
NOAH: Interactive Spreadsheet Exploration with Dynamic
Hierarchical Overviews

Sajjadur Rahman∗
Megagon Labs

sajjadur@megagon.ai

Mangesh Bendre∗
VISA Research

mbendre@visa.com

Yuyang Liu
U Illinois (UIUC)

yuyangl2@illinois.edu

Shichu Zhu∗
Google LLC

shichuzhu@google.com

Zhaoyuan Su∗
UC Irvine

nick.su@uci.edu

Karrie Karahalios
U Illinois (UIUC)

kkarahal@illinois.edu

Aditya G. Parameswaran∗
UC Berkeley

adityagp@berkeley.edu

ABSTRACT

Spreadsheet systems are by far the most popular platform for data
exploration on the planet, supporting millions of rows of data.
However, exploring spreadsheets that are this large via operations
such as scrolling or issuing formulae can be overwhelming and
error-prone. Users easily lose context and suffer from cognitive and
mechanical burdens while issuing formulae on data spanning mul-
tiple screens. To address these challenges, we introduce dynamic

hierarchical overviews that are embedded alongside spreadsheets.
Users can employ this overview to explore the data at various gran-
ularities, zooming in and out of the spreadsheet. They can issue
formulae over data subsets without cumbersome scrolling or range
selection, enabling users to gain a high or low-level perspective
of the spreadsheet. An implementation of our dynamic hierarchi-
cal overview, NOAH, integrated within DataSpread, preserves
spreadsheet semantics and look and feel, while introducing such
enhancements. Our user studies demonstrate that NOAH makes it
more intuitive, easier, and faster to navigate spreadsheet data com-
pared to traditional spreadsheets like Microsoft Excel and spread-
sheet plug-ins like Pivot Table, for a variety of exploration tasks;
participants made fewer mistakes in NOAH while being faster in
completing the tasks.

PVLDB Reference Format:

Sajjadur Rahman, Mangesh Bendre, Yuyang Liu, Shichu Zhu, Zhaoyuan Su,
Karrie Karahalios, and Aditya G. Parameswaran. NOAH: Interactive
Spreadsheet Exploration with Dynamic Hierarchical Overviews. PVLDB,
14(6): 970 - 983, 2021.
doi:10.14778/3447689.3447701

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/dataspread/NOAH.

∗This work began when these authors were part of the University of Illinois.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.
doi:10.14778/3447689.3447701

1 INTRODUCTION

With a user base of more than one-tenth of the world’s population,
spreadsheets are by far the most popular medium for ad-hoc ex-
ploration and analysis of data [49]. Data analysts prefer to operate
on data within spreadsheets while shunning BI tools with more
advanced analytical features [13, 65]. Spreadsheets enable users
to view, structure, and present data in an intuitive tabular layout,
wherein users can map their data and tasks; this tabular layout is
essential to their popularity [57].

Exploring spreadsheet data has gotten a lot more challenging of
late: with increasingly large datasets becoming the norm, spread-
sheet systems have now raised their scalability limits. Google Sheets
now supports five million cells [26], a 12.5× increase from the pre-
vious limit of 400K cells, while Microsoft Excel now supports a
million rows [48]. Exploring data via scrolling and issuing formulae
on spreadsheets with millions of rows can be daunting for end-
users, as evidenced by a recent study [80]. Imagine scrolling through

a million rows, a hundred rows (a screenful) at a time—this would take

ten-thousand individual scrolling interactions, rendering spreadsheets

entirely unusable as a data exploration tool.

While exploring spreadsheet datasets that span multiple screens,
users often lose context [76], become overwhelmed [28], and
introduce errors [61], as detailed below:
1. Loss of overview and context. When exploring spreadsheets, users
can easily lose context of where they are and where they should go
next. The only context available is the primitive scrollbar indicating
the user’s location; users are forced to remember the layout and
structure of the spreadsheet during navigation [76].
2. Visual discontinuities. Users can view a screenful of data at a time,
introducing visual discontinuities between data being displayed.
Comparing spatially separated subsets of data requires moving
back and forth across screens. As an alternative, users tend to copy
subsets of data side-by-side [57], which is cumbersome and error-
prone.
3. Cognitive and mechanical burdens. To avoid getting lost, users
often end up taking drastic measures e.g., by sketching maps of
spreadsheets on paper, or adding landmarks to the spreadsheet in
color [76]. Issuing a formula on a data range spanning multiple
screens is problematic: users may use steering, i.e., they click and

970

https://doi.org/10.14778/3447689.3447701
https://github.com/dataspread/NOAH
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447701

drag the mouse to select the data, or enter the data range manu-
ally having memorized it. Both approaches lead to errors due to
incorrect range selection [61].

Despite spreadsheets being around for nearly five decades, little
work has addressed the aforementioned challenges that stem from
navigating and exploring datasets spanning several screens [80].
Existing features such as Pivot Tables, named ranges, and subtotals,
partially alleviate some challenges but do not eliminate them. For
example, Pivot Tables generate a static summary in a separate
area of the spreadsheet while losing the correspondence between
the raw data and the summary; named ranges require users to
manually label ranges of data, a replacement for sketches made on
paper [76]. Other work tries to make spreadsheets more scalable [5,
68], responsive [6, 69], and expressive [2, 3, 7, 74], but none of these
papers address the usability challenges underlying spreadsheet data
exploration that occur on even modest-sized datasets. We discuss
other related work in Section 8.

To support effective exploration on spreadsheets, one approach
is to integrate an overview of the overall structure of the data along-
side the spreadsheet [28], giving an overview+detail interface [19].
Overview+detail interfaces have been applied to text editors and
maps [19] to reduce cognitive load for users during navigation by
providing themwith the big picture first, along with zooming in and
out on demand. Unfortunately, in the spreadsheet context, simply

providing a zoomed out view as an overview is unreadable and there-

fore unusable. The overview must provide a customizable summary
of the spreadsheet, while allowing users to connect the summary
to the raw spreadsheet data, with the following challenges:
Overview design and construction. Given a large spreadsheet, how
do we design an overview that captures the overall structure of the
data while providing context as users navigate the spreadsheet?
How do we ensure that this overview facilitates the search for indi-
vidual rows or groups of rows of interest? How do we construct a
coarse-grained representation of the overview by grouping spread-
sheet rows together such that this grouping applies to all data
types? How do we dynamically adapt the grouping modality so that
the overview remains interpretable on zooming in and out? How
do we allow the users to customize the grouping, if the automated
grouping is not semantically meaningful?
Overview capabilities and integration. The overviewmust be a plug-
in that enhances the capabilities of spreadsheets, as opposed to a
potentially jarring or confusing replacement for spreadsheets. How
can we seamlessly integrate our overview with current spreadsheet
tools without impacting semantics or look-and-feel? How do we
facilitate simple interactions on the overview that help users avoid
endless scrolling during exploration and error-prone steering while
issuing formulae across multiple screenfuls of data? As the user
performs various interactions, how do we ensure consistency across
both views, i.e., the overview and the raw spreadsheet?
Dynamic Hierarchical Overviews. We address the aforemen-
tioned challenges using a dynamic hierarchical overview which is
presented to the user alongside the spreadsheet. This overview is
hierarchical, in that it allows users to zoom in and zoom out on de-
mand, based on automatically constructed (yet customizable) bins.
The overview is dynamic in that the overview displays summarized
information that is automatically updated as the user performs
interactions on the spreadsheet and the overview. Moreover, ac-
tions on the overview and the spreadsheet are coordinated; users

can use whichever one is more convenient to navigate through the
data. Finally, users can avoid cumbersome steering operations for
formula computation and simply examine a summarized view as
part of this overview, which is automatically kept up-to-date as the
user zooms in and out of the sheet.
NOAH: Our Implementation. We have implemented our dy-
namic hierarchical overview in NOAH, an in-situ navigation inter-
face for overviewing and analyzing spreadsheet data holistically.
NOAH is constructed as a plugin to an existing spreadsheet tool,
DataSpread [5], an open-source spreadsheet. While NOAH’s de-
sign is not tied to DataSpread, we opted not to use other spread-
sheet tools like Google Sheets and Microsoft Excel because they
are closed-source. NOAH enables new workflows for performing
spreadsheet tasks involving scrolling and steering in a rapid and
error-free fashion.
Contributions. The primary contributions of our work are:

• We introduce the notion of dynamic hierarchical overviews

to eliminate cumbersome scrolling and steering during ex-
ploration of large spreadsheets. We identify a number of
important design considerations for such an overview, as well
as potential use cases.

• We abstract the problem of constructing our overview as one
of automatic hierarchical histogram construction, and propose
a solution for it. We also develop an interface to allow users
to customize their hierarchies.

• We identify a suite of novel interactions for our overview—and
determine how they can be synchronized with our spread-
sheet; likewise, we determine how interactions on the spread-
sheet can be synchronized with the overview. We introduce
the notion of aggregate columns to support in-situ compu-
tation at various levels of the overview hierarchy without
cumbersome steering.

• We conduct two user studies, based on several spreadsheet
exploration tasks, to evaluate the benefits and limitations of
this plugin. The first study explores NOAH impacts spread-
sheet exploration performance; compared to Excel, partic-
ipants were able to complete spreadsheet navigation tasks
more correctly (2.5× fewermistakes) and quickly (2× faster

completion time) using NOAH. The second study com-
pares participants’ spreadsheet exploration experience with
Pivot Table and NOAH; NOAH improved overall task accu-
racy by 20.78% while reducing the overall task completion
time by 28.47% relative to Pivot Table.

2 DESIGN CRITERIA AND USE CASES

We now present our design considerations for developing NOAH.
We then discuss a use-case that captures how NOAH addresses the
challenges associated with different types of exploration tasks.

2.1 Design Considerations

Our design considerations were informed by prior work in visual-
ization [72], overview+detail interfaces [19] andmultiple-coordinated
views [75].
DC1. Construct the overview in-situ.Maintaining the overview
in a separate location from the spreadsheet can lead to loss of
context; instead, having it co-located with the data can help users
make rapid glances to explore information between a bird’s-eye
view and close-up details [28].

971

a. Overview

b. Aggregate

Column c. Spreadsheet

d. History

e. Breadcrumb

g. Cells corresponding to

navigation and aggregation

attribute are highlighted

f. Overview bin

corresponding to the

visible spreadsheet data

is highlighted

Figure 1: TheNOAH interface consisting of (a) a zoomable overview and (b) an aggregate column integrated with (c) a spreadsheet. A context

bar consisting of (d) a navigation history displaying locations visited so far using the overview, and (e) a breadcrumb showing the current

navigation path (e.g., Home). (f) The user’s current focus in the spreadsheet is highlighted on the overview. (g) Columns corresponding to the

navigation attribute (city) and aggregate column (availability) are highlighted on the spreadsheet.

DC2. Ensure reduced visual discontinuity while providing

details-on-demand. To enhance visual continuity while issuing
formulae, instead of cumbersome steering, the interface should
enable interactions on the overview to perform such computations
on demand and view results [72]. The interface should maintain vi-
sual continuity as users navigate to different spreadsheet locations,
automatically recomputing formulae to reflect the new focus.
DC3. Balance the overview screen space. The limited screen
real-estate leads to a trade-off between visual discontinuity (DC2)
and clarity. A fine-grained overview improves visual clarity while
increasing discontinuity: users need to scroll through the overview
to access distant subsets of data. A coarse-grained overview de-
creases discontinuity at the cost of clarity—the overview may span
too many data subsets and appear cluttered.
DC4. Enable overview-spreadsheet coordination. Since users
view the overview and spreadsheet simultaneously, interactions on
one should be linked or reflected on the other [71, 75].
DC5. Facilitate customization of the overview.As the overview
is automatically generated, it may not reflect domain-specific con-
text [68]. For example, an overview constructed on a grading spread-
sheet by binning nearby scores may not match the instructor-
intended letter grade ranges. User-driven customization is essential.
DC6. Display navigation history. The interface should record
navigation history, allowing users to revisit previous locations [72],
while also displaying their current navigation path for context.

2.2 NOAH: Tasks and Use-cases

Table 1 captures the types of spreadsheet tasks for which NOAH en-
hances user experience, drawn from an exhaustive list by Brehmer
et al. [10]. This list encompasses a range of domain-independent
tasks on visual data representations, developed after analyzing
task classification systems in over two dozen papers, and has been
applied to several scenarios, such as developing models for visual-
ization systems [47], designing task taxonomies for cartograms [45],

and defining the scope of tasks in various domains, e.g., interactive
task authoring [24], document mining [9], multivariate network
analysis [64], and mass cytometry [30].

Table 1: Use cases where NOAH enhances exploration experience.

Purpose Use Cases
Search browse (searching based on characteristics where location is unknown/known, e.g.,

Amy tries to find Chicago listings with availability greater than 60 days).
locate/lookup (searching based on entities where location is unknown/known,
e.g., Amy wants to find all entries corresponding to a given city like Chicago).

Analyze identify (returning the characteristics of entity found during search, e.g., Amy
wants to examine Chicago listings to assess typical availabilities of listings in
Chicago).
compare (returning characteristics of multiple entities, e.g., Amywants to compare
listing patterns in Boston to that of Chicago).
summarize (returning characteristics of several entities, e.g., Amy wants to gain
an understanding of overall rental patterns across cities)

Produce generate/record (generation or recording of new information, e.g., Amy is-
sues an aggregate formula to generate summary availability statistics across cities)

Usage Scenario. Amy, a journalist, is exploring the Inside Airbnb
dataset [20], a spreadsheet dataset of all the Airbnb listings across
US cities with ≈ 100𝑘 records and 15 attributes. This dataset was
created to investigate whether certain listings in Airbnb are illegally
run as hotel businesses, while avoiding taxes; any listing available
for rent for more than 60 days a year is considered to be operated
as a hotel [36]. Given that this is the first time she’s examining this
dataset, Amy wants to first gain a bird’s eye view of the data. With-
out NOAH, Amy would have had to use a Pivot Table to construct
a summary. However, since this summary is disconnected from the
underlying data and in a separate area of the spreadsheet, it is hard
for Amy to map the summary statistics to the raw data to obtain
further details about listings from any given city—she would have
to switch back and forth. With NOAH, she organizes by city—with
NOAH providing an automatically constructed high-level hierar-
chical overview of cities (Figure 1a). She then uses this overview
to start exploration, understanding which cities are present, and
roughly how many listings does each city have. The overview
consists of sorted non-overlapping bins containing one or more
cities. She can click on any bin and the corresponding data will
be displayed at the top of her screen, essentially zooming into the

972

overview via an an operation akin to OLAP drill-down [27]. For
example, as shown in Figure 1c, clicking on the Ashville-Boston bin
displays the Ashville listings (locate).

Next, say Amy wants to analyze one of the larger cities to un-
derstand the overall renting pattern (summarize). She decides to
focus on Boston, her hometown, and wants to find out how many
listings in Boston violate the “rent availability > 60 days” condition
(identify). In a typical spreadsheet, Amy needs to manually steer
and then select the Boston listings as input to a COUNTIF formula
that counts the number of rows that satisfy the above-mentioned
condition. Using NOAH, she can zoom into the Ashville-Boston

bin (Figure 2a and 2b) and then issue a COUNTIF operation on the
overview. The result is displayed as an aggregate column along-
side the overview (Figure 1b), much like aggregation results in
cross tabs [27], or aggregates in GROUP BY queries. With the raw
data presented side-by-side, she can also dive into other attributes
of the listings operating as hotels to see if there are any other
identifying characteristics (identify). As she uses the overview to
navigate to other cities, e.g., Chicago, and compare the rent avail-
ability (compare), NOAH ensures coordination and automatically
updates the aggregate column results corresponding to that city
(Chicago). In traditional spreadsheets, she would have to reissue
the steering operation for each city being compared from scratch,
which is cumbersome.

Finally, as Amy navigates the data, her navigation history (Fig-
ure 1d), i.e., recently visited cities, and current navigation path
(Figure 1e), is kept up-to-date, allowing her to maintain context dur-
ing navigation. She can revisit any previously visited cities (lookup)
by simply clicking on the relevant path in the navigation history.
Maintaining the navigation history in traditional spreadsheets can
be tedious as she has to manually create named-ranges.

3 DYNAMIC HIERARCHICAL OVERVIEWS

We now explain the design of dynamic hierarchical overviews as
part of NOAH, the underlying algorithm for overview construction,
and extensions to the design.

3.1 Overview Design

Spreadsheets often have one or more tabular regions containing
structured data [5], interspersed with formulae—each tabular region
essentially corresponds to an (ordered) relation. Our overview can
be constructed on any of these regions on-demand. The overview
is constructed in-situ (DC1), next to the spreadsheet, sorted and
organized by an attribute of this region called the navigation at-

tribute, selected by the user. (Sorting is a commonly used operation
within spreadsheets.) Any attribute type that can be ordered can
be a navigation attribute, e.g., text, numbers. The overview is con-
structed at multiple granularities hierarchically. Each granularity is
divided into non-overlapping groups of data called bins. As shown
in Figure 2d, our overview of the Airbnb data on the navigation at-
tribute “city” has four bins at the highest (coarsest) granularity level.
Figure 2a depicts the first four bins, the first of which is Ashville-
Boston. Each bin contains summary information regarding the data
subset/region it spans, e.g., starting row and ending row number,
and the total number of rows the region spans. Each bin displays
an overview of the next (finer) granularity (if any) with embedded
bar charts. For example, in Figure 2d, the topmost bin (Ash-Bos)
spans three cities (Ashville, Austin, Boston), each of which is a bin

in the next (finer) granularity. Correspondingly, Figure 2a shows
three horizontal bar charts for the first Ash-Bos bin, one for each
bin in the next granularity. Since the third bin from the top (LA)
spans only one city, no bar chart is embedded. Users can perform
different operations on the bins, e.g., clicking to pan and zooming
in/out. NOAH also supports other interactions e.g., customization
and aggregation, discussed later.

3.1.1 Overview Spreadsheet Coordination. NOAH supports co-
ordination between the dynamic hierarchical overview and the
corresponding spreadsheet (DC4), i.e., interactions on the overview
may be reflected on the spreadsheet and vice-versa. One example
of this coordination is indicating the navigation attribute on the
spreadsheet using color (lime green column in Figure 1c) as user
constructs the overview. However, not all overview interactions are
coupled with the spreadsheet and vice versa. The coupling depends
on the current focus—to ensure consistency between the overview and

the spreadsheet, any interaction on either interface that changes the

current focus must be reflected on the other interface. We show vari-
ous examples of coupled and decoupled interactions in Section 3.3,
e.g., clicking, semantic zooming, and aggregate column creation.
We explain the implementation details of NOAH-DataSpread co-
ordination in Section 4.

3.1.2 The Rationale for Binning. Overviews within popular inter-
faces are often designed as a spatially partitioned collection of
thumbnails on the left of the standard detailed view, similar to Mi-
crosoft Power Point or Adobe Reader. To strike a balance between
the objectives of visual discontinuity and clarity (DC3), we instead
designed an overview that abstracts the data at varying levels of
detail, in a hierarchical or multi-granularity fashion. Presenting
information at multiple granularities makes visual representations
more perceptually scalable and less cluttered [22]. Thus, this hi-
erarchical overview provides an alternative to the conventional
spatially partitioned single-granularity representation of the data
space, e.g., in Power Point, by allowing users to control the scale at
which the overview should be displayed [19]. Users can resize the
overview to control the spreadsheet data that remains visible.

The data structure underlying the overview is a histogram con-
structed on the values in the navigation attribute column. We de-
scribe the formal problem in the next section. Histograms result
from binned aggregation—consecutive records or rows are grouped
into bins (or groups), where each bin represents a group of rows and
is associated with a COUNT aggregate, capturing the number of rows
that fall in that group. Unlike a traditional GROUP BY where each dis-
tinct value is a separate group, here, multiple consecutive distinct
values can form a group. In addition to providing high level (e.g.,
densities) and low level (e.g., outlier) details, binned aggregation
techniques enable a multi-granularity visual representation of data
by varying the bin size and have therefore been used in interactive
visualization of large datasets, e.g., in imMens [42]. An additional
benefit of a binned overview for spreadsheets is a decrease in vi-
sual discontinuity during navigation. As users are able to view an
overview that fits in the computer screen, they can quickly navigate
the data—the bins act as landmarks in the overview, enabling users
to skip irrelevant bins and quickly navigate to the desired subset of
data. We now discuss how the overview is constructed.

973

3.2 Overview Construction

A dynamic hierarchical overview is constructed on a given tabular
region within a spreadsheet. We discuss extensions to support
multiple tabular regions in Section 3.5. Since current spreadsheet
systems only support a fewmillion rows, the overview construction
is performed in-memory and is extremely fast.

3.2.1 Problem formulation. Suppose we have a tabular region 𝑇
with 𝑛 rows, with a set of columnsA. We assume𝑇 is static for now,
and consider edits in Section 3.5. When the user requests a dynamic
hierarchical overview on 𝑇 , they designate a special navigation
attribute (column) 𝐴 ∈ A. The tabular region 𝑇 is then sorted by
this attribute; any attribute can be sorted this way and can lead
to a meaningful overview, including text, numbers, and dates. We
can also support navigation across multiple attributes; we discuss
this extension later on. Across rows in 𝑇 , the values taken on by
𝐴 are 𝑣1 ≤ 𝑣2 ≤ . . . ≤ 𝑣𝑛 : i.e., 𝑣𝑖 is the value of 𝐴 in the 𝑖th row. In
the usage scenario explained earlier, 𝑣𝑖 corresponds to city names
across rows, which can be ordered lexicographically. We now focus
on generating the first level of our dynamic hierarchical overview
as an approximately equi-depth histogram on column 𝐴; we extend
this technique to a hierarchy in Section 3.2.3. First, a histogram can
be defined as follows.

Definition 1 (Histogram). A 𝑘-histogram on values 𝑣1 ≤ 𝑣2 ≤
. . . ≤ 𝑣𝑛 of 𝐴 is defined by split points 𝑠0 = −∞ < 𝑠1 < 𝑠2 < . . . <

𝑠𝑘−1 < 𝑠𝑘 = ∞ such that all 𝑣𝑖 where 𝑠 𝑗−1 < 𝑣𝑖 ≤ 𝑠 𝑗 are said to be

assigned to the 𝑗 th bin of the histogram, 𝐵 𝑗 .

Thus, a 𝑘-histogram partitions 𝑣𝑖 into 𝑘 bins 𝐵1, . . . , 𝐵𝑘 . We indi-
cate the size of the bin 𝐵𝑖 , |𝐵𝑖 | = 𝑏𝑖 to be the number of records
assigned to that bin. Here, we are partitioning the rows of our
spreadsheet into 𝑘 coarse-grained bins to be displayed as part of
our overview. Intuitively, we want these bins to be balanced, such
that each bin has the same number of 𝑣𝑖 (and therefore records)
assigned to it. One way to ensure that is via equi-depth histograms.
Equi-depth histograms are commonly used for summarizing sta-
tistical properties of data, with applications in query optimization
and approximate query processing [32], distribution fitting in data
streams [55], and interactive scrolling on large spreadsheets [69].
We define an equi-depth histogram constructed on 𝐴 as follows:

Definition 2 (Eqi-Depth Histogram). A 𝑘-histogram is said

to be an equi-depth histogram if 𝑏 𝑗 =
𝑛
𝑘
,∀𝑗 ∈ [1, 𝑘].

If the values 𝑣𝑖 are all distinct, it is easy to find an exact equi-depth
histogram (modulo rounding errors). However, it is more typical
that 𝐴 has repeated values among the 𝑣𝑖 . For example, there are
multiple listings per city in the Airbnb dataset. In such a scenario, it
is unlikely that we will find split points 𝑠𝑖 corresponding to an equi-
depth histogram.We therefore introduce the problem of discovering
of an approximately equi-depth histogram. We denote 𝑏 = 𝑛

𝑘
to be

the expected size of each bin 𝐵 𝑗 if we could construct an equi-depth
histogram. Here, we want each 𝑏𝑖 to be as close to 𝑏 as possible.

Problem 1 (Approximately Eqi-Depth Histogram). Given a

tabular region 𝑇 , a spreadsheet navigation attribute 𝐴, and the num-

ber of bins 𝑘 , return a 𝑘-histogram with split points 𝑠1, 𝑠2, . . . , 𝑠𝑘−1
yielding bins 𝐵1, 𝐵2, . . . , 𝐵𝑘 such that max𝑗 |𝑏 𝑗 − 𝑏 | is minimized.

Thus, we want to ensure that the maximum distance of any 𝑏𝑖
from 𝑏 is minimized.

3.2.2 Dynamic Programming Algorithm. To solve Problem 1, we
can use a dynamic programming algorithm. One approach would
be to try to come up with the best way to bin values 𝑣1, . . . , 𝑣𝑖 ,
for 𝑖 ∈ [1, 𝑛] into 𝑗 bins, for 𝑗 ∈ [1, 𝑘] via a recurrence relation
expressed using sub-problems. However, many of these binnings
would not lead to a valid histogram, since multiple consecutive
𝑣𝑖 that have the same value may be spread across two or more
bins, giving us no valid split points as is mandated by Definition 1.
So instead, we operate on the distinct values across the 𝑣𝑖 , we let
these be 𝑢1 < 𝑢2 . . . < 𝑢𝑚 . We let 𝑐𝑖 be the cardinality of 𝑢𝑖 , i.e.,
the number of 𝑣 𝑗 such that 𝑣 𝑗 = 𝑢𝑖 . Then, we have the following
recurrence relation, for all 𝑖 ∈ [0,𝑚], 𝑗 ∈ [0, 𝑘]

𝐻 (𝑖, 𝑗) =
{
0, if 𝑖 = 0 or 𝑗 = 0 or 𝑖 < 𝑗

min
1≤𝑑≤𝑖

max(𝐻 (𝑖 − 𝑑, 𝑗 − 1), |∑𝑙=𝑖
𝑙=𝑖−𝑑+1 𝑐𝑙 − 𝑏 |), otherwise

At a high level 𝐻 (𝑖, 𝑗) encodes the best way to partition the first 𝑖
distinct values of 𝑣 , i.e., 𝑢1, . . . , 𝑢𝑖 , across 𝑗 bins. While computing
𝐻 , we can also record the split points, allowing us to reconstruct
the histogram. For example, for 𝐻 (2, 2) the possible split points are
𝑑 ∈ {1, 2}. The utility of 𝐻 (1, 1) (when 𝑑 = 1) and 𝐻 (0, 1) (when
𝑑 = 2) are already known. We choose the split point that yields
a new bin—constructed from the remaining unique values (𝑐𝑙)—
whose size is closest to the expected equi-depth bin size (𝑏). The
complexity of this algorithm is 𝑂 (𝑚2𝑘).

In NOAH, we adopt a simple “best effort” greedy algorithm to
construct this approximately equi-depth histogram in 𝑂 (𝑚). We
consider the distinct values𝑢𝑖 in increasing order, one at a time, and
keep greedily adding bins, one at a time, until we have assembled
enough 𝑢𝑖 to justify adding a new bin. Formally, say we have added
𝑖 − 1 bins so far, using distinct values up to and including 𝑢 𝑗−1:
that is, all rows with 𝑣𝑖 ≤ 𝑢 𝑗−1 have been assigned to a bin. We
construct the 𝑖th bin using values 𝑢 𝑗 , 𝑢 𝑗+1, ..., until we hit the cutoff
that

∑𝑖
𝑙=1 𝑏𝑙 − 𝑖 · 𝑏 > 0. Once we pass this cutoff, this means that

we have surpassed the average size 𝑏 for the first 𝑖 bins, and the
remaining 𝑢 𝑗 must be assigned to bins 𝑖 + 1, 𝑖 + 2, . . . onwards.

3.2.3 Extending to a Hierarchy. Our dynamic hierarchical overview
is constructed on-demand top-down (see Figure 2d). At the start, we
only compute the highest level (𝑙 = 1) of the overview consisting
of an approximate equi-depth histogram with 𝑘 bins; these bins
are displayed. If the user drills down or zooms into into any of
these 𝑘 bins (using actions that we will discuss in Section 3.3), say
bin 𝐵𝑖 , we initiate a further subdivision of the records assigned to
𝐵𝑖 into 𝑘 bins once again via approximate equi-depth histogram
construction. Doing so for each of the 𝑘 bins at level 𝑙 = 1 gives
us 𝑘 new 𝑘-histograms at level 𝑙 = 2. In this manner, conceptually,
we have a tree of fanout 𝑘 constructed on-demand as the user
explores the tabular region. Note that if the number of distinct
values associated with a bin 𝐵𝑖 ,𝑚, is less than 𝑘 , then we display
fewer than 𝑘 bins on drilling into 𝐵𝑖—each such bin will correspond
to a single distinct value. While we construct our hierarchy lazily,
we materialize the split points and row numbers for any nodes (i.e.,
bins) in the hierarchy that have been visited in the past.

Note that our hierarchical overview has parallels to B+-trees
in that our hierarchy has a fixed 𝑘-way fanout. There are several
key differences, however. First, our hierarchy need not be fully
balanced, unlike B+-trees, especially when certain distinct values
have high cardinalities. Bins containing those values may have

974

Figure 2: Navigational operations. (a) The overview at the highest

level of granularity. (b) A zoomed in view of theAshville-Boston bin.

(c) As the user clicks on the Boston bin, the Boston listings are dis-

played on the sheet. TheBoston bin is highlighted in gray to indicate

user’s current focus. (d) Conceptualizing the hierarchical overview.

fewer than 𝑘 children. Moreover, to guarantee efficient retrieval
and maintenance, B+-trees impose a constraint on the number
of keys per internal node which cannot be violated; we have no
such restriction. Furthermore, users can customize the bins which
may result in the constraint on the number of keys being violated.
Finally, our goal with an approximate equi-depth histogram was
to ensure a near-equal subdivision of records, making it easier for
human consumption, instead of efficient access.

3.3 Operations and Interactions

We now discuss the operations and interactions that can be per-
formed on the overview.

3.3.1 Clicking and Semantic Zooming. Clicking a bin is an example
of an interaction that is coupled between the spreadsheet and the
overview (see Section 3.1.1). When a user clicks on a specific bin,
NOAH displays the corresponding spreadsheet data. Users can use
this operation to jump to a specific spreadsheet location using the
overview without having to scroll endlessly. For example, in Fig-
ure 2b, as the user clicks on the Boston bin, the data corresponding
to Boston is displayed (Figure 2c). Conversely, as the user scrolls up
on the spreadsheet, both Austin and Boston listings appear in the
screen. As the current focus on the spreadsheet changes, both the
Austin and Boston overview bins are highlighted (see Figure 2d).

Users can zoom into a bin (and thereby descending to a lower
level of the hierarchy) to view more fine-grained information or
zoom out to view more coarse-grained information, via what is
known as semantic zooming [62]. The zooming operation is de-
coupled—when a user zooms into a bin already in the user’s current
focus, the spreadsheet view does not change. For example, in Fig-
ure 2a, from the bin Ashville-Boston when the user zooms in to
the next level, NOAH displays the bins Ashville, Austin, and Boston

(Figure 2b); here, the spreadsheet view stays the same. If the user
zooms out of the current granularity, again NOAH displays the
bins Ashville-Boston, Chicago-Denver, and others. The zoom out
operation is also decoupled—when a user zooms out, the overview

displays a coarser granularity view of the user’s current focus. As
explained in Section 3.2.2, users can only zoom into any bin that
contains multiple unique values. For example, in Figure 2d, at level
2, each bin corresponds to one city. Users can only click on those
bins to bring that data into view, and cannot zoom in further.

3.3.2 Overview Customization. As NOAH constructs the hierarchi-
cal overview automatically, the overview binning may not capture
domain-specific context or user needs. NOAH enables users to
customize this organization (DC5). At any granularity, users can
merge multiple consecutive bins into a single bin, or split a bin into
multiple bins. Say the user wants to compare summary statistics of
Boston and Chicago. In the current organization these two cities are
in two different bins (see Figure 3a). Using bin customization, the
user can merge the two bins Ashville-Boston and Chicago-Denver

to create a new bin Ashville-Denver. Users can then zoom into this
bin and compare summary statistics of the cities in the same view.
The interactions for splitting a bin depend on the data type. If the
navigation attribute is textual, any bin can be split into as many
bins as the number of distinct values that bin contains. If numeric,
users can split the bin into an arbitrary number of bins.

3.4 Aggregate Columns

Users can issue spreadsheet formulae directly on the overview
to compute aggregates for the data in each bin. This feature al-
lows users to not have to perform cumbersome steering to issue
formulae—with the formulae having been declared once as part
of the overview, and dynamically updated as users traverse the
hierarchy. The results are displayed as an aggregate column (see
Figure 1b). This operation is similar to GROUP BY queries where user
can select one or more aggregates to apply on measure attributes,
such as SUM, COUNT, or AVERAGE. However, unlike GROUP BY queries
where each group corresponds to one distinct value 𝑢𝑖 , in NOAH,
several consecutive distinct values may form a group depending
on the overview granularity. For example, the top two results in
the aggregate column (denoted with a blue bar) in Figure 3a cor-
respond to multiple cities each as a group while the bottom result
corresponds to a single city, LA.

3.4.1 On demand Column Creation. Creating an aggregate column
is equivalent to selecting subsets of data on the sheet, i.e., steering,
and then executing a formula on this subset. Users simply select
the formula from a drop-down menu, and provide the necessary
formula parameters to a form. Users can issue several formulae
simultaneously, each creating a new aggregate column. The aggre-
gate column can employ any statistical or mathematical formulae
that operate over a range of data. When the user issues a formula
on the overview, the spreadsheet column corresponding to the
aggregate column is highlighted in grayish orange (see Figure 1c)—
another example of coupled interaction. When a user zooms into
a bin for the first time, the overview is updated and the aggregate
column is computed. The aggregates across the hierarchy are remi-
niscent of drill-downs or roll-ups in data cubes [27]; here, we are
drilling down/rolling up on automatically grouped values of a given
attribute rather than across multiple attributes.

3.4.2 Multi-perspective Result Representation. Users can view the
results either as raw values (see Figure 1b) or as charts (see Figure 3),
and can toggle between the two representations. Raw values are dis-
played along with a colored value bar, whose length is proportional

975

