DBTagger: Multi-Task Learning for Keyword Mapping in
NLIDBs Using Bi-Directional Recurrent Neural Networks

Arif Usta Akifhan Karakayali Ozgur Ulusoy
Bilkent University Bilkent University Bilkent University
Ankara, Turkey Ankara, Turkey Ankara, Turkey
arif.usta@bilkent.edu.tr akifhan@bilkent.edu.tr oulusoy@cs.bilkent.edu.tr

ABSTRACT

Translating Natural Language Queries (NLQs) to Structured Query
Language (SQL) in interfaces deployed in relational databases is a
challenging task, which has been widely studied in database com-
munity recently. Conventional rule based systems utilize series of
solutions as a pipeline to deal with each step of this task, namely
stop word filtering, tokenization, stemming/lemmatization, parsing,
tagging, and translation. Recent works have mostly focused on
the translation step overlooking the earlier steps by using adhoc
solutions. In the pipeline, one of the most critical and challenging
problems is keyword mapping; constructing a mapping between
tokens in the query and relational database elements (tables, at-
tributes, values, etc.). We define the keyword mapping problem as a
sequence tagging problem, and propose a novel deep learning based
supervised approach that utilizes POS tags of NLQs. Our proposed
approach, called DBTagger (DataBase Tagger), is an end-to-end and
schema independent solution, which makes it practical for various
relational databases. We evaluate our approach on eight different
datasets, and report new state-of-the-art accuracy results, 92.4% on
the average. Our results also indicate that DBTagger is faster than
its counterparts up to 10000 times and scalable for bigger databases.

PVLDB Reference Format:

Arif Usta, Akifhan Karakayali, and Ozgiir Ulusoy. DBTagger: Multi-Task
Learning for Keyword Mapping in NLIDBs Using Bi-Directional Recurrent
Neural Networks. PVLDB, 14(5): 813 - 821, 2021.
doi:10.14778/3446095.3446103

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/arifusta/DBTagger.

1 INTRODUCTION

Amount of processed data has been growing rapidly pertaining to
technology, leading database systems to have a great deal of impor-
tance in today’s world. Amongst the systems, relational databases
are still one of the most popular infrastructures to effectively store
data in a structured fashion. To extract data out of a relational
database, structured query language (SQL) is used as a standard tool.
Although SQL is a powerfully expressive language, even technically
skilled users have difficulties using SQL. Along with the syntax of

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446103

813

SQL, one has to know the schema underlying the database upon
which the query is issued, which further causes hurdles to use SQL.
Consequently, casual users find it even more difficult to express
their information need, which makes SQL less desirable. To remove
this barrier, an ideal solution is to provide a search engine like
interface, such as Google or Bing in databases. The goal of Natural
Language Interfaces to Databases (NLIDB) is to break through these
barriers to make it possible for casual users to employ their natural
language to extract information.

To this end, many works have been published recently attacking
the research problem of translation of natural language queries into
SQL; such as conventional pipeline based approaches [4, 24, 32, 35]
or end-to-end solutions using encoder-decoder based deep learning
approaches [20, 33, 34, 41, 44]. Neural network based solutions seem
promising in terms of robustness, covering semantic variations of
queries. However, they struggle for queries requiring translation
of complex SQL queries, such as aggregation and nested queries,
especially if they include multiple tables. They also have a huge
drawback in that they need many SQL-NL pairs for training to
perform well, which makes conventional pipeline based solutions
still an attractive alternative. [30].

In the translation pipeline, one of the most important sub-problems
is keyword mapping, as noted in [25] as an open challenge to be
addressed in NLIDBs. Keyword mapping task requires to associate
each token or a series of consecutive tokens (e.g., keywords) in
the natural language query to a corresponding database schema
element such as table, attribute or value. It is the very first step of
resolving ambiguity for translation. Xu et. al [34] also note that
during the translation of the query, where clause is the most diffi-
cult part to generate which further signifies the task of keyword
mapping.

Consider the below natural language query examples run on the
sample IMDB movie database shown in Figure 1 to better under-
stand the challenges in keyword mapping problem.

Example NL Query 1. "What is the writer of The Truman Show?"

Challenge 1. The very first challenge in keyword mapping is to
differentiate and categorize tokens in the query either as database
relevant or not. For instance, some of the words in Example 1
(e.g., "is", "the", "of") are just stop words that are needed not to
be considered as potential mapping target. An ad-hoc solution is
to filter certain words using a pre-defined vocabulary, however
such a solution removes "The" in Example 1 preceding the actual
database value that needs to be mapped, which will cause the wrong
translation.

Challenge 2. Another important challenge is to detect multi-word
entities (mostly database values), "The Truman Show" in Example

https://doi.org/10.14778/3446095.3446103
https://github.com/arifusta/DBTagger
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446103

1. The most common approach is to build look-up tables or indexes
on n-grams of database values and calculate semantic and/or lexical
similarity over the candidates. Yet, this is a costly process for on-
the-fly calculations regarding possible n-grams of the given NL

query.
Example NL Query 2. "Find all movies written by Matt Demon."

Example NL Query 3. "How many movies are there that are di-
rected by Steven Spielberg and featuring Matt Demon?"

Challenge 3. Consider the queries given in Examples 2 and 3. In
the queries, tokens ("written" and "featuring") referring to data-
base tables are syntactic and semantic variations of the actual table
("written_by" and "cast" respectively) that they mapped to in the
database (Figure 1). To handle such a challenge, lexical and semantic
similarities of tokens over database elements (table and attributes)
can be calculated using a third party database such as WordNet [29].
However, in addition to being a costly process to calculate such
similarities online, such a solution cannot cover all possible varia-
tions of every map target in the database schema. Also, similarity
calculation approach requires a manually crafted threshold, 7, to
determine how much similarity is sufficient to map to a particular
schema element, which makes it undesirable.

Challenge 4. One of the usages of keyword mapping step is to
resolve ambiguities before getting into translation step. In the above
examples, "Matt Demon" refers to a database value residing in mul-
tiple tables (e.g., actor, writer). Actual mapping of the keyword
is determined by the mappings of neighbouring words surround-
ing, which implies that query-wise labelling considering coherence
rather than independent labelling can be beneficiary.

Challenge 5. In addition to an effective solution, an ideal keyword
mapping approach must be efficient to be deployed on interfaces
where users run queries online. Mapper should output the result in
reasonable time.

Most of the pipeline-based state-of-the-art works do not pro-
vide a novel solution to the problem of keyword mapping, rather
they utilize unsupervised approaches such as simple look-up tables
looking for exact matches or pre-defined synonyms [4, 31]; or they
make use of an existing lexical database [24] such as WordNet [29];
or they exploit domain information to extract an ontology to be
used for the task [32]; or they employ distributed representations
of words [35] such as word2vec [28] to calculate semantic similar-
ity of tokens over database elements. Although these approaches
are effective to some extent, they fail to solve various challenges
mentioned by the task of keyword mapping single-handedly.

In order to address all of the challenges mentioned above we
propose DBTagger, a novel deep sequence tagger architecture used
for keyword mapping in NLIDBs. Our approach is applicable to dif-
ferent database domains requiring only handful of training query
annotations and practical to be deployed in online scenarios find-
ing tags in just milliseconds. In particular, we make the following
contributions by proposing DBTagger:

o We tackle the keyword mapping problem as a sequence tagging

problem and borrow state-of-the-art deep learning approaches
tailored for well-known NLP tasks.

814

| gender
name
nationality

i birth_city

i birth_year
b

A

l N VN
/ N\
N - N . \
yd \\ {lrectedfb)pf-_ p %\madefby/ / .
< cast > h 4 \ / N 4 <written_by >
. / AN \ N Hen-y,
. / \ \ /
N /
Movie ‘
PK | mid i)
! title
| release_year
title_aka
budget

Figure 1: ER diagram of a subset of IMDB movie database

e We extend the neural structure for sequence tagging, by utilizing
multi-task learning and cross-skip connections to exploit the ob-
servation we made in natural language query logs of databases,
that is, schema tags of keywords are highly correlated with POS
tags.

We manually annotate query logs from three publicly available
relational databases, and five different schemas belonging to
Spider [42] dataset.

We evaluate DBTagger, with above-mentioned query logs in two
different setups. First, we compare DBTagger with unsupervised
baselines preferred in state-of-the-art NLIDBs. In the latter, we
evaluate DBTagger architecture by comparing with different
supervised neural architectures. We report new state-of-the-art
accuracy results for keyword mapping in all datasets.

We provide comprehensive run time and memory usage analysis
over the existing keyword mapping approaches. Our results show
that, DBTagger is the most efficient and scalable approach for
both metrics.

The remainder of this paper is organized as follows. In the next
section, we explain the problem formulation and methodology we
follow. We present the neural network structure we designed to
solve the keyword mapping problem, and discuss how annotation
of queries is handled. In Section 3, we provide experimental results
comparing DBTagger with unsupervised baselines and present
the performance of different neural models to justify DBTagger
architecture. We also provide an efficiency analysis on all baselines.
In Section 4, we summarize related work. Section 5 concludes the

paper.

2 METHODOLOGY

2.1 Deep Sequence Tagger Architecture

POS tagging and NER refer to sequence tagging problem in NLP
for a particular sentence to identify parts-of-speech such as noun,
verb, adjective and to locate any entity names such as person, or-
ganization, respectively. Recurrent Neural Networks (RNN) are at
the core of architectures to handle such problems, since they are a

Input (Word Representations of the Sequence X)

—
2
(6]
—_ Forward
§4 GRU GRU GRU
S \
3 GRU GRU GRU
5 Backward ’7—‘
=
- : P S
(o) (o) (o)
- I I
i L
o GRU ‘ GRU ‘
&l [| |
c
&4 GRU } GRU |
= _'_l
e GRU | [e |
B SN
+
~ ¥ ¥ ¥ ¥ - A ¥ s S
= ; \ y \ i\ i\ Y\ £ YN N Y
-g‘_ | cAF | [cAF | | cAF | | cAF | | cAF | | CRF | | eAF | | cAF | | cAF |
R b . 4 A A N A N N N
E=
2 =
-
POS Tag Type Tag SchemaTag | J
-
Current time step
t-1 t t+1
L . J
Time Steps

Figure 2: DBTagger Network

family of networks that perform well on sequential data input such
as a sentence.

In RNN networks, the basic goal is to carry past information
(previous words) to future time steps (future words) to determine
values of inner states and consequently the final output, which
makes them preferable architecture for sequential data. Given x;
as input at time step ¢, calculation of hidden state h; at time step ¢
is as follows:

hy = f(Uxy + Why—1) (1)

In practice, however, RNN networks suffer from vanishing gradi-
ent problem, therefore the limitation was overcome by modifying
the gated units of RNNs; such as LSTM [16] and GRU[8]. Com-
pared to vanilla RNN, LSTM has forget gates and GRU comprises
of reset and update gates additionally. We experimented with both
structures and we chose GRU due to its better performance in our
experiments. In GRU, Update Gates decide what information to
throw away and what new information to add, whereas Reset Gate
is utilized to decide how much past information to forget.

In sequence tagging problem, in addition to past information
we also have future information as well at a given specific time,
t. For a particular word w;, we know the preceding words (past
information) and succeeding words (future information), which can
be further exploited in the particular network architecture called, bi-
directional RNN introduced in [11]. Bi-directional RNN has two sets
of networks with different parameters called forward and backward.
The concatenation of the two networks is then fed into the last

815

layer, where the output is determined. This process is demonstrated
in the upper part of the Figure 2, named bi-directional GRU.

Sequence tagging is a supervised classification problem where
the model tries to predict the most probable label from the output
space. For that purpose, although conventional softmax classifica-
tion can be used, conditional random field (CRF) [22] is preferred.
Unlike independent classification by softmax, CRF tries to predict
labels sentence-wise by taking labels of the neighboring words
into consideration as well. This feature of CRF is what makes it
an attractive choice especially in a problem like keyword mapping.
CRFs for each class of tags are appended to uni-directional GRU,
depicted in lower part of the Figure 2.

2.2 DBTagger Architecture

Formally, for a given NL query, input X becomes a series of vectors
[x1, X2, ...xp] Where x; represents the ith word in the query. Sim-
ilarly, output vector Y becomes [y1, y2, ...yn | Where y; represents
the label (actual tag) of the y** word in the query. Input must be in
numerical format, which implies that a numerical representation of
words is needed. For that purpose, the word embedding approach is
state-of-the-art in various sequence tagging tasks in NLP [9] before
feeding into the network. So, embedding matrix is extracted for
the given query, W € R™d_where n is the number of words in
the query and d is the dimension of the embedding vector for each
word. For the pre-calculated embeddings, we used fastText[6] due

to it being one of the representation techniques considering sub-
word (character n-grams) as well to deal with the out of vocabulary
token problem better.

We consider G to be 2-dimensional scores of output by the uni-
directional GRU with size n X k where k represents the total number
of tags. G; j refers to score of the jth tag for the ith word. For a
sequence Y and given input X, we define tag scores as;

n n
SCY) =) Ayoyes +) Giy, @)
i=1 i=1
where A is a transition matrix in which A; j represents the score
of a transition from the i*" tag to the j’ h tag. After finding scores,
we define probability of the sequence Y:

&S (X,Y)

p(Y|X) = (3

3 oy es(X,Y)

where Y refers to any possible tag sequence. During training we
maximize the log-probability of the correct tag sequence and for
the inference we simply select the tag sequence with the maximum
score.

In our architecture, we utilize Multi-task learning by introducing
two other related tasks; POS and type levels (shown in Figure 2).
The reason we apply multi-task learning is to try to exploit the
observation that actual database tags of the tokens in the query are
related to POS tags. Besides, multi-task learning helps to increase
model accuracy and efficiency by making more generalized models
with the help of shared representations between tasks [7]. POS and
Type tasks are trained with schema task to improve accuracy of
schema (final) tags. For each task, we define the same loss function,
described above. During backpropagation, we simply combine the
losses as follows;

3 3
Liotal = Z w; X L;j subject to Z wi=1 (4)
i=1 i=1

where w; represents the weight of i task and L; represents the
loss calculated for the i*” task similarly.

Another technique we integrate into the neural architecture is
skip-connection. Skip connection is used to introduce extra node con-
nections between different layers by skipping one or more layers in
the architecture.With skip connections, the model provides an alter-
native for gradient to back propagation, which eventually helps in
convergence. The technique has become compulsory component in
many neural architectures deployed in computer vision community,
such as the famous architectures ResNet [13] and DenseNet [17].
In the architecture of DBTagger, for each task except the first one
(POS), we additionally feed the output of uni-directional GRU layer
of previous task into CRF layer of the next task (i + 11 task). With
these connections, we further carry the information of previous
tasks to later tasks and eventually to the final task, schema tagging.

2.3 Annotation Scheme

In our problem formulation, every token (words in the natural lan-
guage query) associates three different tags; namely part-of-speech
(POS) tag, type tag and schema tag. In the following subsections,
we explain how we extract or annotate each of them in detail.

816

2.3.1 POS Tags. To obtain the POS tags of our natural language
queries we used the toolkit of Stanford Natural Language Processing
Group named Stanford CoreNLP[27]. We use them as they are
output from the toolkit, without doing any further processing since
the reported accuracy for POS Tagger (97%) is sufficient enough.

2.3.2 Type Tags. In each natural language query, there are key-
words (words or consecutive words) which can be mapped to data-
base schema elements such as table, attribute or value. We divide
this mapping into two levels; type tagging and schema tagging.
Type tags represent the type of the mapped schema element to be
used in the SQL query. In total we have seven different type tags;

e TABLE: NLQs contain nouns which may inhibit direct references
to the tables in the schema, and we tag such nouns with TABLE
tag. In the example NL query given in Table 1, noun movie has a
type tag as TABLE, which also supports the intuition that schema
labels and pos tags are related.

TABLEREF: Although the primary sources for table references
are nouns, some verbs contain references to the tables most of
which are relation tables. TABLEREF tag is used to identify such
verbs. Revisiting the example given Table 1, the verb acted refers
to the table cast, and therefore it is tagged with TABLEREF to
differentiate better the roles of POS tags in the query.

ATTR: In SQL queries, attributes are mostly used in SELECT,
WHERE and GROUP BY clauses. Natural language queries may
contain nouns that can be mapped to those attributes. We use
ATTR tag for tagging such nouns in the natural language queries.
ATTRREEF: Like TABLEREF tag, ATTRREF tag is used to tag the
verbs in the natural language query that can be mapped to the
attributes in the SQL query.

VALUE: In NLQs, there are many entity like keywords that need
to be mapped to their corresponding database values. These
words are mostly tagged as Proper noun-NNP such as the keyword
John Nash in the example query. In addition to these tags, it is
also likely for a word to have a noun-NN POS tag with a Value
tag corresponding to schema level. In order to handle these cases
having different POS tags, we have Value type tags (e.g., Mind
keyword in the example query is part of a keyword that needs
to be mapped as value to movie.title). Keywords with Value tags
can later be used in the translation to determine "where" clauses
in SQL.

COND: After determining which keywords in the query are to
be mapped as values, it is also important to identify the words
that imply which type of conditions to be met for the SQL query.
For that purpose, we have the COND type tag.

O (OTHER): This type of tag represents words in the query that
are not needed to be mapped to any schema instrument related
to the translation step. Most stop words in the query (e.g., the)
fall into this category.

2.3.3 Schema Tag. Schema tags of keywords represent the data-
base mapping that the keyword is referring to; name of a table,
or attribute. Tagging a keyword with a type tag is important yet
incomplete. To find the exact mapping the keyword refers to, we
defined a second level tagging where the output is the name of the
tables or attributes. For each entity table (e.g. movie table in Figure
1) and for each non-PK or non-FK attribute (attributes which have

Table 1: An example NL query with its tags corresponding to each word in three different levels

NL query who acted John Nash in the movie A Beautiful =~ Mind

POS tags WP VBD NNP NNP IN DT NN DT 7 NN

Type tags (@) TABLEREF VALUE VALUE COND O TABLE VALUE VALUE VALUE
Schema tags | O cast cast.role castrole cond O movie movietitle movietitle movie.title

Table 2: Statistics of the databases used

Database Spider
Properties (#) imdb mas vyelp academic college hr imdb yelp
entity tables 6 7 2 7 5 6 6 2
relation tables 11 5 5 8 2 1 11 5
total tables 17 12 7 15 7 7 17 7
total attributes 55 28 38 42 43 35 55 38
nonPK-FK attributes 14 7 16 18 29 21 14 16
total tags 31 19 20 26 36 30 31 20
queries 131 599 128 181 164 124 109 110
tokens in queries 1250 4483 1234 2127 2130 2099 1012 1035

semantics) we define a schema tag (e.g movie, people, movie.title,
etc., referring to Figure 1). We complete possible schema tags by car-
rying OTHER and COND from type tags. We use the same schema
tag for attributes and values (e.g movie.title), but differentiate them
at the inference step by combining tags from both type tags and
schema tags. If a word is mapped into Value type tag as a result of
the model, its schema tag refers to the attribute in which the value
resides.

In order to annotate queries, we annotate each word in the query
for three different levels mentioned above. While POS tags are
extracted automatically, we manually annotate the other two levels.
Annotations were done by three graduate and three undergraduate
computer science students who are familiar with database subject.
Although annotation time varies depending on the person, on the
average it took a week to annotate tokens by a single person for
two levels (type and schema) for a query log with 150 NL questions,
which we believe is practical to apply in many domains.

3 EXPERIMENTAL EVALUATION
3.1 Datasets

In our experiments we used yelp, imdb [35], and mas [24] datasets
which are heavily used in many NLIDB related works by the data-
base community [2, 24, 32, 35]. In addition to these datasets, we
also used different schemas from the Spider dataset [42]; which
are academic, college, hr, imdb, and yelp. Spider is comprised of
approximately 200 schemas from different domains; however, there
are only handful (around 10) of schemas with more than 100 NL
questions. Number of questions is important for our deep learning
based solution, since it requires certain number of training data
to effectively train. Each schema we picked from Spider dataset
is among the schemas with most number of NL questions, having
over 100 queries to work with. Due to the lack of sufficient data-
base values (many schemas do not have database rows or have few

817

number of rows), we used the Spider dataset only on supervised
setup.

The statistics about each dataset for which annotation is done
is shown in Table 2. In Table 2 (referring to Figure 1), entity tables
refer to main tables (i.e. Movie), relation tables refer to hub tables
that store connections between entity tables (i.e. cast, written_by),
nonPK-FK attributes refer to attributes in any table that is neither
PK nor FK (i.e., gender in People table), and finally total tags refer to
unique number of taggings extracted from that particular schema
depending on the above mentioned values. Final schema tags of a
particular database are determined by composing table names and
name of the nonPK-FK attributes in addition to COND and OTHER.
In the last two rows of the Table 2, we show annotated number of
NL questions, referred to as queries, and the number of total words
inside these queries, referred to as tokens.

3.2 Settings

We first split the datasets into train-validation sets with 5 — 1 ratio,
respectively to be used for tuning task weights. For models trained
on multiple tasks, we used 0.1 — 0.2 — 0.7 as tuned weights for POS,
Type and Schema tasks, respectively.

We train our deep neural models using the backpropagation
algorithm with two different optimizers; namely Adadelta [43] and
Nadam [10]. We start the training with Adadelta and continue it
with Nadam. We found that using two different optimizers resulted
better in our problem. For both shared and unshared bi-directional
GRUSs, we use 100 units and apply dropout [15] with the value of 0.5
including recurrent inner states as well. For training, the batch-size
is set to 32 for all datasets. Parameter values chosen are similar to
that reported in the study [23] (the state-of-the-art NER solution
utilizing deep neural networks), such as the dropout and batch
size values. We measure the performance of each neural model by
applying cross validation with 6-folds. All the results reported are

Table 3: Accuracy scores of unsupervised baselines for rela-
tion and non-relation matching

Database
Baseline imdb mas yelp
tf-idf 0.594-0.051 0.734-0.084 0.659-0.557
NALIR 0.574-0.103 0.742-0.476 0.661-0.188
word2vec 0.625-0.093 0.275-0.379 0.677-0.269
TaBERT NA-0.251 NA-0.094 NA-0.114
DBTagger 0.908-0.861 0.964-0.950 0.947-0.923

the average test scores of 6-folds. During inference, we discard POS
and Type task results and only use Schema (final) tasks to measure
scores.

3.3 Results

3.3.1 Comparison with Unsupervised Baselines. We implemented
the unsupervised approaches utilized in the state-of-the art NLIDB
works for the keyword mapping task as baselines to compare with
DBTagger.

- tf-idf: Similar to ATHENA [32], for each unique value present
in the database, we first create an exact matching index, and
then perform tf-idf for tokens in the NLQ. In case of matches to
multiple columns, the column with the biggest tf value is chosen
as matching. In order to handle multi word keywords, we use
n-grams of tokens up to n = 3. For relation matching, we used
lexical similarity based on the Edit Distance algorithm.
NALIR: NALIR [24] uses WordNet for relation matching. For
non-relation matching,it utilizes regex or full text search queries
over each database column whose type is text. In case of matches
to multiple columns, the column which returns more rows as a re-
sult is chosen as matching. For fast retrieval, we limit the number
of rows returned from the query to 2000, as in the implementation
of NALIR.

- word2vec: For each unique value present in the database, cosine
similarity over tokens in the NLQ is applied to find mappings
using pre-defined wor2vec embeddings. The matching with the
highest similarity over a certain threshold is chosen.

- TaBERT: TaBert [38] is a transformer based encoder which gen-
erates dynamic word representations (unlike word2vec) using
database content. The approach also generates column encoding
for a given table, which makes it an applicable keyword mapper
for non-relation matching.For a particular token, matching with
maximum similarity over a certain threshold is chosen.

We categorize the keyword mapping task as relation matching
and non-relation matching. The former mapping refers to matching
for table or column names and the latter refers to matching for
database values. For fair comparison, we do not apply any pre
or post processing over the NL queries or use external source of
knowledge, such as a keyword parser or metadata extractor. Results
are shown in Table 3. Each pair of scores represents token wise
accuracy for relation and non-relation matching.

DBTagger outperforms unsupervised baselines in each dataset
significantly, by up to 31% and 65% compared to best counterpart
for relation and non-relation matching, respectively. For relation

818

Table 4: Translation Accuracy

Database
NLIDB System imdb mas yelp
NALIR 0.383 0.330 0.472
TEMPLAR (on NALIR) 0.500 0.402 0.528
DBTagger Pipeline 0.564 0.551 0.461

matching, results of all approaches are similar to each other except
the word2vec method for the mas dataset. The main reason for such
poor performance is that the mas dataset has column names such
as venueName for which word2vec cannot produce word represen-
tations, which radically reduces chances of semantic matching.
tf-idf gives promising results on the yelp dataset, whereas it
fails on the imdb and mas datasets for non-relation matching. This
behavior is due to presence of ambiguous values (the same database
value in multiple columns) and not being able to find a match
for values having more than three words. For the imdb dataset,
none of the baselines performs well for non-relation matching. The
imdb dataset has entity like values that are comprised of multiple
words such as movie names, which makes it impossible for semantic
matching approaches to generate meaningful representations to
perform similarity. NALIR’s approach of querying over database has
difficulties for the imdb and yelp datasets since the approach does
not solve ambiguities without user interaction. TaBERT performs
poorly for all datasets. TaBERT has its own tokenizer, which tries to
deal with tokens that are out of vocabulary (OOV) by breaking the
token into sub-words that have representations. OOV keywords
appearing in the natural language query are therefore divided by
the tokenizer into pieces, which eventually leads to unrelated word
representations and therefore non-predictive similarity calculation.

3.3.2 Translation Accuracy. In order to show the effectiveness of
tags output by DBTagger, we implemented a simple translation
pipeline, similar to methodology in [2]. The pipeline generates join
paths for SQL translation using shortest length path over schema
graph to cover all the mappings output by DBTagger. We count
inaccurate, if the algorithm can not output a joining path. We com-
pare our pipeline with a state-of-the-art system, NALIR[24], and
TEMPLAR[2], which is an enhancer over an existing NLIDB system.
The results are presented in Table 4. The pipeline over DBTagger
tags outperforms both systems in imdb and mas datesets, up to
66% and 37% compared to NALIR and TEMPLAR respectively. For
queries which do not include nested or group by constraints such as
simple select-join queries, our pipeline produces 67%, 77% and 53%
translation accuracy for imdb, mas and yelp datasets respectively.
Considering the simplicity of the translation algorithm, results
demonstrate the efficacy of predicted outputs of DBTagger.

3.4 Impact of DBTagger Architecture

In this experimental setup, we perform keyword mapping in a su-

pervised fashion with different neural network architectures along

with a non-Deep Learning (DL) baseline to evaluate architectural

decisions.

- CRF: As a non-DL baseline, we use vanilla CRF. Semantic word
representations of the NLQ are fed as input to the model.

Table 5: Performance of Neural Models with Different Architectures in accuracy-F1 metrics

Database Spider
Model yelp imdb mas academic hr college imdb yelp
CRF 0.934-0.890 0.907-0.850 0.955-0.932 | 0.974-0.956 0.881-0.748 0.878-0.721 0.866-0.821 0.880-0.827
ST_Uni 0.939-0.883 0.905-0.805 0.961-0.938 | 0.962-0.945 0.844-0.642 0.854-0.692 0.848-0.751 0.865-0.803
ST_Bi 0.947-0.908 0.917-0.832 0.964-0.941 | 0.966-0.952 0.877-0.689 0.872-0.720 0.882-0.811 0.891-0.841
MT _Seq 0.938-0.886 0.921-0.853 0.964-0.943 | 0.964-0.952 0.835-0.685 0.886-0.714 0.896-0.837 0.895-0.838
DBTagger 0.968-0.938 0.935-0.878 0.965-0.941 | 0.965-0.954 0.861-0.735 0.904-0.761 0.898-0.855 0.897-0.854
inv_index
107 | mm word2vec
& qregex tabert_on e tabert_on
1000 4~ qfixt tabert_off x,—" tabert_off
1z e § | oone
el g — == m— === : >
L B : o L g
é 104 ’,:_‘_’::__» ---------- A L] ‘g 108 4
2 t“"—-_:::’—t—_ g
§ 14 ,x’/ L;
5 [% 107 4
0.1 4 =
084 B B B B B B B B B
0.01 3§
e R e ——mmmmmm- - oo o

Number of Rows

(a) Run Time

100 1000 10000

Number of Rows

100000

1000000

(b) Memory Usage

Figure 3: Run Time and Memory Usage of state-of-the-art keyword mapping approaches

- ST_Uni: We create a two layers stack of uni-directional GRUs,
followed by CRF as the classification layer. This model is trained
on only a single task, schema tags.

GRU:s instead of uni-directional GRUs. Classification is done on

the CRF layer.
- MT_Seq: In this model, training is performed on all three tasks.
However, each task is trained separately. The predicted tag of
the previous task is fed into the next task. To do that, 1-hot
vector representations of predicted tags are concatenated with
semantic word representations. We stack a bi-directional GRU
with a uni-directional GRU to encode the sentence and feed the
output vector to the CRF layer.
DBTagger: This model represents the DBTagger architecture
where all tasks are used during training concurrently. DBTagger
also has cross-skip connections between tasks as depicted in
Figure 2.
For all the models, the same hyper parameters are used for fair
comparison during training, as explained in Section3.2. The results
are shown in Table 5. Each pair of scores represents the accuracy
and F1 measures, respectively. DBTagger performs better than the
other supervised architectures for six different datasets in accuracy
and in terms of F1. Especially for the yelp and college datasets the
performance improvement is remarkable, which is up to around
4.5% and 5%, respectively. Vanilla CRF performs well among all

ST_Bi: Different than the previous architecture, we use bi-directional

819

(best in two datasets), which signifies its role in the architecture for
the sequence tagging problem. ST_Bi performs better than ST_Uni
in all datasets, which shows the positive impact of bi-directional
GRUs. Compared to single task models, multi task models perform
better for all datasets. Except the mas dataset for the F1 metric,
DBTagger produces better tags compared to the other multi task
model, MT_Seq, in which tasks are trained separately.

3.5 Efficiency Analysis

Efficiency is one of the most important properties of a good keyword
mapper to be deployable in online interfaces. Therefore, run time
performance of keyword mapping approaches mentioned in Section
3.3 is also evaluated.

- NALIR: We analyze both querying over database column ap-
proaches used in NALIR[24], named as q_regex and q_ftext, which
use like and match against operators respectively.

tf-idf: Similar to ATHENA [32], we created an exact matching
index, using inverted index named as inv_index, beforehand to
avoid querying over database, .

- word2vec: Many works such as Sqlizer [35] make use of pre-
trained word embeddings to find mappings, which requires keep-
ing the model in the memory to perform similarities.
tabert_on: TaBert requires database content (content snapshot)
to generate encodings for both NL tokens and columns. We call

this setup tabert online, where the model generates the content

snapshot to perform mapping when the query comes.

- tabert_off: We also use TaBert in offline setup. For each table,
database content is generated beforehand to perform encodings.
In this setup, we keep the content in the memory to serve the
query faster.

We measured the time elapsed for a single query to extract tags
and the memory consumption needed to perform mapping for each
approach. We also run each experiment with different number of
row values to capture the impact of the database size. Figure 3
presents run time and memory usage analysis of keyword mappers.
DBTagger ouputs the tags faster than any other baseline and it
is scalable to much bigger databases. However, q_regex, q_ftext,
tabert_on and word2vec do not seem applicable for bigger tables
having more than 10000 rows. The tf-idf technique has nice balance
between run-time and memory usage, but it is limited in terms of
effectiveness (Table 3). tabert-off performs the tagging in a reason-
able time, yet it requires huge memory consumption especially for
bigger tables.

4 RELATED WORK

4.1 NLIDBs and Keyword Mapping Approaches

Although the very first effort [14] of providing natural language
interface in databases dates back to multiple decades ago, the pop-
ularity of the problem has increased due to some recent pipeline
based systems proposed by the database community, such as SODA
[4], NALIR [24], ATHENA[32] and SQLizer[35].

Recently, end-to-end approaches utilizing encoder-decoder based
architectures [3, 5, 12, 18, 33, 34, 37, 40, 41, 44] in deep learning
have become more popular to deal with the translation problem.
Seq2SQL[44] uses a Bi-LSTM to encode a sequence that contains
columns of the related table, SQL keywords and question. The
study [44] also provided a dataset called WikiSql to the research
community working on NLIDB problem for evaluation. SQLNet[34]
defines a seq-to-set approach to eliminate reinforcement learning
process of Seq2SQL. In another study which used WikiSql dataset,
Yavuz et al.[37] employs a process called candidate generation
to create keyword mappings to be used in where clasue in SQL
translation specifically. All of the proposed deep learning based
methods use pre-trained word embedding vectors for input to the
model. Therefore, keyword mapping is implicitly handled by the
model. However, TypeSql [40] tries to enrich input data augmenting
entity tags by performing similarity check over the database or
knowledge base. Similarly, [18] tries to find possible constant values
in the query by performing similarity matching.

Due to the limited nature of WikiSql dataset, having a single
table for each database, another important dataset called Spider
[42] is provided to the community. Consequently, many studies
proposed recently [5, 12, 33, 38, 41] have evaluated their solutions
on the Spider dataset. Different from the others, TaBERT [38] as a
transformer based encoder, makes use of database content to gen-
erate dynamic representations along with contextual encodings to
represent database columns. For a comprehensive survey covering
existing solutions in NLIDB, the reader can refer to [1, 21].

Similar to our work, Baik et al. [2] propose TEMPLAR, to be
augmented on top of existing NLIDB systems to improve keyword

820

mapping and therefore translation using query logs. Though, TEM-
PLAR is not a standalone mapper, since it requires from a NLIDB
system multiple preliminaries to function properly, including parsed
keywords and associated metadata with each keyword, which are
the main challenges yielded by the keyword mapping problem.
Therefore, the mapper cannot be plugged into NLIDB pipelines that
does not perform detailed keyword recognition and parsing.

Different from the previous works, DBTagger is an end-to-end
keyword mapper, which does not require any processing or external
source of knowledge. Also, to the best of our knowledge, our work
is the first study utilizing deep neural networks in a supervised
learning setup for keyword mapping.

4.2 Deep Learning Solutions for Sequence
Tagging in NLP

In NLP community, neural network architectures have been utilized
in many research problems. As a pioneer in the field, Collobert
et al. [9] proposed Convolutional Neural Networks (CNN) based
architecture with CRF layer on top to deal with the sequence tagging
problem. Yao et al. [36] applied LSTM in sequence tagging without
having CRF as the classification layer. Bi-directional RNN structure
was employed first in a speech recognition problem in [11].

Later, instead of simple RNN networks, bi-directional LSTM was
adopted and employed by Huang et al. [19] in NER problem. Fol-
lowing that study, Lample et al. [23] proposed a similar architecture
with the inclusion of word and character embeddings. They used
pre-trained word embeddings along with character level embed-
dings to extract input matrix to feed into the network. Their study
stand as the state-of-the-art in sequence tagging problems in NLP.
Similar to [23], Ma and Hovy [26] proposed a neural architecture
where character embeddings is done through CNN instead of LSTM.
For a comprehensive survey discussing the deep learning solutions
for research problems in NLP community, [39] is a great read.

5 CONCLUSION AND FUTURE WORK

In this paper, we present DBTagger, a keyword mapper to be used in
translation pipelines in NLIDB systems. DBTagger is a standalone
system which does not require any processing or external knowl-
edge such as parser or metadata preliminaries. Inspired by sequence
tagging architectures used for well known problems such as POS in
the NLP community, DBTagger utilizes a deep neural architecture
based on bi-directional GRUs. DBTagger provides the best accuracy
results on three publicly available databases and five schemas in
Spider dataset, producing keyword tags with 92.4% accuracy on
the average over all the datasets within 3 milliseconds, which is
10000 times faster than unsupervised approaches. Our results also
show that DBTagger is scalable to large databases containing mil-
lions of rows. We believe that DBTagger can be applied in existing
NLIDB systems as the first step to improve translation, especially
in pipeline-based systems. For the deep learning based approaches,
DBTagger can be utilized to be augmented on neural network to
enrich input query before feeding into network.

ACKNOWLEDGMENTS

This research is supported by The Scientific and Technological
Research Council of Turkey (TUBITAK) under the grant no 118E724.

[

REFERENCES

[1] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative

survey of recent natural language interfaces for databases. The VLDB Journal 28,
5 (2019), 793-819.

Christopher Baik, H. V. Jagadish, and Yunyao Li. 2019. Bridging the Semantic
Gap with SQL Query Logs in Natural Language Interfaces to Databases. In 2019
IEEE 35th International Conference on Data Engineering (ICDE °19).

Fuat Basik, Benjamin Héttasch, Amir Ilkhechi, Arif Usta, Shekar Ramaswamy,
Prasetya Utama, Nathaniel Weir, Carsten Binnig, and Ugur Cetintemel. 2018. DB-
Pal: A Learned NL-Interface for Databases. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD °18). 1765-1768.

Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. 2012. SODA: Generating SQL for Business Users. Proc. VLDB Endow.
5,10 (2012).

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics (ACL
’19). 4560-4565.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
for Computational Linguistics 5 (2017), 135-146.

Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41-75.
Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. 2015.
Gated Feedback Recurrent Neural Networks. In Proceedings of the 32nd Inter-
national Conference on International Conference on Machine Learning (ICML’15).
2067-2075.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. 2011. Natural Language Processing (Almost) from Scratch.
Journal of machine learning research 12, ARTICLE (2011), 2493-2537.

Timothy Dozat. 2016. Incorporating Nesterov Momentum into Adam. In Interna-
tional Conference on Learning Representations Workshop.

A. Graves, A. Mohamed, and G. Hinton. 2013. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing. 6645-6649.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Database
with Intermediate Representation. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (ACL ’'19). 4524-4535.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR ’16). 770-778.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalowicz, and Jonathan Slocum.
1978. Developing a Natural Language Interface to Complex Data. ACM Trans.
Database Syst. 3, 2 (1978), 105-147.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of
feature detectors. ArXiv abs/1207.0580 (2012).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
Computation 9, 8 (1997), 1735-1780.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR ’17). 4700-4708.
Po-Sen Huang, Chenglong Wang, Rishabh Singh, Wen-tau Yih, and Xiaodong He.
2018. Natural Language to Structured Query Generation via Meta-Learning. In
Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short
Papers) (NAACL ’18). 732-738.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for
Sequence Tagging. ArXiv abs/1508.01991 (2015).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke
Zettlemoyer. 2017. Learning a Neural Semantic Parser from User Feedback.
In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (ACL ’17). 963-973.

Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13,
10 (2020), 1737-1750.

[22] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Condi-

tional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence
Data. In Proceedings of the Eighteenth International Conference on Machine Learn-
ing (ICML °01). 282-289.

Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of the 2016 Conference of the North American Chapter of the Association

[24

[25

[26

&
=

[28

[29

(30]

(31]

@
&,

[33

[34

@
i

[36

(37]

[38

(39]

S
=

[41]

[42]

"~
&

(44

for Computational Linguistics: Human Language Technologies (NAACL ’16). 260—
270.
Fei Li and H. V. Jagadish. 2014. Constructing an Interactive Natural Language

Interface for Relational Databases. Proc. VLDB Endow. 8, 1 (2014), 73-84.
Yunyao Li and Davood Rafiei. 2017. Natural Language Data Management and

Interfaces: Recent Development and Open Challenges. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD °17). 1765-1770.
Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNSs-CREF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL ’16). 1064-1074.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.
Bethard, and David McClosky. 2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Association for Computational Linguistics (ACL) System
Demonstrations. 55-60.

Tomas Mikolov, G.s Corrado, Kai Chen, and Jeffrey Dean. 2013. Efficient Estima-
tion of Word Representations in Vector Space. In Proceedings of the International
Conference on Learning Representations (ICLR’13). 1-12.

George A. Miller. 1995. WordNet: A Lexical Database for English. Commun. ACM
38, 11 (1995), 39-41.

Fatma Ozcan, Abdul Quamar, Jaydeep Sen, Chuan Lei, and Vasilis Efthymiou.
2020. State of the Art and Open Challenges in Natural Language Interfaces
to Data. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (SIGMOD °20). 2629-2636.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a Theory of
Natural Language Interfaces to Databases. In Proceedings of the 8th International
Conference on Intelligent User Interfaces (IUI °03). 149-157.

Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, Umar Farooq
Minhas, Ashish R. Mittal, and Fatma Ozcan. 2016. ATHENA: An Ontology-
Driven System for Natural Language Querying over Relational Data Stores. Proc.
VLDB Endow. 9, 12 (2016).

Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir Ilkhechi,
Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hittasch, Steffen
Eger, Ugur Cetintemel, and Carsten Binnig. 2020. DBPal: A Fully Pluggable
NL2SQL Training Pipeline. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (SIGMOD °20). 2347-2361.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet: Generating structured
queries from natural language without reinforcement learning. arXiv preprint
arXiv:1711.04436 (2017).

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017. SQLizer:
Query Synthesis from Natural Language. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1-26.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey Zweig, and Yangyang
Shi. 2014. Spoken language understanding using long short-term memory neural
networks. In 2014 IEEE Spoken Language Technology Workshop (SLT). 189-194.
Semih Yavuz, Izzeddin Gur, Yu Su, and Xifeng Yan. 2018. What It Takes to Achieve
100% Condition Accuracy on WikiSQL. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP ’18). 1702-1711.
Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics (ACL °20). 8413-8426.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. 2018.
Recent trends in deep learning based natural language processing. IEEE Compu-
tational Intelligence Magazine 13, 3 (2018), 55-75.

Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018. TypeSQL:
Knowledge-Based Type-Aware Neural Text-to-SQL Generation. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 2 (Short Papers)
(NAACL 18). 588-594.

Tao Yu, Michihiro Yasunaga, Kai Yang, Rui Zhang, Dongxu Wang, Zifan Li,
and Dragomir Radev. 2018. SyntaxSQLNet: Syntax Tree Networks for Complex
and Cross-Domain Text-to-SQL Task. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing (EMNLP ’18). 1653-1663.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing (EMNLP ’18).
3911-3921.

Matthew D. Zeiler. 2012. ADADELTA: An Adaptive Learning Rate Method. ArXiv
abs/1212.5701 (2012).

Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

