
Multivariate Correlations Discovery in Static and Streaming Data

Koen Minartz
Eindhoven University of Technology

k.minartz@tue.nl

Jens E. d’Hondt
Eindhoven University of Technology

j.e.d.hondt@tue.nl

Odysseas Papapetrou
Eindhoven University of Technology

o.papapetrou@tue.nl

ABSTRACT

Correlation analysis is an invaluable tool in many domains, for bet-
ter understanding data and extracting salient insights. Most works
to date focus on detecting high pairwise correlations. A generaliza-
tion of this problemwith known applications but no known e�cient
solutions involves the discovery of strong multivariate correlations,
i.e., �nding vectors (typically in the order of 3 to 5 vectors) that
exhibit a strong dependence when considered altogether. In this
work we propose algorithms for detecting multivariate correlations
in static and streaming data. Our algorithms, which rely on novel
theoretical results, support two di�erent correlation measures, and
allow for additional constraints. Our extensive experimental eval-
uation examines the properties of our solution and demonstrates
that our algorithms outperform the state-of-the-art, typically by an
order of magnitude.

PVLDB Reference Format:

Koen Minartz, Jens E. d’Hondt, and Odysseas Papapetrou. Multivariate
Correlations Discovery in Static and Streaming Data. PVLDB, 15(6):
1266-1278, 2022.

doi:10.14778/3514061.3514072

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/CorrelationDetective/public.

1 INTRODUCTION

Correlation analysis is one of the key tools in the arsenal of data
analysts for exploring data and extracting insights. For example, in
neuroscience, a strong correlation between activity levels in two
regions of the brain indicates that these regions are strongly inter-
connected [11]. In �nance, correlation plays a crucial role in �nding
portfolios of assets that are on the Pareto-optimal frontier of risk
and expected returns [16], and in genetics, correlations help scien-
tists detect cause factors for hereditary syndromes.1 Correlations –
as a generalization of functional dependencies – also found use for
optimizing access paths in databases [29].

Multivariate correlations, or high-order correlations, are a gener-
alization of pairwise correlations that can capture relations among
arbitrarily-sized sets of variables, represented as high-dimensional

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 6 ISSN 2150-8097.
doi:10.14778/3514061.3514072

1A prime example is the Spark project for discovering gene properties related to the
manifestation of the autism spectrum disorder [9], which led to a list of genes and
their correlated symptoms [10].

MCP QAN RDF Sum

MCP 1 0.46 0.53 0.96
QAN 0.46 1 -0.47 0.52
RDF 0.53 -0.47 1 0.52
Sum 0.96 0.52 0.52 1

Figure 1: (a) Normalized daily closing prices for stocks traded at the

Australian Securities Exchange, (b) Correlation matrix of the prices.

vectors or as time series.2 Multivariate correlations have found ex-
tensive use in diverse domains: detection of ternary correlations in
fMRI time series improved the understanding of how di�erent brain
regions work in cohort for executing tasks [1, 2], and in climatology,
a ternary correlation led to the characterization of a new weather
phenomenon and to improved climate models [15]. Furthermore, a
more thorough look at multivariate correlations may open doors
in the �elds of genomics [23, 30] and medicine [14, 19].

Accordingly, several measures and algorithms for discovering
multivariate correlations have been proposed, such as tripoles [1],
multipoles [2], Canonical Correlation Analysis [13] and Total Corre-
lation (TC) [28] and its variants [21, 22, 30]. However, the proposed
algorithms do not su�ciently address the fundamental impediment
on the discovery of strong multivariate correlations, which is the
vast search space. Unfortunately, apriori-like pruning techniques
do not apply for the general case of multivariate correlations. For
example, consider the three time series presented in Fig. 1, which
represent closing prices of three stocks from the Australian secu-
rities exchange. In this case, the pairwise correlations between all
pairs of the three time series are comparatively low, whereas the
time series created by summing QAN and RDF is strongly correlated
to MCP. Therefore, a correlation value of any pair of vectors does
not provide su�cient information as of whether these vectors may
participate together in a ternary (or higher-order) correlation. Si-
multaneously, an exhaustive algorithm that iterates over all possible
combinations implies combinatorial complexity, and cannot scale
to reasonably large datasets. Indicatively, in a small data set of 100
vectors, detection of all ternary high correlations requires iterating
over 1 million candidates, whereas �nding quaternary high corre-
lations among 1000 vectors involves 1 trillion combinations. The
mere generation and enumeration of these combinations already
becomes challenging. Therefore, smart algorithms are needed that
can prune the search space to reduce computational complexity.

Existing algorithms (see Section 2.3) follow at least one of the
following approaches: (a) they consider constraining de�nitions
of multivariate correlations that enable apriori-like �ltering [2, 21,
30], (b) they rely on hand-crafted additional assumptions of the

2In the remainder of this paper we will generally refer to the more general case of
vectors, but often the data consists of time series that may come with live updates.

1266

https://www.acm.org/publications/policies/artifact-review-and-badging-current

user query, which may be too constraining for other application
scenarios [1, 2, 30], or, (c) they offer approximate results, with no
guarantees [1, 2]. Even though these algorithms are relevant for
their particular use cases, they are not generally applicable.

In this work, we follow a more general direction. First, we also
consider correlation measures that are unsuitable for apriori-like
pruning. Although their usefulness has already been validated in
multiple use cases, e.g., [1, 2, 15], algorithms for detecting them
do not scale. Second, we consider different algorithmic variants:
an exact threshold variant that returns all correlations higher than
a threshold 𝜏 , and an exact top-𝜅 variant that returns the top-𝜅
highest correlations. We also discuss the case of progressively find-
ing results. Finally, we extend the proposed methods to a dynamic
context by efficiently handling streaming data, enabling use-cases
where continuous updates of query answers are required, such as
flash-trading models in finance [25], weather and server monitor-
ing [27], and neurofeedback training [12, 17, 32].

We evaluate our algorithms on 3 datasets and compare them
to the state-of-the-art. Our evaluation demonstrates that we out-
perform the existing methods by typically an order of magnitude,
and the exhaustive-search baseline by several orders of magnitude.
Finally, we show that the progressive version of the algorithm
produces around 80% of the answers in 10% of the time.

The remainder of the paper is structured as follows. In the next
section we formalize the problem, and discuss the preliminaries
and related work. We then propose the algorithmic variants for
the case of static data (Section 3), and the streaming extension of
the algorithm (Section 4). Section 5 summarizes the experimental
results. We conclude the paper in Section 6.

2 PRELIMINARIES

We start with a discussion of the multivariate correlation measures
that will be considered in this work. We then formalize the problem,
and discuss prior work.

2.1 Correlation measures

Our work focuses on two multivariate correlation measures: the
two-sided multiple correlation, and the one-sided multipole.

Multiple correlation. Given two sets of vectors 𝑋 and 𝑌 , mul-
tiple correlation is defined as follows:

mc(𝑋,𝑌) = 𝜌

(︃∑︁

x∈𝑋 x̂

|𝑋 |
,

∑︁

y∈𝑌 ŷ

|𝑌 |

)︃

(1)

where 𝜌 denotes the Pearson correlation coefficient and x̂ denotes
x after z-normalization, i.e., x̂𝑖 =

x𝑖−𝜇x
𝜎x

. Both the definition and
this work can be easily extended to weighted linear aggregates,
instead of averaging. Tripoles [1] is a special case of the multiple
correlation measure, where |𝑋 | = 2 and |𝑌 | = 1. In this work, we
allow both 𝑋 and 𝑌 to contain more vectors.

Multipole. The multipole correlation mp(𝑋) measures the lin-
ear dependence of an input set of vectors 𝑋 [2]. Specifically, let
x̂1, . . . , x̂𝑛 denote 𝑛 z-normalized input (column) vectors, and X =

[x̂1, . . . , x̂𝑛] the matrix formed by concatenating the vectors. Then:

mp(𝑋) = 1 − min
| |v | |2=1

var(X · v) (2)

The value of mp(𝑋) lies between 0 and 1. The measure takes its
maximum value when there exists perfect linear dependence, i.e.,
there exists a vector v with norm 1, such that var(X · v) = 0.

Notice that multipoles is not equivalent to, nor a generalization
of, multiple correlation. By definition,mp assumes optimal weights
(vector v is such that the variance is minimized), whereas for mc,
the linear aggregation function for the vectors is determined at the
definition of the measure. Furthermore,mp(·) expresses the degree
of linear dependence within a single set of vectors, whereas for
mc(·, ·), two distinct, non-overlapping vector sets are considered.

2.2 Problem definition

Consider a set V = {v1, v2, . . . v𝑛} of 𝑑-dimensional vectors, and a
multivariate correlation measure 𝐶𝑜𝑟𝑟 , both provided by the data
analyst. Function 𝐶𝑜𝑟𝑟 accepts either one or two vector sets (sub-
sets of V) as input parameters, and returns a scalar. Hereafter, we
will be denoting the correlation function as 𝐶𝑜𝑟𝑟 (𝑋,𝑌), with the
understanding that for the definitions of𝐶𝑜𝑟𝑟 that expect one input,
𝑌 will be empty. We consider two query types:

Query 1: Threshold query: For a user-chosen correlation func-
tion 𝐶𝑜𝑟𝑟 , correlation threshold 𝜏 , and parameters 𝑙max, 𝑟max ∈ N,
find all pairs of sets (𝑋 ⊂ V, 𝑌 ⊂ V), for which 𝐶𝑜𝑟𝑟 (𝑋,𝑌) ≥ 𝜏 ,
𝑋 ∩ 𝑌 = ∅, |𝑋 | ≤ 𝑙max and |𝑌 | ≤ 𝑟max.

Query 2: Top-𝜅 query: For a user-chosen correlation function
𝐶𝑜𝑟𝑟 , integer parameter 𝜅, and parameters 𝑙max, 𝑟max ∈ N, find
the 𝜅 pairs of sets (𝑋 ⊂ V, 𝑌 ⊂ V) that have the highest values
𝐶𝑜𝑟𝑟 (𝑋,𝑌), such that 𝑋 ∩ 𝑌 = ∅, |𝑋 | ≤ 𝑙max, and |𝑌 | ≤ 𝑟max.

The combination of 𝑙max and 𝑟max controls the desired complex-
ity of the answers. Smaller 𝑙max + 𝑟max values yield results that are
easier to interpret, and arguably more useful to the data analyst.
Complementary to the two query types, users may also want to
specify additional constraints, relating to the targeted diversity
and significance of the answers. We consider two different con-
straints, but other constraints (e.g., the weak-correlated feature
subset constraint of [30]) can easily be integrated in the algorithm:

Irreducibility constraint: For each (𝑋,𝑌) in the result set,
there exists no (𝑋 ′, 𝑌 ′) in the result set such that 𝑋 ′ ⊆ 𝑋 , 𝑌 ′ ⊆

𝑌 , and (𝑋 ′, 𝑌 ′) ≠ (𝑋,𝑌). Intuitively, if 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) ≥ 𝜏 , then
no supersets of 𝑋 ′ and 𝑌 ′ should be considered together. This
constraint prioritizes simpler and more interpretable answers.

Minimum jump constraint: For each (𝑋,𝑌) in the result set,
there exists no (𝑋 ′, 𝑌 ′) such that𝑋 ′ ⊆ 𝑋 ,𝑌 ′ ⊆ 𝑌 , (𝑋 ′, 𝑌 ′) ≠ (𝑋,𝑌),
and 𝐶𝑜𝑟𝑟 (𝑋,𝑌) − 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) < 𝛿 . This constraint, which was
first proposed in [1], discards solutions where a vector in 𝑋 ∪ 𝑌

contributes less than 𝛿 to the increase of the correlation.
The minimum jump constraint applies to both query types,

whereas the irreducibility constraint is only useful for threshold
queries. For top-𝜅 queries, irreducibility is ill-defined: assume
𝐶𝑜𝑟𝑟 (𝑋,𝑌) = 0.9, and 𝐶𝑜𝑟𝑟 (𝑋 ′, 𝑌 ′) = 0.8, where 𝑋 ′ ⊂ 𝑋 and
𝑌 ′ ⊂ 𝑌 . In this case, the definition of top-𝜅 does not dictate which
of (𝑋,𝑌) or (𝑋 ′, 𝑌 ′) should be in the answer set.

For conciseness, we will denote the combination of the cor-
relation measure, 𝑙max and 𝑟max as mc(𝑙max, 𝑟max) (for mc) and
mp(𝑙max) (for mp). We will call this a correlation pattern. For ex-
ample, mc(2, 1) will identify the combinations of sets of vectors of
size 2 and 1 with high mc correlation. Pattern mp(4) will identify

1267

Table 1: Properties of themost relevant related work formultivariate

correlations, and the proposed method.
Complete Require constraints Correlation Measures Query types

[1] Yes Yes mc(1, 2) Threshold
[2] No Yes mp(·) Threshold
[21] No No 𝑇𝐶 (·) Threshold
[30] Yes Yes 𝑇𝐶 (·) (only binary data) Threshold
Ours Yes No mc(·, ·) ,mp(·) Threshold, top-𝜅

the combinations of vectors of size at most 4 with high multipoles
correlation. Finally, we will denote a particular combination of vec-
tors ś a materialization of the correlation pattern ś by displaying
the vectors, grouped by parentheses. For example, (v1, (v2, v3))
denotes a combination for the multiple correlation measure, where
vectors v2 and v3 are aggregated together.

2.3 Related work

Several algorithms exist for efficiently finding highly correlated
pairs in large sets of high-dimensional vectors, e.g., time series.
For example, StatStream [31] and Mueen et al. [20] map pairwise
correlations to Euclidean distances, and exploit Discrete Fourier
Transforms, grid-based indexing, and dynamic programming to
reduce the search space. Other works proposing indices for high
dimensional Euclidean data [7, 26] are applicable as well due to the
one-to-one mapping of Pearson correlation to Euclidean distance.
However, these works are not applicable for multivariate correla-
tions, since two vectors may have a low pairwise correlation with
a third vector, whereas their aggregate may have a high correlation
(see, e.g., example of Fig. 1).

Agrawal et al. [1] investigate the problem of finding highly-
correlated tripoles ś a special case ofmc that contains exactly three
vectors. Their algorithm relies on the minimum jump constraint for
effective pruning. Compared to tripoles, our work handles the more
general definition of multiple correlation, allowing more vectors at
the left and right hand side. Moreover, our work does not require
the use of the minimum jump constraint to prune comparisons.

Algorithms for discovering high correlations according to the
multipole measure (Eqn. 2) were proposed in [2]. Both CoMEt and
CoMEtExtended are approximate algorithms relying on clique enu-
meration and the minimum jump constraint to efficiently explore
the search space. Their efficiency depends on a parameter 𝜌CE that
trades off completeness of the result set for performance. Both algo-
rithms yield more complete result sets compared to methods based
on 𝑙1-regularization and structure learning. Still, they do not offer
completeness guarantees. In contrast, our work is exact ś it always
retrieves all answers ś and outperforms both algorithms.

Total correlation is an non-linear information-theoretic met-
ric that expresses how much information is shared between vari-
ables [28]. Nguyen et al. [21] proposed a closely related correlation
measure, and an algorithm for finding strongly correlated groups
of columns in a database. The key idea of their method is to first
evaluate all pairwise correlations, and use those to calculate a lower
bound on the total correlation of a group. Their algorithm subse-
quently finds quasi-cliques in which most pairwise correlations are
high, implying a high total correlation value. However, groups with
low pairwise correlations can still be strongly correlated as a whole,
and these are arguably the most interesting cases. As such, the
method is effectively an approximation algorithm. In another work,

Zhang et al. also developed an algorithm that discovers sets with a
high total correlation value [30]. However, the method is limited to
data with binary features, and relies on a limiting weak-correlated
subset constraint.

In the supervised learning context, subset regression appears
similar to multivariate correlation mining. The goal of this feature
selection problem is to select the best 𝑝 predictors out of 𝑛 fea-
tures [6]. Our problem differs from the above in that we aim to find
interesting patterns in the data, instead of finding the best predic-
tors for a given dependent variable. Further, instead of finding only
the single highest correlated set of vectors, our goal is to find a
diverse set of results, enabling the domain expert to assess a variety
of results on qualitative aspects and to gain more insights.

Table 1 summarizes the properties of the most closely related
work.

3 DETECTION OF MULTIVARIATE
CORRELATIONS IN STATIC DATA

The main challenge in detecting strongly correlated vector sets
stems from the combinatorial explosion of the number of combi-
nations that need to be examined. In a dataset of 𝑛 vectors, there

exist at least𝑂
(︂

∑︁𝑙max+𝑟max
𝑝=2

(︁𝑛
𝑝

)︁

)︂

possible combinations. Even if each

possible combination can be checked in constant time, their enu-
meration still requires significant computational effort.

Our algorithm ś Correlation Detective, abbreviated as CD ś ex-
ploits the insight that vectors often exhibit (possibly weak) corre-
lations between each other. For example, securities that relate to
the same conglomeration (e.g., Fig. 2(a), GOOGL and GOOG) or are
exposed to similar risks and opportunities (e.g., STMicroelectronics
and ASML) typically exhibit a high correlation between their stock
prices. CD exploits such correlations, even if they are weak, to
drastically reduce the search space.

CD works as follows: rather than iterating over all possible vec-
tor combinations that correspond to the correlation pattern, CD
clusters vectors, and enumerates the combinations of only the clus-
ter centroids. For each of these combinations, it computes an upper
and lower bound on the correlations of all vector combinations in
the Cartesian product of the clusters. Based on these bounds, CD
decides whether or not the combination of clusters (i.e., all com-
binations of vectors derived from these clusters) should be added
to the result set, can safely be discarded, or, finally, if the clusters
should be split into smaller subclusters for deriving tighter bounds.
This approach effectively reduces the number of combinations that
need to be considered.

In the remainder of this section, we will present the algorithm
and explain how the two types of queries presented in Section 2 are
handled. We will start with a brief description of the initialization
and clustering phase. In Sections 3.2 and 3.3 we will describe how
CD answers threshold and top-𝜅 queries respectively.

3.1 Initialization and clustering

First, all vectors are z-normalized, i.e., shifted and scaled such that
they have zero mean and unit standard deviation. From here on,
the algorithm operates only on z-normalized vectors.

Next, we hierarchically cluster all vectors. The clustering algo-
rithm operates in top-down fashion. A root cluster containing all

1268

�
�

�

�

�
� ��

� � ��� �

�� ��

�� ����� �� �� ��

�

�
�

�

�

�
� �

� �

��

��

(a) (b) (c)
Figure 2: (a) Two groups of closely related stocks: ASML and STMicroelectronics are exposed to similar risks, while GOOG and GOOGL

participate in the same conglomeration; (b) Running example (schematic): the centroids of each cluster are depicted with darker background.

All clusters are labeled for easy reference; (c) Illustration of pessimistic pairwise bounds of Lemma 3.1.

vectors is �rst created, to initialize the hierarchy. The algorithm
then consists of three steps. First, � vectors are picked from the
root cluster and used as the initial top-level centroids in the hi-
erarchy. These vectors are picked using the seeding strategy of
�-means++ [3]. The use of �-means++ (as opposed to sampling
� random vectors) ensures that these initial centroids are well-
distributed over the Euclidean space. In the second step, we run
standard �-means for at most �1 iterations, or until convergence,
using the average function to recompute the cluster centroids after
each iteration. The clustering is evaluated using the Within-Cluster
Sum of Squares (WCSS) (the sum of the variances within all clus-
ters). In the third step, steps one and two are repeated �2 times (i.e.,
with di�erent initial centroids), and the clustering with the lowest
WCSS is kept as the �nal clustering assignment for the �rst level of
the hierarchy. These three steps are executed recursively on each
individual cluster with non-zero radius, to construct the second,
third, etc. levels of the hierarchy, until all leaf nodes contain only
one vector.

There is a clear tradeo� between the cost of the clustering al-
gorithm and the clustering quality. Increasing the values of �1 and
�2 results in a higher clustering quality (lower WCSS), but takes
longer to compute. However, clustering quality does not a�ect the
correctness of CD: regardless of the clustering algorithm, con�g-
uration, or �nal solution, CD always returns the correct results.
Poor clustering can only a�ect the computational e�ciency of CD.
Still, our experiments show that as long as the clustering is reason-
able, a suboptimal clustering is not detrimental to CD’s e�ciency.
More precisely, we found that the value of �1 (max. iterations of
�-means, after the initial centroids were chosen) had no observable
e�ect on CD’s e�ciency. Therefore, we simply set �1 = 1. The same
generally holds for �2, although to prevent ruinous e�ects due to
coincidentally poorly chosen initial centroids, we set �2 = 50. Still,
clustering takes at most a few seconds in our experiments, which
is negligible compared to the total execution time of the algorithm.

3.2 Threshold queries

CD receives as input the cluster tree produced by the hierarchical
clustering algorithm, a correlation pattern, a correlation function
���� , and a correlation threshold � . It then forms all possible com-
binations of the correlation pattern with the child clusters of the
root. In the example of Fig. 2(b), for a desired correlation pattern of
mc(2, 1), the following combinations of clusters are examined in the

Algorithm 1: Threshold�ery(S� , S� , ���� , �)
Input: Sets of clusters S� and S� that adhere to the

user-de�ned correlation pattern, correlation
measure ���� , correlation threshold � .

1 (��,��) ← CalcBounds(S� ,S� ,����)

2 if �� ≥ � then

3 Add (S� ,S�) to the result set

4 else if �� < � then

5 Discard (S� ,S�)

6 else

// Replace largest cluster with subclusters and recurse

7 ���� ← argmax
�∈S�∪S�

{�.������}

8 Set �� ← ���� .����
������

9 for � ∈ �� do

10

(

S′
�
,S′

�

)

← (S� ,S�) with ���� replaced by �

11 Threshold�ery
((

S′
�
,S′

�

)

,����, �
)

order of increasing pattern length:
∀�� ,�� ∈{�1,�2,�3 } (�� ,��) ∪ ∀�� ,�� ,�� ∈{�1,�2,�3 } ((�� ,��),��)

A combination of clusters compactly represents the combina-
tions created by the Cartesian product of the vectors inside the
clusters. For each such combination, the algorithm computes lower
and upper bounds on the correlation of these clusters, denoted with
�� and�� respectively (Alg. 1, line 1). These bounds, derived later
in this section, guarantee that any possible materialization of the
cluster combination, i.e., replacing each cluster with any one of the
vectors in that cluster, will always have a correlation between ��

and��.
The next step is to compare the bounds with the user-chosen

threshold � (lines 2, 4, 6). If �� ≥ � , the combination is decisive
positive, guaranteeing that all possible materializations of this com-
bination will have a correlation of at least � . Therefore, all materi-
alizations are inserted in the result. If�� < � , the combination is
decisive negative – no materialization yields a correlation higher
than the threshold � . Therefore, this combination does not need to
be examined further. Finally, when �� < � and �� ≥ � , the combi-
nation is indecisive. In this case, the algorithm (lines 7-11) chooses
the cluster �max with the largest radius, and recursively checks all

1269

combinations where 𝐶max is replaced by one of its sub-clusters. In
the example of Figure 2b, assume that the algorithm examined an
indecisive combination of clusters 𝐶1,𝐶2, 𝐶3, and 𝐶2 is the cluster
with the largest radius. The algorithm will consider the three chil-
dren of 𝐶2, and examine their combinations with 𝐶1 and 𝐶3. The
recursion continues until each combination is decisive. Decisive
combinations are typically found at high levels of the cluster tree,
thereby saving many comparisons.

In the following, we will discuss two different approaches for
deriving 𝐿𝐵 and 𝑈𝐵 for arbitrary correlation patterns. The first
approach (theoretical bounds) has constant complexity in the car-
dinality of the clusters. The second approach (empirical bounds)
extends the theoretical bounds with additional information. It has
a slightly higher cost, but typically leads to much tighter bounds.

3.2.1 Theoretical bounds. We first present a lemma for bounding
the Pearson correlation between only two clusters, which serves as
a stepping stone for multivariate correlations.

Lemma 3.1. Let 𝜌 (x, y) denote the Pearson correlation between two

vectors x and y, and 𝜃x,y the angle formed by these vectors. Consider

four z-normalized vectors u1, u2, v1, and v2, such that𝜃v1,u1 ≤ 𝜃1 and

𝜃v2,u2 ≤ 𝜃2. Then, correlation 𝜌 (u1, u2) can be bounded as follows:

cos(𝜃max
u1,u2) ≤ 𝜌 (u1, u2) ≤ cos(𝜃min

u1,u2)

where

𝜃min
u1,u2 = max

(︁

0, 𝜃v1,v2 − 𝜃1 − 𝜃2
)︁

,𝜃max
u1,u2 = min

(︁

𝜋, 𝜃v1,v2 + 𝜃1 + 𝜃2
)︁

Proof. All proofs are included in the technical report [18]. □

Lemma 3.1 bounds the correlation between two vectors u1 and
u2 that belong to two clusters with centroids v1 and v2 respectively,
by using: (a) the angle between the two centroids, and, (b) upper
bounds on the angles between u1 and v1, and between u2 and v2.
For instance, in the running example (Fig. 2(b)), we can bound the
correlation between any two vectors from (𝐶1,𝐶2) if we have the
cosine of the two cluster centroids d and e, the cosines of a with d,
and h with e (as h is the furthest point in 𝐶2 from the centroid e).
The bounds are tightened if the maximum angle formed by each
centroid with all cluster vectors is reduced.

We now extend our discussion to cover multivariate correlations,
which involve three or more clusters. We first derive bounds for
mc (Theorem 3.2), and then for mp (Theorem 3.3).

Theorem 3.2 (Bounds for mc). For any pair of clusters 𝐶𝑖 ,𝐶 𝑗 ,

let 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) denote lower/upper bounds on the pairwise

correlations between the clusters’ materializations, i.e., 𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤

min
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Consider the set

of clusters S = {𝐶1,𝐶2, . . . ,𝐶𝑁 }, partitioned into S𝑙 = {𝐶𝑖 }
𝑙max

𝑖=1

and S𝑟 = {𝐶𝑖 }
𝑁
𝑙max+1

. Let 𝐿(S1,S2) =
∑︁

𝐶𝑖 ∈S1,𝐶 𝑗 ∈S2
𝑙 (𝐶𝑖 ,𝐶 𝑗), and

𝑈 (S1,S2) =
∑︁

𝐶𝑖 ∈S1,𝐶 𝑗 ∈S2
𝑢 (𝐶𝑖 ,𝐶 𝑗). Then, for any two sets of vec-

tors 𝑋l = {x1, . . . , xlmax
}, 𝑋r = {xlmax+1, . . . , xN} such that xi ∈ 𝐶𝑖 ,

multiple correlation mc(𝑋l, 𝑋r), can be bounded as follows:

(1) if 𝐿(S𝑙 ,S𝑟) ≥ 0:

𝐿(S𝑙 ,S𝑟)
√︁

𝑈 (S𝑙 ,S𝑙)
√︁

𝑈 (S𝑟 ,S𝑟)
≤ mc(𝑋l, 𝑋r) ≤

𝑈 (S𝑙 ,S𝑟)
√︁

𝐿(S𝑙 ,S𝑙)
√︁

𝐿(S𝑟 ,S𝑟)

(2) if𝑈 (S𝑙 ,S𝑟) ≤ 0:

𝐿(S𝑙 ,S𝑟)
√︁

𝐿(S𝑙 ,S𝑙)
√︁

𝐿(S𝑟 ,S𝑟)
≤ mc(𝑋l, 𝑋r) ≤

𝑈 (S𝑙 ,S𝑟)
√︁

𝑈 (S𝑙 ,S𝑙)
√︁

𝑈 (S𝑟 ,S𝑟)

(3) else:

𝐿(S𝑙 ,S𝑟)
√︁

𝐿(S𝑙 ,S𝑙)
√︁

𝐿(S𝑟 ,S𝑟)
≤ mc(𝑋l, 𝑋r) ≤

𝑈 (S𝑙 ,S𝑟)
√︁

𝐿(S𝑙 ,S𝑙)
√︁

𝐿(S𝑟 ,S𝑟)

Combined with Lemma 3.1, Theorem 3.2 enables bounding the
multiple correlation of any cluster combination that satisfies the
correlation pattern, without testing all its possible materializations.
For example, for combination ((𝐶1,𝐶2),𝐶3) from our running exam-
ple, we first use Lemma 3.1 to calculate bounds for all cluster pairs
in 𝑂 (1) per pair, which leads to values for 𝐿(·, ·) and 𝑈 (·, ·). The
bounds on mc((𝐶1,𝐶2),𝐶3) then follow directly from Theorem 3.2.

Also, observe that by tightening the bounds for the pairwise
correlations, we can tighten 𝐿(·, ·) and 𝑈 (·, ·), which will in turn
tighten the bounds formc. This is further exploited in Section 3.2.2.

Theorem 3.3 (Bounds for mp). For any pair of clusters 𝐶𝑖 ,𝐶 𝑗 ,

let 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) denote lower/upper bounds on the pairwise

correlations between the cluster’s materializations, i.e., 𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤

min
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Consider the set

of clusters S =

{︁

𝐶1,𝐶2, . . . ,𝐶𝑙max

}︁

. Furthermore, let L and U be sym-

metric matrices with elements 𝑙𝑖 𝑗 = 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢𝑖 𝑗 = 𝑢 (𝐶𝑖 ,𝐶 𝑗)

∀1 ≤ 𝑖, 𝑗 ≤ 𝑙max. For any set of vectors 𝑋 = {x1, x2, . . . , xlmax
} such

that xi ∈ 𝐶𝑖 , multipole correlation mp(𝑋) can be bounded as follows:

1 − 𝜆𝑚𝑖𝑛 −
1

2
| |U − L| |2 ≤ mp(𝑋) ≤ 1 − 𝜆𝑚𝑖𝑛 +

1

2
| |U − L| |2

where 𝜆𝑚𝑖𝑛 is the smallest eigenvalue of matrix L+U
2 . □

Similar to Theorem 3.2 for mc, the tightness of the bounds from
Theorem 3.3 depend on the tightness of the bounds for the pairwise
correlations between clusters, which can be derivedwith Lemma 3.1.
Proofs for both theorems can be found in [18].

3.2.2 Empirical pairwise bounds. The bounds of Lemma 3.1 śwhich
determine the bounds of Theorems 3.2 and 3.3 ś tend to be pes-
simistic, as they always account for the worst case. In the example
of Fig. 2(c), the theoretical lower bound (resp. upper bound) ac-
counts for the case that hypothetical vectors (depicted in pink) are
located on the clusters’ edges such that they are as far away from
(resp. as close to) each other as possible, given the position of the
cluster centroids (depicted in black) and cluster radii.

The empirical bounds approach builds on the observation that
the pairwise correlations of any pair of vectors xi, xj drawn from a
pair of clusters𝐶𝑖 ,𝐶 𝑗 respectively is typically strongly concentrated
around (𝑙 (𝐶𝑖 ,𝐶 𝑗) + 𝑢 (𝐶𝑖 ,𝐶 𝑗))/2, especially for high-dimensional
vectors. The approach works as follows. At initialization, we com-
pute all pairwise correlations and store these in an upper-triangular
matrix. Note that part of these correlations have already been calcu-
lated during the clustering phase. Then, during execution of Alg. 1,
we lazily compute 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) as follows: 𝑙 (𝐶𝑖 ,𝐶 𝑗) =

minx∈𝐶𝑖 ,y∈𝐶 𝑗
𝜌 (x, y) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) = maxx∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y), with
𝜌 (x, y) retrieved from the upper-triangular matrix. The computed
𝑙 (𝐶𝑖 ,𝐶 𝑗) and𝑢 (𝐶𝑖 ,𝐶 𝑗) are also cached and reusedwhenever (𝐶𝑖 ,𝐶 𝑗)

1270

is encountered in another cluster combination. It is important to
note that the empirical bounds do not induce errors, since they
trivially satisfy the requirements of Theorems 3.2 and 3.3 that
𝑙 (𝐶𝑖 ,𝐶 𝑗) ≤ min

x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y) and𝑢 (𝐶𝑖 ,𝐶 𝑗) ≥ max
x∈𝐶𝑖 ,y∈𝐶 𝑗

𝜌 (x, y). Con-

sequently, bounds on mc and mp derived using empirical bounds
are still correct. Moreover, they are at least as tight as the bounds
of Lemma 3.1, since they account only the vectors that are actually
present in the clusters and not the hypothetical worst case.

There is a clear tradeoff between the cost of computing the em-
pirical pairwise bounds (worst case, quadratic to the number of
vectors), and the performance improvement of CD from the tighter
bounds. Indicatively, in our experiments, the theoretical pairwise
bounds computed from Lemma 3.1 were typically between two to
eight times wider compared to the empirical pairwise bounds. Ex-
ploiting the tighter empirical bounds led to a reduction of the width
of the bounds of Theorem 3.2 by 50% to 90% (for mc(1, 2)), which
empowered CD to reach to decisive combinations faster. As a result,
total execution time of CD with empirical bounds was typically an
order of magnitude less than the time with the theoretical bounds.
Therefore, all reported results will be using the empirical bounds.

3.2.3 Exploiting additional constraints. CD supports both the ir-
reducibility and minimum jump constraints (see Section 2.2). For
irreducibility, the process of identifying whether a simpler com-
bination exists requires testing whether a combination of any of
the subsets of S𝑙 and S𝑟 is already contained in the answers. To
avoid the cost of enumerating all 𝑂 (2 |S𝑙 |+ |S𝑟 |) subsets during the
execution of Alg. 1, only the pairwise correlations between any two
clusters 𝐶𝑙 ∈ S𝑙 and 𝐶𝑟 ∈ S𝑟 are examined (for mp, both 𝐶𝑙 ∈ S𝑙
and 𝐶𝑟 ∈ S𝑙). Precisely, we use 𝑙 (𝐶𝑙 ,𝐶𝑟), which is already com-
puted for Theorems 3.2 and 3.3. If there exist𝐶𝑙 ,𝐶𝑟 s.t. 𝑙 (𝐶𝑙 ,𝐶𝑟) ≥ 𝜏 ,
then any solution that can be derived from further examining the
combination (S𝑙 ,S𝑟) cannot satisfy the irreducibility constraint.
Therefore, (S𝑙 ,S𝑟) can be discarded. The case of minimum jump
is analogous: if any 𝑙 (𝐶𝑙 ,𝐶𝑟) ≥ 𝑈𝐵 − 𝛿 , where UB is calculated as
in line 1 of Alg. 1, then the combination is discarded. However, con-
sidering only the pairwise correlations during the pruning process
may lead to inclusion of answers that do not satisfy the constraints.
Therefore, such combinations are filtered from the query result
before returning it to the user. Since the number of answers is typi-
cally in the order of a few tens to thousands, this final pass takes
negligible time.

3.3 Top-𝜅 queries

When exploring new datasets, it may be difficult to decide on a
threshold 𝜏 . Setting the threshold too high for the dataset may
lead to no answers, whereas a very low 𝜏 can result in millions of
answers, and performance decrease. The top-𝜅 variant addresses
this issue by allowing users to set the desired number of results,
instead of 𝜏 . The answer then includes the𝜅 combinations of vectors
with the highest correlation that satisfy the correlation pattern.

Assuming an oracle that can predict the 𝜏 that would yield 𝜅

results, the top-𝜅 queries could be transformed to threshold queries
and answered with the standard CD algorithm. Since such an or-
acle is impossible, many top-𝜅 algorithms (e.g., Fagin’s threshold

Algorithm 2: Top-𝜅-Query(S𝑙 , S𝑟 , 𝐶𝑜𝑟𝑟 , 𝜏 , 𝜅, 𝛾 , 𝐵)
Input: Sets of clusters S𝑙 and S𝑟 that adhere to the

user-defined correlation pattern. correlation
measure 𝐶𝑜𝑟𝑟 , starting threshold 𝜏 , desired output
set size 𝜅, shrinkfactor 𝛾 , list of buckets 𝐵.

1 (𝐿𝐵,𝑈𝐵𝑠ℎ𝑟𝑢𝑛𝑘) ← CalcBounds(S𝑙 ,S𝑟 ,𝐶𝑜𝑟𝑟,𝛾)

2 if 𝐿𝐵 ≥ 𝜏 then

3 Add the contents of (S𝑙 ,S𝑟) to the result set R

4 R ← SORT(R)[1:𝜅]

5 𝜏 ← 𝑚𝑖𝑛
(𝑋,𝑌) ∈R

𝐶𝑜𝑟𝑟 (𝑋,𝑌)

6 else if 𝑈𝐵𝑠ℎ𝑟𝑢𝑛𝑘 ≥ 𝜏 then

// Replace largest cluster with subclusters and recurse
with Top-𝜅-Query (similar to lines 7-11 of Alg. 1)

12 else

13 𝛾∗ =
𝜏−𝜇
𝑈𝐵−𝜇

14 Assign (S𝑙 ,S𝑟) to bucket ⌈𝛾∗ · |𝐵 |⌉

// Phase 2 – starts when Phase 1 is completed

15 for 𝑏 ∈ 𝐵 do

16 for (S𝑙 ,S𝑟) ∈b do

17 ThresholdQuery(S𝑙 , S𝑟 , 𝐶𝑜𝑟𝑟 , 𝜏)

18 R ← SORT(R)[1:𝜅]

19 𝜏 ← 𝑚𝑖𝑛
(𝑋,𝑌) ∈R

𝐶𝑜𝑟𝑟 (𝑋,𝑌)

algorithm [8]) start with a low estimate for 𝜏 , and progressively in-
crease it, by observing the intermediate answers. The performance
of these algorithms depends on how fast they can approach the true
value of 𝜏 , thereby filtering candidate solutions more effectively.

The top-𝜅 variant of CD (see Alg. 2) follows the same idea. The
algorithm has the same core as the threshold-based variant, and
relies on two orthogonal techniques to increase 𝜏 quickly. First, at
invocation, input parameter 𝜏 is set to the value of the 𝜅’th highest
pairwise correlation. Since all pairwise correlations are computed
for the empirical bounds, this causes zero additional cost.

The second technique is an optimistic refinement of the upper
bound, aiming to prioritize the combinations with the highest corre-
lations. The algorithm is executed in two phases. In the first phase,
similar to Alg. 1, the algorithm computes the upper and lower bound
per combination. However, it now artificially tightens the bounds
bymoving the upper bound towards the lower bound. This so-called
shrinking is achieved by taking𝑈𝐵shrunk = (1−𝛾) ·𝜇+𝛾 ·𝑈𝐵, where
𝜇 =

𝑈𝐵+𝐿𝐵
2 and 𝛾 ∈ [0, 1] is a shrink factor with a default value of

0. If the lower bound surpasses the current threshold 𝜏 , all solutions
resulting from this candidate combination are added to the set of
answers R, and the 𝜅 solutions from R with the highest correlation
are kept (Alg. 2, lines 3-4). The value of 𝜏 is then set to the minimum
correlation in R (line 5). Otherwise, if 𝑈𝐵shrunk is greater than the
running 𝜏 , we recursively break the cluster to smaller clusters, until
we get decisive bounds, analogous to Alg. 1 (lines 6-11). Finally,
if the shrunk upper bound is less than the running value of 𝜏 but
the true𝑈𝐵 is greater than 𝜏 , we compute the critical shrink factor
𝛾∗ for the cluster (line 13) ś the minimum value of 𝛾 for which
𝑈𝐵shrunk would surpass 𝜏 . Intuitively, a small 𝛾∗ means that the
combination is more promising to lead to higher correlation values.

1271

All combinations are placed in 𝐵 equi-width buckets based on their
𝛾∗ values (line 14). At the second phase (lines 15-19), the algorithm
processes the buckets one by one, starting from the first, invoking
the threshold query algorithm on each of its cluster combinations
(Alg. 1) and updating the running 𝜏 after every bucket. Since 𝜏
continuously increases, and the first buckets are likely to contain
the highest correlation values, most combinations after the first
few buckets will be filtered without needing many cluster splits.

3.3.1 Progressive threshold queries. The prioritization technique
of Alg. 2 can also be used as a basis for a progressive threshold
algorithm. Precisely, Alg. 2 can be initialized with a user-chosen
𝜏 and with 𝜅 → ∞. This will prioritize the combinations that
will yield the strongest correlations, and thus also the majority
of correlations larger than 𝜏 . Prioritization is frequently useful in
exploratory data analytics: the user may choose to let the algorithm
run until completion, which will yield results identical to Alg. 1, or
interrupt the algorithm after receiving sufficient answers. We will
evaluate the progressive nature of CD in Section 5.

4 DETECTION OF MULTIVARIATE
CORRELATIONS IN STREAMING DATA

Our streaming algorithm, called CDStream, builds on top of CD
such that it maintains CD’s solution over a sliding window as new
data arrive. Currently, CDStream works with the multiple correla-
tion measure only; efficient support for the multipole measure is
ongoing work.

CDStream relies on two observations to increase the perfor-
mance for streaming data. First, most arrivals do not lead to signifi-
cant updates to the final result. Second, in most real-world scenarios,
each of the streams may have a different update rate. For exam-
ple, in finance, each stock exchange serves updates at different
frequencies. The one-size-fits-all approach of CD that handles all
updates identically, recomputing the full solution from scratch can
be wasteful.

At initialization, CDStream executes CD on the initial data. Then,
the core idea of CDStream is as follows. Assume an update of a
vector v. This vector belongs to a hierarchy of clusters. For example,
vector e in Fig. 2(b) belongs to 𝐶2 and 𝐶7. We denote the set of
these clusters as C(v). The cluster combinations that need to be
checked after the update of v are only the decisive combinations ś
either positive or negative ś that involve a cluster from C(v). The
final result remains correct if these combinations are still decisive
positive/negative.

To understand how CDStream adds pruning power on top of
CD, observe that even for combinations with three or more clus-
ters, the combination’s bounds are determined by 𝑙 (𝐶𝑖 ,𝐶 𝑗) and
𝑢 (𝐶𝑖 ,𝐶 𝑗), the minimum and maximum pairwise correlations be-
tween all involved clusters. Therefore, any update that does not
change 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) for all pairs of involved clusters can-
not invalidate the previous bounds, or the previous solution. We
refer to the pairs of vectors from 𝐶𝑖 and 𝐶 𝑗 that are responsible for
𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗) as theminimum andmaximum extrema

pair respectively. For example, in Fig. 2(c), the minimum and max-
imum extrema pairs for (𝐶2,𝐶3) are ⟨h, g⟩ and ⟨b, f⟩ respectively.
CDStream exploits this observation by: (a) checking if each update

causes a change to any 𝑙 (𝐶𝑖 ,𝐶 𝑗) and 𝑢 (𝐶𝑖 ,𝐶 𝑗), and (b) for the up-
dates that indeed cause a change, updating the extrema pairs, and
recomputing the bounds with Theorem 3.2 and the final solution.

Key to the performance of CDStream is an index that enables the
algorithm to quickly locate the extrema pairs that are potentially
affected by an update. The index maps each vector v to a list of all
decisive combinations (both negative and positive) that involve any
cluster from C(v). Internally, the combinations for v are grouped
in two levels. First, they are grouped by the extrema pairs. For
example, in Fig. 3, the first 5 combinations for vector c are grouped
under extrema pair ⟨b, f⟩. All combinations with the same extrema
pair are subsequently grouped by the cluster that does not contain
the vector used for indexing (in this case, vector c). In our example,
the first two combinations have 𝐶2 as the second cluster and are
grouped together. We will refer to these clusters for the same
extrema pair as the extrema pair clusters. The described index
is constructed at initialization by iterating over all vectors 𝑉 in a
decisive combination when it is identified (i.e., Alg. 1 lines 3,5), and
storing it in the index on every extrema pairs that a vector v ∈ 𝑉

can violate (see Alg. 5 of [18] for pseudocode).
The index is used to support a triggering functionality, which

allows us to quickly locate and verify the extrema pairs related to
each update. First, the index is used to retrieve the information
related to an updated vector v. The algorithm iterates over the re-
spective extrema pairs to verify that these did not change or move,
despite the update (Alg. 3, lines 2-11)3. Precisely, for each mini-
mum (resp. maximum) extrema pair with correlation 𝜌min (𝜌max),
it verifies that the correlation of v with all points belonging to the
second cluster is still at least 𝜌min (at most 𝜌max) (line 6). If this
is still the case, all decisive combinations are still valid. If, on the
other hand, an extrema pair is invalidated the respective decisive
combinations are checked and their bounds are recomputed and
updated. Combinations are re-indexed in case extrema pairs have
changed. In case a combination becomes indecisive, subcluster com-
binations are checked analogously to Alg. 1 lines 7-11, storing new
combinations through the standard indexing procedure described
earlier. Indecisive combinations are removed from the index in a
lazy manner.

Checking whether 𝜌min (resp. 𝜌max) are still valid requires com-
puting the correlation of v with each of the vectors contained in all
extrema pair clusters. A critical observation is that there always ex-
ists one cluster in the extrema pair clusters that contains all others
ś otherwise the other clusters could not contain the same extrema
vector. Therefore, the algorithm considers the extrema pair clusters
in decreasing size. If the largest cluster passes the test, then all
its decisive combinations and all the decisive combinations of all
its sub-clusters are still valid and do not need to be checked (lines
9-11). In the running example, if ⟨b, f⟩ is still the maximum extrema
pair between clusters 𝐶3 and 𝐶2, and it has the same 𝜌max, then
all combinations under ⟨b, f⟩ are still decisive. If the largest cluster
does not pass the test, then the bounds for all its decisive combina-
tions are verified. The combinations that are no longer decisive are
updated accordingly, e.g., by breaking one of the involved clusters
to sub-clusters, as described in Section 3.2. Furthermore, the second,

3Alg. 3 describes the process of querying the DCC Index for validating the maximum
extrema pairs. The process of validating the minimum extrema pairs is analogous.

1272

Algorithm 3:�eryIndex(�,I)
Input: A stream index � , the DCC Index I
Output: A set of DCCs
 that need to be checked

1
 ← {} // Initialize output set

2 for 〈a, b〉 ∈ I[�] do // Iterate over extrema pairs

3 	 ← {} // Vectors violating the extrema

4 �� ← I[�] [〈a, b〉] [0] // Get largest cluster

5 for v� ∈ �� do // Iterate over cluster content

6 if � (v� , v�)� > � (a, b)� then

7 	 ← 	 ∪ vj // Add to violations

8
 ←
 ∪ I[�] [〈a, b〉] [��] // Add DCCs

9 for � ∈ I[�] [〈a, b〉] [1 :] do // Check sub-clusters

10 if � ∩	 ≠ ∅ then // Violating point in �

11
 ←
 ∪ I[�] [〈a, b〉] [�] // Add DCCs

12 return

...

...

...

...

...

...

......

Figure 3: Visualization of the decisive combination index

third, etc. largest extrema pair clusters are tested recursively. The
process stops as soon as one of these clusters passes the test.

This grouping of decisive combinations based on the extrema
pairs and clusters is instrumental in the algorithm’s e�ciency, as
each pair of clusters may appear in many decisive combinations.
In the example of Fig. 2(c), assuming that
max + �max = 3 with mc

measure, �2 and �3 will appear in a combination of size 2 without
�1, and in a combination of size 3, together with �1. In both cases,
the extrema pairs between �2 and �3 will be identical. Therefore,
with a single check, both decisive combinations can be veri�ed.
Typically the number of decisive combinations for each pair and
for each cluster is in the order of a few hundreds for � = 1000.

CDStream supports discretization of the stream of updates to
small batches (e.g., of a few seconds, or a few tens or hundreds
of updates) as a method to trade-o� throughput and freshness of
results. A larger batch size increases performance and throughput,
but potentially delays the updating of the �nal results. In Section 5
we will evaluate CDStream with di�erent batch sizes.

4.1 User constraints and top-� queries

To support the minimum jump and irreducibility constraints, addi-
tional triggering functionalities, further described below, are added
to the index of CDStream.

Irreducibility constraint. Let �,�,� ′, � ′ denote sets of clus-
ters. Consider combinations (�,�), and (� ′ ⊆ �,� ′ ⊆ �), with
|� ∪ � | > |� ′ ∪ � ′|, i.e., irreducibility excludes (�,�) from the
results if (� ′, � ′) is in. We need to detect two additional cases: (a)
(�,�) needs to be removed from the result set because (� ′, � ′)

just surpassed � , and, (b) (�,�) needs to be added in the result set,

because (� ′, � ′) was just removed from the result set. Both cases
can be triggered by an update of a vector from � or � .

Without the irreducibility constraint, the index contains the fol-
lowing extrema pairs: (a) for the negative decisive combinations, the
pairs required for upper-bounding the correlation, (b) for the posi-
tive decisive combinations, all pairs required for lower-bounding
the correlation. The irreducibility constraint requires also monitor-
ing of the upper bounds of positive decisive combinations (e.g., for
case (a), when an increase of ���� (� ′, � ′) will cause the following
condition to hold: ���� (� ′, � ′) > � which will mean that (�,�)
need to be removed from the result set) and the lower bounds of
negative decisive combinations with any ���� (� ′, � ′) > � . These
decisive combinations are also added in the index, under the ex-
trema pairs, and checked accordingly.

Minimum jump constraint. Monitoring for the minimum
jump constraint is analogous to the irreducibility contraint. The fol-
lowing cases need to be considered: (a) (�,�) needs to be removed
from the result set because ���� (� ′, � ′) + � > ���� (�,�), and (b)
(�,�) needs to be added in the result set because ���� (�,�) > �

and ���� (� ′, � ′) + � < ���� (�,�). Both cases are identi�ed using
the discussed method for monitoring the irreducibility constraint.

Top-� queries Recall that CDStream is initialized with the result
of CD. For a top-� query, CDStream queries CD for a slightly larger
number of results � ′ = � ∗ �, where � is at least 1. CDStream �nds
the minimum correlation in these results, and uses it as a threshold
� in the streaming algorithm. As long as the size of the result set
is at least �, the true top-� results will always have a correlation
higher than � and will be contained in the top-� ′ results maintained
by the algorithm. Therefore, the top-� out of the detected top-� ′

correlations are returned to the user.
Scaling factor � controls the tradeo� between the robustness of

the streaming algorithm for top-� queries, and its e�ciency. Setting
� = 1 may lead to the situation that, due to an update, fewer than �
results exist with correlation greater than or equal to � . CDStream
then resorts to CD for computing the correct answer, and updating
its index. Conversely, a large � will lead to a larger number of
intermediary results, and to more e�ort for computing the exact
correlations of these results, which is necessary for retaining the
top-� results. Our experiments with a variety of datasets have
shown that � = 2 is already su�cient to provide good performance
without compromising the robustness of CDStream.

4.2 CDHybrid: combining CD and CDStream

Recall that CDStream handles the stream updates in batches. The
algorithm exhibits high performance when the updates do not
drastically change the results set. In streams where the answer
changes abruptly, it may be more e�cient to run the one-shot
algorithm after the completion of each batch and recompute the
solution from scratch, instead of maintaining CDStream’s index and
the result through time. CDHybrid is an algorithm that orchestrates
CD and CDStream, transparently managing the switch between
the two algorithms based on the properties of the input stream.

To decide between CD and CDStream, CDHybrid needs to es-
timate the cost of both approaches for handling a batch. A good
predictor for this is the number of updates in the batch – more up-
dates tend to cause more changes in the result, which takes longer

1273

for CDStream to handle. Therefore, CDHybrid starts with a brief
training period, where it collects statistics on the observed arrival
count and execution time of the two algorithms. Simple linear re-
gression is then used to model the relationship between execution
time and the observed number of updates. Note that the coefficients
of a simple linear regression model can be maintained in constant
time and space. Therefore, the regression model is continuously up-
dated, even after the training phase. Switching from one algorithm
to the other works as follows.

Switching from CDStream to CD. We cache the current re-
sults of CDStream (we will refer to these as RCDStream) and stop
maintaining the index. When a batch is completed, the vectors are
updated (i.e., by progressing the sliding window of the each vector)
and passed to CD for computing the result.

Switching from CD to CDStream. Since the stream index was
not updated for some time, we need to update it before we can use
it again. We compute the symmetric difference Δ of the current
results of CD (denoted as RCD) with the last results of CDStream
RCDStream. Any result 𝑟 contained in Δ ∩ RCDStream is due to a
negative decisive combination, which needs to be added in the
index, whereas any 𝑟 contained in Δ ∩ RCD leads to a new positive
decisive combination.

Notice that the switch from CD to CDStream will not remove
from the index the decisive combinations that were constructed
from CDStream, but are no longer relevant, e.g., because CD split
one of its involved clusters. We use a lazy approach to detect these
combinations in the index: the first timewe access a combination af-
ter the switch, we check if there exists a result 𝑟 ∈ Δ that is included
in the cluster combination. If so, we reconstruct the combination
such that 𝑟 is removed from it. For example if we access (𝐶1,𝐶3),
and decisive combination (𝐶1,𝐶9) is in Δ, we replace (𝐶1𝐶3) with
(𝐶1,𝐶10) and move it to the correct place in the index. If all possible
vector combinations in the combination are in Δ, the combination
is discarded from the index.

5 EXPERIMENTAL EVALUATION

The purpose of our experiments was twofold: (a) to assess the scal-
ability and efficiency of our methods for varying input parameters,
and, (b) to compare them with the state-of-the-art algorithms for
multivariate correlation discovery [1, 2], and an exhaustive search
baseline that iterates over all possible combinations. The practical
significance of multivariate correlations with the two correlation
measures was already extensively demonstrated in different do-
mains, e.g., [1, 2, 15] (see Section 1 for more examples). Since CD
supports the same correlationmeasures (and further generalizations
of them), and guarantees completeness of results, we do not repeat
their use-case studies, but evaluate our methods on the same data
(or data of the same type, where the original data was unavailable).

Hardware and implementations. All experiments were ex-
ecuted on a server equipped with a 24-cores Intel Xeon Platinum
8260 Processor, and 400GB RAM. For CoMEtExtended and CONTRa,
we used the original implementations, which were kindly provided
by the authors [1, 2]. All implementations (including exhaustive
search) cached and reused the pairwise correlation computations
where applicable, which was always beneficial for performance.
The reported execution time for CD and CDStream corresponds to

the total execution cost including the steps of pre-processing, clus-
tering and calculating pairwise correlations. All reported results
correspond to averages after 10 repetitions.

Datasets. We include results for three real-world datasets.4 Re-
sults with other datasets had similar qualitative outcomes (see [18]
for more details).

• Stocks. Prices of 1596 stocks, covering a period from April
1, 2020 to May 12, 2020. Each stock has its own update frequency,
ranging from 1 to 10 minutes. All prices were normalized with
log-return normalization, as is standard in finance. To ensure equal
dimensionality, all time series were resampled to 5 minute inter-
arrival times for CD (leading to 9103 observations), and missing
values were filled with standard interpolation. For CDStream, time
series were kept at the original update frequency. We used interpo-
lation to fill missing values, which was required for synchronizing
the updates. Notice that any algorithm could be used instead for this
process, e.g., forward or backward-filling, or even a more complex
solution that incorporates ML, e.g., a deep neural network [4].

• fMRI. Functional MRI data of a participant watching a movie,
prepared with the recommended steps for voxel-based analytics.
The data was further pre-processed by mean-pooling with kernels
of 2x2x2, 3x3x3, 4x4x4, 6x6x6 and 8x8x8 voxels, each representing
the mean activity level at a cube of voxels in the scan. Subsequently,
constant-value time series were removed. This led to a total of
9700, 3152, 1440, 509 and 237 time series respectively, all of equal
length (5470 observations), covering a period of ~1.5 hours. Unless
otherwise mentioned, the reported results correspond to the 4x4x4
resolution, i.e. 1440 time series.

• SLP. Sea Level Pressure data [24], as preprocessed in [2]. The
dataset contains 171 time series, each with 108 observations.

5.1 CD on static data

5.1.1 Threshold queries. Figs. 4a-b show the effect of threshold 𝜏
on execution time of CD for the fMRI and Stocks dataset respec-
tively. The left Y axis corresponds to query mc(2, 2) with different
constraints, whereas the right Y axis corresponds tomp(4). The plot
does not include a result for mc in the Stocks dataset for 𝜏 = 0.8,
since the query returned more than 10 Million results, and our
implementation automatically switches to the top-𝜅 variant (with
𝜅 = 107) in such cases. Our first observation is that increasing the
threshold consistently leads to higher efficiency. This is expected,
since a higher threshold enables more aggressive pruning of can-
didate comparisons. Furthermore, CD is noticeably faster for mc

compared to mp. This is due to two reasons: (a) the complexity of
the computation of eigenvalues of a matrix (cubic to 𝑙max), which
is required for computing the bounds for mp (Theorem 3.3), and
(b) mp typically results in higher correlation values and to more
answers for the same value of 𝜏 compared to mc.

We found that the individual execution times over the 10 repeti-
tions for each configuration were stable, with a relative standard
deviation typically between 1%-2%, or below 5 seconds in absolute
value. The maximum relative standard deviation for a configuration
observed in all experiments was 4.7% of the mean query time.

4See https://github.com/CorrelationDetective/public for download links, instructions,
and code for reading the data.

1274

https://github.com/CorrelationDetective/public

(a)mc(2, 2) andmp(4) threshold queries on fMRI (b)mc(2, 2) andmp(4) threshold queries on Stocks (c)mc(2, 2) andmp(4) top-� queries on fMRI

Figure 4: E�ect of constraints, � and � on performance.

5.1.2 Top-� queries. Fig. 4c shows the execution time of CD for
di�erent values of � with the fMRI dataset – the results with Stocks
were qualitatively very similar. We see that a decrease of � typically
leads to increased e�ciency. A low value of � helps the algorithm to
increase the running threshold � faster, leading to more aggressive
pruning when Alg. 1 is invoked. Interestingly, this behavior is not
as prevalent for mp(4) with no constraints. This discrepancy can
be attributed to the correlation values in the result set. Indicatively,
for this query the lowest correlation in the result set only decreases
from 0.917 (top-100) to 0.915 (top-500). In contrast, the same pattern
with a minimum jump constraint of � = 0.1 shows a decrease in
this correlation from 0.82 (top-100) to 0.78 (top-500), explaining
why the e�ect of � on performance is more substantial.

5.1.3 Correlation pa�ern. Table 2 presents the results size and
execution time of CD for di�erent correlation patterns. As expected,
increasing the complexity of the correlation pattern leads to an
increase of the computational time. However, even though the size

of the search space follows

(

(�
�max+�max

)

)

, execution time of CD

grows at a much slower rate. Indicatively, for the fMRI dataset, the
search space size grows 5 orders of magnitude between mc(1, 2)

and mc(1, 4). Execution time increases by only three orders of
magnitude, indicating e�cient pruning of the search space.

5.1.4 Clustering sensitivity. We now analyze the sensitivity of CD
with respect to the hierarchical clustering parameters. Since correct-
ness of CD is not inªuenced by the clustering, our experiments only
investigate its inªuence on the e�ciency of CD. Table 3 illustrates
the e�ect of � (the number of sub-clusters per cluster) on CD’s
execution time. A very small number of sub-clusters in each split
(� = 2) hurts e�ciency signi�cantly, as it results in extremely large
clusters at the high levels of the hierarchy, and Algorithm 1 needs
to drill deeper into the hierarchy before reaching to decisive com-
binations. Very high � values also lead to suboptimal performance.
In that case, the clusters are more compact, leading to decisive
combinations at higher levels, but more cluster combinations exist
(in these higher levels) that need to be considered.

For � around 10, CD’s e�ciency is reasonably robust. In fact,
setting � = 10 led to performance close to the optimal in all cases
– at most 15% worse than the optimal performance for the same
query, or at most 5% if we do not consider absolute di�erences up
to 10 seconds. The small impact of � , as long as it is not close to the
extremes, can be explained by considering how it a�ects the depth
of the clustering tree: intuitively, under the simplifying assumption

that each cluster contains approximately an equal amount of vec-
tors, the depth of the clustering hierarchy is approximately log� (�).
This depth does not vary signi�cantly with the value of � . Indica-
tively, for 1000 vectors, setting � ∈ [10, 30] leads to a hierarchy of
3 to 4 levels. Therefore, as long as we avoid extremely small and
extremely large� values, the impact of� to CD’s e�ciency is small.
For consistency, for all our remaining experiments we set � = 10.

5.1.5 Progressive variant. We also evaluated the progressive na-
ture of CD. We modi�ed our code such that it tracks the number
of discovered results at di�erent time points. Figure 5b plots the
number of results returned by the algorithm on the Stocks dataset,
as a function of time. The results correspond to correlation patterns
mc(1, 4) and mp(4), which take signi�cant time to complete, since
these are the ones that would mostly bene�t from a progressive
algorithm. We see that CD retrieves around half of the results in
the �rst few seconds, and already reaches 80% recall in around 10%
of the total execution time.

5.1.6 Comparison to exhaustive search baseline. Figure 5a plots the
execution time of CD and the exhaustive baseline for processing
fMRI datasets of di�erent sizes, obtained as discussed in Section 5.
The results correspond to correlation patterns mc(1, 3) and mp(3).
We see that execution time of CD for both patterns grows at a
slower rate compared to the exhaustive search method, and the
di�erence increases with the dataset size. This �nding is consistent
with our earlier observation that the runtime of CD grows slower
than the size of the search space (Section 5.1.3), meaning that CD can
handle signi�cantly larger datasets than the exhaustive algorithm
in reasonable time.

5.1.7 Comparison to CoMEtExtended. Our next experiment fo-
cused on comparing CD with CoMEtExtended [2]. The goal of
CoMEtExtended di�ers slightly from our problem statement. First,
CoMEtExtended is approximate. Even though it does not o�er ap-
proximation guarantees, its recall (and e�ciency) can be tuned
by parameter �CE, which takes values between -1 and 1. Values
around 0 o�er a reasonable tradeo� between e�ciency and recall;
when CoMEtExtended is con�gured to return the exact result set
(�CE = 1), it degenerates to exhaustive search [2], to which we com-
pared in Section 5.1.6. In contrast, CD always produces complete
answers. Therefore, we consider both execution time and recall rate
in our comparison. Second, CoMEtExtended aims to �nd only max-

imal sets that exhibit a strongmp correlation, whereas CD �nds all
sets (up to a speci�ed cardinality) that are strongly correlated. To

1275

Figure 5: (a) Running time of CD (�lled markers) and exhaustive

algorithm (empty markers, dashed lines) for varying resolutions

of the fMRI dataset, with � = 0.9 and no constraints. Queries were

interrupted after 20 hours. (b) Number of retrieved results in relation

to runtime, for progressive execution of mc(1, 4) and mp(4) , with

� = 0.9,
 = 0.05 on the Stocks dataset.

ensure a fair comparison for CoMEtExtended, we also considered
all subsets of each result returned by CoMEtExtended. When a
subset of a CoMEtExtended answer satis�ed the query, we added it
to the results, thereby increasing CoMEtExtended’s recall. This step
was not included in the execution time of CoMETExtended, i.e., it
did not penalize its performance. Conversely, instead of enhancing
the results of CoMETExtended we could �lter out the non-maximal
results from CD’s result set. Since both approaches led to a very
similar comparison (recall and execution time), we present only
the results of the �rst approach. Table 5 presents the number of
results and execution time of CoMEtExtended and CD on the same
dataset (SLP) and parameters used in [2]. We only consider the mp

measure, since CoMEtExtended does not support mc. We see that
CD is consistently faster than CoMEtExtended – at least an order
of magnitude – and often returns substantially more results. Indica-
tively, for mp(4), CoMEtExtended with �CE = 0 (resp. �CE = 0.02)
is one to two (resp. two to three) orders of magnitude slower than
CD. Notice that for queries with � = 0.1, CoMEtExtended found
281 results with 6 vectors, and one with 7 (�CE = 0.02, � = 0.4).
These amount to ∼ 0.3% of the total amount of discovered results.
These were not discovered by CD, as the queries speci�ed
max = 5

at most, prioritizing the simpler and more interpretable results.
Nevertheless, for these settings, CD still found 25% more results
than COMEtExtended, and in one fourth of the time. Moreover,
the case studies presented in [1, 2], amongst others on this dataset,
demonstrate the usefulness and signi�cance of relatively simple
relationships, involving at most four time series. Other works on
multivariate correlations also emphasize the discovery of relation-
ships that do not contain too many time series [5]. For these cases,
with a �xed
max, CD is guaranteed to �nd a superset of COMEtEx-
tended’s result set, at a fraction of the time.

5.1.8 Comparison to CONTRa. We also compared CD to CON-
TRa [1] for discovery of tripoles, i.e., mc(1, 2) correlations. For a
fair comparison, CD was parameterized to �nd the same results
as CONTRa and to utilize the same hardware, as follows: (a) CD
was executed with � = 0, i.e., pruning was solely due the mini-
mum jump constraint, and (b) CD was con�gured to utilize only
one thread/core, since the implementation of CONTRa was single-
threaded. CONTRa was con�gured to return the exact results.

The experimental results with the fMRI dataset are shown in
Table 6.5 We see that CD is more e�cient than CONTRa for de-
tecting the same results, even with � = 0. However, the lack of �
yields an impractically large amount of results. As such, we also
evaluate CD with � = 0.5 (corresponding to the lowest correlation
reported in the case studies of [1]) and � = 0.9 (which gives a rea-
sonable amount of results, in the order of a few tens to hundreds).
This further decreases the runtime of CD by one to two orders of
magnitude, while preventing clutter of the result set by returning
only the most strongly correlated triplets.

5.2 Evaluation with streaming data

The second set of experiments was con�gured to evaluate the perfor-
mance of CDStream. We used the timestamps that are contained in
the three datasets for ordering the data and generating the streams.
Our discussion will focus on the Stocks dataset; results for the other
datasets are shown only when they o�er new insights. Unless oth-
erwise mentioned, the following results correspond to a batch size
of 50, a sliding window of 2000, and a dataset size of 1000 stocks.

5.2.1 Comparison to CD. Fig. 6a presents CDStream’s mean pro-
cessing time per batch, for di�erent dataset sizes created by ran-
domly picked stocks. The �gure also includes the average time
required for executing CD at the end of each batch. We see that
CDStream is more e�cient than CD for small correlation patterns,
requiring a few milliseconds. Note that, even though the number
of comparisons increases at a combinatorial rate with the number
of vectors , the execution time of CDStream grows substantially
slower. This is due to the grouping technique in the index of CD-
Stream, which e�ectively reduces the work for processing each
update. For more complex patterns, e.g., mc(2, 3), CDStream has
performance comparable to CD.

5.2.2 E�ect of query parameters. Table 4 presents the e�ect of �
and constraints (minimum jump and irreducibility) on CDStream’s
performance. We see that e�ciency of CDStream is robust to con-
straints – a constraint only causes a small di�erence in the number
of decisive combinations that need to be monitored. In contrast,
an increasing value of � leads to better performance, as decisive
combinations are reached earlier, similar to the case of CD.

Figure 6b plots the average processing time per update, for vary-
ing batch sizes and for both fMRI and Stocks. The batch size (X-axis)
is presented as a multiplicative factor on the number of vectors � in
each dataset. We see that the batch size enables tuning the tradeo�
between throughput and update rate of the results: increasing the
batch size increases e�ciency, but reduces freshness of results. This
happens because both algorithms will process only the latest values
for each vector, ignoring intermediary updates. Also observe that
CD’s e�ciency approaches that of CDStream as the batch size in-
creases. For Stocks, processing time for the two algorithms crosses
at a batch size 4 ∗ �, whereas for fMRI, this crossing happens at
batch size 8 ∗ �. This discrepancy can be attributed to the prop-
erties of the datasets (the inherent distributions and magnitude
of updates) and exempli�es the importance of CDHybrid. As we
will see shortly (Section 5.2.4), CDHybrid is able to adapt to the

5For this experiment, the minimum jump parameter
 is de�ned as in [1], to represent
the minimum di�erence between the squared correlations.

1276

Table 2: CD with di�erent

correlation patterns.
fMRI Stocks

time (s) #results time (s) #results
mc(1, 2) 1.4 53 2.0 581
mc(1, 3) 26.8 1350 23.3 632
mc(2, 2) 41.5 4239 18.2 1875
mc(1, 4) 6294 42196 6369.9 646
mc(2, 3) 15760 287651 4238.6 2796
mp(3) 2.6 33 4.6 302
mp(4) 560.0 58213 966.4 576

Table 3: Execution times (in seconds) for varying

clustering parameters and queries (
 = 0.05).
fMRI Stocks

� \� 2 5 10 25 50 2 5 10 25 50
0.8 446 108 121 131 157 722 106 106 142 104

mc(1, 3)
0.9 140 35 40 49 63 281 23 27 48 36
0.8 883 174 188 177 197 715 78 75 92 80

mc(2, 2)
0.9 264 57 64 68 94 179 22 22 35 30
0.8 4799 1037 1014 1061 1149 10547 1366 1369 1809 1424

mp(4)
0.9 2451 592 606 641 706 6808 1020 981 1497 1200

Table 4: E�ect of � and
 on CD and

CDStream for streaming data, with Stocks.
CD CDStream

\� 0.6 0.7 0.8 0.6 0.7 0.8

None 3.12 2.62 0.80 .045 .036 .023
Irred. 3.21 3.26 0.88 .046 .036 .023
0.05 3.87 2.39 0.93 .043 .034 .023
0.10 3.00 2.77 1.13 .044 .033 .023
0.15 3.15 2.49 1.14 .043 .033 .022

(a) E�ect of dataset size and correlation
pattern, with
 = 0.05, � = 0.8, Stocks.

(b) E�ect of batch size,
 = 0.05, � = 0.8. (c) E�ect of �, with
 = 0.05, with
Stocks.

(d) E�ciency of CDHybrid over time,
with Stocks.

Figure 6: E�ect of query parameters on performance of CDStream.

Table 5: Comparison of CoMEtExtended and Correlation Detective

on SLP: running time (seconds) and number of retrieved results.
CoMEtExtended Correlation Detective

� ,

�CE = 0 �CE = 0.01 �CE = 0.02 mp(4) mp(5)

time #res. time #res. time #res. time #res. time #res.
0.4, 0.1 604 62663 1318 67110 3530 70921 11 71083 899 88305
0.4, 0.15 511 7244 1218 7300 3393 7343 9 7559 575 7562
0.4, 0.2 501 2166 1210 2171 3327 2174 7 2183 333 2183
0.5, 0.1 459 30632 1099 33718 2836 36457 7 34592 557 51391
0.5, 0.15 398 3646 1006 3702 2760 3745 6 3961 391 3964
0.5, 0.2 390 1434 1006 1439 2701 1442 6 1451 292 1451
0.6, 0.1 246 7823 598 8892 1592 9859 5 9204 310 17349
0.6, 0.15 223 1569 577 1606 1559 1635 5 1840 245 1843
0.6, 0.2 219 771 568 776 1532 779 5 788 199 788

Table 6: Comparison of CONTRa and CD: running time (seconds)

and number of results for the largest fMRI dataset (� = 9700).
CONTRa CD (� = 0) CD (� = 0.5) CD (� = 0.9)

 time results time results time results time results
0.1 >24hrs 22952036 17027 22952036 3602 20527560 458 432
0.15 11162 733018 7168 733018 3151 732908 458 102
0.2 5324 20555 3852 20555 2790 20555 459 24

properties of the dataset, and chooses the best algorithm. In [18] we
also report on the sensitivity of CDStream to the sliding window
size, and consider more values for batch size.

5.2.3 Top-� queries. Fig. 6c plots the average processing time per
batch for top-� query mc(1, 2), for di�erent � values. We see that
processing time for both algorithms increases with � . In CD, execu-
tion time grows almost linearly with � (from 200 msec to almost 1.3
second), whereas for CDStream the time increases by only a factor
of two for the same values. The reason for this notable di�erence
in e�ciency is that CDStream only maintains the top-� solutions,
already having a good estimate for the threshold of the top-� high-
est correlation from previous runs, whereas CD has to start each
run from scratch to avoid �nding less than � results.

5.2.4 CDHybrid. For this experiment, we use a time-based batch
size of 1 minute, and simulate stream bursts by speeding up the

updates (reducing the inter-arrival times) around the middle of the
stream, for approximately one third of the stream length. Figure 6d
depicts the processing time per batch (moving average for the
last 5 batches), for processing Stocks with CD, CDStream, and
CDHybrid. Each epoch corresponds to one batch. The �gure also
includes the number of arrivals within each batch (right Y axis).
We observe that CDHybrid quickly switches to the best method.
Shortly after a switch from CDStream to CD, the cost of CDHybrid
is slightly higher compared to the optimal cost. This is attributed
to the initialization cost of CD. For the case of switching back to
CDStream (epoch 240), the additional cost for updating the outdated
index is also small, indicating that the process of updating the index
after the switch is not expensive. Also recall that part of this cost
(for removing the expired decisive combinations from the index)
is amortized through a large number of epochs, due to the lazy
updating algorithm discussed in Section 4.2. Particularly, switching
to CDStream has a cumulative cost of 0.109 seconds, amortized
over 60 epochs, amounting to ∼ 3.8% of the total processing time
over these epochs. The cost of CDHybrid to decide between the
two algorithms was negligible in all cases, requiring less than 0.1
msec. This cost is already included in the shown results.

6 CONCLUSIONS

We considered the problem of detecting high multivariate correla-
tions with two correlation measures, and with di�erent constraints.
We proposed three algorithms: (a) CD, optimized for static data,
(b) CDStream, which focuses on streaming data, and (c) CDHybrid
for streaming data, which autonomously chooses between the two
algorithms. The algorithms rely on novel theoretical results, which
enable us to bound multivariate correlations between large sets
of vectors. A thorough experimental evaluation using real-world
datasets showed that our contribution outperforms the state of the
art typically by an order of magnitude.

1277

REFERENCES
[1] Saurabh Agrawal, Gowtham Atluri, Anuj Karpatne, William Haltom, Stefan

Liess, Snigdhansu Chatterjee, and Vipin Kumar. 2017. Tripoles: A New Class of
Relationships in Time Series Data. In Proceedings of the 23rd SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 697ś706.

[2] Saurabh Agrawal, Michael Steinbach, Daniel Boley, Snigdhansu Chatterjee,
Gowtham Atluri, Anh The Dang, Stefan Liess, and Vipin Kumar. 2020. Min-
ing Novel Multivariate Relationships in Time Series Data Using Correlation
Networks. IEEE TKDE 32, 9 (2020), 1798ś1811.

[3] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: the advantages of
careful seeding. In Proc. 18th Annual Symposium on Discrete Algorithms, SODA,
Nikhil Bansal, Kirk Pruhs, and Clifford Stein (Eds.). SIAM, 1027ś1035.

[4] Wei Cao, Dong Wang, Jian Li, Hao Zhou Bytedance, A I Lab, Yitan Li,
Bytedance Ai Lab, and Lei Li. 2018. BRITS: Bidirectional Recurrent Imputa-
tion for Time Series. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada). 6776ś6786.

[5] Roger H.L. Chiang, Chua Eng Huang Cecil, and Ee-Peng Lim. 2005. Linear
correlation discovery in databases: a data mining approach. Data & Knowledge
Engineering 53, 3 (2005), 311ś337.

[6] Abhimanyu Das and David Kempe. 2008. Algorithms for Subset Selection in
Linear Regression. In Proc. 40th ACM Symposium on Theory of Computing (STOC
’08). ACM, 45ś54.

[7] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.
Locality-Sensitive Hashing Scheme Based on p-Stable Distributions. In Proc.
20th Annual Symposium on Computational Geometry (SCG ’04). ACM, 253ś262.

[8] Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal Aggregation Algo-
rithms for Middleware. J. Comput. System Sci. 66 (2001), 614ś656.

[9] Simons Foundation. 2021. SPARK for Autism. https://sparkforautism.org/portal/
page/autism-research/. Accessed: 2021-07-30.

[10] Simons Foundation. 2021. SPARK Gene list. https://d2dxtcm9g2oro2.cloudfront.
net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf. Ac-
cessed: 2021-07-30.

[11] Daniel A. Handwerker, Vinai Roopchansingh, Javier Gonzalez-Castillo, and
Peter A. Bandettini. 2012. Periodic changes in fMRI connectivity. NeuroImage
63, 3 (2012), 1712ś1719.

[12] Stephan Heunis, Rolf Lamerichs, Svitlana Zinger, Cesar Caballero-Gaudes, Ja-
cobus F.A. Jansen, Bert Aldenkamp, and Marcel Breeuwer. 2020. Quality and
denoising in real-time functional magnetic resonance imaging neurofeedback: A
methods review. Human Brain Mapping 41, 12 (2020), 3439ś3467.

[13] Wolfgang Karl Härdle. 2007. Applied Multivariate Statistical Analysis (2 ed.).
Springer. 321ś330 pages.

[14] Silvan Licher, Shahzad Ahmad, Hata Karamujić-Čomić, Trudy Voortman,
Maarten J. G. Leening, M. Arfan Ikram, and M. Kamran Ikram. 2019. Genetic
predisposition, modifiable-risk-factor profile and long-term dementia risk in the
general population. Nature Medicine 25, 9 (2019), 1364ś1369.

[15] Stefan Liess, Saurabh Agrawal, Snigdhansu Chatterjee, and Vipin Kumar. 2017. A
Teleconnection between the West Siberian Plain and the ENSO Region. Journal
of Climate 30, 1 (2017), 301 ś 315.

[16] Myles E. Mangram. 2013. A Simplified Perspective of the Markowitz Portfolio
Theory. Global Journal of Business Research 7, 1 (2013), 59ś70.

[17] Fukuda Megumi, Ayumu Yamashita, Mitsuo Kawato, and Hiroshi Imamizu. 2015.
Functional MRI neurofeedback training on connectivity between two regions

induces long-lasting changes in intrinsic functional network. Frontiers in Human
Neuroscience 9 (2015).

[18] Koen Minartz, Jens d’Hondt, and Odysseas Papapetrou. 2021. Multivariate corre-
lation discovery in static and streaming data. Technical Report. Eindhoven Univer-
sity of Technology. Available in https://github.com/CorrelationDetective/public.

[19] Ileena Mitra, Alinoë Lavillaureix, Erika Yeh, Michela Traglia, Kathryn Tsang,
Carrie E. Bearden, Katherine A. Rauen, and Lauren A. Weiss. 2017. Reverse
Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders.
PLOS Genetics 13, 1 (01 2017), 1ś27. https://doi.org/10.1371/journal.pgen.1006516

[20] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast Approximate Correla-
tion for Massive Time-Series Data. In Proc. ACM International Conference on
Management of Data (SIGMOD ’10). ACM, 171ś182.

[21] Hoang Vu Nguyen, Emmanuel Müller, Periklis Andritsos, and Klemens Böhm.
2014. Detecting Correlated Columns in Relational Databases with Mixed Data
Types. In Proc. 26th International Conference on Scientific and Statistical Database
Management (SSDBM ’14). ACM, Article 30, 12 pages.

[22] Hoang Vu Nguyen, Emmanuel Müller, Jilles Vreeken, Pavel Efros, and Klemens
Böhm. 2014. Multivariate Maximal Correlation Analysis. In Proc. 31st Interna-
tional Conference on Machine Learning - Volume 32 (ICML’14). 775ś783.

[23] Örjan Carlborg and Chris S. Haley. 2004. Epistasis: too often neglected in complex
trait studies? Nature Reviews Genetics 5, 8 (2004), 618ś625.

[24] Kistler RE, Eugenia Kalnay, William Collins, Suranjana Saha, G. White, John
Woollen, Muthuvel Chelliah, Wesley Ebisuzaki, Masao Kanamitsu, Vernon
Kousky, Huug Dool, Jenne RL, and Mike Fiorino. 2001. The NCEP/NCAR 50-
year reanalysis: monthly means CD-ROM and documentation. Bulletin of the
American Meteorological Society 82 (2001), 247ś268.

[25] Camilo Rostoker, Alan Wagner, and Holger Hoos. 2007. A Parallel Workflow for
Real-time Correlation and Clustering of High-Frequency Stock Market Data. In
Proc. 21th International Parallel and Distributed Processing Symposium. 1ś10.

[26] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian Locality Sensitive
Hashing for Fast Similarity Search. Proc. VLDB Endow. 5, 5 (2012), 430ś441.

[27] Zhiyuan Tan, Aruna Jamdagni, Xiangjian He, Priyadarsi Nanda, and Ren Ping
Liu. 2014. A system for denial-of-service attack detection based on multivariate
correlation analysis. Trans. Parallel and Distributed Systems (TPDS) 25, 2 (2014),
447ś456.

[28] Satosi Watanabe. 1960. Information Theoretical Analysis of Multivariate Corre-
lation. IBM Journal of Research and Development 4, 1 (1960), 66ś82.

[29] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.
Designing Succinct Secondary Indexing Mechanism by Exploiting Column Cor-
relations. In Proc. International Conference on Management of Data (SIGMOD’19).
ACM, 1223ś1240.

[30] Xiang Zhang, Feng Pan, Wei Wang, and Andrew Nobel. 2008. Mining non-
redundant high order correlations in binary data. Proc. VLDB Endow. 1, 1 (2008),
1178ś1188.

[31] Yunyue Zhu and Dennis Shasha. 2002. StatStream: Statistical Monitoring of
Thousands of Data Streams in Real Time. In Proc. 28th International Conference
on Very Large Data Bases (VLDB ’02). 358ś369.

[32] Anna Zilverstand, Bettina Sorger, Jan Zimmermann, Amanda Kaas, and Rainer
Goebel. 2014. Windowed Correlation: A Suitable Tool for Providing Dynamic
fMRI-Based Functional Connectivity Neurofeedback on Task Difficulty. PLOS
ONE 9, 1 (01 2014), 1ś13.

1278

https://sparkforautism.org/portal/page/autism-research/
https://sparkforautism.org/portal/page/autism-research/
https://d2dxtcm9g2oro2.cloudfront.net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf
https://d2dxtcm9g2oro2.cloudfront.net/wp-content/uploads/2020/07/13153839/SPARK_gene_list_July2020.pdf
https://github.com/CorrelationDetective/public
https://doi.org/10.1371/journal.pgen.1006516

