
Materializing Knowledge Bases via Trigger Graphs
Efthymia Tsamoura

Samsung AI Research

Cambridge, United Kingdom

efi.tsamoura@samsung.com

David Carral

LIRMM, Inria, University of Montpellier, CNRS

Montpellier, France

david.carral@inria.fr

Enrico Malizia

University of Bologna

Bologna, Italy

enrico.malizia@unibo.it

Jacopo Urbani

Vrije Universiteit Amsterdam

Amsterdam, The Netherlands

jacopo@cs.vu.nl

ABSTRACT
The chase is a well-established family of algorithms used to ma-

terialize Knowledge Bases (KBs) for tasks like query answering

under dependencies or data cleaning. A general problem of chase

algorithms is that they might perform redundant computations. To

counter this problem, we introduce the notion of Trigger Graphs
(TGs), which guide the execution of the rules avoiding redundant

computations. We present the results of an extensive theoretical

and empirical study that seeks to answer when and how TGs can

be computed and what are the benefits of TGs when applied over

real-world KBs. Our results include introducing algorithms that

compute (minimal) TGs. We implemented our approach in a new

engine, called GLog, and our experiments show that it can be sig-

nificantly more efficient than the chase enabling us to materialize

Knowledge Graphs with 17B facts in less than 40 min using a single

machine with commodity hardware.

PVLDB Reference Format:
Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani.

Materializing Knowledge Bases via Trigger Graphs. PVLDB, 14(6): 943-956,

2021.

doi:10.14778/3447689.3447699

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/karmaresearch/glog.

1 INTRODUCTION
Motivation. Knowledge Bases (KBs) are becoming increasingly

important with many industrial key players investing on this tech-

nology. For example, Knowledge Graphs (KGs) [29] have emerged

as the main vehicle for representing factual knowledge on the Web,

and enjoy a widespread adoption [44]. Moreover, several key in-

dustrial players, like Google and Microsoft, are building KGs to

support their core business. For instance, the KG developed at Mi-

crosoft is used to support question answering, while Google uses

KGs to enable various products to respond more appropriately to

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

doi:10.14778/3447689.3447699

user requests. The use of KGs in such scenarios is not restricted

only to database-like analytics or query answering: KBs play also a

central role in neural-symbolic systems for efficient learning and

explainable AI [21, 33].

A KB can be viewed as a classical database 𝐵 with factual knowl-

edge and a set of logical rules 𝑃 , called the program of the KB,

allowing the derivation of additional knowledge. One class of rules

that is of particular interest both to academia and to industry is

Datalog [1]. Datalog is a recursive language with declarative seman-

tics that allows users to succinctly write recursive graph queries.

Beyond expressing graph queries, e.g., graph reachability, Datalog

allows richer fixed-point graph analytics via aggregate functions.

LogicBlox and LinkedIn use Datalog to develop high-performance

applications, or to compute analytics over its KG [2, 42]. Google

developed their own Datalog engine called Yedalog [19]. Other

industrial users include Facebook, BP [9], and Samsung [36].

Materializing a KB (𝑃, 𝐵) is the process of deriving all the facts
that logically follow when reasoning over the database 𝐵 using

the rules in 𝑃 . Materialization is a core operation in KB manage-

ment. An obvious use is that of caching the derived knowledge.

A second use is that of goal-driven query answering, i.e., deriving
the knowledge specific to a given query only, using database tech-
niques such as magic sets and subsumptive tabling [7, 8, 12, 51].

The last application is particularly useful in the presence of com-

putational or memory restrictions. Beyond knowledge exploration,

other applications of materialization are data wrangling [32], en-

tity resolution [34], data exchange [24] and query answering over

OWL [40] and RDFS [15] ontologies. Finally, materialization has

been also used in probabilistic KBs [53].

Problem. The increasing sizes of modern KBs [44], and the fact that

materialization is not a one-off operation when used for goal-driven

query answering, urge the need for improving the performance of

materialization. The chase, which was introduced in 1979 by Maier

et al. [38], has been the most popular materialization technique and

has been adopted by several commercial and open source engines

such as VLog [55], RDFox [43], and Vadalog [9].

To improve the performance of materialization, different ap-

proaches have focused on different inefficiency aspects. One ap-

proach is to reduce the number of facts added to the KB. This is the

take of some of the chase variants proposed by the database and

AI communities [10, 22, 45]. A second approach is to parallelize

the computation. For example, RDFox proposes a parallelization

technique for Datalog rules [43], while WebPIE [56] and Inferray

943

https://doi.org/10.14778/3447689.3447699
https://github.com/karmaresearch/glog
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447699

[49] propose parallelization techniques for fixed RDFS rules. Or-

thogonal to those approaches are those employing compression and

columnar storage layouts to reduce memory consumption [31, 55].

In this paper, we focus on a different aspect: that of avoiding

redundant computations. Redundant computations is a problem that

concerns all chase variants and has multiple causes. A first cause

is the derivation of facts that either have been derived in previous

rounds, or are logically redundant, i.e., they can be ignored without

compromising query answering. The above issue has been partially

addressed in Datalog with the well-known seminaïve evaluation

(SNE) [1]. SNE restricts the execution of the rules over at least

one new fact. However, it cannot block the derivation of the same

or logically redundant facts by different rules. A second cause of

redundant computations relates to the execution of the rules: when

executing a rule, the chase may consider facts that cannot lead to

any derivations.

Our approach. To reduce the amount of redundant computations,

we introduce the notion of Trigger Graphs (TGs). A TG is an acyclic

directed graph that captures all the operations that should be per-

formed to materialize a KB (𝑃, 𝐵). Each node in a TG is associated

with a rule from 𝑃 and with a set of facts, while the edges specify

the facts over which we execute each rule.

Intuitively, a TG can be viewed as a blueprint for reasoning over

the KB. As such, we can use it to “guide” a reasoning procedure

without resorting to an exhaustive execution of the rules, as it is

done with the chase. In particular, our approach consists of travers-

ing the TG, executing each rule 𝑟 associated with a node 𝑣 over the

union of the facts associated with the parent nodes of 𝑣 and storing

the derived facts “inside” 𝑣 . After the traversal is complete, then

the materialization of the KB is simply the union of the facts in all

the nodes.

TG-guided materialization addresses at the same time all causes
of inefficiencies described above. In particular, TGs block the deriva-

tion of the same or logically redundant facts that cannot be blocked

by SNE. This is achieved by effectively partitioning the facts cur-

rently in the KB into smaller sub-instances. This partitioning also

enables us to reduce the cost of executing the rules.

Furthermore, in specific cases, TGs allow us to reason either

by completely avoiding certain steps involved in the execution of

the rules, or by performing those steps at the end and collectively

for all the rules. Our experiments show that we get good runtime

improvements with both alternatives.

Contributions.We propose techniques for computing instance-

independent and instance-dependent TGs. The former TGs are

computed exclusively based on the rules of the KB and allow us

to reason over any possible instance of the KB making them par-

ticularly useful when the database changes frequently. In contrast,

instance-dependent TGs are computed based both on the rules and

the data of the KB and, thus, support reasoning over the given KB

only. We show that not every program admits a finite instance-

independent TG. We define a special class, called FTG, including all
programs that admit a finite instance-independent TG and explore

its relationship with other known classes.

As a second contribution, we propose algorithms to compute

and minimize (instance-independent) TGs for linear programs: a

class of programs relevant in practice.

First roundInput Second round Third round

T (c2, c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

T (c2, c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

T (c2, c1, n1)

r(c1, c2)

R(c1, c2)

r(c1, c2)
r1

r4 r2

r2 r3 r1 r3 r4 r1 r2 r3

r4

T (c2, c1, n1)

R(c1, c2) T (c2, c1, c2)

R(c1, c2) T (c2, c1, c2)

(a)

(b) (c)

u1 (created by r1)

u2 (created by r4)

u3 (created by r2)

u1 (created by r1) u3 (created by r2)

Figure 1: (a) Chase execution for Example 1, (b) the TG 𝐺1,
(c) the TG 𝐺2. In (b) and (c), the facts shown inside the nodes
are the results of reasoning over 𝐵 using the TG.

A program 𝑃 not admitting a finite instance-independent TG may

still admit a finite instance-dependent TG. As a third contribution,

we show that all programs that admit a finite universal model

also admit a finite instance-dependent TG. We use this finding to

propose a TG-guided materialization technique that supports any
such program (not necessarily in FTG). The technique works by
interleaving the reasoning process with the computation of the TG,

and it reduces the number of redundant computations via query

containment and via a novel TG-based rule execution strategy.

We implemented our approach in a new reasoner, called GLog,

and compared its performance versus multiple state-of-the-art

chase and RDFS engines including RDFox, VLog, WebPIE [56] and

Inferray [49], using well-established benchmarks, e.g., ChaseBench

[10]. Our evaluation shows that GLog outperforms all its competi-

tors in all benchmarks. Moreover, in our largest experiment, GLog

was able to materialize a KB with 17B facts in 37 minutes on com-

modity hardware.

Summary. We make the following contributions:

• We propose a new reasoning technique based on travers-

ing acyclic graphs, called Trigger Graphs (TGs), to tackle

multiple sources of inefficiency of the chase;

• We study the class of programs admitting finite instance-

independent TGs and its relationship with other classes;

• We propose new techniques to compute minimal instance-

independent TGs for linear programs, and techniques to

compute minimal instance-dependent TGs for Datalog;

• We introduce a new reasoner, GLog, which has competitive

performance, often superior to the state-of-the-art, and has

good scalability.

A version of this paper with more details and proofs is in [52].

2 MOTIVATING EXAMPLE
We start our discussion with a simple example to describe how the

chase works, its inefficiencies, and how they can be overcome with

TGs. For the moment, we give only an intuitive description of some

key concepts to aid the understanding of the main ideas. In the

following sections, we will provide a formal description.

The chase works in rounds during which it executes the rules

over the facts that are currently in the KB. In most chase variants,

the execution of a rule involves three steps: retrieving all the facts

that instantiate the premise of the rule, then, checking whether the

944

facts to be derived logically hold in the KB and finally, adding them

to the KB if they do.

Example 1. Consider the KB comprising the database𝐵 = {𝑟 (𝑐1, 𝑐2)}
and the program 𝑃1 = {𝑟1, 𝑟2, 𝑟3, 𝑟4}:

𝑟 (𝑋,𝑌) → 𝑅(𝑋,𝑌) (𝑟1)

𝑅(𝑋,𝑌) → 𝑇 (𝑌,𝑋,𝑌) (𝑟2)

𝑇 (𝑌,𝑋,𝑌) → 𝑅(𝑋,𝑌) (𝑟3)

𝑟 (𝑋,𝑌) → ∃𝑍 .𝑇 (𝑌,𝑋, 𝑍) (𝑟4)

Figure 1 (a) depicts the rounds of the chase with such an input. In the
first round, the only rules that can derive facts are 𝑟1 and 𝑟4. Rule
𝑟1 derives the fact 𝑅(𝑐1, 𝑐2), which is added to the KB by the chase.
Let us now focus on 𝑟4. Notice that variable 𝑍 in 𝑟4 does not occur in
the premise of 𝑟4. The chase deals with such variables by introducing
fresh null (values). Nulls can be seen as “placeholders” for objects that
are not known. In our case, 𝑟4 derives the fact 𝑇 (𝑐2, 𝑐1, n1), where n1
is a null, and the chase adds it to the KB.

The chase then continues to the second round where rules are
executed over 𝐵′ = 𝐵 ∪ {𝑅(𝑐1, 𝑐2),𝑇 (𝑐2, 𝑐1, n1)}. The execution of
𝑟2 derives the fact 𝑇 (𝑐2, 𝑐1, 𝑐2), which is added to the KB, yielding
𝐵′′ = 𝐵′ ∪ {𝑇 (𝑐2, 𝑐1, 𝑐2)}. Finally, the chase proceeds to the third
round where only rule 𝑟3 derives 𝑅(𝑐1, 𝑐2) from 𝐵′′. However, since
this fact is already in 𝐵′′, the chase stops.

The above steps expose two inefficiencies of the chase. The

first inefficiency is that of paying the cost of deriving the same or

logically redundant facts.

Example 2. Let us return back to Example 1. The chase pays the
cost of executing 𝑟3 despite that the execution of 𝑟3 always derives
facts derived in previous rounds. Notice that this phenomenon is due
to the cyclic dependency between rules 𝑟2 and 𝑟3: 𝑟2 derives 𝑇 -facts
by flipping the arguments of the 𝑅-facts, while 𝑟3 derives 𝑅-facts by
flipping the arguments of the𝑇 -facts. Despite that the SNE effectively
blocks the execution of 𝑟1 and 𝑟2 in the third chase round, it cannot
block the execution of 𝑟3 in the third chase round, since 𝑇 (𝑐2, 𝑐1, 𝑐2)
was derived in the second round.

Now, consider the fact𝑇 (𝑐2, 𝑐1, n1). This fact is logically redundant
because it provides no extra information over the fact 𝑇 (𝑐2, 𝑐1, 𝑐2),
which is derived by 𝑟2. Despite being logically redundant, the chase
pays the cost of deriving it.

The second inefficiency that is exposed is that of suboptimally

executing the rules themselves: when computing the facts instanti-

ating the premise of a rule, the chase considers all facts in the KB

even the ones that cannot instantiate the premise of the rule.

Example 3. Continuing with Example 1, consider the execution
of 𝑟3 in the second round of the chase. No fact derived by 𝑟4 can
instantiate the premise of 𝑟3, since the premise of 𝑟3 requires the first
and the third arguments of the 𝑇 -facts to be the same. Despite that
the premise of 𝑟3 cannot be instantiated using the derivations of 𝑟4,
the chase unnecessary pays the cost of executing 𝑟3 over those facts.

The root of these inefficiencies is that the chase considers in each

round the entire KB as a source of potential derivations relying

only to the SNE for avoiding redundant derivations. If we were able

to “guide” the execution of the rules in a more clever way, then we

could avoid the inefficiencies stated above.

For instance, consider an alternative execution strategy where 𝑟2
is executed only over the derivations of 𝑟1, while 𝑟3 and 𝑟4 are not

executed at all. This strategy would not face any of the inefficiencies

highlighted above. Figure 1 (c) shows a graph for defining such

a strategy. Informally, a Trigger Graph (TG) is precisely such a

graph-based blueprint to compute the materialization.

In the remaining, we first provide a formal definition of TGs and

study their properties. Next, we show that under certain cases we

can compute TGs that support reasoning over any possible database

and present techniques for computing such TGs in a static fashion,

i.e., prior to reasoning. Next, we present techniques for computing

TGs at reasoning time and show that such TGs support a wider class

of rules than the ones statically computed. For both types of TGs

we provide techniques for eliminating redundant computations.

3 PRELIMINARIES
Let Consts, Nulls, Vars, and Preds be mutually disjoint, (countably

infinite) sets of constants, nulls, variables, and predicates, respec-
tively. Each predicate 𝑝 is associated with a non-negative integer

arity(𝑝) ≥ 0, called the arity of 𝑝 . Let EDP and IDP be disjoint sub-

sets of Preds of intensional and extensional predicates, respectively.
A term is a constant, a null, or a variable. A term is ground if it is

either a constant or a null. An atom 𝐴 has the form 𝑝 (𝑡1, . . . , 𝑡𝑛),
where 𝑝 is an 𝑛-ary predicate, and 𝑡1, . . . , 𝑡𝑛 are terms. An atom 𝐴

is extensional (resp., intensional), if the predicate of 𝐴 is in EDP
(resp., IDP). A fact is an atom of ground terms. A base fact is an
atom of constants whose predicate is extensional. An instance 𝐼 is
a set of facts (possibly comprising null terms). A base instance 𝐵 is

a set of base facts.

A rule is a first-order formula of the form

∀X∀Y
∧𝑛

𝑖=1
𝑃𝑖 (X𝑖 ,Y𝑖) → ∃Z.𝑃 (Y,Z), (1)

where, 𝑃 is an intensional predicate and for all 1 ≤ 𝑖 ≤ 𝑛, X𝑖 ⊆ X
and Y ⊆ Y (X𝑖 and Y𝑖 might be empty). We assume w.l.o.g. that the

premise of a rule includes only extensional predicates or intensional

predicates. We will denote extensional predicates with lowercase

letters and intensional predicates with uppercase letters. Universal

quantifiers are commonly omitted. The left-hand and the right-

hand side of a rule 𝑟 are its body and head, respectively, and are

denoted by body(𝑟) and head(𝑟). A rule is Datalog if it has no

existentially quantified variables, extensional if body(𝑟) includes
only extensional atoms, and linear if it has a single atom in its body.

A program is a set of rules. A knowledge base (KB) is a pair (𝑃, 𝐵)
with 𝑃 a program and 𝐵 a base instance.

Symbol |= denotes logical entailment, where sets of atoms and

rules are viewed as first-order theories. Symbol ≡ denotes logical
equivalence, i.e., logical entailment in both directions.

A term mapping 𝜎 is a (possibly partial) mapping from terms to

terms; wewrite𝜎 = {𝑡1 ↦→ 𝑠1, . . . , 𝑡𝑛 ↦→ 𝑠𝑛} to denote that𝜎 (𝑡𝑖) = 𝑠𝑖
for 1 ≤ 𝑖 ≤ 𝑛. Let 𝛼 be a term, an atom, a conjunction of atoms, or a

set of atoms. Then 𝜎 (𝛼) is obtained by replacing each occurrence of

a term 𝑡 in 𝛼 that also occurs in the domain of 𝜎 with 𝜎 (𝑡) (i.e., terms

outside the domain of 𝜎 remain unchanged). A substitution is a term
mapping whose domain contains only variables and whose range

contains only ground terms. For two sets, or conjunctions, of atoms

A1 and A2, a term mapping 𝜎 from the terms occurring in A1 to

the terms occurring inA2 is said to be a homomorphism fromA1 to

945

A2 if the following hold: (i) 𝜎 maps each constant in its domain to

itself, (ii) 𝜎 maps each null in its domain to Consts ∪ Nulls and (iii)

for each atom 𝐴 ∈ A1, 𝜎 (𝐴) ∈ A2. We denote a homomorphism 𝜎

from A1 into A2 by 𝜎 : A1 → A2.

It is known that, for two sets of facts A1 and A2, there exists a

homomorphism from A1 into A2 iff A2 |= A1 (and hence, there

exists a homomorphism in both ways iff A1 ≡ A2). When A1 and

A2 are null-free instances, A2 |= A1 iff A1 ⊆ A2 and A2 ≡ A1

iff A1 = A2.

For a set of two or more atoms A = {𝐴1, . . . , 𝐴𝑛} a most general
unifier (MGU) 𝜇 for A is a substitution satisfying the following

conditions: (i) 𝜇 (𝐴1) = · · · = 𝜇 (𝐴𝑛); and (ii) for each other substitu-

tion 𝜎 for which 𝜎 (𝐴1) = · · · = 𝜎 (𝐴𝑛), there exists a 𝜎 ′ such that

𝜎 = 𝜎 ′ ◦ 𝜇 [4].
Consider a rule 𝑟 of the form (1) and an instance 𝐼 . A trigger for 𝑟

in 𝐼 is a homomorphism from the body of 𝑟 into 𝐼 . We denote by ℎ𝑠
the extension of a trigger ℎ mapping each 𝑍 ∈ Z into a unique fresh

null. A rule 𝑟 holds or is satisfied in an instance 𝐼 , if for each trigger

ℎ for 𝑟 in 𝐼 , there exists an extension ℎ′ of ℎ to a homomorphism

from the head of 𝑟 into 𝐼 . Amodel of a KB (𝑃, 𝐵) is a set 𝐼 ⊇ 𝐵, such
that each 𝑟 ∈ 𝑃 holds in 𝐼 . A KB may admit infinitely many different

models. A model 𝑀 is universal, if there exists a homomorphism

from 𝑀 into every other model of (𝑃, 𝐵). A program 𝑃 is Finite
Expansion Set (FES), if for each base instance 𝐵, (𝑃, 𝐵) admits a

finite universal model.

A conjunctive query (CQ) is a formula of the form

𝑄 (𝑋1, . . . , 𝑋𝑛) ←
𝑚∧
𝑖=1

𝐴𝑖 (2)

where 𝑄 is a fresh predicate not occurring in 𝑃 , 𝐴𝑖 are null-free

atoms and each 𝑋 𝑗 occurs in some 𝐴𝑖 atom. We usually refer to a

CQ by its head predicate. We refer to the left-hand and the right-

hand side of the formula as the head and the body of the query,

respectively. A CQ is atomic if its body consists of a single atom.

A Boolean CQ (BCQ) is a CQ whose head atom has no arguments.

A substitution 𝜎 is an answer to 𝑄 on an instance 𝐼 if the domain

of 𝜎 is precisely its head variables, and if 𝜎 can be extended to a

homomorphism from

∧
𝑖 𝐴𝑖 into 𝐼 . We often identify 𝜎 with the 𝑛-

tuple (𝜎 (𝑋1), . . . , 𝜎 (𝑋𝑛)). The output of𝑄 on 𝐼 is the set𝑄 (𝐼) of all
answers to 𝑄 on 𝐼 . The answer to a BCQ 𝑄 on an instance 𝐼 is true,

denoted as 𝐼 |= 𝑄 , if there exists a homomorphism from

∧
𝑖=1𝐴𝑖

into 𝐼 . The answer to a BCQ 𝑄 on a KB (𝑃, 𝐵) is true, denoted as

(𝑃, 𝐵) |= 𝑄 , if 𝑀 |= 𝑄 holds, for each model 𝑀 of (𝑃, 𝐵). Finally, a
CQ 𝑄1 is contained in a CQ 𝑄2, denoted as 𝑄1 ⊆ 𝑄2, if for each

instance 𝐼 , each answer to𝑄1 on 𝐼 is in the answers to 𝑄2 on 𝐼 [18].

The chase refers to a family of techniques for repairing a base

instance 𝐵 relative to a set of rules 𝑃 so that the result satisfies the

rules in 𝑃 and contains all facts from 𝐵. In particular, the result is a

universal model of (𝑃, 𝐵), which we can use for query answering

[24]. By “chase” we refer both to the procedure and its output.

The chase works in rounds during which it executes one or

more rules from the KB. The result of each round 𝑖 ≥ 0 is a new

instance 𝐼 𝑖 (with 𝐼0 = 𝐵), which includes the facts of all previous

instances plus the newly derived facts. The execution of a rule in

the 𝑖-th chase round, involves computing all triggers from the body

of 𝑟 into 𝐼 𝑖−1, then (potentially) checking whether the facts to be

derived satisfy certain criteria in the KB and finally, adding to the

KB or discarding the derived facts. Different chase variants employ

different criteria for deciding whether a fact should be added to the

KB or whether to stop or continue the reasoning process [10, 45].

For example, the restricted chase (adopted by VLog and RDFox)

adds a fact if there exists no homomorphism from this fact into

the KB and terminates when no new fact is added. The warded

chase (adopted by Vadalog) replaces homomorphism checks by

isomorphism ones [9] and terminates, again, when no new fact

is added. The equivalent chase omits any checks and terminates

when there is a round 𝑖 which produces an instance that is logically

equivalent to the instance produced in the (𝑖 − 1)-th round [22].

Notice that when a KB includes only Datalog rules all chase variants

behave the same: a fact is added when it has not been previously

derived and the chase stops when no new fact is added to the KB.

Not all chase variants terminate even when the KB admits a

finite universal model [22]. The core chase [23] and the equivalent

one do offer such guarantees.

For a chase variant, we use Ch𝑖 (𝐾) or Ch𝑖 (𝑃, 𝐵) to denote the

instance computed during the 𝑖-th round and Ch(𝑃, 𝐵) to denote the
(possibly infinite) result of the chase. Furthermore, we define the

chase graph chaseGraph(𝑃, 𝐵) for a KB (𝑃, 𝐵) as the edge-labeled
directed acyclic graph having as nodes the facts in Ch(𝑃, 𝐵) and
having an edge from a node 𝑓1 to 𝑓2 labeled with rule 𝑟 ∈ 𝑃 if 𝑓2 is

obtained from 𝑓1 and possibly from other facts by executing 𝑟 .

4 TRIGGER GRAPHS
In this section, we formally define Trigger Graphs (TGs) and study

the class of programs admitting finite instance-independent TGs.
First, we introduce the notion of Execution Graphs (EGs). Intuitively,
an EG for a program is a digraph stating a “plan” of rule execution

to reason via the program. In its general definition, an EG is not

required to characterize a plan of reasoning guaranteeing complete-

ness. Particular EGs, defined later, will satisfy this property.

Definition 4. An execution graph (EG) for a program 𝑃 is an acyclic,
node- and edge-labeled digraph G = (𝑉 , 𝐸, rule, ℓ), where 𝑉 and 𝐸
are the sets of nodes and edges of the graph, respectively, and rule
and ℓ are the node- and edge-labeling functions. Each node 𝑣 (i) is
labeled with some rule, denoted by rule(𝑣), from 𝑃 ; and (ii) there can
be a labeled edge of the form 𝑢 →𝑗 𝑣 , from node 𝑢 to node 𝑣 , only if
the 𝑗-th predicate in the body of rule(𝑣) equals the head predicate of
rule(𝑢).

Figures 1(b) and 1(c) show two EGs for 𝑃1 from Example 1. Next

to each node is the associated rule. Later we show that both EGs

are also TGs for 𝑃1.

Since the nodes of an execution graph are associated with the

rules of a program, when, in the following, we refer to the head

and the body of a node 𝑣 , we actually mean the head and the body

of rule(𝑣). Observe that, by definition, nodes associated with exten-

sional rules do not have incoming edges, and nodes 𝑣 associated

with an intensional rule have exactly one incoming edge associated

with the 𝑗-th predicate of the body of 𝑣 , i.e., there is exactly one

node 𝑢 such that 𝑢 →𝑗 𝑣 . The latter might seem counter-intuitive

as, in a program, the 𝑗-th predicate in the body of a rule can appear

in the heads of many different rules. It is precisely to take into

account this possibility that, in an execution graph, more than one

946

node can be associated with the same rule 𝑟 of the program. In this

way, different nodes 𝑣1, . . . , 𝑣𝑞 associated with the same rule 𝑟 can

be linked with an edge labeled with 𝑗 to different nodes 𝑢1, . . . , 𝑢𝑞
whose head’s predicate is the 𝑗-th predicate of the body of 𝑟 . This

models that to evaluate a rule 𝑟 we might need to match the 𝑗-th

predicate in the body of 𝑟 with facts generated by the heads of

different rules.

We now define some notions on EGs that we will use throughout

the paper. For an EG 𝐺 for a program 𝑃 , we denote by 𝜈 (𝐺) and
𝜖 (𝐺) the sets of nodes and edges in𝐺 . The depth of a node 𝑣 ∈ 𝜈 (𝐺)
is the length of the longest path that ends in 𝑣 . The depth d(G) of
𝐺 is 0 if 𝐺 is the empty graph; otherwise, it is the maximum depth

of the nodes in 𝜈 (𝑉).
As said earlier, EGs can be used to guide the reasoning process.

In the following definition, we formalise how the reasoning over a

program 𝑃 is carried out by following the plan encoded in an EG

for 𝑃 . The definition assumes the following for each rule 𝑟 in 𝑃 : (i)

𝑟 is of the form ∀X∀Y∧𝑛
𝑖=1 𝑃𝑖 (X𝑖 ,Y𝑖) → ∃Z𝑃 (Y,Z); and (ii) if 𝑟 is

intensional and is associated with a node 𝑣 in an EG for 𝑃 , then the

EG includes an edge of the form 𝑢𝑖 →𝑖 𝑣 , for each 1 ≤ 𝑖 ≤ 𝑛.
Definition 5. Let (𝑃, 𝐵) be a KB, 𝐺 be an EG for 𝑃 and 𝑣 be a node
in 𝐺 associated with a rule 𝑟 ∈ 𝑃 . 𝑣 (𝐵) includes a fact ℎ𝑠 (head(𝑟)),
for each ℎ that is either:

• a homomorphism from the body of 𝑟 to 𝐵, if 𝑟 is extensional;
or otherwise

• a homomorphism from the body of 𝑟 into
⋃𝑛

𝑖=1 𝑢𝑖 (𝐵) so that
the following holds: the restriction of ℎ over X𝑖 ∪ Y𝑖 is a ho-
momorphism from 𝑃𝑖 (X𝑖 ,Y𝑖) into 𝑢𝑖 (𝐵), for each 1 ≤ 𝑖 ≤ 𝑛.

We pose G(𝐵) = 𝐵 ∪⋃𝑣∈𝑉 𝑣 (𝐵).
TGs are EGs guaranteeing the correct computation of conjunc-

tive query answering.

Definition 6. An EG 𝐺 for 𝑃 is a TG for (𝑃, 𝐵), if for each BCQ 𝑄
we have (𝑃, 𝐵) |= 𝑄 iff G(𝐵) |= 𝑄 . 𝐺 is a TG for 𝑃 , if for each base
instance 𝐵, 𝐺 is a TG for (𝑃, 𝐵).

TGs that depend both on 𝑃 and 𝐵 are called instance-dependent,
while TGs that depend only on 𝑃 are called instance-independent.
The EGs shown in Figure 1 are instance-independent TGs for 𝑃1.

We provide an analysis of the class of programs that admit a finite

instance-independent TG denoted as FTG. Theorem 7 summarizes

the relationship between FTG and the classes of programs that are

bounded (BDD, [22]), term-depth bounded (TDB, [35]) and first-

order-rewritable (FOR, [16]).

Theorem 7. For a program 𝑃 , 𝑃 is FTG iff it is BDD; and 𝑃 is
TDB ∩ FOR iff it is BDD.

Below, we provide a sketch of the proof of Theorem 7. We start

with the first part, namely that 𝑃 is FTG iff it is BDD. In the forward

direction, we show that if 𝑃 is FTG, then it is BDD with bound

the maximal depth of any instance-independent TG for 𝑃 . In the

backward direction if 𝑃 is BDD with bound 𝑘 , then there exists a

(finite) EG 𝐺𝑘
which is a TG for 𝑃 . As we describe later, 𝐺𝑘

can be

computed by mimicking the chase. We now move to the second

part of Theorem 7. If a program is FOR, then all facts that contain

terms of depth at most 𝑘 are produced in a fixed number of chase

rounds. Therefore, if it is also TDB, then all relevant facts in the

chase are also produced in a fixed number of steps.

We cannot determine if a program admits a finite TG.

Theorem 8. The language of all programs that admit a finite TG
is undecidable.

The undecidability of FTG follows from the fact that FOR and

FTG coincide for Datalog programs, which are always TDB.
We conclude our analysis by showing that any KB that admits a

finite model, also admits a finite instance-dependent TG, as stated

in the following statement.

Theorem 9. For each KB (𝑃, 𝐵) that admits a finite model, there
exists an instance-dependent TG.

The key insight is that we can build a TG that mimics the chase.

Below, we analyze the conditions under which the same rule ex-

ecution takes place both in the chase and when reasoning over a

TG. Based on this analysis we present a technique for computing

instance-dependent TGs that mimic breadth-first chase variants.

Consider a rule of the form (1) and assume that the chase over

a KB (𝑃, 𝐵) executes 𝑟 in some round 𝑘 by instantiating its body

using the facts 𝑅(c𝑖). Consider now a TG 𝐺 for (𝑃, 𝐵). If 𝑘 = 1,

then this rule execution (notice that the rule has to be extensional)

takes place in 𝐺 if there is a node 𝑣 associated with 𝑟 . Otherwise,

if 𝑘 > 1, then this rule execution takes place in 𝐺 if the following

hold: (i) there is a node 𝑣 associated with 𝑟 , (ii) each 𝑅(c𝑖) is stored
in some node 𝑢𝑖 and (iii) there is an incoming edge 𝑢𝑖 →𝑖 𝑣 , for

each 1 ≤ 𝑖 ≤ 𝑛. We refer to each combination of nodes of depth < 𝑘

whose facts may instantiate the body of a rule 𝑟 when reasoning

over an EG, as 𝑘-compatible nodes for 𝑟 :

Definition 10. Let 𝑃 be a program, 𝑟 be an intensional rule in 𝑃
and 𝐺 be an EG for 𝑃 . A combination of 𝑛 (not-necessarily distinct)
nodes (𝑢1, . . . , 𝑢𝑛) from 𝐺 is 𝑘-compatible with 𝑟 , where 𝑘 ≥ 2 is an
integer, if:

• the predicate in the head of 𝑢𝑖 is 𝑅𝑖 ;
• the depth of each 𝑢𝑖 is less than 𝑘 ; and
• at least one node in (𝑢1, . . . , 𝑢𝑛) is of depth 𝑘 − 1.

The above ideas are summarized in an iterative procedure, which

builds at each step 𝑘 a graph 𝐺𝑘
:

• (Base step) if 𝑘 = 1, then for each extensional rule 𝑟 add to

𝐺𝑘
a node 𝑣 associated with 𝑟 .

• (Inductive step) otherwise, for each intensional rule 𝑟 and

each combination of nodes (𝑢1, . . . , 𝑢𝑛) from 𝐺𝑘−1
that is

𝑘-compatible with 𝑟 , add to𝐺𝑘
: (i) a fresh node 𝑣 associated

with 𝑟 and (ii) an edge 𝑢𝑖 →𝑖 𝑣 , for each 1 ≤ 𝑖 ≤ 𝑛.
The inductive step ensures that 𝐺𝑘

encodes each rule execution

that takes place in the 𝑘-th chase round.

So far, we did not specify when the TG computation process stops.

When 𝑃 is Datalog, we can stop when𝐺𝑘−1 (𝐵) = 𝐺𝑘 (𝐵). Otherwise,
we can employ the termination criterion of the equivalent chase,

e.g., 𝐺𝑘−1 (𝐵) |= 𝐺𝑘 (𝐵), or of the restricted chase.

5 TGS FOR LINEAR PROGRAMS
In the previous section, we outlined a procedure to compute instance-
dependent TGs that mimics the chase. Now, we propose an algorithm

for computing instance-independent TGs for linear programs.

Our technique is based on two ideas. The first is that, for each

base instance 𝐵, the result of chasing 𝐵 using a linear program 𝑃 is

947

Algorithm 1 tglinear(𝑃)
1: Let 𝐺 be an empty EG

2: for each 𝑓 ∈ H (𝑃) do
3: Γ is an empty 𝐸𝐺 ; 𝜇 is the empty mapping

4: for each 𝑓1 →𝑟 𝑓2 ∈ chaseGraph(𝑃, {𝑓 }) do
5: add a fresh node 𝑢 to 𝜈 (Γ) with rule(𝑢) ··= 𝑟
6: 𝜇 (𝑢) ··= 𝑓1 →𝑟 𝑓2

7: for each 𝑣,𝑢 ∈ 𝜈 (Γ) do
8: if 𝜇 (𝑣) = 𝑓1 →𝑟 𝑓2 and 𝜇 (𝑢) = 𝑓2 →𝑟 ′ 𝑓3 then
9: add 𝑣 →1 𝑢 to 𝜖 (Γ)
10: 𝐺 ··= 𝐺 ∪ Γ

11: return 𝐺

logically equivalent to the union of the instances computed when

chasing each single fact in 𝐵 using 𝑃 .

The second idea is based on pattern-isomorphic facts: facts with
the same predicate name and for which there is a bijection be-

tween their constants. For example, 𝑅(1, 2, 3) is pattern-isomorphic

to 𝑅(5, 6, 7) but not to 𝑅(9, 9, 8). We can see that two different

pattern-isomorphic facts will have the same linear rules executed

in the same order during chasing. We denote byH(𝑃) a set of facts
formed over the extensional predicates in a program 𝑃 , where no

fact 𝑓1 ∈ H (𝑃) is pattern isomorphic to some other fact 𝑓2 ∈ H (𝑃).
Algorithm 1 combines these two ideas: it runs the chase for each

fact in H(𝑃) then tracks the rule executions and based on these

rule executions it computes a TG. In particular, for each fact 𝑓2 that

is derived after executing a rule 𝑟 over 𝑓1, Algorithm 1 will create a

fresh node 𝑢 and associate it with rule 𝑟 , lines 4–6. The mapping

𝜇 associates nodes with rule executions. Then, the algorithm adds

edges between the nodes based on the sequences of rule executions

that took place during chasing, lines 7–9.

Algorithm 1 is (implicitly) parameterized by the chase variant.

The results below are based on the equivalent chase, as it ensures

termination for FES programs.

Theorem 11. For any linear program 𝑃 that is FES, tglinear(𝑃)
is a TG for 𝑃 .

Algorithm 1 has a double-exponential overhead.

Theorem 12. The execution time of Algorithm 1 for FES programs
is double exponential in the input program 𝑃 . If the arity of the
predicates in 𝑃 is bounded, the execution time is (single) exponential.

5.1 Minimizing TGs for linear programs
The TGs computed by Algorithm 1 may comprise nodes which can

be deleted without compromising query answering. Let us return

to Example 1 and to the TG 𝐺1 from Figure 1: we can safely ignore

the facts associated with the node 𝑢2 from 𝐺1 and still preserve

the answers to all queries over (𝑃1, 𝐵). In this section, we show a

technique for minimizing TGs for linear programs.

Our minimization algorithm is based on the following. Consider

a TG𝐺 for a linear program 𝑃 , a base instance 𝐵 of 𝑃 and the query

𝑄 (𝑋) ← 𝑅(𝑋,𝑌) ∧ 𝑆 (𝑌, 𝑍, 𝑍). Assume that there exists a homo-

morphism from the body of the query into the facts 𝑓1 = 𝑅(𝑐1, n1)
and 𝑓2 = 𝑆 (n1, n2, n2) and that 𝑓1 ∈ 𝑣 (𝐵) and 𝑓2 ∈ 𝑢 (𝐵) with 𝑣,𝑢 be-

ing two nodes of 𝐺 . Since n1 is shared among two different facts

associated with two different nodes, it is safe to remove 𝑢 if there

is another node 𝑢 ′ ∈ 𝜈 (𝐺) whose instance 𝑢 ′(𝐵) includes a fact of
the form 𝑆 (n1, n′

2
, n′

2
). Equivalently, it is safe to remove 𝑢 if there

exists a homomorphism from 𝑢 (𝐵) into 𝑢 ′(𝐵) that maps to itself

each null occurring both in 𝑢 (𝐵) and 𝑢 ′(𝐵). Since a null can occur

both in 𝑢 (𝐵) and in 𝑢 ′(𝐵) if 𝑢,𝑢 ′ share a common ancestor we can

rephrase the previous statement as follows: we can remove 𝑢 (𝐵) if
there exists a homomorphism from𝑢 (𝐵) into𝑢 ′(𝐵) preserving each
null (from 𝑢 (𝐵)) that also occurs in some 𝑤 (𝐵) with 𝑤 being an

ancestor of 𝑢 in 𝐺 . We refer to such homomorphisms as preserving
homomorphisms:

Definition 13. Let𝐺 be a TG for a program 𝑃 , 𝑢, 𝑣 ∈ 𝜈 (𝐺) and 𝐵 be
a base instance. A homomorphism from 𝑢 (𝐵) into 𝑣 (𝐵) is preserving,
if it maps to itself each null occurring in some 𝑢 ′(𝐵) with 𝑢 ′ being
an ancestor of 𝑢.

It suffices to consider only the facts inH(𝑃) to verify the exis-

tence of preserving homomorphisms.

Lemma 14. Let 𝑃 be a linear program, 𝐺 be an EG for 𝑃 and
𝑢, 𝑣 ∈ 𝜈 (𝐺). Then, there exists a preserving homomorphism from𝑢 (𝐵)
into 𝑣 (𝐵) for each base instance 𝐵, iff there exists a preserving homo-
morphism from 𝑢 ({𝑓 }) into 𝑣 ({𝑓 }), for each fact 𝑓 ∈ H (𝑃).

From Definition 13 and Lemma 14, it follows that a node 𝑣 of a

TG can be “ignored” during query answering if there exists a node

𝑣 ′ and a preserving homomorphism from 𝑣 ({𝑓 }) into 𝑣 ′({𝑓 }), for
each 𝑓 ∈ H (𝑃). If the above holds, then we say that 𝑣 is dominated
by 𝑣 ′. The above implies a strategy to reduce the size of TGs.

Definition 15. For a TG𝐺 for a linear program 𝑃 , the EG denoted
by minLinear(𝐺) is obtained by exhaustively applying the following
steps: (i) choose a pair of nodes 𝑣, 𝑣 ′ from 𝐺 where 𝑣 is dominated by
𝑣 ′ and 𝑣 ′ is not a successor of 𝑣 , (ii) remove 𝑣 from 𝜈 (𝐺); and (iii) add
an edge 𝑣 ′ →1 𝑢, for each edge 𝑣 →1 𝑢 from 𝜖 (𝐺).

The minimization procedure described in Definition 15 is correct:

given a TG for a linear program 𝑃 , the output of minLinear is still
a TG for 𝑃 .

Theorem 16. For a TG 𝐺 for a linear program 𝑃 , minLinear(𝐺)
is a TG for 𝑃 .

We present an example demonstrating the TG computation and

the minimization technique described above.

Example 17. Recall Example 1. Since 𝑟 is the only extensional pred-
icate in 𝑃1,H(𝑃1) will include two facts, say 𝑟 (𝑐1, 𝑐2) and 𝑟 (𝑐3, 𝑐3),
where 𝑐1, 𝑐2 and 𝑐3 are constants. Algorithm 1 computes a TG by
tracking the rule executions that take place when chasing each fact
inH(𝑃1). For example, when considering 𝑟 (𝑐1, 𝑐2), the graph Γ com-
puted in lines 3–9 will be the TG 𝐺1 from Figure 1(b), where nodes
are denoted as 𝑢1, 𝑢2, and 𝑢3.

Let us now focus on the minimization algorithm. To minimize 𝐺1,
we need to identify nodes that are dominated by others. Recall that a
node 𝑢 in 𝐺1 is dominated by a node 𝑣 , if, for each 𝑓 inH(𝑃1), there
exists a preserving homomorphism from 𝑢 ({𝑓 }) into 𝑣 ({𝑓 }). Based
on the above, we can see that 𝑢2 is dominated by 𝑢3. For example,
when 𝐵∗ = {𝑟 (𝑐1, 𝑐2)}, there exists a preserving homomorphism from
𝑢2 (𝐵∗) = {𝑅(𝑐2, 𝑐1, n1)} into 𝑢3 (𝐵∗) = {𝑅(𝑐2, 𝑐1, 𝑐1)} mapping n1 to
𝑐1. Since 𝑢2 is dominated by 𝑢3, the minimization process eliminates

948

𝑢2 from 𝐺1. The result is the TG 𝐺2 from Figure 1(c), since no other
node in 𝐺2 is dominated.

6 OPTIMIZING TGS FOR DATALOG
There are cases where we cannot compute instance-independent

TG, e.g., for Datalog programs that are not also in FTG. In such cases,
we can still create an instance-dependent TG using the procedure

outlined in Section 4. In this section, we present two optimizations

to this procedure which avoid redundant computations. These opti-

mizations work with Datalog programs; thus also with non-linear

rules.

6.1 Eliminating redundant nodes
Our first technique is based on the following observation. Con-

sider a node 𝑣 of a TG 𝐺 . Assume that 𝑣 is associated with the

rule 𝑎(𝑋,𝑌, 𝑍) → 𝐴(𝑌,𝑋) with 𝑎 being extensional. We can see

that for each base instance 𝐵 and each fact 𝑎(𝜎 (𝑋), 𝜎 (𝑌), 𝜎 (𝑍))
in 𝐵, where 𝜎 is a variable substitution, the fact 𝐴(𝜎 (𝑌), 𝜎 (𝑋)) is
in 𝑣 (𝐵). Equivalently, for each answer 𝜎 to 𝑄 (𝑌,𝑋) ← 𝑎(𝑋,𝑌, 𝑍),
a fact 𝐴(𝜎 (𝑌), 𝜎 (𝑋)) is associated with 𝑣 (𝐵). The above can be

generalized. Consider a node 𝑣 of a TG 𝐺 such that rule(𝑣) is∧𝑛
𝑖=𝑖 𝐴𝑖 (Y𝑖) → 𝐴(X). The facts in 𝑣 (𝐵) can be obtained by (i) com-

puting the rewriting of the query 𝑄 (X) ← ∧𝑛
𝑖=𝑖 𝐴𝑖 (Y𝑖) w.r.t. the

rules in the ancestors of 𝑣 up to the extensional predicates; (ii) eval-

uating the rewritten query over 𝐵; and (iii) adding 𝐴(t) to 𝑣 (𝐵), for
each answer t to the rewritten query over 𝐵—recall that we denote

answers either as substitutions or as tuples; see Section 3. We refer

to 𝑄 (X) ← ∧𝑛
𝑖=𝑖 𝐴𝑖 (Y𝑖) as the characteristic query of 𝑣 .

This observation suggests that we can use query containment

tests to identify nodes that can be safely removed from TGs (and

EGs). Intuitively, the naïve algorithm for computing TGs from Sec-

tion 4 can be modified so that, at each step 𝑖 , right after computing

𝐺𝑖
, and before computing 𝐺𝑖 (𝐵), we eliminate each node 𝑢 if the

EG-guided rewriting of the characteristic query of 𝑢 is contained

in the EG-guided rewriting of the characteristic query of another

node 𝑣 .

Below, we formalize the notion of EG-rewritings, then we show

the correspondence between the answers to EG-rewritings and the

facts associated with the nodes, and we finish with an algorithm

for eliminating nodes from TGs.

Definition 18. Let 𝑣 be a node in an EG𝐺 for a Datalog program.
Let rule(𝑣) be ∧𝑛

𝑖=1𝐴𝑖 → 𝑅(Y). The EG-rewriting of 𝑣 , denoted as
rew(𝑣), is the CQ computed as follows (w.l.o.g. no pair of rules rule(𝑢)
and rule(𝑣) with 𝑢, 𝑣 ∈ 𝜈 (𝐺) and 𝑢 ≠ 𝑣 shares variables):

• form the query 𝑄 (Y) ← 𝑅(Y); associate 𝑅(Y) with 𝑣 ;
• repeat the following rewriting step until no intensional atom is

left in body(𝑄): (i) choose an intensional atom 𝛼 ∈ body(𝑄);
(ii) compute the MGU 𝜃 of {head(𝑢), 𝛼}, where 𝑢 is the node
associated with 𝛼 ; (iii) replace 𝛼 in body(𝑄) with body(𝑢)
and apply 𝜃 on the resulting 𝑄 ; (iv) associate each 𝜃 (𝐵 𝑗)
in body(𝑄) with the node 𝑤 𝑗 , where 𝐵 𝑗 is the 𝑗-th atom in
body(𝑢) and𝑤 𝑗 →𝑗 𝑢 ∈ 𝜖 (𝐺).

The rewriting algorithm described in Definition 18 is a variant

of the rewriting algorithm in [26]. Our difference from [26] is that

at each step of the rewriting process, we consider only the rule

rule(𝑢) with 𝑢 being the node with which 𝛼 is associated with.

We report an example of Definition 18.

Example 19. Consider the rules

𝑟 (𝑋1, 𝑌1, 𝑍1) → 𝑇 (𝑋1, 𝑋1, 𝑌1) (𝑟8)

𝑇 (𝑋2, 𝑌2, 𝑍2) → 𝑅(𝑌2, 𝑍2) (𝑟9)

where 𝑟 is the only extensional predicate. Consider also an EG includ-
ing the edge 𝑢1 →1 𝑢2 where node 𝑢1 is associated with 𝑟8 and node
𝑢2 is associated with 𝑟9. To compute the EG-rewriting rew(𝑢2), we first
form query𝑄 (𝑌2, 𝑍2) ← 𝑅(𝑌2, 𝑍2) and associate atom𝑅(𝑌2, 𝑍2) with
node 𝑢2. Then, the next steps take place. First, since 𝑅(𝑌2, 𝑍2) is the
only intensional atom in the body of the query we have 𝛼 = 𝑅(𝑌2, 𝑍2).
Then, following step (ii) of Definition 18 and since node𝑢2 is associated
with 𝑅(𝑌2, 𝑍2), we compute the MGU 𝜃1 of {head(𝑢2), 𝑅(𝑌2, 𝑍2)}. We
have 𝜃1 = {𝑌2 ↦→ 𝑌2, 𝑍2 ↦→ 𝑍2}. By applying the step (iii), the query
becomes 𝑄 (𝑌2, 𝑍2) ← 𝑇 (𝑋2, 𝑌2, 𝑍2). Due to the edge 𝑢1 →1 𝑢2, in
step (iv) we associate the fact 𝑇 (𝑋2, 𝑌2, 𝑍2) with node 𝑢1 . In the sec-
ond iteration, we have 𝛼 = 𝑇 (𝑋2, 𝑌2, 𝑍2). Since the fact 𝑇 (𝑋2, 𝑌2, 𝑍2)
is associated with node 𝑢1, in step (ii) we compute the MGU 𝜃2 of
{head(𝑢1),𝑇 (𝑋2, 𝑌2, 𝑍2)}. We have 𝜃2 = {𝑋1 ↦→ 𝑌2, 𝑋2 ↦→ 𝑌2, 𝑌1 ↦→
𝑍2}. In step (iii), we replace 𝛼 = 𝑇 (𝑋2, 𝑌2, 𝑍2) with body(𝑢1), i.e.,
{𝑟 (𝑋1, 𝑌1, 𝑍1)}, and apply 𝜃2 to the resulting query. The query be-
comes 𝑄 (𝑌2, 𝑍2) ← 𝑟 (𝑌2, 𝑍2, 𝑍1). Since there is no incoming edge to
𝑢1, we associate no node with fact 𝑟 (𝑌2, 𝑍2, 𝑍1). The algorithm then
stops, since there is no intensional fact in the final query and returns
𝑄 (𝑌2, 𝑍2) ← 𝑟 (𝑌2, 𝑍2, 𝑍1) as the EG-rewriting of 𝑢2.

There is a correspondence between the answers to the nodes’

EG-rewritings with the facts stored in the nodes.

Lemma 20. Let 𝐺 be an EG for a Datalog program 𝑃 and 𝐵 be a
base instance of 𝑃 . Then for each 𝑣 ∈ 𝜈 (𝐺) we have: 𝑣 (𝐵) includes
exactly a fact 𝐴(t) with 𝐴 being the head predicate of rule(𝑣), for
each answer t to the EG-rewriting of 𝑣 on 𝐵.

Our algorithm for removing nodes from EGs is stated below.

Definition 21. The EG minDatalog(𝐺) is obtained from an EG 𝐺
for a program 𝑃 by exhaustively applying the following steps: for each
pair of nodes𝑢 and 𝑣 such that (i) the depth of 𝑣 is equal or larger than
that of 𝑢, (ii) the predicates of head(rule(𝑣)) and of head(rule(𝑢))
are the same and (iii) the EG-rewriting of 𝑣 is contained in the EG-
rewriting of 𝑢: (a) remove the node 𝑣 from 𝜈 (𝐺), and (b) add an edge
𝑢 →𝑗 𝑤 , for each edge 𝑣 →𝑗 𝑤 occurring in 𝐺 .

Theminimization technique of Definition 21 can be proven sound

and to produce a TG with fewest nodes.

Theorem 22. Let 𝐺 be a TG for a Datalog program 𝑃 . Then,
minDatalog(𝐺) is also a TG for 𝑃 . Furthermore, any other TG for 𝑃
has at least as many nodes as minDatalog(𝐺).

Deciding whether a TG of a Datalog program is of minimum

size can be proven co-NP-complete. The problem’s hardness lies

in the necessity of performing query containment tests, carried

out via homomorphism tests, which require exponential time on

deterministic machines (unless 𝑃 = 𝑁𝑃) [18]. This hardness result

supports the optimality of minDatalog in terms of complexity.

Theorem 23. For a Datalog program 𝑃 and a TG𝐺 for 𝑃 , deciding
whether 𝐺 is a TG of minimum size for 𝑃 is co-NP-complete.

949

c1
…

c50
b1
…

b50

c1
…

c50
a1
…

a50

c1
…

c50

c1
…

c50
d

⋈ = ⋈ = ⟕ =

= ⋈

c1
…
c50
d
e1
…
e50

=

a b

A a'
b'

a'⋈b'

a' ⊳A

(i) (ii) (iii)

(v) (vi)

c1
…

c50
d

a'⋈b'
c1
…

c50
d

c1
…

c50

A

c1
…

c50
b1
…

b50

c1
…

c50
a1
…

a50

c1
…

c50
⋈ =

a b

A

(iv)

c1
…

c50
d

a'
c1
…

c50

A
a' ⊳ A

d

c1
…
c50
d
e1
…
e50

b'

d

d d⊳

Figure 2: Different strategies for executing the rules from 𝑃2.

6.2 A more efficient rule execution strategy
EG-rewritings can be further used to optimize the execution of the

rules as shown in the example below.

Example 24. Consider the program 𝑃2

𝑎(𝑋) ∧ 𝑏 (𝑋) → 𝐴(𝑋) (𝑟10)

𝑎′(𝑋) ∧ 𝑏 ′(𝑋) → 𝐴(𝑋) (𝑟11)

where 𝑎, 𝑎′, 𝑏 and 𝑏 ′ are extensional predicates. We denote by a, a′, b
and b′ the relations storing the tuples of the corresponding predicates
in the input instance. The data of each relation is shown in Figure 2.

The upper part of Figure 2 shows the steps involved when executing
𝑟10 and 𝑟11 using the chase: (i) shows the joins involved when executing
𝑟10; (ii)–(iii) show the joins involved when executing 𝑟11: (ii) shows
the join to compute body(𝑟11) while (iii) shows the outer join involved
when checking whether the conclusions of 𝑟11 have been previously
derived. Assuming that the cost of executing each join is the cost of
scanning the smallest relation, the total cost of the chase is: 100 (step
(i)) + 51 (step (ii)) + 50 (step (iii))=201.

The lower part of Figure 2 shows a more efficient strategy. The exe-
cution of 𝑟10 stays the same (step (iv)), while for 𝑟11 we first compute
all tuples that are in a′ but not in A (step (v)) and use a′ \ A to restrict
the tuples instantiating the body of 𝑟11 (step (vi)). The intuition is that
the tuples of a′ that are already in A will be discarded, so it is not
worth considering them when instantiating the body of 𝑟11. The total
cost of this strategy is: 100 (step (iv)) + 51 (step (v)) + 1 (step (vi))=152.

Example 24 suggests a way to optimize the execution of the

rules, which reduces the cost of instantiating the rule bodies. This

is achieved by considering only the instantiations leading to the

derivation of new conclusions. Our new rule execution strategy is

described below.

Definition 25. Let 𝑣 be a node of an EG 𝐺 for a Datalog program
𝑃 , 𝐵 be a base instance and 𝐼 ⊆ 𝐺 (𝐵). Let 𝐴(X) be the head atom
of rule(𝑣) and let 𝑄 (Y) ← ∧𝑛

𝑖=1 𝑓𝑖 be the EG-rewriting of 𝑣 . The
computation of 𝑣 (𝐵) under 𝐼 , denoted as 𝑣 (𝐵, 𝐼), is:

(1) pick 𝑚 ≥ 1 atoms 𝑓𝑖1 , . . . , 𝑓𝑖𝑚 from the body of 𝑄 whose
variables include all variables in Y and form the query

𝑄 ′(Y) ← 𝑓𝑖1 ∧ · · · ∧ 𝑓𝑖𝑚
(2) compute 𝑣 (𝐵) as in Definition 5, however restrict to homo-

morphisms ℎ for which (i) ℎ(X) is an answer to 𝑄 ′ on 𝐵 and
(ii) 𝐴(ℎ(X)) ∉ 𝐼 .

Algorithm 2 TGmat(𝑃, 𝐵)

1: 𝑘 ··= 0; 𝐺0
is the empty graph; 𝐼0 ··= ∅

2: do
3: 𝑘 ··= 𝑘 + 1; 𝐼𝑘 ··= 𝐼𝑘−1
4: Compute 𝐺𝑘

starting from 𝐺𝑘−1
as in Section 4

5: 𝐺𝑘 ··= minDatalog(𝐺𝑘)
6: for each node 𝑣 of depth 𝑘 do
7: add 𝑣 (𝐵, 𝐼𝑘−1) (cf. Definition 25) to 𝐼𝑘

8: while 𝐼𝑘 ≠ 𝐼𝑘−1

9: return 𝐼∞

To help us understand Definition 25, let us apply it to Example 24.

We have 𝑄 ′(𝑋) ← 𝑎′(𝑋). The antijoin between 𝑄 ′ and 𝐴 (step (v)

of Figure 2) corresponds to restricting to homomorphisms that are

answers to𝑄 ′ (step (2.i) of Definition 25), but are not in 𝐼 (step (2.ii)

of Definition 25). In our implementation, we pick one extensional

atom (𝑚 = 1) in step (1). To pick this atom, we consider each 𝑓𝑖 in the

body of rew(𝑣), then compute the join as in step (v) of Example 24

between a subset of the 𝑓𝑖 -tuples and the 𝐴-tuples in 𝐼 and finally,

choose the 𝑓𝑖 leading to the highest join output.

We summarize TG-guided reasoning for Datalog programs in

Algorithm 2. Correctness is stated below.

Theorem 26. For a Datalog program 𝑃 and a base instance 𝐵,
TGmat(𝑃, 𝐵) = Ch(𝑃, 𝐵).

7 EVALUATION
We implemented Algorithm 1, TG-guided reasoning over a fixed TG

(Definition 5) and Algorithm 2 in a new open-source reasoner called

GLog. GLog is a fork of VLog [57] that shares the same code for

handling the extensional relations while the code for reasoning is

entirely novel. The source code is freely available at https://github.

com/karmaresearch/glog. In the same repository, we also provide

scripts to facilitate the replication of the experiments below, along

with a link to the datasets.

To compare GLog against other reasoning engines, we consider

three performance measures: the absolute reasoning time, the peak

RAMconsumption observed at reasoning time, and the total number

of triggers. The last measure is considered because it reflects the

ability of TGs to reduce the number of redundant rule executions

and it is robust to most implementation choices.

7.1 Testbed
Systems.We compared against the following systems:

• VLog, as, to the best of our knowledge, is the most efficient

system both time- and memory- wise [55, 57];

• the latest public release of RDFox from [50] as it outper-

forms all engines tested against ChaseBench [10]: Chase-

Fun, DEMo [46], LLunatic [25], PDQ [11] and Pegasus [39];

• the commercial state of the art chase engine COM (name is

anonymized due to licensing restrictions);

• Inferray, an RDFS reasoner that outperforms RDFox [49]

and that uses a columnar layout; and

• WebPIE, another high-performance RDFS reasoner that

runs over Hadoop [56].

950

Table 1: The considered benchmarks. #EDP’s and #IDP’s ab-
solute numbers are stated in millions of facts.

#Rules #IDP’s
Scenario #EDP’s LI L LE LI L LE

Linear and Datalog scenarios
LUBM var. 163 170 182 116% 120% 232%

UOBM 2.1 337 561 NA 3.5 3.9 NA

DBpedia 29 4204 9396 NA 31.9 33.1 NA

Claros 13.8 1749 2689 2749 65.8 8.9 548

React. 5.6 259 NA NA 11.3 NA NA

ChaseBench scenarios
STB-128 0.15 167 1.9

ONT-256 1 529 5.6

RDFS (𝜌DF) scenarios
LUBM 16.7 160 18

YAGO 18.2 498016 27

We ran VLog, RDFox and the commercial chase engine COM

using their most efficient chase implementations. For VLog, this is

the restricted chase, while for RDFox and COM this is the Skolem

one [10]. All engines ran using a single thread. We could not obtain

access to the Vadalog [9] binaries. However, we perform an indirect

comparison against Vadalog: we both compare against RDFox using

the ChaseBench scenarios from [10].

Benchmarks. To asses the performance of GLog on linear and

Datalog scenarios, we considered benchmarks previously used to

evaluate reasoners, including VLog, RDFox, among others. LUBM

[27] and UOBM [37] are synthetic benchmarks; DBpedia [13] (v2014,

available online
1
) is a popular KB built fromWikipedia; Claros [47]

and Reactome [20] are real-world ontologies
2
. For the linear sce-

narios, both VLog and GLog access the KBs stored as a collection

of CSV files. For the Datalog scenarios, the KBs are stored instead

with the RDF engine Trident [54].

Linear scenarios. Linear scenarios were created using LUBM,

UOBM, DBpedia, Claros and Reactome. For the first four KBs, we

considered the linear rules returned by translating the OWL on-

tologies in each KB using the method described by [58], which was

the technique used for evaluating our competitors [41, 55]. This

method converts an OWL ontology O into a Datalog program 𝑃𝐿
such that O |= 𝑃𝐿 . For instance, the OWL axiom 𝐴 ⊑ 𝐵 (concept

inclusion) is translated into the rule 𝐴(𝑋) → 𝐵(𝑋). This technique
is ideal for our purposes since this subset is what is mostly sup-

ported by RDF reasoners [41]. Here, the subscript “L” stands for

“lower bound”. In fact, not every ontology can be fully captured

by Datalog (e.g., ontologies that are not in OWL 2 RL) and in such

cases the translation captures a subset of all possible derivations.

For Reactome, we considered the subset of linear rules from the

program used in [57]. The programs for the first four KBs do not

include any existential rules while the program for Reactome does.

Linear scenarios are suffixed by “LI”, e.g., LUBM-LI.

Datalog scenarios. Datalog scenarios were created using LUBM,

UOBM, DBpedia and Claros, as Reactome includes non-Datalog

rules only. LUBM comes with a generator, which allows controlling

the size of the base instance by fixing the number of different

1
https://www.cs.ox.ac.uk/isg/tools/RDFox/2014/AAAI/input/DBpedia/ttl/

2
Both datasets are available in our data repository.

universities 𝑋 in the instance. One university roughly corresponds

to 132k facts. In our experiments, we set 𝑋 to the following values:

125, 1k, 2k, 4k, 8k, 32k, 64k, 128k. This means that our largest KB

contains about 17B facts. As programs, we used the entire Datalog

programs (linear and non-linear) obtained with [58] as described

above. These programs are suffixed by “L”. For Claros and LUBM,we

used two additional programs, suffixed by “LE”, created by [41] as

harder benchmarks. These programs extend the “L” ones with extra

rules, such as the transitive and symmetric rules for owl:sameAs.
The relationship between the various rulesets is 𝐿𝐼 ⊂ 𝐿 ⊂ 𝐿𝐸.
ChaseBench scenarios. ChaseBench was introduced for evaluat-

ing the performance of chase engines [10]. The benchmark comes

with four different families of scenarios. Out of these four families,

we focused on the iBench scenarios, namely STB-128 and ONT-

256 [3], because they come with non-linear rules with existentials

that involve many joins and that are highly recursive. Moreover,

as we do compare against RDFox, which was the top-performing

chase engine in [10], we can use these two scenarios to indirectly

compare against all the engines considered in [10].

RDFS scenarios. In the Semantic Web, it has been shown that a

large part of the inference that is possible under the RDF Schema

(RDFS) [15] can be captured into a set of Datalog rules. A number

of works have focused on the execution of such rules. In particu-

lar, WebPIE and more recently Inferray returned state-of-the-art

performance for 𝜌𝐷𝐹—a subset of RDFS that captures its essential

semantics. It is interesting to compare the performance of GLog,

which is a generic engine not optimized for RDFS rules, against

such ad-hoc systems. To this end, we considered YAGO [28] and a

LUBM KB with 16.7M triples. As rules for GLog, we translated the

ontologies under the 𝜌𝐷𝐹 semantics.

Table 1 shows, for each scenario, the corresponding number of

rules and EDP-facts as well as the number of IDP-facts in the model

of the KB. With LUBM and the linear and Datalog scenarios, the

number of IDP-facts is proportional to the input size, thus it is

stated as %. For instance, with the “LI” rules, the output is 116%,

which means that if the input contains 1M facts, then reasoning

returns 1.16M new facts.

Hardware. All experiments except the ones on scalability (Sec-

tion 7.5) ran on an Ubuntu 16.04 Linux PC with Intel i7 64-bit CPU

and 94.1 GiB RAM. For our experiments on scalability, we used a

second machine with an Intel Xeon E5 and 256 GiB of RAM due to

the large sizes of the KBs. The cost of both machines is <$5k, thus

we arguably label them as commodity hardware.

7.2 Results for linear scenarios
Table 2 summarizes the results of our empirical evaluation for the

linear scenarios. Recall that when a program is linear and FES it
admits a finite TG, which can be computed prior to reasoning

using tglinear (Algorithm 1) and minimized using minLinear from
Definition 15. Columns two to seven show the runtime and the peak

memory consumption for VLog, RDFox and the commercial engine

COM. The remaining columns show results related to TG-guided

reasoning. Column Comp. shows the time to compute and minimize

a TG using tglinear andminLinear. Column Reason shows the time

to reason over the computed TG given a base instance (i.e., apply

Definition 5). Column w/o cleaning shows the total runtime if we

951

Table 2: Linear scenarios. Runtime is in sec and memory in MB.

VLog RDFox COM GLog
Scenario Runtime Memory Runtime Memory Runtime Memory Comp. Reason w/o cleaning w/cleaning Memory

LUBM-LI 1.3 1617 22 2353 18.4 5122 0.007 0.2 0.207 1.1 1674

UOBM-LI 0.3 221 3.9 726 3.3 3570 0.01 0.015 0.025 0.2 219

DBpedia-LI 6.9 2579 44.1 3197 36.3 3767 0.448 0.776 1.224 4.5 2647

Claros-LI 5.6 2870 78.4 3918 72.3 5122 0.006 0.407 0.413 4.8 2586

React.-LI 1.8 1312 12.7 1448 9.9 4479 0.002 0.329 0.329 0.9 1312

Table 3: Sizes of the TGs for the linear (left) and Data-
log (right) scenarios (LU=LUBM, UO=UOBM, DB=DBPedia,
CL=Claros, RE=Reactome).

Scenario #N #E D

LU-LI 155 101 6

UO-LI 313 206 9

DB-LI 12 600 8970 17

CL-LI 792 621 23

RE-LI 386 263 8

Scenario #N #E D

LU-L 56 33 4

LU-LE 63 43 5

UO-L 527 859 6

DB-L 4144 3062 8

CL-L 438 404 9

CL-LE 1461 3288 9

do not filter out redundant facts at reasoning time, while column

w/ cleaning shows the total runtime if we additionally filter out

redundancies at the end and collectively for all the rules. Notice that

in both cases the total runtime includes the time to compute and

reason over the TG (columns Comp and Reason). Column Memory
shows the peak memory consumption. As we will explain later, in

the case of linear rules, the memory consumption in GLog is the

same both with and without filtering out redundant facts. Table 3

reports details about the TGs computed with such inputs. In this

table, columns #N, #E, and D show the number of nodes, edges, and

the depth (i.e., length of the longest shortest path), respectively, of

the resulting TGs.

We summarize the main conclusions of our analysis.

C1: TGs outperform the chase in terms of runtime and mem-
ory. The runtime improvements over the chase vary from multiple

orders of magnitude (w/o filtering of redundancies) to almost two

times (w/o filtering). When redundancies are discarded, the vast

improvements are attributed to structure sharing, a technique which
is also implemented in VLog.

Structure sharing is about reusing the same columns to store the

data of different facts. For example, consider rule𝑅(𝑋,𝑌) → 𝑆 (𝑌,𝑋).
Instead of creating different 𝑆- and 𝑅-facts, we can simply add a

pointer from the first column of 𝑅 to the second column of 𝑆 and a

pointer from the second column of 𝑅 to the first column of 𝑆 . When

a rule is linear, both VLog and GLog perform structure sharing

and, hence, do not allocate extra memory to store the derived facts.

Apart from the obvious benefit memory-wise, structure sharing

also provides benefits in runtime as it allows deriving new facts

without actually executing rules. The above, along with the fact

that the facts (redundant or not) are not explicitly materialized in

memory makes GLog very efficient time-wise.

When redundancies are filtered out, GLog still outperforms the

other engines: it is multiple orders of magnitude faster than RDFox

and COM and almost two times faster than VLog (Reactome-LI).

The performance improvements are attributed to a more efficient

strategy for filtering out redundancies: TGs allow filtering out re-

dundancies after reasoning has terminated, in contrast to the chase,

which is forced to filter out redundancies right after the derivation

of new facts. This strategy is more efficient because it uses a single

n-way join rather than multiple binary joins.

With regards tomemory, GLog has similar memory requirements

with VLog, while it is much more memory efficient than RDFox

and the commercial engine COM.

C2: The TG computation overhead is small. The time to com-

pute and minimize a TG in advance of reasoning is only a small

fraction of the total runtime, see Table 2. We argue that even if

this time was not negligible, TG-guided reasoning would still be

beneficial: first, once a TG is computed reasoning over it is multiple

times faster than the chase and, second, the same TG can be used

to reason over the same rules independently of any data changes.

7.3 Results for Datalog and ChaseBench
Table 4 summarizes our results on linear and non-linear Datalog

rules. The last six columns show results for TGmat (Algorithm 2).

To assess the impact of minDatalog and ruleExec, the rule execu-
tion strategy from Definition 25, we ran TGmat as follows: with-
out minDatalog or ruleExec, column No opt; with minDatalog, but
without ruleExec, column m; with both minDatalog and ruleExec,
column m+r. The total runtime in the last two cases includes the

runtime overhead of minDatalog and ruleExec. Table 3 reports the
number of nodes, edges, and depth of the computed TGs when both

minDatalog or ruleExec are employed. Table 5 shows results for

ChaseBench, while Table 6 shows the number of triggers for the

Datalog scenarios for VLog and GLog (we could not extract this

information for RDFox and COM).

We summarize the main conclusions of our analysis.

C3: TGs outperform the chase in terms of runtime and mem-
ory. Even without any optimizations, GLog is faster than VLog,

RDFox and COM in all but one case. With regards to VLog, GLog is

up to nine times faster in the Datalog scenarios (LUBM-LE) and up

to two times faster in ChaseBench (ONT-256). With regards to RD-

Fox, GLog is up to 20 times faster in the Datalog scenarios (Claros-L)

and up to 67 times faster in ChaseBench (ONT-256). When all op-

timizations are on GLog outperforms its competitors with all the

considered inputs.

We have observed that the bulk of the computation lies in the

execution of the joins involved when executing few expensive rules.

In GLog, joins are executed more efficiently than in the other en-

gines (GLog uses only merge joins), since the considered instances

are smaller—recall that in TGs, the execution of a rule associated

952

Table 4: Datalog scenarios. Runtime is in sec and memory in MB. ∗ denotes timeout after 1h.

VLog RDFox COM GLog Runtime GLog Memory
Scenario Runtime Memory Runtime Memory Runtime Memory No opt m m+r No opt m m+r

LUBM-L 1.5 324 23 2301 20.4 4479 2.4 2.2 1.0 446 424 264

LUBM-LE 170.5 2725 116.6 3140 115.9 3610 17.3 17.2 16.1 1340 1310 1338

UOBM-L 7.3 1021 10 784 10 4215 2.6 2.4 2.6 335 335 342

DBpedia-L 41.6 827 64.4 3290 198.4 3878 20 19 19 1341 1352 1339

Claros-L 431 3170 2512 5491 2373.0 6453 122 118.3 119 6076 6077 6078

Claros-LE 2771.8 11 895 * * * * 1040.8 1012.2 1053.9 48 464 48 474 48 455

Table 5: ChaseBench scenarios. Runtime in sec and memory in MB.

VLog RDFox COM GLog TG Sizes
Scenario Runtime Memory Runtime Memory Runtime Memory Runtime Memory #N #E D

STB-128 0.5 1350 13.4 1747 10 5217 0.2 1266 192 0 0

ONT-256 2.3 4930 49 3997 35 6340 1 4930 577 65 3

Table 6: #Triggers (millions), Datalog scenarios.

VLog GLog
Scenario no opt m m+r

LUBM-L 38 32 29 25

LUBM-LE 239 100 98 93

UOBM-L 47 9 8 8

DBpedia-L 79 63 61 47

Claros-L 286 218 195 185

Claros-LE 1099 1072 1049 1039

Table 7: RDFS scenarios (L=LUBM, Y=YAGO). Runtime in sec
and memory in MB.

WebPIE Inferray GLog TG Sizes
S Run. Mem. Run. Mem. Run. Mem. #N #E D

L 338 1124 39 7000 0.3 186 53 25 4

Y 745 1075 116.6 14 000 25 1603 1.07M 888k 20

with a node 𝑣 considers only the instances of the parents of 𝑣 . Due

to the above, the optimizations do not decrease the runtime con-

siderably. The only exception is LUBM-L, where the optimizations

half the runtime.

Continuing with the optimizations, their runtime overhead is

very low: it is 9% of the total runtime (LUBM-L), while the overhead

of minDatalog is less than 1% of the total runtime (detailed results

are in [52]). We consider this overhead to be acceptable, since, as we

shall see later, the optimizations considerably decrease the number

of triggers, a performance measure which is robust to hardware

and most implementation choices.

It is important to mention that GLog implements the technique

in [30] for executing transitive and symmetric rules. The improve-

ments brought by this technique are most visible with LUBM-LE

where the runtime increases from 18s with this technique to 71s

without it. Other improvements occur with UOBM-L and DBpedia-L

(69% and 57% respectively). In any case, even without this technique,

GLog remains faster than its competitors in all cases. Detailed re-

sults can be found in [52].

Last, the ChaseBench experiments allow us to compare against

Vadalog. According to [9], Vadalog is three times faster than RDFox

on STB-128 and ONT-256. Our empirical results show that GLog

brings more substantial runtime improvements: GLog is from 49

times to more than 67 times faster than RDFox in those scenarios.

With regards to memory, the memory footprint of GLog again

is comparable to that of VLog and it is lower than that of RDFox

and of COM.

C4: TGs outperform the chase in terms of the number of
triggers. Table 6 shows that the total number of triggers produced

with the Datalog rules. Recall that the number of triggers is a good

indicator for estimating the amount of redundant computations.

From the table, we see that this number is considerably lower than

the total number of triggers in VLog even when the optimizations

are disabled. This is due to the different approaches employed to

filter out redundancies: VLog filters out redundancies right after

the execution of each rule [55], while GLog performs this filtering

after each round. When the optimizations are enabled, the number

of triggers further decreases: in the best case (DBpedia-L), GLog

computes 1.69 times fewer triggers (79M/47M).

7.4 Results for RDFS scenarios
Table 7 summarizes the results of the RDFS scenarios where GLog

is configured with both optimizations enabled. We can see that

GLog is faster than both RDFS engines. With regards to Inferray,

GLog is two orders of magnitude faster on LUBM and more than

four times faster on YAGO. With regards to WebPIE, GLog is three

orders of magnitude faster on LUBM and more than 32 times faster

on YAGO. With regards to memory, GLog is more memory efficient

in all but one case.

7.5 Results on scalability
We used the LUBM benchmark to create several KBs with 133M,

267M, 534M, 1B, 2B, 4B, 8B, and 17B facts respectively. Table 8

953

Table 8: Scalability results. Runtime in sec, memory in GB.

133M 267M 534M 1B 2B 4B 8B 17B

Run. 13 27 56 203 226 520 993 2272

Mem 1 3 6 23 34 49 98 174

#IDP’s 160M 320M 641M 1B 2B 5B 10B 20B

summarizes the performance with the Datalog program LUBM-

L. Columns are labeled with the size of the input database. Each

column shows the runtime, the peak memory consumption, and

the number of derived facts for each input database. We can see

that GLog can reason on a KB with up to 17B facts in less than

40 minutes without resorting to expensive hardware. We are not

aware of any other centralized reasoning engine that scales up to

such an extent.

8 RELATEDWORK
We briefly discuss different approaches adopted in the literature

for improving the performance of the chase, and we compare them

with our approach.

One approach to improve the reasoning performance is to paral-

lelize the execution of the rules. RDFOx proposes a parallelization

technique for Datalog materialization with mostly lock-free data

insertion. Parallelization has been also been studied for reasoning

over RDFS and OWL ontologies. For example, WebPIE encodes the

materialization process into a set of MapReduce programs while

Inferray executes each rule on a dedicated thread. Our experiments

show that GLog outperforms all these engines in a single-core sce-

nario. This motivates further research on parallelizing TG-based

materialization.

A second approach to improve the reasoning performance is to

reduce the number of logically redundant facts by appropriately

ordering the rules. In [56], the authors describe a rule ordering that

is optimal only for a fixed set of RDFS rules. In contrast, we focus

on generic programs. ChaseFun [14] proposes a new rule ordering

technique that focuses on equality generating dependencies. Hence,
it is orthogonal to our approach. In a similar spirit, the rewriting

technique from [30] targets transitive and symmetric rules. GLog

applies this technique by default to improve the performance, but

our experiments show it outperforms the state of the art even

without this optimization.

To optimize the execution of the rules themselves, most chase

engines rely on external DBMSs or employ state of the art query

execution algorithms: LLunatic [25], PDQ and ChaseFun run on top

of PostgreSQL; RDFox and VLog implement their own in-memory

rule execution engines. However, none of these engines can effec-

tively reduce the instances over which rules are executed as TGs

do. Other approaches involve exploring columnar memory layouts

as in VLog and Inferray to reduce memory consumption and to

guarantee sequential access and efficient sort-merge join inference.

Orthogonal to the above is the work in [9], which introduces

a new chase variant for materializing KBs of warded Datalog pro-

grams. Warded Datalog is a class of programs not admiting a finite

model for any base instance. The variant works as the restricted

chase does but replaces homomorphism with isomorphism checks.

As a result, the computed models become bigger. An implementa-

tion of the warded chase is also introduced in [9], which focuses

on decreasing the cost of isomorphism checks. The warded chase

implementation does not apply any techniques to detect redundan-

cies in the offline fashion as we do for linear rules, or to reduce the

execution cost of Datalog rules as we do in Section 6.

We now turn our attention to the applications of materializa-

tion in goal-driven query answering. Two well-known database

techniques that use materialization as a tool for goal-driven query

answering are magic sets and subsumptive tabling [7, 8, 48, 51]. The

advantage of these techniques over the query rewriting ones, which
are not based on materialization, e.g., [5, 17, 26], is the full support

of Datalog. The query rewriting techniques can support Datalog

of bounded recursion only. Beyond Datalog, materialization-based

techniques have been recently proposed for goal-driven query an-

swering over KBs with equality [12], as well as for probabilistic KBs

[53], leading in both cases to significant improvements in terms

of runtime and memory consumption. The above automatically

turns TGs to a very powerful tool to also support query-driven

knowledge exploration.

TGs are different from acyclic graphs of rule dependencies [6]:

the former contain a single node per rule while TGs do not.

9 CONCLUSION
We introduced a novel approach for materializing KBs that is based

on traversing acyclic graphs of rules called TGs, and implemented

it into a new reasoner called GLog. The primary goal of TGs is to

reduce the amount of redundant computations performed during

the execution of a chase algorithm. Our theoretical analysis and

empirical evaluation over well-known benchmarks show that TG-

guided reasoning is a more efficient alternative to the chase, since it

effectively overcomes all of its limitations. In particular, our experi-

ments report that GLog often outperforms existing state-of-the-art

engines in terms of runtime and memory consumption. Moreover,

in our largest experiment GLog was able to materialize a KB with

17B facts in less than an hour using commodity hardware. In terms

of scalability, these are unprecedented results, as far as we know.

There are multiple research directions that are worth pursuing.

First, studying how TGs can be efficiently updated in response to

KB updates is a natural continuation of our work. Further work is

also needed to understand whether TGs can be computed using dis-

tributed computing architectures. Finally, it is interesting to study

whether TGs can be combined with query rewriting techniques to

further improve the performance of query answering.

ACKNOWLEDGMENTS
David Carral conducted this research at TU Dresden, where he

was supported by Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) in projects number 389792660 (TRR 248,

Center for Perspicuous Systems) and KR 4381/1-1 (Emmy Noether

grant DIAMOND), and by the Bundesministerium für Bildung und

Forschung (BMBF, Federal Ministry of Education and Research) in

the Center for Scalable Data Analytics and Artificial Intelligence

(ScaDS.AI).

954

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison

Wesley, Reading, MA.

[2] Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu,

Emir Pasalic, Todd L. Veldhuizen, and Geoffrey Washburn. 2015. Design and

Implementation of the LogicBlox System. In SIGMOD. ACM, Melbourne, VIC,

Australia, 1371–1382.

[3] P. C. Arocena, B. Glavic, R. Ciucanu, and R. J. Miller. 2015. The iBench Integration

Metadata Generator. In VLDB. Springer-Verlag, Kohala Coast, HI, USA, 108–119.
[4] Franz Baader and Tobias Nipkow. 1999. Term Rewriting and All That. Cambridge

University Press, USA.

[5] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, Swan Rocher, and

Clément Sipieter. 2015. Graal: A Toolkit for Query Answering with Existential

Rules. In RuleML. Springer, Berlin, Germany, 328–344.

[6] J.F. Baget, M. Leclère, M.L. Mugnier, and E. Salvat. 2011. On rules with existential

variables: Walking the decidability line. Artificial Intelligence 175, 9-10 (2011),
1620–1654.

[7] François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. 1986.

Magic Sets and Other Strange Ways to Implement Logic Programs. In PODS.
ACM, Cambridge, MA, USA, 1–15.

[8] Catriel Beeri and Raghu Ramakrishnan. 1991. On the Power of Magic. Journal
of Logic Programming 10, 3,4 (1991), 255–299.

[9] L. Bellomarini, E. Sallinger, and G. Gottlob. 2018. The Vadalog System: Datalog-

based Reasoning for Knowledge Graphs. PVLDB 11, 9 (2018), 975–987.

[10] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik,

Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017. Benchmarking

the Chase. In PODS. ACM, Raleigh, NC, USA, 37–52.

[11] M. Benedikt, J. Leblay, and E. Tsamoura. 2014. PDQ: Proof-driven Query An-

swering over Web-based Data. In VLDB. Springer-Verlag, Hangzhou, China,
1553–1556.

[12] Michael Benedikt, Boris Motik, and Efthymia Tsamoura. 2018. Goal-Driven

Query Answering for Existential Rules With Equality. In AAAI. AAAI Press, New
Orleans, LA, USA, 1761–1770.

[13] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellman.

2009. DBpedia - A crystallization point for the Web of Data. Journal of Web
Semantics 7, 3 (2009), 154–165.

[14] A. Bonifati, I. Ileana, and M. Linardi. 2016. Functional Dependencies Unleashed

for Scalable Data Exchange. In SSDBM. ACM, Budapest, Hungary, 2:1–2:12.

[15] Dan Brickley, Ramanathan V Guha, and Brian McBride. 2014. RDF Schema 1.1.

W3C recommendation 25 (2014), 2004–2014.

[16] A. Calì, G. Gottlob, and T. Lukasiewicz. 2012. A general Datalog-based framework

for tractable query answering over ontologies. Journal ofWeb Semantics 14 (2012),
57–83.

[17] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-

vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017. Ontop:

Answering SPARQL queries over relational databases. Semantic Web 8, 3 (2017),
471–487.

[18] Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of

Conjunctive Queries in Relational Data Bases. In STOC. ACM, Boulder, CO, USA,

77–90.

[19] Brian Chin, Daniel von Dincklage, Vuk Ercegovac, Peter Hawkins, Mark S. Miller,

Franz Och, Chris Olston, and Fernando Pereira. 2015. Yedalog: Exploring Knowl-

edge at Scale. In SNAPL. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

Asilomar, CA, USA, 63–78.

[20] David Croft, Antonio Fabregat Mundo, Robin Haw, Marija Milacic, Joel Weiser,

GuanmingWu, Michael Caudy, Phani Garapati, Marc Gillespie, Maulik R Kamdar,

et al. 2013. The Reactome pathway knowledge base. Nucleic acids research 42,

D1 (2013), D472–D477.

[21] Artur S. d’Avila Garcez, Krysia Broda, and Dov M. Gabbay. 2002. Neural-symbolic
learning systems: foundations and applications. Springer, Berlin, Germany.

[22] Stathis Delivorias, Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana.

2018. On the k-Boundedness for Existential Rules. In RuleML+RR. Springer,
Luxembourg, Luxembourg, 48–64.

[23] A. Deutsch, A. Nash, and J. B. Remmel. 2008. The chase revisited. In PODS. ACM,

Vancouver, BC, Canada, 149–158.

[24] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. 2005. Data exchange: semantics

and query answering. Theoretical Computer Science 336, 1 (2005), 89–124.
[25] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. 2014. That’s All Folks! LLUNATIC

Goes Open Source. In VLDB. Springer-Verlag, Hangzhou, China, 1565–1568.
[26] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and

Optimization for Ontological Databases. ACM TODS 39, 3 (2014), 25:1–25:46.
[27] Y. Guo, Z. Pan, and J. Heflin. 2011. LUBM: A Benchmark for OWL Knowledge

Base Systems. Journal of Web Semantics 3, 2-3 (2011), 158–182.
[28] J. Hoffart, F. Suchanek, K. Berberich, and G. Weikum. 2013. YAGO2: A spatially

and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence
194 (2013), 28–61.

[29] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de

Melo, Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian

Neumaier, Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M.

Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, andAntoine

Zimmermann. 2020. Knowledge Graphs. arXiv:2003.02320 [cs] (2020). http:

//arxiv.org/abs/2003.02320 arXiv: 2003.02320.

[30] Pan Hu, Boris Motik, and Ian Horrocks. 2019. Modular Materialisation of Datalog

Programs. In AAAI. AAAI Press, Honolulu, HI, USA, 2859–2866.
[31] Pan Hu, Jacopo Urbani, Boris Motik, and Ian Horrocks. 2019. Datalog Reasoning

over Compressed RDF Knowledge Bases. In CIKM. ACM, Beijing, China, 2065–

2068.

[32] Nikolaos Konstantinou, Martin Koehler, Edward Abel, Cristina Civili, Bernd

Neumayr, Emanuel Sallinger, Alvaro A.A. Fernandes, Georg Gottlob, John A.

Keane, Leonid Libkin, and Norman W. Paton. 2017. The VADA Architecture for

Cost-Effective Data Wrangling. In SIGMOD. ACM, Raleigh, NC, USA, 1599–1602.

[33] Benno Kruit, Peter A. Boncz, and Jacopo Urbani. 2019. Extracting Novel Facts

from Tables for Knowledge Graph Completion. In ISWC. Springer, Virtual Con-
ference, 364–381.

[34] Benno Kruit, Hongyu He, and Jacopo Urbani. 2020. Tab2Know: Building a

Knowledge Base from Tables in Scientific Papers. In ISWC. Springer, Springer,
Virtual Conference, 349–365.

[35] Michel Leclère, Marie-Laure Mugnier, and Federico Ulliana. 2016. On Bounded

Positive Existential Rules. In DL, Vol. 1577. CEUR-WS.org, Cape Town, South

Africa.

[36] Jaehun Lee, Taeho Hwang, Jungho Park, Yunsu Lee, Boris Motik, and Ian Hor-

rocks. 2020. A Context-Aware Recommendation System for Mobile Devices. In

ISWC. CEUR-WS.org, Virtual Conference, 380–382.

[37] Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu.

2006. Towards a complete OWL Ontology Benchmark. In ESWC. Springer, Budva,
Montenegro, 125–139.

[38] David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. 1979. Testing Implica-

tions of Data Dependencies. ACM Transactions on Database Systems 4, 4 (1979),
455–469.

[39] M. Meier. 2014. The backchase revisited. VLDB J. 23, 3 (2014), 495–516.
[40] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue,

Carsten Lutz, et al. 2009. OWL 2 web ontology language profiles. W3C recom-
mendation 27 (2009), 61.

[41] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan Olteanu. 2014.

Parallel Materialisation of Datalog Programs in Centralised, Main-Memory RDF

Systems. In AAAI. AAAI Press, Quebec City, QUE, Canada, 129–137.
[42] W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch. 2016. Datalography:

Scaling datalog graph analytics on graph processing systems. In IEEE Interna-
tional Conference on Big Data. IEEE Computer Society, Washington DC, DC, USA,

56–65.

[43] Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee.

2015. RDFox: A Highly-Scalable RDF Store. In ISWC. Springer, Bethlehem, PA,

USA, 3–20.

[44] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patterson, and

Jamie Taylor. 2019. Industry-scale Knowledge Graphs: Lessons and Challenges.

Commun. ACM 62, 8 (2019), 36–43. https://doi.org/10.1145/3331166

[45] A. Onet. 2013. The Chase Procedure and its Applications in Data Exchange. In

DEIS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Quebec City, QUE,

Canada, 1–37.

[46] R. Pichler and V. Savenkov. 2009. DEMo: Data Exchange Modeling Tool. In VLDB.
Springer-Verlag, Lyon, France, 1606–1609.

[47] Sebastian Rahtz, Alexander Dutton, Donna Kurtz, Graham Klyne, Andrew Zis-

serman, and Relja Arandjelovic. 2011. CLAROS—Collaborating on Delivering

the Future of the Past. In DH. Stanford University Library, Stanford, CA, USA,

355–357.

[48] Damien Sereni, Pavel Avgustinov, and Oege de Moor. 2008. Adding Magic to

an Optimising Datalog Compiler. In SIGMOD. ACM, Vancouver, BC, Canada,

553–566.

[49] Julien Subercaze, Christophe Gravier, Jules Chevalier, and Frederique Lafor-

est. 2016. Inferray: Fast in-Memory RDF Inference. Proceedings of the VLDB
Endowment 9, 6 (2016), 468–479.

[50] RDFox’s team. 2020. RDFox public release. https://github.com/dbunibas/

chasebench/tree/master/tools/rdfox. Accessed: 2020-11-10.

[51] K. Tuncay Tekle and Yanhong A. Liu. 2011. More Efficient Datalog Queries:

Subsumptive Tabling Beats Magic Sets. In SIGMOD. ACM, Athens, Greece, 661–

672.

[52] Efthymia Tsamoura, David Carral, Enrico Malizia, and Jacopo Urbani. 2021.

Materializing Knowledge Bases via Trigger Graphs. arXiv:2102.02753 [cs.DB]

[53] Efthymia Tsamoura, Víctor Gutiérrez-Basulto, and Angelika Kimmig. 2020. Be-

yond the Grounding Bottleneck: Datalog Techniques for Inference in Probabilistic

Logic Programs. In AAAI. AAAI Press, New York, NY, USA, 10284–10291.

[54] Jacopo Urbani and Ceriel Jacobs. 2020. Adaptive Low-level Storage of Very Large

Knowledge Graphs. InWWW. ACM / IW3C2, Virtual Conference, 1761–1772.

[55] Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. 2016. Column-Oriented

Datalog Materialization for Large Knowledge Graphs. In AAAI. AAAI Press,
Phoenix, AZ, USA, 258–264.

955

[56] Jacopo Urbani, Spyros Kotoulas, Jason Maassen, Frank van Harmelen, and Henri

Bal. 2010. OWL Reasoning with WebPIE: Calculating the Closure of 100 Billion

Triples. In ESWC. Springer, Heraklion, Greece, 213–227.
[57] Jacopo Urbani, Markus Krötzsch, Ceriel Jacobs, Irina Dragoste, and David Carral.

2018. Efficient Model Construction for Horn Logic with VLog. In IJCAR. Springer,

Oxford, UK, 680–688.

[58] Yujiao Zhou, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, and Jay Banerjee.

2013. Making the Most of your Triple Store: Query Answering in OWL 2 using

an RL Reasoner. In WWW. International World Wide Web Conferences Steering

Committee / ACM, Rio de Janeiro, Brazil, 1569–1580.

956

