
Fast Algorithm for Anchor Graph Hashing
Yasuhiro Fujiwara

NTT Communication Science

Laboratories

yasuhiro.fujiwara.kh@hco.ntt.co.jp

Sekitoshi Kanai

NTT Software Innovation Center

Keio University

sekitoshi.kanai.fu@hco.ntt.co.jp

Yasutoshi Ida

NTT Software Innovation Center

yasutoshi.ida.yc@hco.ntt.co.jp

Atsutoshi Kumagai

NTT Software Innovation Center

atsutoshi.kumagai.ht@hco.ntt.co.jp

Naonori Ueda

NTT Communication Science

Laboratories

naonori.ueda.fr@hco.ntt.co.jp

ABSTRACT

Anchor graph hashing is used in many applications such as cancer

detection, web page classification, and drug discovery. It computes

the hash codes from the eigenvectors of the matrix representing

the similarities between data points and anchor points; anchors

refer to the points representing the data distribution. In perform-

ing an approximate nearest neighbor search, the hash codes of a

query data point are determined by identifying its closest anchor

points. Anchor graph hashing, however, incurs high computation

cost since (1) the computation cost of obtaining the eigenvectors is

quadratic to the number of anchor points, and (2) the similarities of

the query data point to all the anchor points must be computed. Our

proposal, Tridiagonal hashing, increases the efficiency of anchor

graph hashing because of its two advances: (1) we apply a graph

clustering algorithm to compute the eigenvectors from the tridi-

agonal matrix obtained from the similarities between data points

and anchor points, and (2) we detect anchor points closest to the

query data point by using a dimensionality reduction approach.

Experiments show that our approach is several orders of magnitude

faster than the previous approaches. Besides, it yields high search

accuracy than the original anchor graph hashing approach.

PVLDB Reference Format:

Yasuhiro Fujiwara, Sekitoshi Kanai, Yasutoshi Ida, Atsutoshi Kumagai,

and Naonori Ueda. Fast Algorithm for Anchor Graph Hashing. PVLDB,

14(6): 916 - 928, 2021.

doi:10.14778/3447689.3447696

1 INTRODUCTION

Massive sets of high-dimensional data are now being stored day

after day with the rapid development of database systems. This

imposes a fundamental challenge to efficiently and accurately pro-

cess millions of records of different data types such as images,

audio, and video [8, 10, 11, 23, 24]. Nearest neighbor search on high-

dimensional data is a fundamental research topic [9, 42]. One con-

ventional approach to address the problem uses tree-based schemes

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 6 ISSN 2150-8097.

doi:10.14778/3447689.3447696

for nearest neighbor search, such as R-tree [15], K-D tree [2], and SR-

tree [26], which were proposed in the 1980s and 1990s. They need

𝑂 (log𝑛) query time where𝑛 is the number of data points. Although

these approaches yield accurate results, they are not time-efficient

for high-dimensional data due to the curse of dimensionality [18].

Specifically, when the dimensionality exceeds about ten, they are

slower than the brute-force, linear-scan approach [51]. In these ap-

proaches, most of the query cost is spent on verifying a data point

as a real nearest neighbor [4]. Since the linear-scan approach’s

cost increases linearly with dataset size, the query cost should be

constant or sub-linear [47]. Approximate nearest neighbor search

improves efficiency by relaxing the precision of verification, and

several approaches were proposed such as Clindex [28], MEDRANK

[6], and SASH [20] in the database community in the 2000s. How-

ever, these approaches do not offer sub-linear growth of query cost

in the worst case.

Hashing techniques transform data records into short fixed-

length codes to reduce storage costs and offer approximate nearest

neighbor search with constant or sub-linear time complexity. The

approximate nearest neighbor search consists of two phases: offline

and online. The offline phase computes hash codes from the data.

The online phase finds the nearest neighbors to the query data point

by hashing (compressing) the query. Locality Sensitive Hashing

(LSH) is one of the most popular hashing techniques [13]. It uses

random projection to map data points into hash codes, and it is

more efficient than a tree-based scheme in searching for nearest

neighbors as it needs fewer disk accesses [13]. In the 2010s, several

database researchers proposed LSH variants such as C2LSH [12],

SRS [46], and QALSH [22]. However, the LSH-based approaches

yield inadequate search accuracy since LSH employs random pro-

jections [30]. As a result, they require long hash codes (say, 1024

bits) to achieve satisfactory search accuracy [14]. This is because

the collision probability of two codes having the same hash codes

falls as code length increases [37]. However, long codes increase

search and storage costs [29, 35].

Anchor graph hashing was proposed to improve the search effi-

ciency and accuracy [36]; anchors refer to the points representing

the data distribution in the high-dimensional space. Technically,

it is based on spectral hashing that computes eigendecomposition

for the similarity matrix among data points to obtain hash codes.

Although spectral hashing achieves higher search accuracy than

LSH, it is difficult to apply to large-scale data since it requires

𝑂 (𝑛2𝑑) time and 𝑂 (𝑛2) space to obtain all pairwise similarities

916

https://doi.org/10.14778/3447689.3447696
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3447689.3447696

10
3

10
4

10
5

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Anchor (single-thread)
Anchor (40-threads)

Proposed (single-thread)
Proposed (40-threads)

0.40

0.45

0.50

0.55

M
A

P

Anchor (single-thread)
Anchor (40-threads)

Proposed (single-thread)
Proposed (40-threads)

(1-1) Offline phase time (1-2) Search accuracy

Figure 1: Offline phase time andMAP for wesad.When a sin-

gle thread is used, our approach (“Proposed (single-thread)”)

is much faster than the original approach of anchor graph

hashing (“Anchor (single-thread)”), and our approach’s effi-

ciency improveswith the use ofmultiple threads (“Proposed

(40-threads)”). Moreover, our approach yields higher search

accuracy than the original approach. We will describe the

parameter settings detailed in Section 5.

where 𝑑 is the number of dimensions. To overcome this drawback,

anchor graph hashing computes similarities between data points

by exploiting the low-rank property of the approximate adjacency

matrix computed from the similarity between data points and an-

chor points. As shown in previous studies [31, 34, 36], LSH offers

lower search accuracy than other hashing techniques, and anchor

graph hashing outperforms recent hashing techniques such as bi-

nary reconstruction embeddings [27], discrete graph hashing [34],

and binary autoencoder [3] in terms of efficiency. Due to its effec-

tiveness, anchor graph hashing can be used in many applications

such as cancer detection [32], web page classification [54], and drug

discovery [53]. However, its computation time is high for large-

scale data. In the offline phase, to obtain hash codes, it computes

eigenvectors of the matrix obtained from the similarities between

data points and anchor points. However, it needs 𝑂 (𝑛𝑚2) time to

obtain the eigenvectors where𝑚 is the number of anchor points;

the computation cost is quadratic to the number of anchor points.

The online phase finds the closest anchor points to a query data

point from all anchor points to perform the nearest neighbor search.

Therefore, anchor graph hashing suffers high computation cost.

This paper proposes Tridiagonal hashing, a novel and efficient

approach to anchor graph hashing. Its advantage is that it can im-

prove the efficiency and search accuracy of anchor graph hashing.

The offline phase of our approach efficiently computes the eigen-

vectors by applying a graph clustering algorithm to the tridiagonal

matrix obtained from a similarity matrix between data points and

anchor points. Moreover, the online phase computes approximate

distances using a dimensionality reduction approach to identify an-

chor points closest to the query data point efficiently. Note that our

approach is easily parallelized to improve efficiency. Besides, we

can improve the search accuracy because our approach recursively

reduces the number of bits in hash codes in finding similar data

points. Our approach is theoretically guaranteed to find all data

points found by the original anchor graph hashing; it is guaranteed

to have no false negatives in the search results.

Figure 1 shows the offline phase time for the wesad dataset,

a dataset of stress-affect lab study, including over sixty million

data points. To assess search accuracy, the figure also shows Mean

Average Precision (MAP) [1] for finding data points of the same label

Table 1: Definitions of main symbols.

Symbol Definition

𝑛 Number of data points

𝑑 Number of dimensions

𝑚 Number of anchor points

𝑟 Number of bits in hash codes

𝑠 Number of closest anchor points

X Set of data points

U Set of anchor points

𝜎𝑖 𝑖-th eigenvalue to compute hash codes

x𝑖 𝑖-th data point vector of length 𝑑

u𝑖 𝑖-th anchor point vector of length 𝑑

v𝑖 𝑖-th eigenvector to compute hash codes

Y Embedding matrix of size 𝑛 × 𝑟

Z Similarity matrix of size 𝑛 ×𝑚

A Approximate adjacency matrix of size 𝑛 × 𝑛

M Symmetric matrix of size𝑚 ×𝑚

T Tridiagonal matrix of size𝑚 ×𝑚

as the query data point. In this figure, “Proposed (single-thread)”

and “Anchor (single-thread)” indicate our approach and the original

anchor graph hashing using a single thread, respectively. “Proposed

(40-thread)” corresponds to our approach using 40 threads, and

“Anchor (40-thread)” is the original approach parallelized by the

proposed approach. As shown in Figure 1-1, our approach is more

efficient than the original approach, and it can increase efficiency by

using multiple threads. As a result, our approach can compute hash

codes within a half-hour. On the other hand, the original approach

with a single thread takes over eight hours, and it takes nearly two

hours even if it uses multiple threads. As shown in Figure 1-2, our

approach yields higher search accuracy than the original approach

since it guarantees no false negatives in the search results. These

results indicate that our approach enhances the efficiency of anchor

graph hashing while achieving high search accuracy. In summary,

the main contributions of this paper are as follows:

• We propose an efficient approach to anchor graph hashing

that computes eigenvectors using a graph clustering algo-

rithm and prunes similarity computations in finding the

closest anchor points by using approximate distances.

• The proposed approach yields higher search accuracy than

the original approach of anchor graph hashing. This is be-

cause the proposed approach is theoretically designed to

yield the search results of no false negatives.

• Experiments confirm that our approach achieves higher

search accuracy while reducing the time to compute the

hash codes compared to the previous approaches; it is up to

3195.7 times faster than the existing approaches.

In the remainder of this paper, we give preliminaries in Section 2,

introduce our approach in Section 3, describe related work in Sec-

tion 4, show experimental results in Section 5, and provide our

conclusions in Section 6.

2 PRELIMINARIES

We introduce the background to this paper. Table 1 lists the main

symbols. Let 𝑛 and 𝑑 be the number of data points and dimensions,

respectively. Let row vector x𝑖 = [𝑥𝑖 [1], . . . , 𝑥𝑖 [𝑑]] correspond to

917

the 𝑖-th data point; a set of data points is given as X = {x1, . . . , x𝑛}.
If𝑚 (𝑚 < 𝑛) is the number of anchor points, U = {u1, . . . , u𝑚} is
a set of anchor points. Anchor points are randomly sampled from

the data points or centers of k-means clusters for the data points

[33]. If 𝑟 is the number of bits in hash codes and Y ∈ {1,−1}𝑛×𝑟 is
an embedding of 𝑛 data points, anchor graph hashing computes the

embedding by minimizing

minY
1

2

∑𝑛
𝑖,𝑗=1 ∥y𝑖 − y𝑗 ∥2𝐴[𝑖] [𝑗] = tr (Y⊤ (D − A)Y)

s.t. Y ∈ {1,−1}𝑛×𝑟 , 1⊤Y = 0,Y⊤Y = 𝑛I
(1)

In this equation, y𝑖 is the 𝑖-th row of Y representing the 𝑟 -bits code

for data point x𝑖 , ∥ · ∥ is the 𝐿2-norm of a vector, A is the 𝑛 ×𝑛 adja-

cency matrix where 𝐴[𝑖] [𝑗] corresponds to the similarity between

data point x𝑖 and x𝑗 , D is a diagonal matrix given as D = diag (A1)
with 1 = [1, . . . , 1]⊤ ∈ R𝑛

, and I is the identity matrix. The con-

straint 1⊤Y = 0 is imposed to maximize each bit’s information, and

Y⊤Y = 𝑛I forces 𝑟 bits to be mutually uncorrelated to minimize

redundancy among bits. Intuitively, anchor graph hashing embeds

the data points in a low-dimensional Hamming space such that the

neighbors in the original space remain neighbors.

Equation (1) is an integer problem, and solving the problem is

equivalent to balanced graph partitioning even for a single bit; this

is known to be NP-hard [52]. One approach to relaxing it uses the

spectral method to drop the integer constraint of Y ∈ {1,−1}𝑛×𝑟
and allow Y ∈ R𝑛×𝑟

. The relaxed problem’s solution consists of

the 𝑟 eigenvectors of A with minimal eigenvalues except for the

eigenvalue of zero. Since these eigenvectors are orthogonal to each

other, they satisfy the orthogonal constraint after multiplication

by the scale

√
𝑛, that is, Y⊤Y = 𝑛I holds. Besides, they satisfy the

constraint of 1⊤Y = 0. This is because the excluded eigenvector

with the eigenvalue of zero is 1 and all the other eigenvectors

are orthogonal to it. To obtain the binary codes, the binarization

operation with threshold zero is performed over the solution Y,
which forms a Hamming embedding.

Anchor graph hashing approximately computes adjacency ma-

trix A by using anchor points. If Z is an 𝑛 ×𝑚 similarity matrix

between data points and anchor points, it computes matrix Z as

𝑍 [𝑖] [𝑗] =

exp(−𝐷2 (x𝑖 ,u𝑗)/𝑡)∑
𝑘∈⟨𝑖⟩ exp(−𝐷2 (x𝑖 ,u𝑘)/𝑡) , ∀𝑗 ∈ ⟨𝑖⟩

0, otherwise

(2)

In this equation, ⟨𝑖⟩ are the indices of the 𝑠 (𝑠 ≪𝑚) closest anchor

points of x𝑖 in U according to 𝑙2 distance function 𝐷 (·); 𝑡 (𝑡 > 0) is

the bandwidth parameter. Using Z, approximate adjacency matrix

A can be computed as A = ZΛ−1Z⊤ where Λ = diag (Z⊤1) [33].
Each row of Z contains 𝑠 nonzero elements, which sum to 1 from

Equation (2). By following the original paper [36], we assume that

all data points are connected in the graph given by A.
The offline phase computes the largest eigenvalues 𝜎𝑖 (𝑖 ≥ 0) of

the following𝑚 ×𝑚 symmetric matrix M to obtain hash codes:

M = Λ− 1

2 Z⊤ZΛ− 1

2 (3)

This is because the minimal eigenvalues of A correspond to the

maximal eigenvalues of M. If all the data points are connected, we

have 𝜎0 = 1; the largest eigenvalue of M is 1. However, 𝜎0 = 1

yields the eigenvector of 1, and such the eigenvector is not useful in

computing hash codes. Therefore, anchor graph hashing computes

𝑟 largest eigenvector-eigenvalue pairs {(v𝑖 , 𝜎𝑖)}𝑟𝑖=1 such that 1 >

𝜎1 ≥ . . . ≥ 𝜎𝑟 > 0 by ignoring the largest eigenvalue 𝜎0 = 1 [36].

If V = [v1, . . . , v𝑟] ∈ R𝑚×𝑟
, Σ = diag (𝜎1, . . . , 𝜎𝑟) ∈ R𝑟×𝑟

, and

W =
√
𝑛Λ− 1

2VΣ−
1

2 , it obtains embedding matrix Y as follows [36]:

Y = sgn (ZW) (4)

where sgn(·) is the sign function.

In the online phase, for query data point x, it computes column

vector z(x) of length𝑚 as follows:

z(x) = [𝛿1 exp(−𝐷2 (x,u1)/𝑡),...,𝛿𝑚 exp(−𝐷2 (x,u𝑚)/𝑡)]⊤∑𝑚
𝑖=1 𝛿𝑖 exp(−𝐷2 (x,u𝑖)/𝑡)) (5)

where 𝛿𝑖 ∈ {1, 0} and 𝛿𝑖 = 1 if and only if u𝑖 is one of the 𝑠 closest
anchor points of x in U; 𝛿𝑖 = 0 otherwise. Let y be a row vector

of length 𝑟 that corresponds to 𝑟 -bits codes for data point x, it is
computed as follows [36]:

y = sgn (z(x)W) (6)

Even though anchor graph hashing can effectively compute hash

codes, it incurs high computation cost. The offline phase needs

𝑂 (𝑛𝑚𝑑+𝑛𝑚2+𝑛𝑠𝑟) time to compute hash codes for the given anchor

points described in [36]; it is quadratic to the number of anchor

points. This is because it needs𝑂 (𝑛𝑚𝑑) time to compute Z,𝑂 (𝑛𝑚2)
time to computeM,𝑂 (𝑚3) time to compute its eigenvectors,𝑂 (𝑛𝑠𝑟)
time to compute ZW, and 𝑂 (𝑛𝑟) time to compute Y. As a result,
in terms of computation cost, the offline phase has a bottleneck in

computing eigenvectors fromM. In the online phase, anchor graph

hashing takes 𝑂 (𝑚𝑑+𝑠𝑟) to compute hash codes for data point x.
This is because it takes 𝑂 (𝑚𝑑) time to identify the closest anchor

points for obtaining z(x) and𝑂 (𝑠𝑟) time to compute y. As described
in [36], computation cost in the online phase is dominated by the

construction of z(x). Consequently, the computation cost of anchor

graph hashing is high when handling large-scale data.

3 PROPOSED METHOD

This section explains the proposed approach. Section 3.1 shows

how our approach computes eigenvectors of the tridiagonal matrix

obtained from similarities between data points and anchor points

in the offline phase. Section 3.2 details how our approach finds the

closest anchor points using a dimensionality reduction approach.

Section 3.3 details our algorithms and their properties. Section 3.4

proposes implementation-oriented approaches to improve our ap-

proach’s efficiency and search accuracy. We show proofs of lemmas

and theorems in this section in the Appendix.

3.1 Offline Phase Computation

In this section, we show our approach to computing 𝑟 eigenvector-

eigenvalue pairs to obtain hash codes in the offline phase. As men-

tioned in Section 2, anchor graph hashing needs high computation

cost to obtain eigenvectors of the largest eigenvalues. Although the

power method is a well-known approach to computing eigenval-

ues, we do not use the approach since it is computationally slow;

it needs 𝑂 (𝑚3) time to solve the eigenproblem [41]. Instead, we

exploit the bisection method since it can efficiently compute just a

subset of approximate eigenvalues; other approaches such as the QR

algorithm and the divide-and-conquer algorithm compute all the

eigenvalues [7]. We compute the tridiagonal matrix directly from

918

Z used in the bisection method; we do not compute M to obtain

eigenvalues. From approximate eigenvalues, we accurately com-

pute eigenvalues and eigenvectors by using inverse iteration [44].

Although our approach does not compute M, we can effectively

perform approximate nearest neighbor searches. This is because

the tridiagonal matrix has the same eigenvalues as M [7].

In Section 3.1.1, we describe the approach to compute the tridiag-

onal matrix. Section 3.1.2 shows our approach to compute approxi-

mate eigenvalues by the bisection method for the tridiagonal matrix.

Section 3.1.3 describes the approach to compute eigenvectors from

the obtained approximate eigenvalues by inverse iteration.

3.1.1 Tridiagonal Matrix Computation. This section describes the

approach to compute the tridiagonal matrix, which has the same

eigenvalues as M. In our approach, we use the Lanczos method

[7] since it is an effective way of computing a tridiagonal matrix

from a symmetric matrix. If P is an𝑚 ×𝑚 orthonormal matrix, the

Lanczos method decomposes M as follows:

M = PTP⊤ (7)

where T is an𝑚 ×𝑚 symmetric tridiagonal matrix given by

T =

𝛼1 𝛽1 0

𝛽1 𝛼2 𝛽2

𝛽2
. . .

. . .

. . . 𝛼𝑚−1 𝛽𝑚−1
0 𝛽𝑚−1 𝛼𝑚

(8)

If p𝑖 is the 𝑖-column vector of P, we have

𝛼𝑖 = p⊤𝑖 Mp𝑖 (9)

𝛽𝑖 = ∥Mp𝑖 − 𝛽𝑖−1p𝑖−1 − 𝛼𝑖p𝑖 ∥ (10)

p𝑖+1 = (Mp𝑖 − 𝛽𝑖−1p𝑖−1 − 𝛼𝑖p𝑖)/𝛽𝑖 (11)

where p0 = 0 and p1 is a random vector such that ∥p1∥ = 1. We

have 𝛽𝑖 ≥ 0 from Equation (10). Since P is an orthonormal matrix, T
and M have the same eigenvalue 𝜎𝑖 [7]. Besides, the eigenvector of

M is obtained as v𝑖 = Pv′
𝑖
from Equation (7) if v′

𝑖
is the eigenvector

of T corresponding to 𝜎𝑖 . Although we can obtain eigenvector-

eigenvalue pair (v𝑖 , 𝜎𝑖) of M from T, it takes 𝑂 (𝑚3) time to obtain

T, whose size is𝑚 ×𝑚, from Equation (9), (10), and (11).

We introduce column vector b𝑖 = ZΛ− 1

2 p𝑖 of length 𝑛 to effi-

ciently compute T. It needs 𝑂 (𝑛𝑠) time to compute b𝑖 since the

number of nonzero elements in Z is 𝑛𝑠 and b𝑖 can be obtained

through matrix-vector multiplications. Note that Λ is a diagonal

matrix of size𝑚 ×𝑚. From Equation (3), we can rewrite 𝛼𝑖 as

𝛼𝑖 = p⊤𝑖 Λ
− 1

2 Z⊤ZΛ− 1

2 p𝑖 = b⊤𝑖 b𝑖 = ∥b𝑖 ∥2 (12)

As for 𝛽𝑖 , we have the following equation:

(𝛽𝑖)2 =(Mp𝑖 − 𝛽𝑖−1p𝑖−1 − 𝛼𝑖p𝑖)⊤ (Mp𝑖 − 𝛽𝑖−1p𝑖−1 − 𝛼𝑖p𝑖)
=p⊤𝑖 M

2p𝑖 − 𝛽𝑖−1p⊤𝑖 M
⊤p𝑖−1 − 𝛼𝑖p⊤𝑖 M

⊤p𝑖

− 𝛽𝑖−1p⊤𝑖−1Mp𝑖 + 𝛽2𝑖−1p
⊤
𝑖−1p𝑖−1 + 𝛼𝑖𝛽𝑖−1p

⊤
𝑖−1p𝑖

− 𝛼𝑖p⊤𝑖 Mp𝑖 + 𝛼𝑖𝛽𝑖−1p⊤𝑖 p𝑖−1 + 𝛼
2

𝑖 p
⊤
𝑖 p𝑖

(13)

Since P is an orthonormal matrix, we have p⊤
𝑖
p𝑖 = 1 and p⊤

𝑖
p𝑗 = 0

if 𝑖 ≠ 𝑗 . Therefore,

(𝛽𝑖)2 =p⊤𝑖 M
2p𝑖 − 𝛽𝑖−1p⊤𝑖 M

⊤p𝑖−1 − 𝛽𝑖−1p⊤𝑖−1Mp𝑖 − 𝛼2𝑖 + 𝛽2𝑖−1
=b⊤𝑖 ZΛ

−1Z⊤b𝑖 − 𝛽𝑖−1b⊤𝑖 b𝑖−1 − 𝛽𝑖−1b
⊤
𝑖−1b𝑖 − 𝛼

2

𝑖 + 𝛽2𝑖−1
=∥Λ− 1

2 Z⊤b𝑖 ∥2 − 2𝛽𝑖−1⟨b𝑖 , b𝑖−1⟩ − 𝛼2𝑖 + 𝛽2𝑖−1

(14)

where ⟨·⟩ represents the inner product of two vectors. Therefore,

𝛽𝑖 can be recast as follows:

𝛽𝑖 =

√
∥Λ− 1

2 Z⊤b𝑖 ∥2 − 2𝛽𝑖−1⟨b𝑖 , b𝑖−1⟩ − 𝛼2𝑖 + 𝛽2
𝑖−1 (15)

p𝑖+1 is also rewritten as follows:

p𝑖+1 = (Λ− 1

2 Z⊤b𝑖 − 𝛽𝑖−1p𝑖−1 − 𝛼𝑖p𝑖)/𝛽𝑖 (16)

Equations (12), (15), and (16) indicate that we can compute 𝛼𝑖 , 𝛽𝑖 ,

and p𝑖 from b𝑖 . We have the following lemma for computation cost:

Lemma 1 (TridiagonalMatrix Computation). It takes𝑂 (𝑛𝑚𝑠)
time to compute T and P from Equation (12), (15), and (16).

Note that the original approach of the Lanczos method needs

𝑂 (𝑛𝑚2) time to computeM [36] and𝑂 (𝑚3) time to compute T [41].

Therefore, this lemma indicates that we can efficiently compute T
that has the same eigenvalues as M from Z without computing M.

3.1.2 Approximate Eigenvalues Computation. This section shows

how to compute approximate eigenvalues by using the bisection

method. The bisection method can find the 𝑖-th approximate eigen-

value �̃�𝑖 corresponding to 𝜎𝑖 in the interval [𝜎𝑖 , 𝜎𝑖]; 𝜎𝑖 and 𝜎𝑖 are,
respectively, left and right bounds of �̃�𝑖 such that 𝜎𝑖 ≤ �̃�𝑖 ≤ 𝜎𝑖
[7]. The bisection method computes an approximate eigenvalue by

using 𝑎(𝜆); 𝑎(𝜆) is the number of agreements in sign between con-

secutive numbers of the sequence (𝑓0 (𝜆), 𝑓1 (𝜆), . . . , 𝑓𝑚 (𝜆)) where
𝑓𝑖 (𝜆) is given as follows [7]:

𝑓𝑖 (𝜆) =

1 if 𝑖 = 0

𝛼1 − 𝜆 if 𝑖 = 1

(𝛼𝑖 − 𝜆) 𝑓𝑖−1 (𝜆) − 𝛽2𝑖−1 𝑓𝑖−2 (𝜆) otherwise

(17)

Here, agreement corresponds to 𝑓𝑖 (𝜆) 𝑓𝑖−1 (𝜆) > 0 and, for example,

if signs of the sequence are (+,−,−, +), we have 𝑎(𝜆) = 1; moreover,

𝑎(𝜆) = 2 holds if (+,−,−,−)1. It requires 𝑂 (𝑚) time to compute se-

quence (𝑓0 (𝜆), 𝑓1 (𝜆), . . . , 𝑓𝑚 (𝜆)) from Equation (17). The bisection

method finds eigenvalues in an interval based on the property that

𝑎(𝜆) is equal to the number of eigenvalues not smaller than 𝜆 [7].

As described in Section 2, we need to compute the 𝑟 + 1 largest

eigenvalues ofM to obtain hash codes. The largest eigenvalue ofM
is 1 (i.e., 𝜎0 = 1) and the smallest eigenvalue is larger than 0 [33, 50].

Therefore, to obtain eigenvalue 𝜎1, a naive approach based on the

bisection method is to set 𝜎1 = 1 and 𝜎
1
= 0, and then iteratively

update 𝜎1 and 𝜎
1
following (𝜎1 + 𝜎

1
)/2 until it has 𝑎(𝜎

1
) = 2

and 𝑎(𝜎1) = 1. After convergence, we accurately compute 𝜎1 by

exploiting inverse iteration, where we set �̃�1 = (𝜎1 + 𝜎
1
)/2 as

described in the next section. Similarly, we can compute 𝜎𝑖 (2 ≤
𝑖 ≤ 𝑟) by initializing 𝜎𝑖 = 𝜎𝑖−1 and 𝜎𝑖 = 0. However, this naive

approach needs a large number of iterations to update 𝜎𝑖 and 𝜎𝑖 .

This is because all eigenvalues used in hash codes are larger than 0,

and thus 𝜎𝑖 = 0 is not so tight as the left bound for 𝜎𝑖 , whereas we

1
If 𝑓𝑖 (𝜆) = 0, assuming that 𝑓𝑖 (𝜆) has the same sign as 𝑓𝑖−1 (𝜆) .

919

can effectively obtain the right bound by setting 𝜎𝑖 = 𝜎𝑖−1 since
𝜎𝑖−1 > 𝜎𝑖 and 𝜎𝑖−1 ≈ 𝜎𝑖 in practice.

To initialize𝜎𝑖 , we use a graph clustering algorithm in computing

eigenvalues in the order of 𝜎1, 𝜎2, . . . , 𝜎𝑟 . Since 𝜎𝑖 is the (𝑖 + 1)-th
largest eigenvalue of T, if V′

𝑖
is an𝑚× (𝑖 +1) matrix of eigenvectors,

V′
𝑖
gives the optimal solution for the following problem [19];

maxV′
𝑖
tr ((V′

𝑖
)⊤TV′

𝑖
) s.t. (V′

𝑖
)⊤V𝑖 = I (18)

In this equation, we have tr ((V′
𝑖
)⊤TV𝑖) =

∑𝑖
𝑗=0 𝜎 𝑗 where 𝜎0 = 1.

To obtain 𝜎𝑖 , we compute𝑚 × (𝑖 + 1) matrix H𝑖 such that H⊤
𝑖
H𝑖 = I

by using a graph clustering algorithm for the set of data points X.
Specifically, we compute 𝜎𝑖 as follows:

Definition 1 (Left Bound). IfX is partitioned into 𝑖+1 clusters
X1, . . . ,X𝑖+1 by a graph clustering algorithm, the 𝑗-th column vector
h𝑗 of matrix H𝑖 is given as follows:

ℎ 𝑗 [𝑘] =
{
1/
√
|X𝑗 | if x𝑘 ∈ X𝑗

0 otherwise
(19)

where |X𝑗 | is the number of data points included in clusterX𝑗 and the
columns in H𝑖 are orthonormal to each other; H⊤

𝑖
H𝑖 = I. We compute

left bound 𝜎𝑖 as follows:

𝜎𝑖 = tr (H⊤
𝑖
TH𝑖) −

∑𝑖−1
𝑗=0 𝜎 𝑗 (20)

We have the following property for left bound 𝜎𝑖 :

Lemma 2 (Left Bound). For tridiagonal matrix T, 𝜎𝑖 ≤ 𝜎𝑖 holds.

This lemma indicates that we can compute left bound 𝜎𝑖 by using

a graph clustering algorithm to compute �̃�𝑖 .

While several graph clustering approaches have been proposed,

such as METIS [25] and the Girvan-Newman algorithm [38], we

adopt the ratio cut algorithm [16] since its object function equals

tr (H⊤
𝑖
TH𝑖) [50]. Specifically, if 𝑅𝑖 is the objective function of the

ratio cut algorithm used to obtain 𝑖 + 1 clusters, we have 𝑅𝑖 =

tr (H⊤
𝑖
TH𝑖). As a result, we can compute 𝜎𝑖 by using 𝑅𝑖 instead

of tr (H⊤
𝑖
TH𝑖) in Equation (20). Intuitively, the ratio cut algorithm

partitions a graph by cutting edges in the graph so that edges

between different clusters have low weights, and edges within

clusters have high weights. The objective function of the ratio cut

algorithm to obtain 𝑖 + 1 clusters is given as follows:

𝑅𝑖 =
∑𝑖+1

𝑗=1

cut(Xj,X\Xj)
|X𝑗 | (21)

In this equation, cut(Xj,X\Xj) corresponds to the sum of edge

weights of data points between X𝑗 and X\X𝑗 given as

cut(Xj,X\Xj) = 1

2

∑
x
k
∈Xj,xk′ ∈X\Xj

T[k] [k′] (22)

The original ratio cut algorithm finds the cut that minimizes

the objective function since clusters should be large groups of data

points [16]. However, we modify the algorithm to find the cut that

maximizes the objective function. This is because we can effectively

obtain tight bound 𝜎𝑖 by using a large value of𝑅𝑖 from Equation (20).

We efficiently compute clusters based on the observation that

tridiagonal matrix T corresponds to the chain graph of Figure 2,

where 𝛽 𝑗 is the edge weight between data points. In obtaining 𝑖 + 1

clusters, we find a cut from the chain graph of 𝑖 clusters; we cut

edges in the chain graph one by one to obtain clusters. In particular,

if Δ𝑅𝑖 (𝛽 𝑗) is an increase in the objective function by cutting the

Figure 2: Chain graph of

tridiagonal matrix T.
Figure 3: Clusters in the

chain graph.

edge that corresponds to 𝛽 𝑗 , we compute the cut by identifying

the edge that maximizes Δ𝑅𝑖 (𝛽 𝑗) in the chain graph of 𝑖 clusters.

As shown in Figure 3, if X𝑗 is the cluster that includes the edge

corresponding to 𝛽 𝑗 , 𝛽𝑘 is edge weight between cluster X𝑗 and

X𝑗−1, and 𝛽𝑘′ is edge weight between clusterX𝑗 andX𝑗+1, Δ𝑅𝑖 (𝛽 𝑗)
is computed as follows from Equation (21):

Δ𝑅𝑖 (𝛽 𝑗) =
𝛽𝑘+𝛽 𝑗

left(𝛽j) +
𝛽 𝑗+𝛽𝑘′
right(𝛽j) −

𝛽𝑘+𝛽𝑘′
|X𝑗 | (23)

In this equation, left(𝛽j) and right(𝛽j) are the number of data points

in the left and right sides of the edge corresponding to 𝛽 𝑗 in cluster

X𝑗 , respectively. In the case of Figure 3, left(𝛽j) = 1 and right(𝛽j) =
3 since |X𝑗 | = 4. Note that we can incrementally update left(𝛽j)
and right(𝛽j) in 𝑂 (|X𝑗 |) time from the clustering results. It also

takes 𝑂 (𝑚 − 𝑖) time to find the cut that maximizes Δ𝑅𝑖 (𝛽 𝑗) from
Equation (23). Since 𝛽 𝑗 ≥ 0 from Equation (10), Δ𝑅𝑖 (𝛽 𝑗) ≥ 0 from

Equation (23). We can incrementally compute left bound 𝜎𝑖 based

on the following lemma:

Lemma 3 (Incremental computation). Left bound 𝜎𝑖 can be
computed in 𝑂 (1) time as follows:

𝜎𝑖 = 𝜎𝑖−1 + Δ𝑅𝑖 (𝛽 𝑗) − 𝜎𝑖−1 (24)

This lemma indicates that we can efficiently compute 𝜎𝑖 from

Equation (24) instead of Equation (20). Note that 𝜎
0
= 1 since

𝜎0 = 1. The next section shows our algorithm based on the bisection

method with inverse iteration.

3.1.3 Eigenvector Computation. We use inverse iteration to accu-

rately compute the eigenvector-eigenvalue pair (v′
𝑖
, 𝜎𝑖) of T from

approximate eigenvalue �̃�𝑖 obtained by the bisection method. In-

verse iteration is a variant of the power method based on the prop-

erty that inverse matrix (T − �̃�𝑖 I)−1 has eigenvector-eigenvalue

pair (v′
𝑖
, 1

𝜎𝑖−�̃�𝑖) [44]. Since �̃�𝑖 is an approximation of 𝜎𝑖 such that

𝜎𝑖 ≤ �̃�𝑖 ≤ 𝜎𝑖 ,
1

𝜎𝑖−�̃�𝑖 is larger than
1

𝜎 𝑗−�̃�𝑖 for any eigenvalue 𝜎 𝑗 ≠ 𝜎𝑖 .

Therefore,
1

𝜎𝑖−�̃�𝑖 is the largest eigenvalue of (T− �̃�𝑖 I)−1. In general,

inverse iteration computes eigenvector-eigenvalue pair (v′
𝑖
, 𝜎𝑖) by

applying the power method to (T − �̃�𝑖 I)−1 [7].
Although matrix T − �̃�𝑖 I is sparse, it requires 𝑂 (𝑚3) time to

compute its inverse since (T − �̃�𝑖 I)−1 is a dense matrix [19]. We

compute the LU decomposition of T − �̃�𝑖 I to obtain eigenvector-

eigenvalue pairs since it has desirable properties, as revealed in

this section. LU decomposition factorizes a matrix into the product

of a lower triangular matrix and an upper triangular matrix [41].

Specifically, if T′ = T − �̃�𝑖 I, we compute T′ = LU where L and U
are lower and upper triangular matrices, respectively. We have the

following property for LU decomposition of T′:

Lemma 4 (Zero Elements). In the 𝑖-th row of L where 𝑖 ≥ 3, we
have 𝐿[𝑖] [𝑘] = 0 if 1 ≤ 𝑘 ≤ 𝑖 − 2 holds. Besides, in the 𝑗-th column
of U where 𝑗 ≥ 3, we have𝑈 [𝑘] [𝑗] = 0 if 1 ≤ 𝑘 ≤ 𝑗 − 2 holds.

920

Algorithm 1 Eigenvector Computation

Input: tridiagonal matrix T, orthonormal matrix P
Output: eigenvector-eigenvalue pairs {(v𝑖 , 𝜎𝑖) }𝑟𝑖=1
1: 𝜎

0
= 1;

2: E = {𝑒 (𝛽𝑖) }𝑚−1
𝑖=1

;

3: for 𝑖 = 1 to 𝑟 do

4: for each 𝑒 (𝛽 𝑗) ∈ E do
5: compute Δ𝑅𝑖 (𝛽 𝑗) from Equation (23);

6: 𝑒 (𝛽𝑘) = argmaxE {Δ𝑅𝑖 (𝛽 𝑗) };
7: cut 𝑒 (𝛽𝑘) in the chain graph;

8: subtract 𝑒 (𝛽𝑘) from E;
9: 𝜎𝑖 = 𝜎𝑖−1;
10: 𝜎𝑖 = 𝜎𝑖−1 + Δ𝑅𝑖 (𝛽 𝑗) − 𝜎𝑖−1;
11: repeat

12: 𝜆 =
𝜎𝑖+𝜎𝑖

2
;

13: if 𝑎 (𝜆) ≤ 𝑖 + 1 then

14: 𝜎𝑖 = 𝜆;

15: else

16: 𝜎𝑖 = 𝜆;

17: until 𝑎 (𝜆) = 𝑖 + 1

18: �̃�𝑖 =
𝜎𝑖+𝜎𝑖

2
;

19: pick a random column vector w of length𝑚;

20: w = w/∥w∥;
21: compute L and U from T − �̃�𝑖 I;
22: repeat

23: solve Lw′ = w for w′
by forward substitution;

24: solve Uv′ = w′
for v′ by back substitution;

25: v′ = v′/∥v′ ∥;
26: w = v′;
27: until v′ reaches convergence
28: v𝑖 = Pv′;
29: 𝜎𝑖 = (v′)⊤Tv′;

Since L is a lower triangular matrix, 𝐿[𝑖] [𝑘] = 0 if 𝑘 ≥ 𝑖+1 for its
𝑖-th row. Therefore, Lemma 4 indicates that 𝐿[𝑖] [𝑘] can be nonzero

only if 𝑖 − 1 ≤ 𝑘 ≤ 𝑖 in the 𝑖-th row; L has at most two nonzero

elements in each row. As a result, the number of nonzero elements

in L of size𝑚×𝑚 is𝑂 (𝑚). Similarly, the number of nonzero elements

in U is 𝑂 (𝑚). From Lemma 4, we have the following property;

Lemma 5 (LU Decomposition). It takes 𝑂 (𝑚) time to compute
L and U from T′.

In general, it takes 𝑂 (𝑚3) time to compute LU decomposition

[41]. However, this lemma shows that we can efficiently compute

the LU decomposition of T′.
Algorithm 1 shows how to compute eigenvector-eigenvalue pair

(v𝑖 , 𝜎𝑖) ofM based on the bisection method and inverse iteration.

Algorithm 1 consists of three parts; graph clustering, bisection

method, and inverse iteration. The graph clustering part (lines 4-8),

partitions the chain graph into 𝑖 + 1 clusters. The bisection method

part computes approximate eigenvalues (lines 9-18). The inverse

iteration part computes eigenvector-eigenvalue pairs (lines 19-29).

Algorithm 1 first initializes 𝜎
0
= 1 and E = {𝑒 (𝛽𝑖)}𝑚−1

𝑖=1
where

𝑒 (𝛽𝑖) is an edge in the chain graph corresponding to 𝛽𝑖 (lines 1-2).

The graph clustering part computes Δ𝑅𝑖 (𝛽 𝑗) for each edge (lines

4-5) and cuts an edge in the chain graph based on Δ𝑅𝑖 (𝛽 𝑗) (lines
6-7). The bisection method part initializes 𝜎𝑖 and 𝜎𝑖 (lines 9-10),

and updates them until only a single eigenvalue lies in the interval

[𝜎𝑖 , 𝜎𝑖] (lines 11-17). It then computes �̃�𝑖 =
𝜎𝑖+𝜎𝑖

2
(line 18). The

inverse iteration part initializes random vectorwwhose 𝐿2-norm is

1 (line 19-20), and computes the LU decomposition of T − �̃�𝑖 I (line
21). It iteratively uses forward and back substitutions to compute

eigenvector v′ (lines 22-27); forward and back substitutions itera-

tively solve a system of linear algebraic equations by using lower

and upper triangular matrices, respectively [41]. It then computes

the eigenvector-eigenvalue pair (v𝑖 , 𝜎𝑖) ofM from eigenvector v′

(lines 28-29). We have the following property for Algorithm 1;

Lemma 6 (Eigenvector Computation). If 𝑡𝐵 and 𝑡𝐼 are the
numbers of iterations in the bisection method and inverse iteration,
respectively, Algorithm 1 requires 𝑂 (𝑚(𝑡𝐵+𝑡𝐼 +𝑚)) time to compute
the eigenvector-eigenvalue pair (v𝑖 , 𝜎𝑖) of matrixM from tridiagonal
matrix T and its orthonormal matrix P.

Unlike the power method that takes 𝑂 (𝑚3) time, we can ef-

ficiently compute the eigenvectors of M as shown in Lemma 6.

Therefore, we can effectively reduce the computation cost of the

offline phase of anchor graph hashing.

3.2 Online Phase Computation

This section describes our approach for the online phase. As de-

scribed in Section 2, we need to compute vector z(x) for query data
point x in the online phase. The 𝑖-th element of vector z(x) has a
nonzero element if the 𝑖-th anchor point is one of the closest anchor

points of x; it has a zero element otherwise. However, it needs a

high computation cost of 𝑂 (𝑚𝑑) time to find the closest anchor

points due to the data points’ high dimensionality.

In finding the closest anchor points, we use SVD (Singular Value

Decomposition) to approximate distances since it gives the smallest

error in approximating high-dimensional data [45]. For query data

point x = [𝑥 [1], . . . , 𝑥 [𝑑]] with 𝑑 dimensions, we can use SVD

of rank 𝑑 ′ to obtain its approximation x̃ = [𝑥 [1], . . . , 𝑥 [𝑑 ′]] of 𝑑 ′
dimensions (𝑑 ′ ≤ 𝑑). We apply SVD to the matrix of 𝑚 anchor

points [u1, . . . , u𝑚]⊤, which takes 𝑂 (𝑚𝑑 log𝑑 ′+(𝑚+𝑑) (𝑑 ′)2) time

[17]. If Q is a 𝑑 × 𝑑 ′ orthonormal matrix obtained by SVD, x̃ is

computed as x̃ = xQ. Similarly, if ũ𝑖 is the approximate vector

of length 𝑑 ′ for anchor point u𝑖 , ũ𝑖 is computed as ũ𝑖 = u𝑖Q. We

compute the approximate distance as follows:

Definition 2 (Approximate Distance). If we have ∥x′∥ =√
∥x∥2 − ∥x̃∥2 and ∥u′

𝑖
∥ =

√
∥u𝑖 ∥2 − ∥ũ𝑖 ∥2, approximate distance

�̃� (x, u𝑖) between query data point x and anchor point u𝑖 is given by

�̃� (x, u𝑖)=
√
∥x∥2+∥u𝑖 ∥2−2⟨x̃, ũ𝑖 ⟩−2∥x′∥∥u′𝑖 ∥cos(𝜃u′𝑖 ,a′−𝜃x′,a′) (25)

In this equation, 𝜃u′
𝑖
,a′ and 𝜃x′,a′ are given as follows:

𝜃u′
𝑖
,a′ = cos

−1 ⟨u𝑖 ,a⟩−⟨ũ𝑖 ,ã⟩
∥u′

𝑖
∥ ∥a′ ∥ , 𝜃x′,a′ = cos

−1 ⟨x,a⟩−⟨x̃,ã⟩
∥x′ ∥ ∥a′ ∥ (26)

where a ∈ U is a reference anchor point, ã is an approximate vector
of a, and ∥a′∥ =

√
∥a∥2 − ∥ã∥2

Note that we subject anchor points to SVD in the offline process.

Similarly, in the offline process, we compute 𝜃u′
𝑖
,a′ by setting a =

u1, . . . , u𝑚 for anchor points in𝑂 (𝑚2𝑑) time and compute ∥u𝑖 ∥ for
each anchor point in 𝑂 (𝑚𝑑) time. Therefore, it takes 𝑂 (𝑑 ′) time to

921

Algorithm 2 Closest Anchor Points

Input: query data point x, set of anchor points U, orthonormal matrix Q
Output: set of the 𝑠 closest anchor points C

1: C = ∅;
2: add 𝑠 dummy anchor points to C;

3: a = u0;
4: x̃ = xQ;
5: compute ∥x∥, ∥x′ ∥, and 𝜃x′,a′ ;
6: for 𝑖 = 1 to𝑚 do

7: compute �̃� (x, u𝑖) for u𝑖 ;
8: if �̃� (x, u𝑖) ≤ maxC {𝐷 (x, u𝑗) } then
9: compute 𝐷 (x, u𝑖) for u𝑖 ;
10: if 𝐷 (x, u𝑖) ≤ maxC {𝐷 (x, u𝑗) } then
11: add u𝑖 to C;
12: subtract u𝑗 = argmaxC {𝐷 (x, u𝑗) } from C;
13: if 𝜃u′

𝑖
,x′ ≤ 𝜃a′,x′ then

14: a = u𝑖 ;
15: compute 𝜃x′,a′ ;

compute approximated distance �̃� (x, u𝑖) in the online phase. We

introduce the following lemma for the approximate distance:

Lemma 7 (Approximate Distance). We have the following prop-
erty for the approximate distance:

�̃� (x, u𝑖) ≤ 𝐷 (x, u𝑖) (27)

This lemma indicates that �̃� (x, u𝑖) has the lower bounding prop-
erty for 𝐷 (x, u𝑖), which enables us to exactly compute the closest

anchor points for query data point x [45].

Algorithm 2 shows the approach to finding the closest anchor

points. It first initializes the set of the closest anchor points by

adding 𝑠 dummy anchor points whose distances to x are ∞ (line 1-

2). It sets the reference anchor point as a = u0 such that cos(𝜃u′
𝑖
,u′

0

−
𝜃x′,u′

0

) = 1 for each anchor point (line 3), and computes approximate

vector x̃ (line 4). It then computes ∥x∥, ∥x′∥, and 𝜃x′,a′ (line 5).

It picks up anchor points one by one to compute approximate

distances (lines 6-7). If an anchor point can be the closest anchor

points, it accurately computes the distance for the anchor point

(lines 8-9), and it updates the closest anchor points if necessary

(lines 10-12). Since the approximation quality of �̃� (x, u𝑖) improves

as the angle between vector x′ and a′ decreases from Equation (25),

it changes the reference anchor point based on the angle to the

query data point (lines 13-15). For Algorithm 2, we have

Lemma 8 (Closest Anchor Points). If 𝑐 is the ratio of the an-
chor points used to compute the exact distances, Algorithm 2 requires
𝑂 ((𝑚+𝑑)𝑑 ′+𝑐𝑚𝑑) time to identify the closest anchor point to x.

Lemma 8 indicates that we can reduce the online phase’s com-

putation cost by pruning distance computations when identifying

the closest anchor points. Note that we can exploit Algorithm 2 in

computing Z in the offline phase, as shown in the next section.

3.3 Hashing Algorithm

Algorithms 3 and 4 give full descriptions of our offline and online

phases. In the offline phase, Algorithm 3 computes SVD of matrix

[u1, . . . , u𝑚]⊤ used in determining the approximate distances (line

1). It then computes the norms of anchor points and angles between

Algorithm 3 Offline Phase of Tridiagonal Hashing

Input: set of data points X, set of anchor points U, number of bits in hash

codes 𝑟 , target rank 𝑑′

Output: hash code matrix Y
1: compute rank-𝑑′ SVD of matrix [u1, . . . , u𝑚]⊤;
2: for 𝑖 = 1 to𝑚 do

3: compute ∥u𝑖 ∥;
4: for 𝑗 = 𝑖 to𝑚 do

5: compute 𝜃u′
𝑖
,a′ ;

6: for 𝑖 = 1 to 𝑛 do

7: compute C𝑖 of x𝑖 by Algorithm 2;

8: compute Z by Equation (2);

9: Λ = diag (Z⊤1) ;
10: compute T and P by Equation (12), (15), and (16);

11: compute {(v𝑖 , 𝜎𝑖) }𝑟𝑖=1 by Algorithm 1;

12: V = [v1, . . . , v𝑟];
13: Σ = diag (𝜎1, . . . , 𝜎𝑟) ;
14: W =

√
𝑛Λ− 1

2 VΣ− 1

2 ;

15: Y = sgn (ZW) ;

Algorithm 4 Online Phase of Tridiagonal Hashing

Input: query data point x, set of anchor points U, orthonormal matrix Q,
hash code matrix Y, matrix W

Output: hash code vector y
1: compute C of x by Algorithm 2;

2: compute z(x) by Equation (5);

3: y = sgn (z(x)W) ;

anchor points (line 2-5). If C𝑖 is the set of the closest anchor points
to x𝑖 , it computes C𝑖 of each data points by using Algorithm 2

and computes Z and Λ from the closest anchor points (lines 6-

9). It computes T and P and obtains eigenvector-eigenvalue pairs

by Algorithm 1 (line 10-11). It then computes W from V and Σ
(lines 12-14), and computes Y fromW (line 15). In the online phase,

Algorithm 4 computes the closest anchor points to the query data

point using Algorithm 2 (line 1). It then computes z(x) and obtains

y (lines 2-3). The proposed approach has the following properties:

Theorem 1 (Computation Cost). Our offline phase requires
𝑂 (𝑑𝑑 ′(𝑛+𝑑 ′)+𝑚(𝑐𝑛𝑑+𝑛𝑠+𝑛𝑟 +𝑟𝑡𝐵 +𝑟𝑡𝐼)) time. Besides, our online
phase needs 𝑂 (𝑑 ′(𝑚+𝑑)+𝑚(𝑐𝑑+𝑟)) time.

Theorem 2 (Hashing Result). The proposed approach yields
the same results as the original anchor graph hashing algorithm if the
fixed-number of bits is used in hash codes to perform an approximate
nearest neighbor search.

Theorem 1 and 2 theoretically indicate that the proposed ap-

proach can improve the efficiency of anchor graph hashing while

guaranteeing search results’ equivalence.

3.4 Extension

This section proposes implementation-oriented approaches to im-

prove our approach’s efficiency and search accuracy.

3.4.1 Parallelization. Algorithms 3 and 4 implicitly assume a single

thread. However, they are easily parallelized. Let 𝐾 be the number

of threads. To find the closest anchor points, we randomly divide

922

the anchor points into 𝐾 sets and identify each set’s closest anchor

points in parallel. We can efficiently obtain the closest anchor points

from the identified anchor points. Moreover, we use block parti-

tioning to perform matrix multiplication efficiently. Specifically, in

computing X = BC, we perform block partitioning on the input

matrix B and C as follows:

B =

[
B11 B12
B21 B22

]
, C =

[
C11 C12

C21 C22

]
(28)

Then, we have

X =

[
B11C11 + B12C21 B11C12 + B12C22

B21C11 + B22C21 B21C12 + B22C22

]
(29)

Note that the smaller block matrices B11, B12, . . ., C11, C12, . . . can

be further partitioned recursively. Since the recursive matrix multi-

plications and summations can be performed in parallel, efficiency

is significantly improved by using multiple threads.

3.4.2 Hash Codes. As shown in Theorem 2, our approach yields

the same search results as the original approach if we fix the number

of bits in hash codes. To improve search accuracy, we recursively

reduce the number of bits in the offline phase. In hashing, the simi-

larity of data points of the same hash codes becomes more similar

as code length increases. However, since hash space size exponen-

tially increases as the number of bits increases, we can fail to find

similar data points if we use long codes. To alleviate this problem,

we adaptively use several different bit numbers in finding similar

data points. Specifically, we first perform an approximate nearest

neighbor search using hash codes of 𝑟 bits. If we do not find any

data points, we reduce hash code length by 𝑐 bits, which corre-

sponds to the smallest eigenvalues used in anchor graph hashing.

We iteratively perform this procedure until we find a data point, or

the number of bits is smaller than 𝑐 . We have the following property

for the search result of the recursive approach:

Theorem 3 (No False Negative). Let S[x] and S′[x] be sets
of similar data points for query data point x output by the original
and recursive approaches, respectively. We have S′[x] ⊇ S[x].

This theorem indicates that, if a data point is found by the original

approach, the data point must be found by the recursive approach;

this guarantees no false negatives in the search results. Note that,

only if the original approach cannot find any data point do we have

S′[x] ⊇ S[x]; otherwise S′[x] = S[x].

4 RELATED WORK

Hashing techniques can be classified into data-independent or data-

dependent. LSH is the representative data-independent method

as it computes hash codes by random projections [13]. However,

LSH needs long hash codes to achieve high search accuracy [14].

Recently, data-dependent methods have begun to attract more at-

tention. Spectral hashing is one of the most popular data-dependent

methods [52]. It constructs the similarity matrix of data points and

solves the hashing problem via spectral decomposition, which is

inefficient for large-scale data. The anchor graph can efficiently

compute the similarity matrix [33], and it is used in recent hashing

techniques. For example, large graph hashing with spectral rotation

is a recent anchor graph-based hashing technique [31]. To compute

hash codes, it transforms the solution to spectral relaxation of the

hashing problem by using an orthonormal matrix and then updates

the orthonormal matrix from hash codes by using SVD. This ap-

proach iteratively performs these procedures to determine hash

codes of query data points from the eigenvectors of the adjacency

matrix. Discrete spectral hashing computes the spectral solution

with the rotation technique and generates hash codes under the

required binary constraint of hash codes [21]. It iteratively com-

putes hash codes by using generalized power iteration [39], where

it recursively transforms a matrix obtained from the anchor graph

by using an orthonormal matrix obtained by SVD.

As described in Section 3, the divide-and-conquer algorithm com-

putes all eigenvalues of a tridiagonal matrix. It recursively divides

the tridiagonal matrix into submatrices, and performs eigendecom-

position by multiplying the orthonormal matrices obtained from

the submatrices. The major computation cost of the approach is

the matrix multiplication as it needs 𝑂 (𝑚3) time [7]. Coakley et al.

proposed to use the fast multiple method (FMM) of one dimension

to approximately compute the matrix multiplication in 𝑂 (𝑚 log𝑚)
time [5]. However, it is difficult to use their approach rather than our

approach. Our approach can accurately compute eigenvalue𝜎𝑖 since
1

𝜎𝑖−�̃�𝑖 is the largest eigenvalue of inverse matrix (T − �̃�𝑖 I)−1 based
on the property that 𝜎𝑖 ≤ �̃�𝑖 ≤ 𝜎𝑖 , as described in Section 3.1.3.

However, approximated eigenvalues obtained by the FMM-based

approach do not have this property. Therefore, the FMM-based

approach cannot be used to compute eigenvalues accurately.

The Nyström approach is a technique widely used to approx-

imate eigendecomposition. Locally linear landmarks is a recent

Nyström approach [48]. It projects all points by using a locally

linear function of nearest sampled points where the locally linear

function is obtained fromM. Variational Nyström is the state-of-the-

art Nyström approach that uses samples of points similar to locally

linear landmarks [49]. It computes the eigendecomposition by using

the columns of the matrix corresponding to sampled points.

5 EXPERIMENTAL EVALUATION

We performed experiments to show the effectiveness of our ap-

proach. In this section, “Proposed”, “Anchor”, “VN” “LGHSR”, and

“DSH” represent our approach, the original approach of anchor

graph hashing [36], variational Nyström-based approach [49], large

graph hashing with spectral rotation [31], and discrete spectral

hashing [21], respectively. VN is the state-of-the-art Nyström ap-

proach, and we used it to compute hash codes of anchor graph

hashing since it can approximately compute eigendecomposition.

LGHSR and DSH are state-of-the-art anchor graph hashing tech-

niques as described in the previous section.

We used the connect-4, epsilon,mnist, kitsune, andwesad datasets
2
.

connect-4 is a dataset obtained from Connect Four games, a two-

player game in which the players take turns dropping colored disks

onto the 42 grid spaces formed by seven-columns and six-rows.

The objective of the game is to form a line of four same color disks.

Each feature corresponds to each grid space occupied by a player

or empty; the number of dimensions is 126. The number of data

points is 67557, and classes correspond to win, loss, or draw for the

first player; the number of classes is three. epsilon is a dataset used

in the Pascal large scale learning challenge in 2008. The goal of this

2
https://www.csie.ntu.edu.tw/˜cjlin/libsvm/, https://archive.ics.uci.edu/ml/index.php

923

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t

im
e

 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(1)𝑚 = 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t

im
e

 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(2)𝑚 = 300

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(3)𝑚 = 500

Figure 4: Offline phase time

of each approach.

10
-1

10
0

10
1

10
2

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t

im
e

 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(1)𝑚 = 100

10
-1

10
0

10
1

10
2

10
3

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t

im
e

 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(2)𝑚 = 300

10
-1

10
0

10
1

10
2

10
3

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed
Anchor

VN
LGHSR

DSH

(3)𝑚 = 500

Figure 5: Online phase time

of each approach.

challenge is to recognize objects from a number of visual object

classes. This dataset includes images obtained from the Flickr web-

site. It contains 500000 objects 2000 numerical features. The number

of classes is two in this dataset. mnist is a dataset of handwritten

digits. This dataset is a collection of 8100000 grayscale images with

784 features. Each image is one digit from “0” to “9”, so the num-

ber of classes is ten. kitsune is a cybersecurity dataset containing

different network attacks on a commercial IP-based surveillance

system and an IoT network. Each data point represents a behavioral

snapshot of the hosts and protocols and consists of 115 traffic sta-

tistics captured in a temporal window. This dataset includes several

network attacks, such as DoS, reconnaissance, man-in-the-middle,

and botnet attacks. The numbers of data points and classes are

21017596 and ten, respectively. wesad contains data of subjects

during a stress-affect lab study while wearing physiological and

motion sensors. It includes sensor modalities such as blood volume

pulse, respiration, body temperature, and three-axis acceleration.

To effectively perform stress-affect detection, we used the dataset’s

polynomial features [40]. In particular, we created second-order

polynomial features by following the method of [43]. As a result,

the number of dimensions is 176. The numbers of data points and

classes are 60807600 and eight, respectively.

In each dataset, we randomly sampled 10000 data points to form

the query set used in the online phase, and we used the other

data points to compute hash codes in the offline phase. We set the

number of bits in hash codes, 𝑟 , to 32 and the number of reduced

bit, 𝑐 , to 8. Besides, we set the bandwidth parameter 𝑡 =𝑚2
and the

number of closest anchor points to 𝑠 = 2 by following a previous

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed (40-threads)
Proposed (single-thread)

Anchor (40-threads)
Anchor (single-thread)

Figure 6: Offline phase time

with parallelization.

10
-2

10
-1

10
0

10
1

10
2

10
3

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed (40-threads)
Proposed (single-thread)

Anchor (40-threads)
Anchor (single-thread)

Figure 7: Online phase time

with parallelization.

study [36]. For the proposed approach, we set the target rank of

SVD to 𝑑 ′ = 30. We set the number of iterations used in inverse

iteration to three by following a previous study [7]. We used the

power method to compute eigenvalues except for the proposed

approach by setting tolerance to 0.001. For LGHSR and DSH, we set

the number of SVD computations to five. We also set the number

of generalized power iterations to five for DSH. The number of

sampled data points in VN was set to 0.5𝑚.

All the approaches examined were implemented in C++ with

Eigen library. Eigen is a popular C++ template library for linear

algebra
3
. Moreover, to parallelize our approach, we implemented it

in OpenMP, a multi-threaded coding interface
4
. We conducted all

experiments on a Linux server with two Intel(R) Xeon(R) E5-2650

v3 CPUs with 2.30GHz processors. Each CPU has ten physical cores

with hyper-threading, and thus the server has 40 logical cores. The

server has 314GB of memory and a 1TB hard disk. We conducted

the experiments using a single thread unless otherwise stated.

5.1 Processing Time

We evaluated the processing time. Figure 4 shows the results of

the offline phase, and Figure 5 plots the online phase results. The

number of anchor points was set to𝑚 = 100, 300, and 500. Note

that the number of anchor points was set to𝑚 = 300 in the original

paper [36]. For kitsune and wesad, we omit the results of LGHSR

and DSH since they failed to complete the hash codes within three

months. To evaluate the scalability offered by our parallelization

approach, we evaluated the times taken by the offline and online

phases using 40 threads, see Figure 6 and 7, respectively. In these

figures, “Proposed (40-threads)” is for our approach with 40-threads,

and “Anchor (40-threads)” is for the original approach parallelized

by our approach. “Proposed (single-threads)” and “Anchor (single-

threads)” are results using a single thread. In this experiment, we

set the number of anchor points to𝑚 = 500. Figure 1 of Section 1

evaluates each approach with𝑚 = 500.

As shown in Figure 4 and 5, our approach offers higher efficiency

than the previous approaches. Specifically, in the offline phase, it

is up to 7.6, 7.0, 3191.4, and 3195.7, times faster than Anchor, VN,

LGHSR, and DSH, respectively. Moreover, it is up to 2.2, 2.1, 93.6,

and 84.7 times faster than Anchor, VN, LGHSR, and DSH, respec-

tively, in the online phase. As described in Section 2, Anchor needs

to compute the eigenvalues of M in the offline phase and closest

anchor points in the online phase. Since it takes times of 𝑂 (𝑛𝑚2)

3
http://eigen.tuxfamily.org

4
http://www.openmp.org/

924

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed
Original

Figure 8: Computation time

to obtain tridiagonal matrix.

 0

 2

 4

 6

 8

 10

 12

connect-4 epsilon mnist kitsune wesad

N
u
m

b
e
r

o
f
u
p
d

a
te

s

Proposed
Naive

Figure 9: Number of updates

in bisection method.

and 𝑂 (𝑚𝑑) to compute eigenvalues and closest anchor points, re-

spectively [36, 41], Anchor is slower than our approach. Although

VN can efficiently compute eigenvectors, it still needs𝑂 (𝑛𝑚2) time

to compute M. Therefore, VN is slower than our approach. As

described in Section 4, LGHSR needs to compute the eigendecom-

position of the 𝑛 × 𝑛 adjacency matrix of the anchor graph in the

offline phase. In the online phase, it computes hash codes from the

𝑛×𝑟 densematrix of obtained eigenvalues. Therefore, LGHSR incurs

significantly high computation times compared to our approach.

The offline phase of DSH computes the eigendecomposition of the

adjacency matrix similar to LGHSR, as described in Section 4. The

online phase of DSH computes the hash codes of each query data

point using the 𝑛× 𝑟 dense matrix of the obtained hash codes in the

offline phase. Therefore, DSH is much slower than our approach.

On the other hand, to compute hash codes, we efficiently compute

eigenvectors by applying a graph clustering algorithm to the tridi-

agonal matrix, as described in Section 3.1. We also compute lower

bounds of distances to efficiently identify the closest anchor points

for each query data point, as described in Section 3.2. Consequently,

our approach is much faster than previous approaches.

As described in Section 3.4.2, our approach can be parallelized by

using multiple threads. As shown in Figure 6 and 7, our paralleliza-

tion approach with 40-thread execution is faster than the proposed

approach using a single thread; up to 24.8 times in the offline phase

and 29.5 times faster in the online phase. This is because we can

efficiently find the closest anchor points by dividing the anchor

points into several sets and performing matrix multiplication using

block partitioning. Since our approach can be easily parallelized,

we can improve its efficiency by using multiple threads.

5.2 Lanczos Method

As described in Section 3.1.1, we compute T following the Lanczos

method by using b𝑖 = ZΛ− 1

2 p𝑖 . This experiment examined the time

taken to compute T where𝑚 = 500. In Figure 8, “Original” denotes

the original Lanczos method, which gets T by computing M.

Figure 8 shows that our approach achieves shorter computation

times than the original Lanczos method. In particular, it is up to

63.8 times faster than the original Lanczos method because it takes

𝑂 (𝑛𝑚2) time to compute M [36]. The original Lanczos method

needs𝑂 (𝑚3) time to compute T from Equation (9), (10), and (11), as

described in Section 3.1.1. On the other hand, we compute T from

b𝑖 by using Equation (12), (15), and (16) in 𝑂 (𝑛𝑚𝑠) time as shown

in Lemma 1 without computingM. As a result, our approach can

more efficiently compute T than the original Lanczos method.

10
-3

10
-2

10
-1

10
0

10
1

10
2

connect-4 epsilon mnist kitsune wesad

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Proposed
Inverse

Figure 10: Computation time

of inverse iteration.

 0

 2

 4

 6

 8

 10

 12

 14

 10 15 20 25 30 35 40 45 50

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Target rank

connect-4
epsilon

mnist
kitsune
wesad

Figure 11: Online phase time

vs. target rank.

5.3 Bisection Method

As mentioned in Section 3.1.2, we initialize left bound 𝜎𝑖 by using

the ratio cut algorithm to reduce the number of updates for 𝜎𝑖
needed in the bisection method. We evaluated the average number

of updates needed in computing approximate eigenvalue �̃�𝑖 (1 ≤ 𝑖 ≤
𝑟); we evaluated 𝑡𝐵 in this experiment. In Figure 9, “Naive” indicates

the results of the approach described in Section 3.1.2, which sets

𝜎𝑖 = 0 based on the property of 𝜎𝑖 > 0. In each approach, the

process of computing �̃�𝑖 sets the right bound to 𝜎𝑖 = 𝜎𝑖−1 . We set

the number of anchor points to𝑚 = 500.

Figure 9 shows that our approach reduced the number of updates

by up to 28.6% from the naive approach. Since the smallest eigen-

value of T is larger than 0 [33, 50], it is theoretically valid to set

𝜎𝑖 = 0. However, since in practice 𝜎𝑖 ≈ 𝜎𝑖−1, it is difficult to obtain

tight left bound 𝜎𝑖 by setting 𝜎𝑖 = 0. Therefore, the naive approach

needs a larger number of updates to produce 𝜎𝑖 . To reduce update

computations, we apply the ratio cut algorithm to the chain graph

corresponding to T, and effectively compute the left bound for 𝜎𝑖
as shown in Figure 9. Our approach needs𝑂 (𝑚𝑡𝐵) time to compute

�̃�𝑖 where 𝑡𝐵 is a small number, as shown in Figure 9. Therefore, we

can efficiently compute approximate eigenvalues.

5.4 Inverse Iteration

As described in Section 3.1.3, we use inverse iteration to compute

the eigenvectors by using (T − �̃�𝑖 I)−1 (1 ≤ 𝑖 ≤ 𝑟). We compute the

LU decomposition of T′ = T− �̃�𝑖 I to improve efficiency. This exper-

iment examined the processing times needed for inverse iteration

where𝑚 = 500. In Figure 10, “Inverse” is the approach that directly

computes (T − �̃�𝑖 I)−1 for obtaining eigenvectors.
As shown in Figure 10, our approach is up to 2867.0 times faster

than the comparable approach. Even though T − �̃�𝑖 I has a sparse
structure, its inversion, (T−�̃�𝑖 I)−1, has a dense structure [19]. There-
fore, it takes 𝑂 (𝑚3) time to compute (T − �̃�𝑖 I)−1; the comparable

approach incurs high computation cost. On the other hand, since

the number of nonzero elements is 𝑂 (𝑚) in the lower and upper

triangular matrices obtained by LU decomposition from Lemma 4,

we can compute LU decomposition of T′ in𝑂 (𝑚) time as shown in

Lemma 5. Consequently, we can efficiently compute eigenvectors.

5.5 Singular Value Decomposition

As mentioned in Section 3.2, we exploit the SVD of rank 𝑑 ′ for ma-

trix [u1, . . . , u𝑚]⊤ to compute approximated distances to improve

the online phase’s efficiency. Since we avoid exact computations of

925

Table 2: MAE vs. target rank.

𝑑′ connect-4 epsilon mnist kitsune wesad

10 6.53 × 10
2

3.17 × 10
2

4.57 × 10
5

6.15 × 10
1

3.83 × 10
2

20 3.78 × 10
2

3.05 × 10
2

3.48 × 10
5

1.50 × 10
1

1.04 × 10
2

30 2.40 × 10
2

2.93 × 10
2

2.76 × 10
5

3.22 × 10
0

2.11 × 10
1

40 1.20 × 10
2

2.83 × 10
2

2.35 × 10
5

7.01 × 10
−1

5.56 × 10
0

50 6.17 × 10
1

2.72 × 10
2

1.97 × 10
5

1.49 × 10
−1

1.36 × 10
0

Table 3: MAP of each approach.

Dataset 𝑚 Proposed Anchor VN LGHSR DSH

connect-4

100 0.536 0.392 0.335 0.533 0.123

300 0.551 0.411 0.361 0.541 0.128

500 0.556 0.412 0.371 0.543 0.149

epsilon

100 0.479 0.249 0.208 0.377 0.192

300 0.500 0.270 0.249 0.383 0.195

500 0.505 0.340 0.324 0.390 0.237

mnist

100 0.579 0.578 0.548 0.582 0.345

300 0.689 0.686 0.662 0.709 0.371

500 0.732 0.730 0.705 0.759 0.390

kitsune

100 0.798 0.719 0.690 − −
300 0.807 0.776 0.767 − −
500 0.808 0.793 0.775 − −

wesad

100 0.443 0.317 0.304 − −
300 0.498 0.440 0.433 − −
500 0.509 0.458 0.452 − −

distances in identifying the closest anchor point by using approxi-

mated distances, the target rank of SVD is expected to impact the

efficiency of our approach. Figure 11 evaluates the processing time

of the online phase for different target rank settings. We also eval-

uated approximation errors of approximated distances by setting

different target rank values. Table 2 shows the results using Mean

Absolute Error (MAE) as the metric [1]. In these experiments, we

set the number of anchor points to𝑚 = 500.

As shown in Figure 11, our approach’s processing time did not

vary much with SVD target rank; it is not so sensitive to rank

𝑑 ′. Table 2 shows that the mean absolute errors of approximated

distances decrease as the target rank increases. As described in

Section 3.2, it takes 𝑂 (𝑑 ′) time to compute approximated distance

by SVD. Therefore, if 𝑑 ′ is small, we can efficiently compute approx-

imated distances. On the other hand, we can reduce the number

of exact distance computations when 𝑑 ′ is large. This is because
we can improve the approximation quality by increasing the target

rank, as shown in Table 2. Due to this trade-off, derived from target

rank 𝑑 ′, our approach is not so sensitive to the target rank of SVD.

5.6 Search Accuracy

This section shows that the proposal yields an effective approximate

nearest neighbor search in terms of accuracy. Table 3 shows search

accuracy when using a hash lookup to find data points with the

same label as the query data point. By following the previous study

of [36], we used Mean Average Precision (MAP) as the metric of

search accuracy; MAP is the mean of the average precision scores

for each query data point in finding data points of the same label [1].

Moreover, we evaluated the MAP of our approach for several bit

numbers, 𝑟 , in the hash codes with𝑚 = 500. In Figure 1 of Section 1,

MAP was evaluated by setting𝑚 = 500 and 𝑟 = 32.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 8 16 24 32

M
A

P

Number of bits

connect-4
epsilon

mnist
kitsune
wesad

Figure 12: MAP vs. the number of bits.

Table 3 indicates that the search accuracy of our approach im-

proves with the number of anchor points. This is because anchor

points represent the data distribution in the high-dimensional space.

We note that our approach yields higher search accuracy than the

original approach of anchor graph hashing. This is because we

use the recursive technique to iteratively reduce hash codes, as de-

scribed in Section 3.4.2. As shown in Theorem 3, there are no false

negatives in the recursive approach’s search results. Specifically, if

the original approach finds any data points, we have S′[x] = S[x];
the proposed approach finds the same data points. Furthermore,

even if the original approach cannot find any data points, our ap-

proach can find similar data points since S′[x] ⊇ S[x] holds. As a
result, our approach can more accurately find similar data points

than the original approach and indeed other previous approaches.

As shown in Figure 12, our approach can more accurately find

similar data points as the number of bits increase. The results in

Table 3, as well as those in Figure 4 and 5, indicate that the proposed

approach increases the efficiency of anchor graph hashing while

improving search accuracy. Moreover, our approach’s search accu-

racy can be enhanced by increasing the number of anchor points

without a significant increase in computation time.

6 CONCLUSIONS

This paper addressed the problem of reducing the processing time of

anchor graph hashing. Our approach computes eigenvectors from

the tridiagonal matrix by using the ratio cut algorithm. The pro-

posed approach also uses SVD to compute the closest anchor points

efficiently. Experiments show that our approach is significantly

faster than existing approaches with improved search accuracy.

ACKNOWLEDGMENTS

Thisworkwas supported by JSPS KAKENHIGrant Number 19H04117.

APPENDIX

We provide the proofs omitted from Section 3.

Proof of Lemma 1. Since we can compute b𝑖 in 𝑂 (𝑛𝑠) time and

𝛼𝑖 is obtained from the 𝐿2-norm of b𝑖 from Equation (12), we can

compute𝛼𝑖 in𝑂 (𝑛𝑠) time. In Equation (15) and (16), we can compute

Λ− 1

2 Z⊤b𝑖 in 𝑂 (𝑛𝑠) time since the number of nonzero elements in

Z⊤ is 𝑛𝑠 . It also requires 𝑂 (𝑛) time to compute the inner product

⟨b𝑖 , b𝑖−1⟩ since the length of b𝑖 is 𝑛. Therefore, we can compute

𝛽𝑖 and p𝑖 in 𝑂 (𝑛𝑠) time from Equation (15) and (16). As a result, it

takes 𝑂 (𝑛𝑚𝑠) time to compute T and P. □

Proof of Lemma 2. Since V′
𝑖
gives the optimal solution for the prob-

lem of Equation (18), we have tr (H⊤
𝑖
TH𝑖) ≤ tr ((V′

𝑖
)⊤TV𝑖) and

926

tr ((V′
𝑖
)⊤TV𝑖) =

∑𝑖
𝑗=0 𝜎 𝑗 . Therefore, we have 𝜎𝑖 = tr ((V′

𝑖
)⊤TV′

𝑖
) −∑𝑖−1

𝑗=0 𝜎 𝑗 ≥ tr (H⊤
𝑖
TH𝑖) −

∑𝑖−1
𝑗=0 𝜎 𝑗 , which completes the proof. □

Proof of Lemma 3. Since 𝑅𝑖 = tr (H⊤
𝑖
TH𝑖) holds, left bound 𝜎𝑖 is

computed as 𝜎𝑖 = tr (H⊤
𝑖
TH𝑖) −

∑𝑖−1
𝑗=0 𝜎 𝑗 = 𝑅𝑖 −

∑𝑖−1
𝑗=0 𝜎 𝑗 . Since

Δ𝑅𝑖 (𝛽 𝑗) is the increase in the objective functions by cutting the

edge corresponding to 𝛽 𝑗 , we have 𝜎𝑖 − 𝜎𝑖−1 = 𝑅𝑖 − 𝑅𝑖−1 − 𝜎𝑖−1 =
Δ𝑅𝑖 (𝛽 𝑗) − 𝜎𝑖−1. As a result, we can compute 𝜎𝑖 in 𝑂 (1) time. □

Proof of Lemma 4. Each element of the lower and upper triangular

matrices of LU decomposition of T′ is given as follows [41]:

𝐿[𝑖] [𝑗] =

0 if 𝑖 < 𝑗

1 if 𝑖 = 𝑗

𝑇 ′ [𝑖] [𝑗]−∑𝑗−1
𝑙=1

𝐿 [𝑖] [𝑙]𝑈 [𝑙] [𝑗]
𝑈 [𝑗] [𝑗] otherwise

(30)

𝑈 [𝑖] [𝑗] =

0 if 𝑖 > 𝑗

𝑇 ′[𝑖] [𝑗] if 𝑖 = 1

𝑇 ′[𝑖] [𝑗] −∑𝑖−1
𝑙=1

𝐿[𝑖] [𝑙]𝑈 [𝑙] [𝑗] otherwise

(31)

We prove Lemma 4 by using mathematical induction.

Initial step: show the statement above holds in the case of 𝑘 =

1. If 𝑘 = 1, we have 𝐿[𝑖] [𝑘] =
𝑇 ′ [𝑖] [𝑘]
𝑈 [𝑘] [𝑘] from Equation (30), and

𝑇 ′[𝑖] [𝑘] = 0 since T′ = T − �̃�𝑖 I and 𝑇 [𝑖] [𝑘] = 0 from Equation (8).

Therefore, 𝐿[𝑖] [𝑘] = 0. Similarly, if 𝑘 = 1, we have 𝑈 [𝑘] [𝑗] =

𝑇 ′[𝑘] [𝑗] = 0 from Equation (31).

Inductive step: assume that 𝐿[𝑖] [𝑘 ′] = 0 and𝑈 [𝑘 ′] [𝑗] = 0 hold

for the 𝑘 ′-th element such that 1 ≤ 𝑘 ′ ≤ 𝑘 − 1. From Equation (30),

we have 𝐿[𝑖] [𝑘] =
𝑇 ′ [𝑖] [𝑘]
𝑈 [𝑘] [𝑘] since 𝐿[𝑖] [𝑘 ′] = 0 holds for all 𝑘 ′

such that 1 ≤ 𝑘 ′ ≤ 𝑘 − 1. Since 𝑇 ′[𝑖] [𝑘] = 0 holds, we have

𝐿[𝑖] [𝑘] = 0. Similarly, we have 𝑈 [𝑗 ′] [𝑗] = 0 from Equation (31)

since 𝑈 [𝑘 ′] [𝑗] = 0 for all 𝑘 ′ such that 1 ≤ 𝑘 ′ ≤ 𝑘 − 1, which

completes the inductive step. □

Proof of Lemma 5. From Lemma 4, L and U is computed as

𝐿[𝑖] [𝑗] =

𝑇 ′ [𝑖] [𝑗]
𝑈 [𝑗] [𝑗] if 𝑖 = 𝑗 + 1

1 if 𝑖 = 𝑗

0 otherwise

(32)

𝑈 [𝑖] [𝑗] =

𝑇 ′[𝑖] [𝑗] if 𝑖 = 𝑗 − 1

𝑇 ′[𝑖] [𝑗]−𝐿[𝑖] [𝑗−1]𝑈 [𝑖−1] [𝑗] if 𝑖 = 𝑗

0 otherwise

(33)

where we assume 𝐿[1] [0] = 𝑈 [0] [1] = 0 in computing 𝑈 [1] [1].
Equation (32) and (33) indicate that it takes 𝑂 (1) time to compute

each element of L and U. Since the number of nonzero elements in

L and U is 𝑂 (𝑚), it needs 𝑂 (𝑚) time to compute L and U. □

Proof of Lemma 6. From Lemma 3, we can compute 𝜎𝑖 in 𝑂 (1)
time. Since it takes 𝑂 (𝑚) to compute 𝑎(𝜆), we need 𝑂 (𝑚𝑡𝐵) time

to compute �̃�𝑖 using the bisection method. From Lemma 5, it takes

𝑂 (𝑚) time to compute LU decomposition of T − �̃�𝑖 I. Since the

number of nonzero elements in L and U is 𝑂 (𝑚), we need 𝑂 (𝑚𝑡𝐼)
time to compute v′ using the inverse method. Since the size of P is

𝑚 ×𝑚, it requires 𝑂 (𝑚2) time to compute v from equation of v𝑖 =
Pv′

𝑖
. Since the number of nonzero elements in T is 𝑂 (𝑚) as shown

in Equation (8), it takes 𝑂 (𝑚) time to compute 𝜎𝑖 from equation

of 𝜎𝑖 = (v′)⊤Tv′. As a result, we can compute an eigenvector-

eigenvalue pair (v𝑖 , 𝜎𝑖) of M in 𝑂 (𝑚(𝑡𝐵+𝑡𝐼 +𝑚)) time from T. □

Proof of Lemma 7. We first prove that �̃� (x, u𝑖) ≥ 0 holds. Since

⟨x̃, ũ𝑖 ⟩ ≤ ∥x̃∥∥ũ𝑖 ∥ and cos(𝜃u′
𝑖
,a′ − 𝜃x′,a′) ≤ 1, we have

∥x∥2+∥u𝑖 ∥2−2⟨x̃, ũ𝑖 ⟩−2∥x′∥∥u′𝑖 ∥ cos(𝜃u′𝑖 ,a′−𝜃x′,a′)

≥∥x̃∥2+∥x′∥2+∥ũ𝑖 ∥2+∥u′𝑖 ∥
2−2∥x̃∥∥ũ𝑖 ∥−2∥x′∥∥u′𝑖 ∥

=(∥x̃∥−∥ũ𝑖 ∥)2+(∥x′∥−∥u′𝑖 ∥)
2 ≥ 0

(34)

Therefore, �̃� (x, u𝑖) ≥ 0 holds from Equation (25). Since SVD is an

orthonormal transformation, we have

𝐷2 (x, u𝑖)=
∑𝑑

𝑗=1 (𝑥 [𝑗]−𝑢𝑖 [𝑗])2

=∥x∥2+∥u𝑖 ∥2−2
∑𝑑′

𝑗=1 𝑥 [𝑗]�̃�𝑖 [𝑗]−2
∑𝑑

𝑗=𝑑′+1 𝑥 [𝑗]�̃�𝑖 [𝑗]

=∥x∥2+∥u𝑖 ∥2−2⟨x̃, ũ𝑖 ⟩−2∥x′∥∥u′𝑖 ∥ cos𝜃u′𝑖 ,x′

(35)

where 𝜃u′
𝑖
,x′ is the angle between u′

𝑖
and x′. As shown in Equa-

tion (26), 𝜃u𝑖 ,a′ is the angle between u
′
𝑖
and a′, and 𝜃x′,a′ is the angle

between x′ and a′. Since we have cos𝜃u′
𝑖
,x′ ≤ cos(𝜃u′

𝑖
,a′ − 𝜃x′,a′),

we have �̃� (x, u𝑖) ≤ 𝐷 (x, u𝑖) from Equation (25) and (35). □

Proof of Lemma 8. Since the size of Q is 𝑑 ×𝑑 ′, it takes𝑂 (𝑑𝑑 ′) time

to compute x̃ = xQ. It also needs 𝑂 (𝑑) time to compute ∥x∥ and
∥x′∥. Therefore, it requires 𝑂 ((𝑚+𝑑)𝑑 ′) time to compute approx-

imate distances for the anchor points. It also takes 𝑂 (𝑐𝑚𝑑) time

to compute 𝐷 (x, u𝑖) after pruning anchor points by using approxi-

mate distances. Therefore, it needs 𝑂 ((𝑚+𝑑)𝑑 ′+𝑐𝑚𝑑) time to find

the closest anchor points to query data point x. □

Proof of Theorem 1. In the offline phase, it takes 𝑂 (𝑚𝑑 log𝑑 ′+(𝑚+
𝑑) (𝑑 ′)2) time to compute SVD. It takes 𝑂 (𝑚𝑑) and 𝑂 (𝑚2𝑑) time

to compute the anchor points’ norms and angles between anchor

points, respectively. It requires𝑂 ((𝑚+𝑑)𝑛𝑑 ′+𝑐𝑛𝑚𝑑) time to obtain

Z and Λ from the closest anchor points. From Lemma 1, we can

compute T and P in 𝑂 (𝑛𝑚𝑠) time. We can compute 𝑟 eigenvector-

eigenvalue pairs in𝑂 (𝑚𝑟 (𝑡𝐵+𝑡𝐼+𝑚)) time from Lemma 6. Since the

size ofW is𝑚 × 𝑟 , it needs𝑂 (𝑛𝑚𝑟) time to compute Y of size 𝑛 × 𝑟 .
As a result, we need 𝑂 (𝑑𝑑 ′(𝑛+𝑑 ′)+𝑚(𝑐𝑛𝑑+𝑛𝑠+𝑛𝑟+𝑟𝑡𝐵+𝑟𝑡𝐼)) time

in the offline phase. The online phase takes𝑂 ((𝑚+𝑑)𝑑 ′+𝑐𝑚𝑑) time

to obtain the anchor points closest to the query data point from

Lemma 8. It takes 𝑂 (𝑚𝑟) time to compute y. Therefore, the online
phase of our approach needs 𝑂 (𝑑 ′(𝑚+𝑑)+𝑚(𝑐𝑑+𝑟)) time. □

Proof of Theorem 2. Our approach uses approximate distances

with the lower bounding property in computing the closest an-

chor points, as shown in Lemma 7. Therefore, it can exactly obtain

the closest anchor points [45]. It computes 𝜎𝑖 of T by inverse itera-

tion from �̃�𝑖 obtained by the bisection method. The corresponding

eigenvector v𝑖 to 𝜎𝑖 can be computed from P. Since T andM have

the same eigenvalues [7], our approach can accurately compute the

𝑟 largest eigenvector-eigenvalue pairs {(v𝑖 , 𝜎𝑖)}𝑟𝑖=1 of M from T. □

Proof of Theorem 3. If the original approach finds data points similar

to query data points using 𝑟 bits, the recursive approach also finds

the same data points using 𝑟 bits; S[x] = S′[x]. Otherwise, since
the original approach fails to find similar data points, we have

S[x] = ∅. Since the recursive approach iterates the approximate

nearest neighbor search, S′[x] ⊇ ∅ = S[x] holds. □

927

