler and the reuse-based tuner to optimize A.

Given all the possible reuse pairs of the operators to be optimized,

the search time of each reuse pair on the reuse-based tuner, and

the search time of each operator on the backend compiler, we

can build a directed graph 𝐺 with the operators as nodes and the

reuse pairs as edges. We then add a special root to 𝐺 with an edge

from it to each operator, and such an edge represents the operator

being tuned by the backend compiler. The edge weights are the

corresponding search time. 𝐺 is designated as an optimization
choice (OC) graph of the related operators. Hence the reuse pair

selection problem (Definition 4) can be regarded as a min-cost
arborescence problem on 𝐺 , which can be solved in polynomial

time. Moreover, we can further reduce the total search time of ETO

by adding some extra operators. The details would be presented

in Section 6.2. Below we first introduce the method of estimating

the search time.

6.1 Search Time Estimation
Since we cannot obtain the actual search time before running

the optimization method, to estimate the search cost, we use the

number of tensor programs which are measured on the hardware.

For the backend compiler to tune an operator, the search cost can

be set to the maximum number of measurement trials of it (many

works [5, 27] require us to limit the number of measurement trials

because of the huge search space). However, for the reuse-based

tuner to tune an operator, the exact number of measurements trials

still cannot be computed, because for example we do not know the

ranges in Equations (1) to (3) without 𝑆∗
𝛽
in Algorithm 1.

On the other hand, given the sizes of BShape, TShape, and LShape

in the reused tensor program, the number of measurement trials

by Algorithm 1 can be estimated. Note that to approximate the num-

ber of auto unrolling pragmas and vectorization lengths (line 17, 20

in Algorithm 1), we assume all the possible choices of them would

be tested. Based on all possible combinations of the sizes of BShape,

TShape, and LShape in the reused tensor program, we can compute

the average estimated measurement trial number by Algorithm 1

for a reuse pair, and we observe that this result is close to the ac-

tual number of measurement trials. We have a similar observation

for the simplified versions of Algorithm 1 (Section 5.2) as well. To

verify that our observation holds for different operator types, we

have randomly sampled 40 reuse pairs, and for each reuse pair we

plotted the curve of the estimated search cost vs. the assumption

about the sizes of BShape, TShape, and LShape in the reused tensor

program. Figure 5 provides an example curve for a reuse pair with

the multi-level tile sketch where our observation holds. The other

39 curves can be found in the technical report [8], and they are

very similar to Figure 5 since the definition of feature value ranges

(Equations (1) to (3)) and the search methods are independent of

operator types (like Algorithm 1 works for all types of operators

with the multi-level tile sketch).

Based on the above observation, we can compute the average

estimated measurement trial number to estimate the search cost.

For a reuse pair (𝛼, 𝛽) where |K𝛼 | > 1, we first use the maximum

possible search cost of it in the reuse pair selection. After we observe

the selected sketch for an operator with the same type and sketches

as 𝛼 (this can be done after optimizing the first such operator

according to the reuse pair selection result), we can reestimate

the search cost and then reselect relevant reuse pairs.

One practical issue of this estimation method is that it can be

very costly, because of the large sample space (sizes of BShape,

TShape, and LShape) and the large number of reuse pairs (after we

add extra operators as aforementioned). Hence we only randomly

sample a small part of the sample space to approximate the exact

average estimated search cost. We tested this sampling method on

the above 40 reuse pairs, and the ratio of the average estimated

search cost over the actual measurement trial number is 1.04 on

average, ranging in [0.54, 1.62]. Hence, the empirical results indicate

that sampling will not cause extreme estimation error, and the

performance of our search cost estimation method is acceptable.

189

Figure 5: Estimated # Measurement Trials.

(a) OC graph without bridge operators. (b) OC graph with bridge operators.

Figure 6: Improve search efficiency with bridge operators.

6.2 Bridge Operators
Only considering the reuse pairs from the operators we need to

optimize may be insufficient to improve the overall search efficiency

of ETO significantly. For example, for the 5 different batch matmul

operators in BERT-Base [7], there are only 4 possible reuse pairs.

Figure 6a shows the OC graph 𝐺 to find the min-cost arborescence

on when selecting reuse pairs, where node 1 is a special root and

the other nodes correspond to the operators. In𝐺 , node 5,6 are only

connected to node 1, i.e., there is no reuse pair for them. The edges

of the min-cost arborescence are shown in red, and the total cost of

them is 3190.8, lower than the total cost without reuse pairs (5000).

However, there is still room to reduce the total search cost.

To address the limitation, we consider extra operators, desig-

nated as bridge operators. Specifically, if operators 𝛼, 𝛽 cannot

directly reuse each other, a bridge operator 𝛾 can be added for them

such that 𝛼,𝛾 satisfy the reuse conditions and so do 𝛽,𝛾 . In this way,

𝛼 and 𝛽 build an indirect reuse relationship with each other. Note

that there can be many choices of 𝛾 . For example, 𝛼, 𝛽 are 2 conv2d

operators with I(L𝛼) of shape [1, 64, 14, 14, 64, 3, 3] and I(L𝛽) of
shape [1, 64, 28, 28, 64, 1, 1]. The loop nest domination condition

(condition 2 in Definition 2) is violated, because the third dimen-

sion of I(L𝛼) is smaller than that of I(L𝛽) (14 < 28), but the last

dimension of I(L𝛼) is larger than that of I(L𝛽) (3 > 1). Suppose

K𝛼 = K𝛽 . Then many operators can serve as a bridge between

𝛼 and 𝛽 , e.g., a conv2d operator 𝛾1 with K𝛼 = K𝛾1 and I(L𝛾1) of
shape [1, 64, 14, 14, 64, 1, 1], or a conv2d operator 𝛾2 with K𝛼 = K𝛾2
and I(L𝛾2) of shape [1, 64, 12, 12, 64, 1, 1] (or [1, 64, 28, 28, 64, 3, 3]).
Therefore, it is necessary to only focus on interesting bridge opera-

tors to limit the bridge operator search space. Intuitively, the search

time of a reuse pair (𝛼, 𝛽) will be smaller if the difference between

L𝛼 and L𝛽 is smaller, and an operator with smaller iteration space

size of the major loop nest is easier to be optimized (in terms of both

smaller search space and less measurement time to get its latency).

Hence we would only consider 𝛾1 above as the bridge operator for

𝛼, 𝛽 . The bridge operator is formally defined below.

Definition 5 (bridge operator). Given two operators, 𝛼 with
L𝛼 = {ℓ1, ..., ℓ𝑘 } and 𝛽 with L𝛽 = {ℓ ′

1
, ..., ℓ ′

𝑘
}, where 𝜏𝛼 = 𝜏𝛽 and

K𝛼 = K𝛽 , the bridge operator 𝛾 for them is an operator such that:

• I(L𝛾) is of shape [𝑚𝑖𝑛(|I(ℓ1) |, |I(ℓ ′
1
) |), ...,𝑚𝑖𝑛(|I(ℓ𝑘) |, |I(ℓ ′𝑘) |)];

• 𝜏𝛾 = 𝜏𝛼 and K𝛾 = K𝛼 .

For the parameters of 𝛾 which cannot be determined by L𝛾 , we set
them to default values, e.g., 1 as the default stride of a conv2d operator.

In the content below, A denotes an operator set without bridge

operators; A and P denote an operator set expanded from A with

bridge operators and a set of selected reuse pairs, respectively; A ′
denotes the operators involved in P. The total search cost in this

case is the sum of (1) the search costs for the backend compiler to

tune the operators inA ′ with no operator to reuse tensor program

information of, and (2) the search costs for the reuse-based tuner

to tune other operators in A ′ according to P. To select reuse pairs,

we also build an OC graph𝐺 = (𝑉 , 𝐸) ofA, but the reuse pair selec-

tion problem is now regarded as a directed steiner tree problem
on 𝐺 , which can be solved by an existing fast |A|-approximation

algorithm [23] in 𝑂 (|A||𝐸 | |A|2) time.

A practical issue is the cost of enumerating all the bridge oper-

ators. Given A, we can keep on adding bridge operators until we

get the closure of A under this operation, and the closure size is

finite: if we define the k-hop bridge operator set B𝑘 to be all the

bridge operators for∀𝛼, 𝛽 ∈ A⋃𝑘−1
𝑖=1 B𝑖 andB𝑘∩(A

⋃𝑘−1
𝑖=1 B𝑖) = ∅

(𝑘 ∈ N+), then for operators whose major loop nests have𝑚 loops,

the bridge operator can be at most (𝑚 − 1)-hop. However, even if

𝑚 = 2, there can be as many as 𝑂 (𝑛2) bridge operators and 𝑂 (𝑛4)
reuse pairs, where 𝑛 = |A|. In fact, we found it takes 1.5 hours to

compute all the bridge operators for a set of 167 conv2d operators

and get all the reuse pairs of the expanded operator set. To control

the time for ETO to add bridge operators and generate reuse pairs,

given A, we need to find the smallest set of bridge operators such

that the total search cost according to the later selected reuse pairs

P is minimized.

The problem of finding such a minimum set of bridge operators

is NP-hard. The proof can be done by reducing the directed steiner

tree problem to it. It is worth noting that we have no requirement

on the search cost 𝑐 of an operator, except that 𝑐 ∈ R+. Specifically,
(1) for reuse pairs 𝑃1 = (𝛼, 𝛽), 𝑃2 = (𝛽, 𝛼), the respective search
costs 𝑐 (𝑃1) and 𝑐 (𝑃2) can be different; (2) the search cost is not

guaranteed to satisfy the triangle inequality on the OC graph𝐺 , i.e.,

given three edges 𝑒1 = (𝑣1, 𝑣2), 𝑒2 = (𝑣2, 𝑣3) and 𝑒3 = (𝑣1, 𝑣3) on 𝐺 ,
and their respective weights 𝑐1, 𝑐2, 𝑐3, 𝑐1 + 𝑐2 < 𝑐3 may hold. The

proof can be found in [8]. Therefore, ETO heuristically only adds

1-hop bridge operators as they can result in a significant increase

to the possible indirect reuse relationships, which can be done in

(|A|2) time. The example in Figure 6b shows that with 1-hop bridge

operators (the white circular nodes), the number of reuse pairs is

increased from 4 to 24, and the minimum search cost achieved by

ETO decreases from 3190.8 to 1555.2.

190

7 EXPERIMENTS
ETO is implemented mainly in Python based on Ansor [27]. The

algorithm for reuse pair selection with bridge operators is imple-

mented in Java based on [23, 24]. Ansor [27] is used as the backend

compiler. We evaluate the effectiveness and efficiency of ETO in

optimizing DNN operators. Specifically, compared with the existing

methods, we have tested two points: (1) for an operator, whether

ETO has close or better optimization effect in a shorter time using

the reuse-based tuner; (2) for a set of operators, whether ETO has

close or better overall optimization effect in a shorter time. The

details about these two tests are presented in Section 7.1 and Sec-

tion 7.2 respectively. All the experiments are run on a machine with

a 12-core Intel Xeon E5-2690 CPU, an NVIDIA GPU (Tesla P100)

and 220 GB of RAM. The data type is float32 in all the evaluations.

7.1 Performance on Single Reuse Pair
Workloads. We evaluate ETO on 10 types of deep learning op-

erators, which are: 1D, 2D, and 3D convolution (C1D, C2D, C3D

respectively), batch matrix multiplication (BMM), group convo-

lution (GRP), depthwise convolution (DEP) [12], transposed 2D

convolution (T2D) [15], capsule 2D convolution (CAP) [11], Wino-

grad 2D convolution (WIN) [13], and frobenius norm (FRB). For

each type 𝜏 , we collect operators from popular deep learning mod-

els or from the experiments of Ansor [27], and set their batch sizes

to be 1 and 16 to get a set A𝜏 : the CAP and FRB operators are

from [27], and operators of the other types are randomly sampled,

respectively, from an operator set in Table 2 (the WIN operators

are from the operators in ResNet50 which can be computed using

the Winograd algorithm) and its 1-hop bridge operators. Then from

all the reuse pairs of A𝜏 with estimated search cost lower than the

maximum of 1000 and the operator search space size, we randomly

sample 40 reuse pairs as the test cases, since we set the maximum

measurement trial number to be 1000 for the backend compiler,

and a reuse pair with higher search cost would not be selected by

ETO. For all types of operators we collect, except FRB and WIN,

their possible sketches are multi-level tile sketches (Section 5.1).

Each FRB operator has two possible sketches: a cross-thread re-

duction sketch; a composite one consisting of two two-level tile

sub-sketches. The composite sketch of the collected WIN operators

has four sub-sketches: two unroll-constant-tensor sub-sketches, a

multi-level tile sub-sketch and a two-level tile sub-sketch.

Settings. The baselines are Ansor (commit: 3635945) [27] and

TopK of ST [19]. For each reuse pair (𝛼 , 𝛽), we use Ansor to tune

𝛼, 𝛽 with up to 1,000 measurement trials respectively (the same as

in [27]), and store all the tensor programs of 𝛽 (𝑆𝛽s) during the

search. TopK directly applies the respective sketches and annota-

tions of 𝐾 𝑆𝛽 s found by Ansor to 𝛼 in an iteration, and repeats this

process from high-performance 𝑆𝛽 to low-performance 𝑆𝛽 until

it finds an 𝑆𝛼 which can run, and outputs the best 𝑆𝛼 during the

search. In TopK, 𝐾 is set to 3 (the same as in ST of TVM [19]). ETO

optimizes 𝛼 based on the best 𝑆𝛽 found by Ansor.

Metrics. To measure the performance of ETO on a single reuse

pair, we adopt two metrics: throughput and search time (to optimize

an operator). The throughput of an operator is the reciprocal of its

latency. For a reuse pair (𝛼, 𝛽), the throughput of it refers to the

throughput of 𝛼 . We report 2 types of the search time for Ansor:

Figure 7: Inference performance of an operator.

Figure 8: Search time to optimize an operator.

“Ansor total”, “Ansor best” are the total search time and the time to

get the maximum throughput for Ansor, respectively.

Results Analysis.We normalize the throughput to the through-

put optimized by Ansor for each reuse pair, and report the average

normalized throughput of 40 reuse pairs in Figure 7, where the value

on a bar is the average result for the operator type. The search time

is normalized to the search time of “Ansor total” for each reuse

pair, and Figure 8 shows the average result of 40 reuse pairs for

each operator type, where the value on a bar is the speedup rel-

ative to the average normalized search time of “Ansor best”. The

error bars in Figure 7 and Figure 8 show the standard deviation

of the normalized throughput and the normalized search time of

40 reuse pairs for each operator type, respectively. Overall, ETO

finds tensor programs having close or better inference performance

compared with Ansor, with the normalized throughput ranging

from 94.7%, 257.1%, but 1.1 − 12.1× faster compared with “Ansor

best”. Given that the reuse pairs are randomly sampled and their

costs vary from small to large, these results show that the reuse-

based tuner performs well in terms of the operator throughput on

reuse pairs with different costs, and on the other hand, with the

information of another performant tensor program, the reuse-based

tuner can indeed speed up the searching for the best performing

tensor program of an operator. On FRB, ETO outperforms Ansor by

257.1% because we regard the larger loop nest of it, which computes

the sum of squares, as the major loop nest, and therefore make it

possible to partition it into more subtasks to run in parallel, while

Ansor tiles this loop nest depending on the smaller loop nest after

it which computes the square root, resulting in less parallelism. As

for the search time, the relative speedup is small on FRB, because

Ansor can already finish the searching fast due to the limited search

space of FRB. For other test cases, the search spaces of ETO and

Ansor are the same. On T2D, ETO achieves 94.7% performance

compared with Ansor, but is 4.8× faster than “Ansor best”. In fact,

191

Ansor can only find tensor programs with 59.7% normalized per-

formance using the same search time as ETO on T2D, which means

ETO is faster than Ansor in searching performant tensor programs

for T2D. For most of the other types of operators, ETO has higher

normalized throughput than Ansor (except C1D, where the nor-

malized throughput is 98.9% and very close to 100%). For the WIN

operator involving a composite sketch, since the loop nest with the

multi-level tile sub-sketch accounts for a large percentage of its

latency, the search simplification for other sub-sketches does not

degrade the effectiveness of ETO: the average normalized perfor-

mance is 114.1%. Because the tuning on sub-sketches is conducted

individually, ETO is 3.6× faster than “Ansor best”, even with the

composite sketch.

ETO outperforms TopK for all the operator types in terms of

the operator throughput. TopK can sometimes find relatively good

tensor programs on average, e.g., on DEP and FRB, but it fails to

do this on most of the other types of operators, e.g., the 39.9%

average normalized throughput on C2D. For FRB, the search space

defined by Ansor is much more smaller and simpler than other

types of operators. The best tensor programs of the tested FRB

operators in the search space of Ansor are the same in terms of

their sketches and annotations: using the cross-thread reduction

sketch, the same thread block number (i.e., 1) as well as the same

thread number in a block, and not being auto-unrolled due to the

large fused reduction loop. As a result, TopK finds exactly the same

programs as those by Ansor for the tested FRB operators. The

normalized performance is 99.9% instead of 100% because of the

noise when measuring operator latency on hardware. We evaluate

TopK on another data set for FRB by setting larger batch sizes

and smaller reduction loops (the data set description can be found

in [8]), where the respective best tensor program in the search

space of Ansor are different for the operators, and the average

normalized performance of it drops to 78.9%, while that for ETO is

168.2% (although TopK is 1.5× faster than ETO). For the tested DEP

operators, although the average normalized performance is 84.0%,

the worst and the best normalized performance is 12.8% and 182.4%

respectively, the reason may be that in the tested reuse pairs, the

operators in a reuse pairs are not guaranteed to be similar for TopK

to perform well on (while the normalized performance by ETO is

in the range of [87.9%, 192.4%]). This means TopK’s performance

is not stable and may suffer on some cases. In fact, the standard

deviation of the normalized throughput of TopK is larger than

that of ETO on all types of operators except FRB (the normalized

performance of ETO ranges between 98.6% and 430.3% on FRB).

The reason is TopK directly applies the optimization steps in the

given performant tensor programs, while the reuse-based tuner of

ETO tries to learn the hardware preference for particular types of

tensor programs and can find better annotations. As for the search

time, since in most cases, TopK can get a valid tensor program

which can run successfully from the first 3 measurement trials, its

search efficiency is much higher than both Ansor and ETO. The

big standard deviation for some operator types (e.g., C2D, GRP) is

because it takes TopK hundreds of measurement trials to get a valid

tensor program for some reuse pairs. On GRP, TopK even fails to

find a valid tensor program for 3 reuse pairs (the corresponding

normalized throughput for them is 0).

Table 2: Operator set summary.

DNN #Operators (with type 𝜏 and sketches K)
ResNet50 20 C2D (K1)

MobileNetV2 20 C2D (K1), 1 C2D (K2), 10 DEP (K3)

ResNeSt50 22 C2D (K1), 4 C2D (K2), 7 GRP (K4)

1D-IR 35 C1D (K5)

R(2+1D) 25 C3D (K6)

DCGAN 5 T2D (K7)

BERT-Base 5 BMM (K8)

ResNet50(L) 40 C2D (K1)

BERT(L) 36 BMM (K8)

7.2 Performance on Operator Set
Workloads. The workloads are divided into 2 groups: single DNN
and multiple DNNs. For single DNNs, we prepare: ResNet50 [10],

MobileNetV2 [16] and ResNeSt50 [25] for image classification, 1D

variant of Inception-ResNet-V2 (1D-IR) [9] for tasks like 1D data

classification, R2Plus1D-ResNet18 [21] (R(2+1D)) for action recog-

nition, DCGAN [15] generator for image generation, and BERT-

Base [7] (sequence length is 128) for language understanding. We

report the results when batch size is 1 on the above DNNs. For

multiple DNNs, we prepare 2 DNN sets: ResNet50 with batch size

being 1, 16 (ResNet50(L)); BERT-Base and BERT-Large with batch

size 1, 16, and sequence length being 64, 128 (BERT(L)). For each

test case (a DNN or a set of DNNs above), we get an operator set,

where each operator has a frequency, i.e., the number of times it

appears in the test case. Table 2 summarizes these operator sets

(due to space limitations, the frequency information is not shown).

Settings. We use Ansor (commit: 3635945) [27] and ST [19] as

the baselines (the TopK component of ST is as mentioned in Sec-

tion 7.1, and the similarity rate threshold of ST is 0.01 as in [19]).

We let Ansor run up to 1,000 ×|A| measurement trials on each

operator set A. ETO and ST use Ansor as the backend compiler

to tune up to 1,000 measurement trials for an operator with no

operator to reuse tensor program information of. The sample size

in the search cost estimation for ETO is 10.

Metrics. Two metrics are used: throughput, search time (to op-

timize a set of operators). The throughput of an operator set is

the reciprocal of the weighted latency sum of all operators, where

the weight of an operator is its frequency. For the search time of

Ansor, we report 3 types of it to better compare Ansor and ETO:

“Ansor total”, “Ansor best”, “Ansor same” are the total search time,

the time to get the maximum throughput, and the time to get the

same throughput as that by ETO for Ansor, respectively. The search

time of ETO does not contain the preprocessing time of reuse pair

generation and selection as it is negligible compared with the time

of searching performant tensor programs.

Results. We normalize the throughput to that by Ansor, and

report the results in Figure 9. Figure 10 shows the search time of

compared methods, where the speedup is relative to the search time

of “Ansor best”. Overall, the throughput by ETO is close to that by

Ansor in all cases, with the normalized performance ranging from

91.4% to 101.3%, but ETO is 3.1−16.1× faster compared with “Ansor

best”. Even compared with “Ansor same”, ETO is still 1.8 − 6.2×
faster. On DCGAN and BERT-Base, the throughput by ETO is higher

than that by Ansor, so the corresponding results of “Ansor same” is

not shown in Figure 10. The reason for this big speedup is that after

192

Figure 9: Inference performance of an operator set.

Figure 10: Search time to optimize a set of operators.

the reuse pair selection, only 1 or 2 operators for the operators with

the same type and the same sketch set are optimized by the backend

compiler in each operator set, and therefore ETO can save a lot of

search time with the reuse-based tuner. For the absolute difference

of the weighted latency sum between ETO and Ansor, in most cases,

it is less than 0.5 ms; on R(2+1)D it is 1.9 ms; on BERT(L) it is 32.9

ms. The reason for the big 32.9ms difference on BERT(L) is that the

frequency of an operator will magnify the performance loss in the

final weighted latency sum. In fact, the single operator throughput

ratio of ETO over Ansor is 118.7% on average and ranges between

80.6%− 225.1%, but the operator frequency ranges from 12 to 96. By

comparing the results on ResNet50(L) with those on ResNet50, and

comparing the results on BERT(L) with those on BERT-Base, we

can see that the more operators with the same type and the same

sketch set to be optimized, the higher the speedup ETO can bring,

and there can be no or just small drop of the overall normalized

performance (due to the operator frequency).

The normalized performance by ST ranges from 55.3% to 101.7%.

Although on DCGAN and BERT(L), ST performs slightly better

than ETO with 1.004× and 1.018× throughput respectively, ETO

outperforms ST in most cases, with up to 1.8× throughput, because

ST’s similarity model is not effective enough (Section 1) and the

reuse-based tuner has optimization effectiveness superiority over

ST’s TopK reuse method. For the search time, despite that ST only

needs 3 measurements to find a runnable tensor program for an

operator using TopK in most cases, ETO is still 1.1−4.8× faster than
ST on all operator sets. This is because ST finds the maximal cliques

to cluster operators (the number of clusters can be large because

of the similarity rate threshold) and operators can only reuse the

tensor program of the selected representative operator in the same

cluster, while in ETO the information of the tensor program found

by the reuse-based tuner can be reused by other operators again,

and we bridge operators to provide more reuse opportunities, so we

can send fewer operators to the time-consuming backend compiler

and save more search time.

Figure 11: Inference performance and search time

Ablation study.We run three variants of ETO on MobileNetV2

and ResNet50: “0 Bridge Operator” means we do not generate bridge

operators in the reuse pair selector; “1 Hop Bridge Operators” means

we only generate 1-hop bridge operators (this is the method we

adopt); “All Bridge Operators” means we generate all the bridge op-

erators. MobileNetV2 has 81 1-hop bridge operators and 121 bridge

operators in total. ResNet50 has 44 1-hop bridge operators and 49

bridge operators in total. Figure 11 shows the results: the left figure

shows the throughput normalized to Ansor, and the right figure

shows the search time, where the speedup is relative to “Ansor

best”. The normalized inference performance of the three variants

is close. On MobileNetV2, the normalized throughput difference is

less than 2%, and the absolute difference of the weighted latency

sum is less than 0.01 ms. On ResNet50, the normalized throughput

difference between “1 Hop Bridge Operators” and “All Bridge Op-

erators” is only 0.6%, and “0 Bridge Operator” performs about 7%

better than the other two variants, because “0 Bridge Operator” uses

the backend compiler to optimize 8 operators out of the 20 conv2d

in ResNet50 and gets better tensor programs for some operators.

The absolute difference of the weighted latency sum among the

variants on ResNet50 is also small, i.e., 0.2 ms. As for the search

time, “1 Hop Bridge Operators” and “All Bridge Operators” are both

faster than “0 Bridge Operator”, with 2.2 − 3.3× speedup, thanks to

the increased reuse opportunities brought by the bridge operators.

The speedup difference between “All Bridge Operators” and “1 Hop

Bridge Operators” is not significant. This result shows that 1-hop

bridge operators already generate sufficient reuse pairs which are

likely to be chosen to save the overall search time on MobileNetV2

and ResNet50. Compared with “1 Hop Bridge Operators”, the search

time of “All Bridge Operators” is shorter on ResNet50 but longer

on MobileNetV2 because we cannot estimate the cost of each reuse

pair perfectly.

8 RELATEDWORKS
Automatic tensor program generation. There are different

search space representation methods for automatic tensor program

generation. Halide [1] defines the search space of tensor program

variants to be transformation option sequences on the unoptimized

tensor program, and uses a backtracking tree search algorithm

based on beam search together with a learned cost model to find

the best sequence. A recent work [3] improves [1] by partitioning

the search space of options into buckets according to the structural

193

similarity and randomly selecting candidates from each bucket to

be evaluated by the cost model. TVM [4, 5] uses manual templates

with tunable parameters to define the search space, and searches

the best parameters to optimize an operator. FlexTensor [28] auto-

matically generates a search space of an operator by enumerating

the transformation steps in a specific order. Ansor [27] defines a

hierarchical search space with two levels: sketch and annotation (as

we have introduced in Section 2). Tensor Comprehensions (TC) [22]

leverages polyhedral compilation and auto-tuning (on specified pa-

rameters) to optimize operators. We use the hierarchical search

space of Ansor in this paper, because it is large and enables flexible

optimization combinations. However, the reuse-based optimization

idea (learning hardware preference for particular types of tensor

programs from the performant ones) can also be applied to other

search spaces, because GPU tensor programs all satisfy the general

pattern (mentioned in Section 2).

Search-based compilation acceleration. A common work-

flow of search-based compilation [1, 3–5, 27, 28] is an iterative

process, i.e., searching candidate tensor programs based on a cost

model, measuring the programs on hardware, and updating the

cost model with the measurement results, so existing works focus

on more efficient search algorithms or better cost models.

Halide uses importance sampling [1] and hierarchical sampling [3]

to select candidates tensor programs for measurement. Another

work, CHAMELEON [2], expedites the convergence of optimization

with reinforcement learning and reduces the number of hardware

measurements with adaptive sampling. FlexTensor [28] combines

a simulated annealing based method with Q-learning in search.

An evolutionary search method designed specifically for tensor

programs is used by Ansor [27]. However, these methods do not

consider reusing the information from a performant tensor program

in search. Selective Tuning (ST) [19] reuses the transformation steps

of performant tensor programs from other operators directly in

optimization, however, their performance may be limited by the

design of the operator similarity model and the number of similar

operator groups in the given operators. Experiments show that

ETO is more effective than it and has higher overall optimization

efficiency. We also conducted more experiments on the variants of

ST by changing the parameters in ST, and the results can be found

in the technical report [8]. TC [20, 22] uses a compilation cache to

reuse the tensor programs in a way similar to ST: it can directly

apply the transformation steps in an optimized tensor program of

another similar operator, or alternatively it can use that set of trans-

formation steps as a starting point of its genetic search algorithm.

Due to lack of enough details of the compilation cache usage in TC,

we did not include it in the current experiments.

As for better costmodels, transfer learning is used by autoTVM [5]

to make use of the historical data collected during optimizing pre-

vious workloads, so as to speed up the optimization. Halide [1, 3]

supports the one-shot mode of searching, i.e., searching a set of

tensor programs completely depending on a pretrained cost model

without hardware measurement and outputing the tensor program

ranked best by the cost model. Using this mode, the search can finish

in seconds, but the optimized throughput is worse than searching

with hardware measurements, because of the limited accuracy of

the cost models. A recent work [18] designs a cost model, which can

be pretrained, using LSTM over engineered features to accurately

estimate the expected performance of a partial schedule. Given the

cost model, it makes a sequence of optimization decisions greedily,

and outperforms [1] in effectiveness. This method can be combined

with our reuse-based tuner by using the trained cost model to rank

the generated tensor programs, instead of hardware measurements.

To save the overall search time of a set of optimization tasks, An-

sor [27] and DynaTune [26] dynamically allocate time slots to tasks,

instead of sequentially optimizing them. Since ETO does not run

in iterations, there is no task scheduling issue. Experiments show

ETO searches performant tensor programs more efficiently than

Ansor despite its task scheduling strategy.

9 CONCLUSION AND FUTUREWORK
Efficient execution of DNNs is important in many applications. In

this work, we propose ETO, which (1) reuses the information of

performant tensor programs to speed up operator optimization, and

(2) determines the information reuse relationships among operators

with the minimum total search cost, reaching a trade-off between

operator performance and optimization efficiency. Furthermore, we

have introduced a concept, bridge operators, to offer indirect reuse

opportunities among operators. Compared with the existing works,

the experimental results confirm the effectiveness and efficiency of

ETO in optimizing operators of DNNs.

One limitation of ETO is that the operator frequency is not

considered when optimizing a set of operators. How to change

the search method and schedule the tuning time to improve the

overall inference performance is an interesting problem. Besides,

ETO takes several minutes on average to optimize an operator, so

another interesting problem is how to make use of more powerful

cost models to further reduce the search time on a single operator.

We can also consider combining our search method with existing

methods to improve the optimization effectiveness and efficiency,

like using the tensor programs in our pruned search space as the

starting points of the genetic search algorithm in [22, 27]. Lastly,

we can explore the possibility of incorporating ETO into existing

systems which support dynamic neural networks.

ACKNOWLEDGMENTS
Yanyan Shen is partially supported by Shanghai Municipal Science

and Technology Major Project(2021SHZDZX0102) and SJTU Global

Strategic Partnership Fund (2021 SJTU-HKUST). Yue Wang is par-

tially supported by China NSFC (No. 62002235) and Guangdong Ba-

sic and Applied Basic Research Foundation (No. 2019A1515110473).

Lei Chen’s work is partially supported by National Key Research

and Development Program of China Grant No. 2018AAA0101100,

the Hong Kong RGC GRF Project 16202218, CRF Project C6030-

18G, C1031-18G, C5026-18G, RIF Project R6020-19, AOE Project

AoE/E-603/18, Theme-based project TRS T41-603/20R, China NSFC

No. 61729201, Guangdong Basic and Applied Basic Research Foun-

dation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX

and ITS/470/18FX, Microsoft Research Asia Collaborative Research

Grant, HKUST-NAVER/LINE AI Lab, HKUST-Webank joint research

lab grants. The corresponding author of this paper is Yanyan Shen.

194

REFERENCES
[1] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li,

Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Du-

rand, et al. 2019. Learning to optimize halide with tree search and random

programs. ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–12.
[2] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Es-

maeilzadeh. 2020. Chameleon: Adaptive code optimization for expedited deep

neural network compilation. arXiv preprint arXiv:2001.08743 (2020).
[3] Luke Anderson, Andrew Adams, Karima Ma, Tzu-Mao Li, and Jonathan Ragan-

Kelley. 2020. Learning to Schedule Halide Pipelines for the GPU. arXiv preprint
arXiv:2012.07145 (2020).

[4] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen

Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[5] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis

Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to optimize

tensor programs. arXiv preprint arXiv:1805.08166 (2018).
[6] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John

Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives

for deep learning. arXiv preprint arXiv:1410.0759 (2014).
[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[8] Jingzhi Fang, Yanyan Shen, YueWang, and Lei Chen. 2021. ETO: Accelerating Opti-
mization of DNN Operators by High-Performance Tensor Program Reuse. Technical
Report. https://github.com/Experiment-code/ETO

[9] hanxuh hub. 2020. 1D-Inception-ResNet-V2-Model. hanxuh-hub. Retrieved

October 20, 2021 from https://github.com/hanxuh-hub/1D-Inception-ResNet-

V2-Model

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[11] Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. 2018. Matrix capsules with

EM routing. In International conference on learning representations.
[12] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:

Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[13] Andrew Lavin and Scott Gray. 2016. Fast algorithms for convolutional neural

networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4013–4021.

[14] NVIDIA. 2021. CUDA C++ Programming Guide. NVIDIA. Retrieved March 25,

2021 from https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[15] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-

tion learning with deep convolutional generative adversarial networks. arXiv

preprint arXiv:1511.06434 (2015).
[16] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[17] Haichen Shen, Jared Roesch, Zhi Chen, Wei Chen, Yong Wu, Mu Li, Vin Sharma,

Zachary Tatlock, and Yida Wang. 2021. Nimble: Efficiently compiling dynamic

neural networks for model inference. Proceedings of Machine Learning and
Systems 3 (2021).

[18] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. 2021. Value

Learning for Throughput Optimization of Deep Learning Workloads. Proceedings
of Machine Learning and Systems 3 (2021).

[19] TVM Team. 2019. Selective Tuning. TVM. Retrieved March 25, 2021 from

https://github.com/apache/tvm/issues/4188

[20] Tensor Comprehension Team. 2018. Variable tensor sizes support for TC.
Tensor Comprehension. Retrieved Oct 4, 2021 from https://github.com/

facebookresearch/TensorComprehensions/issues/46

[21] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar

Paluri. 2018. A closer look at spatiotemporal convolutions for action recognition.

In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition.
6450–6459.

[22] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,

Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert

Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance

machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).
[23] Dimitri Watel and Marc-AntoineWeisser. 2016. A practical greedy approximation

for the directed steiner tree problem. Journal of Combinatorial Optimization 32, 4

(2016), 1327–1370.

[24] Dimitri Watel and Marc-Antoine Weisser. 2017. DSTAlgoEvaluation. mou-

ton5000. Retrieved October 20, 2021 from https://github.com/mouton5000/

DSTAlgoEvaluation

[25] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin,

Yue Sun, Tong He, Jonas Mueller, R Manmatha, et al. 2020. Resnest: Split-attention

networks. arXiv preprint arXiv:2004.08955 (2020).
[26] Minjia Zhang, Menghao Li, Chi Wang, and Mingqin Li. 2021. DynaTune: Dy-

namic Tensor Program Optimization in Deep Neural Network Compilation. In

International Conference on Learning Representations. https://openreview.net/

forum?id=GTGb3M_KcUl

[27] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer

Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. An-

sor: Generating high-performance tensor programs for deep learning. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
20). 863–879.

[28] Size Zheng, Yun Liang, ShuoWang, Renze Chen, and Kaiwen Sheng. 2020. Flexten-

sor: An automatic schedule exploration and optimization framework for tensor

computation on heterogeneous system. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 859–873.

195

https://github.com/Experiment-code/ETO
https://github.com/hanxuh-hub/1D-Inception-ResNet-V2-Model
https://github.com/hanxuh-hub/1D-Inception-ResNet-V2-Model
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://github.com/apache/tvm/issues/4188
https://github.com/facebookresearch/TensorComprehensions/issues/46
https://github.com/facebookresearch/TensorComprehensions/issues/46
https://github.com/mouton5000/DSTAlgoEvaluation
https://github.com/mouton5000/DSTAlgoEvaluation
https://openreview.net/forum?id=GTGb3M_KcUl
https://openreview.net/forum?id=GTGb3M_KcUl

