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ABSTRACT
Persistent memory (PM) is increasingly being leveraged to build
hash-based indexing structures featuring cheap persistence, high
performance, and instant recovery, especially with the recent re-
lease of Intel Optane DC Persistent Memory Modules. However,
most of them are evaluated on DRAM-based emulators with unreal
assumptions, or focus on the evaluation of specific metrics with
important properties sidestepped. Thus, it is essential to understand
how well the proposed hash indexes perform on real PM and how
they differentiate from each other if a wider range of performance
metrics are considered.

To this end, this paper provides a comprehensive evaluation of
persistent hash tables. In particular, we focus on the evaluation
of six state-of-the-art hash tables including Level hashing, CCEH,
Dash, PCLHT, Clevel, and SOFT, with real PM hardware. Our eval-
uation was conducted using a unified benchmarking framework
and representative workloads. Besides characterizing common per-
formance properties, we also explore how hardware configurations
(such as PM bandwidth, CPU instructions, and NUMA) affect the
performance of PM-based hash tables. With our in-depth analy-
sis, we identify design trade-offs and good paradigms in prior arts,
and suggest desirable optimizations and directions for the future
development of PM-based hash tables.
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1 INTRODUCTION
Until now, various types of persistent memory based on differ-
ent physical mediums have been proposed [22, 59, 64]. Despite
this difference, persistent memory is commonly featured by byte-
addressability, direct persistence, and DRAM-scale latency. 3D
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XPoint is one of the well known PM technologies, and Intel Optane
DC PersistentMemoryModules (DCPMM) based on this technology
is the first-to-market PM product [43]. Recently, the performance
characteristics of Optane DCPMM were explored and evaluated
from both micro and macro perspectives [33, 63, 68]. Some insights
are drawn from these studies, and part of them are inconsistent
with previous assumptions. J. Yang et al. find that the actual behav-
iors of Optane DCPMM are more complicated and nuanced than
the slower, persistent DRAM label would suggest [68]. The perfor-
mance of applications on PM is highly coupled with the access size,
workload, pattern, and degree of concurrency compared to DRAM.
Contrary to the estimation made in previous work [61], Lersch et
al. [33] show that PM bandwidth is a scarce resource and has a
significant impact on performance. The results in [68] show that
end-to-end write latency is often lower than read latency. These
characteristics about PM hardware are ignored or not comprehen-
sively considered in existing studies like the design of PM data
structures. For example, given the incorrect assumption about the
asymmetric read/write performance, some prior works [46, 72] use
schemes that intentionally impose more PM reads to reduce PM
writes.

The advent of scalable persistent memory offers a new way to
address the issues that many practical applications or systems have
been facing. Among them, the hash indexing structure or hash
table, a fundamental component in many software systems [16, 36,
50, 53], can benefit from the new features of PM to achieve high
performance and instant recovery. There has been a new breed of
hash tables specifically designed for PM [31, 37, 46, 72, 73]. They are
either based on DRAM emulation [46, 72, 73], or designed for actual
PM [9, 37], or ported from existing hash tables [31]. It is unclear
how well these proposed hash tables (evaluated using emulators)
perform on real PM, how they differentiate from each other if a
wider range of performance metrics are considered, and how they
behave under specific hardware configurations such as NUMA
that is only available on certain CPU architectures (like Cascade
Lake [1]).

Inspired by existing circumstances, in this paper, we conduct
a comprehensive evaluation of hash tables on a system equipped
with DCPMM. We evaluate six PM-based hash tables including
Level hashing [72], CCEH [46], Dash [37], PCLHT [31], Clevel [9],
and SOFT [73], using a benchmarking framework that is an exten-
sion of PiBench [33] that provides a set of interfaces and a unified
testing environment for fair comparison. The six hash tables cover
a wide range of techniques in various dimensions, as detailed in
Section 3. Our experimental results obtained from running repre-
sentative workloads reveal important insights that can be adopted
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as guidelines for the future development of PM-based hash tables
(summarized in Section 5). Overall, we make the following contri-
butions.

• First, we leverage the PiBench framework in our hash table
evaluation with necessary extensions. In this way, we can
guarantee that the experimental results are comparable and
fair. Our benchmarking framework is publicly available at
https://github.com/daokunhu/HashEvaluation.

• Second, we evaluate PM-based concurrent hash tables from
both macro and micro perspectives. In addition to the com-
monly used metrics such as throughput, scalability, latency,
load factor, LLC misses, resizing overhead, memory usage,
and recovery overhead, we also consider the impact of PM
hardware such as DCPMM bandwidth, various combinations
of instructions, and NUMA architecture. The experiments
are all conducted on real PM hardware.

• Third, implications about design trade-offs, good paradigms,
and desirable optimizations are summarized, which can serve
as guidelines for future research and practical development
of PM-based hash tables.

The rest of this paper is organized as follows. Section 2 pro-
vides background on Intel Optane DCPMM and Persistent Memory
Development Kit (PMDK) [25]. We introduce the design and im-
plementation of six state-of-the-art hash tables in Section 3. The
evaluation results are discussed in Section 4. We summarize impor-
tant observations in Section 5. Related work and conclusion are
presented in Section 6 and Section 7 respectively.

2 BACKGROUND
This section first presents the background of Optane DC Persistent
Memory. Then, we briefly introduce PMDK that is the programming
framework commonly used to implement PM applications.

2.1 Optane DC Persistent Memory
Optane DC Persistent Memory (hereinafter referred to as Optane
DCPMM) is the first commercially available PM product that modi-
fies the traditional computer memory hierarchy by creating a new
non-volatile tier between the volatile DRAM and block-based stor-
age.

HardwareArchitecture.Optane DCPMMwas introducedwith
the Cascade Lake architecture [1], which supports multiple sockets
(2/4/8), each consisting of one or two processor dies that comprise
separate NUMA nodes [68]. The integrated memory controller
(iMC) on Cascade Lake is capable of interfacing with both DDR4
and Optane DCPMM DIMMs. To maintain data persistence, the
iMCs are located in the asynchronous DRAM refresh (ADR) domain
that can ensure CPU stores that arrive here will survive a power
failure [27]. The iMCmaintains both read and write pending queues
(RPQs and WPQs) for each Optane DCPMM, but only the WPQs
are in the ADR domain. Therefore, once data reaches the WPQs,
it will be flushed to PM by the iMC on a system crash. As the
3D-XPoint physical medium access granularity is 256 bytes, the
on-DIMM controller translates smaller requests into larger 256-
byte ones, causing write amplification as small stores become read-
modify-write operations. The on-DIMM controller has a small write-
combining buffer (referred to as XPBuffer [68]) to merge adjacent

writes. Similar to WPQs, the XPBuffer resides in the ADR domain.
Hence, all updates are already persistent when they arrive at the
XPBuffer.

Operatingmodes. Optane DCPMM can be configured to run in
Memory mode or App Direct mode [23]. Memory can be interleaved
across channels and DIMMs in each mode. Both modes allow direct
access to PM via load and store instructions. In Memory mode,
the DRAM acts as a cache for the most frequently-accessed data,
while the DCPMM provides large memory capacity without per-
sistence. In App Direct mode, applications and operating system
are explicitly aware there are two types of directly accessible mem-
ory using load/store instructions. It is worth noting that although
PM is persistent, CPU caches and registers are still volatile. Data
will be persisted in PM when a cacheline flush instruction, such
as clflush, clflushopt, or clwb, is executed or other events that
implicitly cause cacheline flush occur [37]. In order to ensure that
applications can recover from system crashes correctly, we must
use memory fences to avoid undesirable reorderings of instructions.
Since our main target is to evaluate the performance of PM-based
hash tables, we configure Optane DCPMM in the App Direct mode.

Performance. Although Optane DCPMM is designed to work
with direct and byte-addressable load/store access, it has lower
bandwidth and higher read/write latency than DRAM. As reported
in previous work [33], the read latency of Optane DCPMM is ~300
ns, which is 4x of that of DRAM (~75 ns). Moreover, it exhibits asym-
metric read/write latency. According to a more recent study [68],
end-to-end write latency as seen by the application is often lower
than read latency, because writes return once data reaches the ADR
domain at the memory controller. But reads have a high probability
of accessing the physical DCPMM medium if the data is not cached
in RPQs. The maximum sequential read and write bandwidth of
DCPMM is about 40 GB/s and 13 GB/s [68], which are about 3x and
11x lower than that of DDR4 DRAM, respectively. The asymmetric
bandwidth is more prominent for random reads and writes.

2.2 Programming Persistent Memory
On the one hand, PM allows us to build data structures that aremuch
faster than those requiring serialization or flushing to block-based
storage [58]. On the other hand, PM breaks the volatile-persistent
boundary between the traditional volatile memory and external
memory, creating a new boundary between processor cache and
PM. These changes make the programming of PM systems more
complicated, challenging, and error-prone [54]. For example, al-
gorithms must be carefully tailored to properly persist data by
flushing the CPU cache or using non-temporal store and memory
barrier to ensure data consistency. However, data consistency re-
quires the proper ordering of stores and making sure data is stored
persistently. To make a store (that writes more than 8 bytes) atomic,
we typically rely on certain mechanisms, such as redo/undo log-
ging [4, 26], copy-on-write [2, 39, 46], versioning [37], and hybrid
memory [65]. These mechanisms are complicated and error-prone.

These challenges can be addressed by employing a sound pro-
gramming model enforced by PM programming libraries [20, 25, 30,
40, 60]. In order to be consistent with the original implementation
of hash tables as most as possible, we use the libraries in PMDK to
map memory files, allocate PM memory, and persist data. Further-
more, we use xfs [10], a file system that has native DAX support
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(direct access to files backed by persistent memory) to organize and
manage PM data in our experiments.

3 PERSISTENT HASH TABLES
In this section, we briefly introduce six PM-based hash tables, includ-
ing Level hashing [72], Clevel hashing [9], CCEH [46], Dash [37],
PCLHT [31], and SOFT [73]. These hash tables can be classified into
the following categories: 1) converted from DRAM counterparts
or specifically designed for real PM hardware; 2) based on various
structures like separate chaining, open addressing, or extendible
hashing; 3) using different synchronizationmechanisms (lock-based
or lock-free); 4) using distinct resizing strategy (dynamic or static);
and 5) employing different crash-consistency mechanisms. We be-
lieve they are sufficiently representative.

3.1 Level Hashing and Clevel
Level hashing [72] is a write-optimized and scalable hash table
designed for persistent memory, featuring low overhead consis-
tency guarantee and cost-efficient resizing. Level hashing adopts a
sharing-based two-level structure to achieve constant-scale time
complexity. As shown in Figure 1(a), only the top-level buckets
are addressable, and buckets in the bottom-level are used to store
conflicting items evicted from the top-level buckets. Similar to the
PCM-friendly hash table (PFHT) [12], it has multiple slots in each
bucket and allows evicting at most one item when inserting an item
to a full bucket. It enables each key to have two target locations to
choose from (via two hash functions), like Cuckoo hashing [51], to
improve load factor.

In Level hashing, a four times larger hash table is created during
resizing, and the key-value pairs in bottom-level buckets are first
rehashed into the new table, then the buckets of the old bottom-
level are deleted. At this time, the new table becomes the top level,
while the previous top level becomes the bottom level. To achieve
low overhead consistency, it adopts log-free schemes in the op-
erations such as delete, insert, and resize, through a bitmap in
each bucket’s head. Level hashing relies on a slot-grained lock for
concurrency control, and no pointers are maintained in its data
structure. Although Level hashing shows improvement over pre-
vious work [12, 71], it has two shortcomings. First, it is a static
hashing scheme, and its rehashing overhead is still high. Second, it
was not evaluated on real PM.

Clevel is a lock-free concurrent hash table based on Level hash-
ing, and it proposes a dynamic multi-level structure to support
concurrency. Resizing is performed by background threads without
blocking concurrent queries.

3.2 CCEH
CCEH inherits the design of extendible hashing [15] to address the
issues of Level hashing, and is featured with low-overhead dynamic
memory management, constant lookup time, and failure-atomicity
guarantee without explicit logging. In traditional extendible hash-
ing, a directory is maintained to include pointers that store the
addresses of buckets. When the number of buckets increases, the di-
rectory may consume a large amount of memory, making it unable
to reside in CPU cache. As a result, CCEH proposes an intermediate
layer (referred to as segment) between the directory and buckets
to reduce the number of pointers used to address buckets. This

structure is illustrated in Figure 1(b), where a directory entry points
to a segment that consists of a fixed number of buckets indexed by
the L least significant bits (LSBs) of hash values, and the segments
are indexed by the G most significant bits (MSBs) of hash values.
By combining multiple buckets into a segment, the directory re-
mains significantly smaller as fewer bits are required to address the
segments.

When a collision happens upon inserting an item and the tar-
get bucket is full, instead of splitting the bucket (as in traditional
extendible hashing), CCEH splits the segment to expand capacity.
However, segment splitting would result in low load factors and
more PM accesses, because other buckets in the segment may still
have free slots. Thus, CCEH uses linear probing (before splitting) in
attempt to improve space utilization. After the segment splitting is
completed, some items need to bemigrated to the newly created seg-
ment. CCEH uses a lazy deletion strategy to make sure the migrated
items in the old segment do not need to be cleaned immediately,
since they will be ignored by search operations and overwritten by
insert operations. In this way, extra writes are avoided.

3.3 Dynamic and Scalable Hashing (Dash)
Dash [37] is a holistic approach to building dynamic and scalable
hash tables. It is adapted to implement extendible hashing and linear
hashing denoted as Dash-EH and DASH-LH. Similar to CCEH [46],
Dash leverages a three-level structure consisting of a directory and
a number of segments that are composed of numerous buckets. Fig-
ure 1(c) shows the structure of Dash (Dash-EH) based on extendible
hashing. A directory entry points to a segment which consists of
64 normal buckets and two stash buckets used to store overflowed
key-value pairs. Both normal and stash bucket share the same lay-
out, as shown in Figure 1(c) (below). Each bucket is 256 bytes in
size, and has 32-byte metadata in its head, which is followed by 14
key-value pairs.

Dash employs techniques such as balanced insert, displacement,
and stashing to address the issue of low load factor in CCEH. To
insert a key, it first calculates the segment index s and bucket index
b by the key’s hash value, then it finds an empty slot in the less full
bucket b or b+1 (as shown in Figure 1(c) above) according to the
allocation bitmap in the metadata. If both of the buckets b and b+1
are full, a displacement operation is triggered to make room for the
new key being inserted. A membership bitmap is maintained in the
metadata to accelerate displacement. The key will be inserted into
a stash bucket if both of the two operations (balanced insert and
displacement) fail. If the insert operation is successful, the original
bucket’s overflow flag is updated; otherwise, a segment splitting
happens. In the worst case, Dash has to probe bucket b, b+1, and
stash buckets for a query, incurring more cache misses and PM
reads. The fingerprints, which are one-byte hash values of keys,
are maintained in the metadata to accelerate negative queries.

Dash uses optimistic concurrency control, and employs a bucket-
level CAS lock for the insert operation. The search operation in
Dash is lock-free, but we need to verify the keys returned.

3.4 PCLHT
Persistent Cache-Line Hash Table (PCLHT) is a chaining-based
concurrent crash-consistent hash table discussed in RECIPE [31]. It
is a variant of the DRAM-based hash table CLHT [11].
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Overall structure of Dash-EH

Bucket layout of Dash-EH

(a) Level hashing with 4 slots per bucket. Top bucket Tb2n-2 and 
Tb2n-1 share the same bottom bucket Bbn.

(b)  Cacheline-Conscious Extendible Hashing (CCEH). (c)  Structure of Dash-EH. Overall structure of Dash-EH 
with n segments (above);  Layout of a bucket (below).
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Figure 1: Structure of three PM-based hash tables. (a) Level hashing; (b) CCEH; (c) Dynamic and Scalable Hashing (Dash).

CLHT is cache-friendly because its bucket is 64-byte in size (a
common cacheline size). Each bucket contains an 8-byte word for
concurrency control, a next pointer, and at most three 16-byte key-
value pairs. This design aims at addressing the cache coherence
problem by ensuring that each update to the hash table requires
only one cacheline access in ordinary cases. To ensure that a non-
blocking read finds the correct result, CLHT uses atomic snapshot
of bucket for write operations. The insert and delete operation both
use a single atomic commit point that is ordered by memory fences:
writing the correct value first before updating the 8-byte key (for
insert) or writing 0 to the key (for delete). If an insert fails because
the table is full, then CLHT resizes the table using a copy-on-write
method.

Because the operations like insert, delete, and resize are imple-
mented via a single atomic store, they can be converted to persistent
counterparts by simply inserting cacheline flushes and memory
fences after corresponding store instructions.

3.5 SOFT
SOFT [73] is a chaining-based lock-free hash table proposed to
avoid persisting any pointers in the data structure. SOFT has two
main components, i.e., persistent node (PNode) and volatile node
(VNode). The PNode contains a key-value pair and three validity
bits. The VNode consists of a key-value pair and two pointers:
one pointing to the PNode with the same key-value pair, and the
other pointing to the next VNode. Only PNodes are persisted in
PM, and all VNodes are stored in DRAM. The resizing operation
is not implemented in SOFT. When inserting a key, a new PNode
and a new VNode are allocated, and the VNode will be linked to an
existing VNode atomically (via CAS). The delete operation shares
a similar process with the insert operation except that nodes are
removed instead. SOFT can recover from a system crash by scanning
the PNodes in PM and rebuilding the structure in DRAM.

3.6 Summary
We summarize the characteristics of hash tables discussed above in
Table 1, including data structures, concurrency control mechanisms,
memory architectures, and resizing strategies. These techniques
are commonly used in the design of PM hash tables.

Structure. CCEH and Dash both use a directory-segment based
structure. This three-layer structure is more space-efficient than
traditional extendible hashing. Level hashing uses a sharing-based

two-level structure, which offers constant-scale time complexity
for writes. PCLHT and SOFT are both chaining-based design using
pointers to link buckets (or nodes).

Concurrency. Except SOFT and Clevel, all other hash tables are
lock-based. Level hashing uses slot-grained locking, CCEH adapts
two-level reader/writer locking, and PCLHT uses bucket-grained
locking. Dash employs a optimistic locking scheme, and writes are
protected by bucket-grained lock, while reads are lock-free.

Architecture. SOFT stores volatile nodes and persistent nodes
in DRAM and PM respectively. This hybrid architecture make it
possible to achieve near DRAM performance, but it suffers from
long recovery time, depending on the size of the structure that
needs to be rebuilt in DRAM. The other four hash tables store all
data in PM, which may suffer from longer read/write latency.

Resizing. Both CCEH and Dash split segment to expand space.
Segment splitting incurs much fewer PM accesses than whole table
rehashing. In addition, CCEH employs a strategy called lazy deletion
to further reduce the overhead of segment splitting. In PCLHT and
Level hashing, the resizing operation doubles the size of the hash
table. But the bucket-sharing structure of Level hashing enables it
to reuses 2/3 of buckets during resizing. The resizing operation of
Clevel is lock-free. SOFT does not support resizing.

4 EXPERIMENTAL EVALUATION

4.1 Environment and Setup
Hardware Configuration. Our experiments were performed on
a Linux server (kernel version 5.0.0) that is equipped with two Intel
Xeon Gold 5218 CPUs that both are clocked at 2.3GHz and have 16
cores, 32 hyperthreads, 32KB L1 instruction cache, 32KB L1 data
cache, and 1024KB L2 cache. The last level cache is 22MB in size.
The memory system includes 192GB of DDR4 DRAM and 768GB
of Optane DCPMM (6 x 128 GB DCPMMs) configured in the App
Direct mode. In the evaluation of multi-threaded performance and
NUMA, we use two CPUs. In other cases, only one CPU is used and
the DCPMMs are all installed with this CPU.

Parameters. To perform a fair comparison among all hash ta-
bles, we use the configuration as presented in their original papers
except Level hashing. The default size of keys and values in Level
hashing is 16 bytes and 15 bytes respectively. Thus, a bucket with 3
slots and a 3-byte token can be aligned to 128 bytes (two cachelines).
We choose to store keys and values using 8 bytes, because other
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Table 1: Comparison of persistent hash tables.

Structure Concurrency Architecture Resizing

Level hashing Open addressing (two-level) Locking PM-only Doubling
CCEH Extendible hashing Selective (locking & lock-free) PM-only Splitting
Dash Extendible hashing Optimistic locking PM-only Splitting
PCLHT Separate chaining Locking PM-only Doubling
SOFT Separate chaining Lock-free DRAM (VNode) + PM (PNode) –
Clevel Open addressing (multi-level) Lock-free PM-only Doubling

hash tables only support this configuration. Thus, we set the bucket
size of Level hashing to 64 bytes. CCEH uses 16KB segments and
64-byte buckets (4 slots), and probes at most 4 cachelines (4 buckets,
16 slots, 256 bytes). In Dash, a bucket has 14 slots that consume 256
bytes memory, and a segment contains 64 normal buckets and 2
stash buckets. PCLHT is chaining-based, and its bucket is aligned
to 64 bytes. SOFT is also chaining-based with one key-value pair in
each node, and it creates and destroys node on demand.

Implementation. For CCEH, Level, PCLHT, and SOFT, we use
the library libvmem [24] of PMDK [25] to manage PM memory. For
Dash, we directly adopt its original implementation, which uses
the interfaces provided by libpmem and libpmemobj in PMDK for
crash-safe PM management. For Clevel, we also use its original
implementation using PMDK with C++ bindings. For cacheline
flush, we use the clwb instruction for better performance [31]. As
for the hash function, we employ GCC’s std::Hash_bytes that is
also used in previous studies [33, 46, 72], because it is known to be
fast and provides high-quality hashes [37]. All hash tables do not
allow duplicate keys.

Benchmark Framework. Due to its easy adoption and well-
designed architecture, we leverage the PiBench [33] framework in
our evaluation with necessary extensions. It collects a wide range
of metrics, including throughput, latency, and hardware counters
using the Processor Counter Monitor (PCM) library [13] through
well-defined interfaces that can invoke common operations of in-
dexing structures, such as insert, search, delete, and update etc. We
extend PiBench with functionalities that are specific to evaluating
hash tables, such as load factor, utilization, resize latency, recovery
time, and the number of instructions targeting PM (cache flushing
and memory fence). To evaluate a specific hash table, we simply
need to implement the interfaces defined by PiBench and encap-
sulate them in a shared library, which can be loaded by PiBench
at runtime to invoke the corresponding interfaces. Moreover, we
use the three random distributions offered by PiBench in workload
generation, i.e., uniform, self similar, and zipfian.

Workloads.We stress test each hash table with individual oper-
ations (insert, positive and negative search, and delete) and mixed
workloads. Negative search means searching keys that do not exist.
Unless otherwise stated, we use the following method to generate
workloads for corresponding experiments. We initialize hash tables
with a capacity that can accommodate 16M key-value pairs except
SOFT. Because SOFT creates and destroys nodes on demand, and
we initialize it with 16M head nodes (the head node of a list is
not used for data storage). To measure insert-only performance,
we insert 200M records into an empty hash table directly. To mea-
sure the performance of the search and delete operation and the
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mixed workloads, we first initialize the hash table with 200M items
(loading phase), then execute 200M operations to perform the mea-
surements (measuring phase). Similar to prior studies [33, 37], we
run the experiments with workloads using uniform distribution
and skewed distribution (self similar with a factor of 0.2, which
means 80% of accesses focus on 20% of keys). Since CCEH, Level
hashing, and PCLHT have no support for variable-length keys and
values, we only consider fixed-length (8 bytes) keys and values.

4.2 Single-threaded Performance
We start our evaluation with the analysis of single-threaded perfor-
mance. The results are shown in Figure 2.

Search. Search is the most basic operation of hash tables since
updates to hash tables (such as insert and delete) need to confirm
whether a certain key exists at first. PCLHT has the highest perfor-
mance in positive search, which benefits from its design philoso-
phy [11]: the search operation should not involve any stores, waiting,
or retries. In addition, PCLHT performs a full-table rehashing to
expand capacity, which ensures its chaining-based bucket is short
enough to obtain constant time search performance when the hash
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table is nearly full. To illustrate more clearly, we collect the last
level cache (LLC) misses when running the search-only workload.
As shown in Figure 3(b), the number of LLC misses of PCLHT is the
lowest, and PCLHT only needs 1.4 cacheline accesses on average
per search. Besides, PCLHT reads less data as shown in Figure 3(a).
In comparison, SOFT needs to traverse its long chained buckets,
which incurs the largest number LLC misses (see Figure 3(b)). Fortu-
nately, SOFT reads keys from VNodes stored in DRAM (zero reads
from PM shown in Figure 3(a)). We also notice that SOFT achieves
higher throughput in positive search than in negative (1.4x and
2.0x under uniform and skewed distribution respectively). Because
SOFT needs to traverse all nodes in negative search, causing more
LLC misses (see Figure 3(b)).

Dash maintains a fingerprint array in the metadata, which can
help avoid unnecessary PM accesses. With this optimization, Dash
achieves the highest throughput in negative search. To find an ex-
isting item, Dash needs to probe 4 buckets (target bucket, neighbor
bucket, and two stash buckets) in the worst case, while CCEH needs
to probe 5 consecutive buckets. It means that Dash needs to access
4 XPlines in the XPBuffer in the worst case, while CCEH only needs
to access 2 XPlines at most. Consequently, Dash reads more data
(about 1.3x of CCEH) from PM (see Figure 3(a)), leading to slightly
lower throughput in positive search compared to CCEH. Clevel
reads much more data from PM than all other hash tables, since it
needs to probe all levels in the hash table and dereference pointers
to get the final key-value pairs. As a result, Clevel has the lowest
throughput.

Insert. To insert a record, we first search the hash table to make
sure no record with the same key exists. Thus, the insert perfor-
mance relies on how the search operation behaves.

As shown in Figure 2(a), for the insert-only workload with uni-
form distribution, the throughput of SOFT and CCEH is close to
each other. As the insert-only workload would inevitably trigger
table resizing if the initial capacity of hash tables is less than the
total size of items to be inserted. Thus, the resizing overhead has a
non-trivial impact on insert throughput. Level hashing and PCLHT
exhibit lower insert throughput because of their time-consuming
resizing operation, which incurs a large amount of extra PM writes.
In addition, as Level hashing exhibits a lower search performance,
its throughput falls behind PCLHT. As for CCEH and Dash, they
have similar resizing overhead and search performance, but CCEH
shows higher throughput because it needs fewer cacheline flushes
per insert (see Figure 3(b)) and writes less data to PM (see Fig-
ure 3(a)). Because the skewed distribution generates duplicate keys,
the throughput in this case is slightly different. PCLHT’s through-
put is improved greatly since its resizing overhead is decreased
(fewer keys to be rehashed). Clevel has the lowest throughput, as it
needs to dynamically allocate memory for the items being inserted
and record a log entry for each item to guarantee crash consistency.

Delete. The performance of delete operation is also related to
search performance, because before deleting a key, we need to
check whether the key exists. The delete operation involves multi-
ple reads but only one write. Hence, the delete performance shows
a similar trend with positive search (keys to be deleted exist). SOFT
frees the node after the key is deleted. This means the size of its
linked list shrinks as more keys are deleted. With fewer nodes to
probe, SOFT can perform the search operation faster. Thus, SOFT

achieves the highest throughput for workloads under both uniform
and skewed distribution. Comparatively, the delete throughput of
PCLHT is lower than that of SOFT, even it exhibits outstanding
search performance. This is due to the fact that PCLHT just marks
a key as invalid, but the nodes containing the deleted keys remain,
resulting in extra checks during searching. Under uniform distri-
bution, Dash, CCEH, and SOFT exhibit similar performance. Due
to its poor search performance, Clevel’s delete throughput is also
quite low.

4.3 Multi-threaded Performance
We use the same configurations as in Section 4.2 to evaluate multi-
threaded performance. The results are shown in Figure 4, and Fig-
ure 5. Among the mixed workloads, the write heavy workload
consists of 80% inserts and 20% searches, the balanced workload
consists of 50% inserts and 50% searches, and the read heavy work-
load comprises 20% inserts and 80% searches.

Search. For the search operation, all hash tables scale well when
the number of threads is less than 32, as shown in Figure 4(b)(c)(f)(g).
PCLHT performs best, and this is consistent with its single-threaded
performance. In particular, PCLHT shows excellent performance
for negative search under skewed distribution, achieving 60Mops/s
of throughput at 64 threads, which is 1.2x/2.2x/3.1x/4.3/7.1x of
Dash/SOFT/Level/CCEH/Clevel. SOFT is a dynamic lock-free hash
scheme and its search operation only accesses DRAM, which guar-
antees its good search performance. However, SOFT uses pointers
to link nodes like PCLHT and does not resize the hash table. Hence,
the length of the linked list would limit its overall search through-
put. For Dash, threads can proceed without holding any locks for
reads, which makes it achieve good scalability. The fingerprint-
ing technique employed by Dash can indeed improve its negative
search throughput, since it can filter negative lookups to PM. As a
result, Dash outperforms PCLHT in negative search under uniform
distribution (see Figure 4(c)). For the skewed workload, PCLHT is
slightly better than Dash in negative search because much less of
data (20%) is accessed compared to the uniform distribution. CCEH
underperforms Dash due to its usage of pessimistic locking even
for reads. In general, hash tables with non-blocking read can obtain
higher search performance.

Insert. SOFT achieves significantly better insert performance
than others under both workload distributions. As depicted in Fig-
ure 4(a)(e), its throughput is up to 14.7x and 13.7x of Level hashing
under uniform and skewed distribution respectively, when the num-
ber of threads reaches 32. SOFT’s outstanding insert performance
can be attributed to four aspects: (1) It is lock-free. (2) It completely
avoid persisting any pointers in the data structure. (3) It uses the
least amount of flush instructions (Figure 3(b)). (4) The number of
fence instructions per operation is close to the theoretical minimum
(Figure 3(b)). Given that Dash needs to move items among buck-
ets to deal with collisions, which incurs more flushes and writes,
its throughput is slightly lower than that of CCEH. Level hashing
exhibits the lowest throughput because the whole table is locked
during resizing. In addition, Level hashing needs to delete items in
buckets during resizing. This causes a lot of extra cache flushes and
PM writes. Similar to Level hashing, PCLHT’s surprisingly inferior
insert performance is due to its resizing cost (the second-largest
overhead detailed in Section 4.6). Clevel inherits the design of Level
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Figure 4: Multi-threaded throughput of uniform (left) and skewed (right) distribution workloads.
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Figure 5: Multi-threaded throughput of mixed workloads under uniform (left) and skewed (right) distribution workloads.

hashing, so their insert performance is close to each other even
Clevel has a lock-free optimization for resizing.

Delete. Similar to the insert operation, SOFT outperforms oth-
ers significantly under the delete-only workload, as illustrated in
Figure 4(d)(h). PCLHT has lower single-threaded performance for
delete compared to CCEH and Dash (see Figure 2). But PCLHT
performs better in the multi-threaded case. Because the delete op-
eration involves both reads and writes, and PCLHT causes fewer
reads but comparable writes with CCEH and Dash, resulting in
more effective bandwidth utilization.

Mixed. To measure the performance of mixed workloads, we
initialize hash tables with 200M records, then execute 200M oper-
ations with different read/write ratios. PCLHT achieves the best
performance in all situations. Compared to the insert-only work-
load, PCLHT reaches a higher throughput in the write heavy sce-
nario. The reason is that we insert 200M items before measuring
the performance, which indicates free buckets are adequate and
no resizing is triggered in this case. With the increasing of the per-
centage of search operations (comparing the write-heavy, balanced,
and read-heavy workload), the throughput of PCLHT increases
from 19Mops/s to 32Mops/s steadily under uniform distribution,
and reaches approximately 47Mops/s under skewed distribution.
CCEH, Dash, and SOFT exhibit identical trend for both write heavy
and balanced workload.

Most hash tables achieve theirmaximum throughput at 32 threads.
However, there are two exceptions. (1) SOFT achieves a continu-
ous growth in throughput for the delete-only workload. This is
because SOFT looks for keys in DRAM, so read accesses to PM are
avoided. In addition, SOFT incurs less writes to PM as indicated
in Figure 3(a). (2) PCLHT does not level off until 64 threads under
mixed workload. This is because PCLHT has fewer reads/writes
per operation than others, and more operations can be processed
under the same bandwidth constrains.

4.4 DCPMM Scalability
To observe how the throughput scales with the number of DCPMMs,
we rerun the multi-threaded benchmarks in Section 4.3 with only
one DCPMM enabled. We define a metric throughput ratio, which
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Figure 6: Scalability in throughput by comparing a single
DCPMM with six interleaved DCPMMs (uniform).

is computed by dividing the throughput of using all six DCPMMs
(interleaved) by that of using one DCPMM, to illustrate DCPMM
scalability. A larger value of ratio indicates better DCPMM scalabil-
ity. The maximum ratio is 6 if the throughput scales ideally. Figure 6
shows the results obtained by running different number of threads.
CCEH and Dash have a larger throughput ratio especially with
more threads stressing the PM subsystem, which means that their
throughput can be improved by adding more DCPMMs. However,
more DCPMMs does not necessarily lead to noticeable improve-
ment in throughput even with a large amount of threads. This is
the case for Level hashing and SOFT. Level hashing has a through-
put ratio of about 1 for insert-only and mixed workload, while its
maximum ratio is below 2 in the case of positive search. SOFT is a
hybrid memory design that imposes more pressure on DRAM, so
its throughput is not sensitive to the number of DCPMMs. For the
search workload, SOFT’s throughput ratio is approximately 1 no
matter how many threads are used.

In summary, for PM bandwidth hungry hash tables, allocating
more DCPMMs could effectively increase the performance. For oth-
ers, we observe only marginal returns with additional DCPMMs
installed. In particular, for hybrid memory designs such as SOFT,
systems should be configured with an appropriate amount of DCP-
MMs, leaving more DIMM slots for DRAM, as the capacity and
bandwidth of DRAM may contribute more to the overall perfor-
mance. However, determining the optimal number of DCPMMs and
threads is out of the scope of this paper.
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4.5 Latency
In general, large scale systems suffer from unpredictable high-
percentile (tail) latency variations [44]. Tail latency reflects the
response time of most operations, but some designs sacrifice tail
latency for higher throughput [19]. We collect experimental results
under uniform distribution to exclude caching effects and achieve
more stable access patterns. We measured single-threaded tail la-
tency, but did not obtain additional insights. Thus, we only present
the results of multi-threaded experiments in Figure 7.
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Figure 7: Tail latency at different percentiles under uniform
distribution with 32 threads.

Insert. All hash tables suffer from high latency except for SOFT,
which employs a lock-free concurrency control mechanism and a
hybrid memory architecture. Concretely, the tail latencies of CCEH,
Level, Dash, Clevel, PCLHT and SOFT increase to milliseconds
(about 1.6ms, 0.2ms, 2.3ms, 46ms, 0.7ms and 0.02ms respectively)
at 99.999 percentile. In the worst case, their latencies are about
8ms, 58751ms (resizing triggered), 16ms, 325ms, 31134ms (resizing
triggered), and 42ms respectively. Meanwhile, the tail latencies of
CCEH and Dash surpass that of others from 99.9 percentile, because
of structural modifications (e.g., segment splitting).

Search. The tail latency of search depends more on concurrency
control mechanisms. Thus, CCEH has the highest tail latency be-
cause it uses pessimistic locking. But for negative search, it remains
almost fixed, since negative search needs to traverse all the target
buckets to make sure a specific item does not exist. Concretely, the
tail latencies for positive/negative search of CCEH, Level, Dash,
Clevel, PCLHT and SOFT are in the scale of several microseconds
(about 18/18µs, 10/12µs, 7/7µs, 18/60µs, 6/7µs, and 9/10µs respec-
tively) at 99.999 percentile.

Delete. The delete operation may result in multiple reads. There-
fore, the latency for the delete operation is tightly bound to search
overhead. Notably, SOFT exhibits the lowest latency. This is be-
cause SOFT destroys the target node after deleting the records,
making its chaining-based buckets shorter. The delete latencies of
CCEH, Level, Dash, Clevel, PCLHT and SOFT are tens of microsec-
onds (about 34µs, 26µs, 58µs, 67µs, 23µs and 18µs respectively) at
99.999 percentile.

4.6 Resizing
Resizing is indispensable for hash tables that demand dynamic
capacity expanding. We perform experiments on resizing using the
insert workload described in Section 4.1. The results are shown
in Figure 8. We can see that the resizing overhead should not be
overlooked. CCEH consists of two operations to expand its capacity.
One is segment splitting that has a constant cost of approximately
37.9𝜇s and does not depend on the size of the hash table. The other
is directory doubling, whose overhead scales with the table size.
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It takes 4.2ms to double the size of the directory when we insert
112M items to trigger this operation. The resizing overhead of Level
hashing and PCLHT is much higher, and also increases with the
table size. The resizing cost of Dash is sightly higher than CCEH’s
for both segment splitting and directory doubling (see the curves
marked with suffixes "_S" and "_D").

CCEH achieves the smallest resizing overhead. The reason is that
CCEH only splits the segment one at a time, and the items copied
to the new segment remain intact in the old segment (lazy deletion).
The structure of Dash is analogous to CCEH. The difference is
that Dash maintains 32 bytes metadata in each bucket and items
moved to the new segment are deleted in the old segment, which
implies that it needs to write more data to PM during resizing.
Hence, the segment splitting in Dash is more time consuming (
55.6𝜇s on average) than that in CCEH, while the cost of doubling
the directory is similar between them. Dash takes 4.2ms to expand
the directory at the point when we insert 117M items. Although
the structure of Level hashing allows it to reduce the number of
rehashes during resizing, its overhead is still higher than that of
dynamic hash tables. The resizing operation in Level hashing can
be divided into 3 steps: (1) Create a new table; (2) Lock the whole
table and move the items of the bottom level to the new table; (3)
Free the bottom level table. The buckets of the bottom level are
used to store conflicting items from the top level. After resizing,
the new bottom level may be too full to store any items. Therefore,
when a collision happens in the new top level, it has to resize again.
Worse, in the process of resizing, Level hashing needs to delete the
items of the original bottom level to maintain consistency, causing
extra writes to PM [46, 72]. The resizing strategy in Level hashing
leads to high overhead. Concretely, its resizing operation takes over
58.8s at the point when we insert 172M items. Similarly, PCLHT
needs to rehash the whole table in resizing. It locks the entire hash
table and creates a new table with doubled capacity, then rehashes
all items to the new one. At last, the old table is freed, instead of
deleting the items in the old table as Level hashing does. As a result,
PCLHT achieves lower resizing cost than Level hashing, but it is
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Figure 10: Load factor of different hash tables with respect
to the number of items inserted.
still comparatively high. For example, it takes 31.1s to resize the
table when 105M items are inserted.

In addition, we compare the resizing time and the total execution
time in Figure 9. Level hashing spends a significant amount of time
(24.8%) on resizing, and this ratio is 13.6% for PCLHT. CCEH and
Dash have similar resizing cost (5.0% vs 5.8%). Since Clevel performs
resizing using background threads that run in parallel with query
processing threads, its cost of resizing is effectively hidden.

4.7 Load Factor
Load factor is a key metric for hash tables, and it is defined as the
number of occupied slots in the hash table divided by the total
number of slots. We measure the load factor using the insert work-
load introduced in Section 4.1, and Figure 10 depicts the results.
CCEH has the lowest load factor since it employs a short probing
distance by default to solve hash collisions until a segment splitting
is triggered. Because its default probing distance is 4 cachelines
that can contain 4 buckets or 16 slots, a hash collision may cause
premature segment splitting even other buckets in the segment
have free slots. This is the reason why CCEH’s load factor can only
reach 44% under the default probing distance. When the probing
distance is set to 64 (256 slots), the load factor can be increased up
to 92% [46]. However, a long probing distance would deteriorate its
performance.

Dash, Level hashing, Clevel, and PCLHT achieves higher load
factor through dedicated optimizations, and the maximum load
factors for them are 86%, 79%, 83%, and 83% respectively. Dash
solves the issue of premature segment splitting in CCEH using
techniques such as stashing, balanced insert, and displacement.
Level hashing and Clevel enable each key to have two locations
to choose from (similar to cuckoo hashing) before resizing, which
improves load factor. The chaining-based PCLHT makes it more
flexible to accommodate conflicting items than the open addressing
design. Notably, the load factor of CCEH and Dash do not drop
significantly (halved) during resizing like PCLHT and Level hashing,
since they only split one segment to expand the table. The load
factor of SOFT is 100%, because it creates and destroys nodes on
demand, and no free space like free slots or buckets is maintained.

Overall, the essential strategy to optimize the load factor in all
hash tables but SOFT is to probe more standby buckets. However,
this contradicts with the goal of achieving high throughput. On the
contrary, we cannot blindly try to improve performance at the cost
of maintaining a large amount of unutilized memory.

4.8 Memory Utilization
Hashing indexes may intend to sacrifice memory space for achiev-
ing certain design goals. For example, it is common to maintain
extra metadata to improve query performance, and to make buckets

Table 2: Comparison of the memory utilization.

CCEH Level Dash PCLHT SOFT Clevel

Utilization(%) 43.9 52.6 74.6 62.2 22.2 55.3

Table 3: Comparison of the recovery time (milliseconds).

Scale CCEH Level Dash PCLHT SOFT Clevel

50M 44.2 30.0 30.1 30.0 12981.6 30.0
100M 60.7 30.0 30.1 30.0 31549.4 30.0
150M 72.6 30.0 30.1 30.0 55779.9 30.0
200M 94.9 30.0 30.1 30.0 84786.2 30.0

cacheline-aligned (with unused bits) to optimize cache access. Here,
we measure the memory utilization of hash tables, and the results
are shown in Table 2. The utilization is defined as the ratio between
the actual memory consumption of key-value pairs and the total
memory allocated. The memory utilization of SOFT is quite low
(about 22%) as it maintains an extra copy of data in DRAM. But if we
consider PM storage solely, SOFT reaches nearly 100% utilization
because only the actual data plus 3 validity bits are stored in PM.
Level hashing’s maximum memory utilization is about 52.6% be-
cause it includes 13 unused bytes in each bucket to align the buckets
to a cacheline. The original implementation of Level hashing has a
higher memory utilization because its bucket is more space efficient
(4 key-value pairs each consisting of a 16-byte key and a 15-byte
value, and 1-byte token), and the bucket is aligned to 2 cachelines.
For CCEH, the pointers stored in the directory are the only extra
space consumption, but its memory utilization is quite low (only
44.0%) because of its linear probing design that result in low load
factor.

Although each bucket (256 bytes) of Dash has 32 bytes metadata,
the memory utilization reaches 74.6% due to its special optimiza-
tions to improve load factor. The memory utilization of PCLHT is
62.2%. Each bucket (64 bytes) in PCLHT contains an 8-byte word
for concurrency control and a next pointer in addition to three key-
value pairs. Clevel needs to store pointers that point to key-value
pairs, and its memory utilization is 55.3%.

4.9 Recovery
Recovery is necessary for table rebuilding and inconsistency clean-
ing when a system crash or a power failure occurs. The original
PCLHT lacks recovery implementation, so we implement its re-
covery procedure according to the mechanisms adopted by static
hashing schemes. The recovery time is measured as follows. First, a
number of key-value pairs are loaded. Second, the process is killed
manually. Third, we restart the process, and record the time dura-
tion between the point at which the process starts and the point the
process is ready to handle incoming requests. Thus, the recovery
time consists of two components. One is the time needed to start
a process, and it is system specific and normally constant (around
30ms on our test machine). The other is the time required to restore
hash specific structures.

The results are shown in Table 3. Level hashing, Clevel, and
PCLHT exhibit constant recovery time (almost negligible if the
process starting time is excluded), because they only need to check
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Figure 11: Breakdown of data written to PM.

if there is a unfinished resizing operation. In particular, PCLHT
simply concerns if a new table was created but failed to be properly
initialized. If it is the case, the new table is deallocated and the re-
sizing operation is rerun. Otherwise, the process can serve requests
immediately. Level hashing examines if the pointer that points to
the new top level is null (indicating an incomplete resizing). It deals
with inconsistency similar to PCLHT. For Clevel, besides checking
the consistency of rehashing, it also needs to check memory leaks
in order to release unused memory.

CCEH’s recovery time scales with data size, since it needs to
traverse the directory for inconsistency checking. Dash behaves
similarly, but its overhead is amortized over segment accesses after
recovering. Therefore, the recovery time of Dash is lower than
that of CCEH. SOFT maintains structural information in DRAM. In
addition to a full traversal of data on PM, it is required for SOFT to
reconstruct the structure in DRAM. As a result, its recovery time is
3 orders of magnitude larger than others.

4.10 Breakdown of Data Written to PM
Recall that when inserting items, the average size of data written
to PM is much larger than the actual size of key-value pairs as
shown in Figure 3(a). In order to understand this phenomenon,
we conduct the following experiments. We breakdown the total
amount of data written to PM (denoted as total data) when in-
serting 2M key-value pairs (3.2GB), into five parts (except Clevel)
that include: (1) allocator, data written due to dynamic memory
allocation/deallocation; (2) resize, data written during the resiz-
ing operation; (3) K-V, the actual size of key-value pairs; (4) lock,
extra data incurred by lock/unlock primitives; and (5) others. We
use the PCM tool to measure the size of allocator and resize
directly, and collect the results for lock through source code in-
strumentation because it is too time consuming to measure 2M
invocations of locks using the API provided by PCM. Results are
shown in Figure 11.

Allocator. Both Dash and CCEH need to allocate memory for a
new segment when segment splitting happens. Dash causes ~8.5GB
(18%) extra data in memory allocation, while it is only ~3.9GB
(13%) for CCEH. The reason for this discrepancy is that they use
different memory allocators. Dash depends on libpmemobj that
needs to create logs for crash-safety, while CCEH uses libvmem
that has not crash-safety guarantee. PCLHT and SOFT produce
~4.4GB (11%) and ~3.5GB (28%) of data in allocators. For Level hash-
ing, the data volume is ~41 MB, because it triggers memory allo-
cations only when the resizing is required. Clevel uses the API
make_persistent_object of PMDK to allocate memory, which is
coupled with data copy. Hence, we cannot accurately measure how
much data is generated from allocator without modifying the
source code of PMDK, so we classify it to the category of others.
Resize. In this experiment, Level hashing causes five full-table

resizing operations, resulting in ~6.8GB (16%) of data written to
the PM. While PCLHT triggers two full-table resizing operations,
producing ~4.6GB (11%) of data. Both CCEH and Dash expand ca-
pacity at the granularity of segment. Therefore, they induce less
resizing data than PCLHT. CCEH triggers structural changes more
frequently, so it has a larger percentage of resizing data than DASH
(i.e., 9% vs 5% or 3.0GB vs 2.2GB).

Lock. From Figure 11, we can observe that for the three lock-
based PM hash tables (i.e., CCEH, Dash, and PCLHT), the extra
data induced by locking is tremendous in size because of frequent
invoking of locks and contention among threads, reaching 12.5GB
(32%) on average.

Others. Except Clevel, other hash tables are log-free. Dash uses
log only when doubling the directory, and the data generated by
logging can be ignored. For CCEH, Dash, PCLHT, and SOFT, the
data volume belonging to others (accounting for 40% on average)
is approximately equal to that incurred by write amplification,
and it is 4x of that in K-V. This is consistent with the fact that
16-byte key-value pairs are flushed to PM at the granularity of 64
bytes. For Level hashing, others consists of data produced by write
amplification and moving items between buckets. For Clevel, 92%
of data is in this category. Reasons are three-fold. (1) It needs to
allocate space for each item to be inserted; (2) It stores pointers in
the hash table to support variable-length items; (3) The function
make_persistent_objectwill create a log entry for each memory
allocation and data copy.

The above analysis demonstrates that key-value pairs only ac-
counts for a small part of all data written to PM, and writes associ-
ated with memory allocation, synchronization primitives, and hash
table specific features (like resizing) could be unexpectedly high.

4.11 Issues Related to PM Hardware
In this subsection, we explore three performance issues related to
PM hardware. First, when operating on the elements of hash
tables,will there be contention forDIMMs? Previouswork [68]
found that accesses across interleaved DIMMs may cause contention
for particular DIMMs. We use the PCM tool [13] to observe the band-
width of each channel every 15ms when running the workload. We
found that the bandwidth of each channel is always approximately
the same during execution. Therefore, we conclude that the con-
tention for DIMMs does not happen for hash tables.

Note that, none of the hash tables evaluated in this paper can
approach the upper limit of DCPMMwrite bandwidth (13GB/s [68]).
Thus, the second question is how small random PM writes re-
strict the performance of hash tables.We designed a simplified
model to explore why hash tables have such a low PM bandwidth
utilization. In order to eliminate the interference from operations
like resizing, synchronization, and hash value computation, we
use a large array to simulate a hash table that has no such opera-
tions. Items of size 16 bytes are inserted into a random position of
the array using 32 threads. We also evaluate the effect of certain
instructions on the overall performance by enabling only one or
both of flush and fence instructions, or disabling both, or using
non-temporal stores (NTstore). Figure 12 displays the throughput of
(the bars in gray) and bandwidth (the curves marked with squares).
We can see that the throughput cannot exceed 31 Mops/s when
inserting items with size of 16 bytes, even when flush and fence
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Figure 12: The impact of different instructions on the
throughput of the simplified hash table under 32 threads.
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threads.

instructions are both disabled. Thus, we can conclude that the low
throughput and bandwidth utilization are mainly due to the small
random writes. Unfortunately, none of the existing PM hash tables,
even those with specific optimizations like cacheline alignment,
can solve this problem properly. A feasible solution is to convert
small random writes into large sequential ones. For example, we
can group random writes into a DRAM buffer that can then be
written to PM sequentially. We use the simplified model to evaluate
the efficiency of this method. When items are packed into 64-byte
buffers, under the same bandwidth, the throughput increases to
91Mops/s, and reaches 141Mops/s when we use 256-byte buffers.
From Figure 12, we can also observe that the performance is more
sensitive to flush and fence instructions for large write, and NTstore
achieves the highest throughput for the 256-byte write.

The last question is that howmuch effect flush and fence in-
structions have on the performance of hash tables. To answer
this question, we conduct an experiment, in which we intentionally
disable one or both of the flush and fence instruction for all hash
tables. The results are shown in Figure 13. We can observe that
these instructions have little impact on the throughput for all hash
tables, which is consistent with the 16-byte case in Figure 12. This
is because write operations in PM hash tables (using customized de-
signs to ensure consistency) merely involve a few cacheline flushes
and memory fences, as compared to the data structures that rely
on software transactional memory [20].

4.12 Impact of NUMA
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Figure 14: The impact of NUMA architecture on throughput.

In this section, we investigate the impact of NUMA on through-
put using workloads with uniform distribution. We use both CPUs
(each with 16 cores) on our test machine, one denoted as local CPU

and the other as remote CPU. All DRAMs and DCPMMs are in-
stalled on one CPU (local). We launch 32 threads and pin them to
CPU cores with different configurations: (1) Local indicates all the
32 threads are pinned to the local CPU. (2) Half means 16 threads
are pinned to the local CPU and the remaining 16 to the remote
CPU. (3) Remote means all the 32 threads are pinned to the remote
CPU. (4) No-limit indicates threads are managed by the default OS
scheduler.

The results shown in Figure 14 reveal that accessing the remote
node hurts performance severely in most cases. For the insert work-
load, the throughput of Remote drops significantly compared to
Local. For example, Dash’s throughput is decreased by 2.6x, fol-
lowed by CCEH (2.3x). The reduction is 1.4x for Level hashing and
PCLHT. The throughput of Level hashing and Clevel are less af-
fected by NUMA. From Figure 14(b), we can observe that NUMA
has less impact on performance for reads than writes (comparing
Half with Remote for search and insert). The reason is as follows.
The ratio of read latency between local and remote Optane DCPMM
is 1.20x for random access. For write, the remote access latency
of Optane DCPMM is 1.68x higher compared to local [68]. And,
hash tables exhibit fairly random access patterns. Mixed workloads
shown in Figure 14(c) exhibit similar trends with search, because
the delete operation produces multiple reads and one write on PM.
In all cases, the throughput under No-limit is close to (even bet-
ter than) Half, because the OS may be able to schedule threads
optimally.

Although our evaluation demonstrates the negative impact of
NUMA on performance, running more threads on remote node
can still be properly leveraged to improve performance, depending
on the utilization of PM bandwidth. As discussed in Section 4.3,
for some workloads, the throughput of SOFT and PCLHT scales
with more remote threads, while CCEH and Dash can exhaust PM
bandwidth with only local threads.

5 DISCUSSIONS
In this section, we summarize the observations and insights made
from our evaluation and analysis.

1. Random small write is the primary factor that funda-
mentally restricts the performance of PM hash tables. Ran-
dom small write is the inherent access pattern in hash tables. Thus,
even with specific optimizations to address this issue, such as re-
ducing the number of random writes, the performance of existing
PM hash tables is fundamentally constrained. We argue that new
hash table designs are desired to mitigate the detrimental effect of
random small write and achieve higher performance.

2. The impact of cache flush and memory fence instruc-
tions on performance is marginal. Contrary to common obser-
vations made in PM data structure designs that employ software
transactional memory, the performance of PM hash tables is not
constrained by cache flushing and memory fence instructions, due
to the limited number of these instructions in individual operations.
Therefore, optimizations should focus on other aspects in designing
PM hash tables.

3. Fingerprinting can accelerate negative queries signifi-
cantly. Cache-resident fingerprints can speedup negative search
considerably, since unnecessary accesses to PM can be filtered. This
is especially meaningful for PM given its asymmetric read/write
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performance (i.e., end-to-end write latency is often lower than
reads).

4. Resizing should not discourage normal operations. Full-
table rehashing is harmful to concurrency, leading to low through-
put and unexpected latency. Dynamic extendible schemes (Dash
and CCEH) and lock-free resizing (Clevel) are good paradigms to
alleviate the overhead of resizing.

5. Beware of the significance ofwrite amplifications caused
by memory allocators and synchronization primitives. Be-
sides write amplifications incurred by small random write that is
inherent for hash tables, memory allocators and synchronization
primitives also cause severe write amplifications, which may be far
beyond our expectations as quantified in this paper. Write amplifica-
tion not only degrades performance, but also hurts the endurance of
DCPMM. In the future, we plan to explore the design of wear-aware
memory allocator for PM systems and PM-friendly locks.

6. Concerns about hybridmemory designs.Maintaining struc-
tural metadata in DRAM and key-value pairs in PM can substan-
tially reduce PM reads/writes and access latency. However, new
techniques should be considered in the future to reduce the recovery
cost for hybrid memory designs.

7. PMbandwidth is a scarce resource, but the performance
of hash tables does not necessarily scale with more DCP-
MMs. For some hash tables, when more DCPMMs are installed
in a system, their performance scales almost linearly. While for
others, the increase in throughput is small or barely noticeable
even if the system is fully populated with DCPMMs. More efforts
are needed to figure out this scalability issue for PM hash tables.
Furthermore, system designers who want to use an existing hash
table would be aware the importance of striking a balance between
DCPMM and DRAM resources, in order to achieve better perfor-
mance.

8.Micro-architectural characteristics of PMmatter.Wehave
shown that designers of hash tables should be aware of the existence
and importance of XPBuffer. Moreover, we expect to see more char-
acteristics study to reveal performance-critical micro-architectural
components, such as the WPQ size, read-modify-write buffer, and
address indirection translation buffer as identified in [62] to opti-
mize the high-level design of PM data structures like hash table.

6 RELATEDWORK

DRAM-based hash tables have been studied for decades. A wide
range of high performance hash schemes for single-processor or
multi-processor systems have been proposed [3, 7, 11, 21, 34, 35,
42, 51]. Our previous work [8] conducted extensive evaluations of
five DRAM-based concurrent hash tables on four representative
multi-core platforms under a unified framework.

PM-based index structures. In addition to the hash tables dis-
cussed in Section 3, several PM hash tables were recently proposed.
NVC-Hashmap [56] is a lock-free hashmap that supports unordered
dictionaries and delta indices for in-memory databases. PFHT [12]
is a write-optimized hash table using a stash bucket to improve
load factor. To avoid extra PM writes from update operations, Path
hashing [71] organizes its buckets as an inverted complete binary
tree logically. However, this structure causes low lookup perfor-
mance as the lookup operation depends on the height of the tree.

Level hashing [72] solves this problem via a sharing-based two-
level structure. PM-based indexing tree is also a well-studied topic,
and several proposals have been made [2, 5, 49, 69, 70]. Lersch et
al. developed a benchmarking framework PiBench [33], and per-
formed comprehensive evaluations on four B+-Trees using Intel
Optane DC Persistent Memory.

Efforts to reduce consistency and durability overhead and
programming difficulty. Transaction memory (TM) interacting
with PM is commonly used to guarantee failure-atomicity and
durability [4, 25, 29, 60]. However, PM indexes with TM still suffer
from the overhead of flushing and logging [20, 57], and several
attempts to alleviate this have been proposed. TIMESTONE [30]
uses a hybrid logging technique, TOC logging, to guarantee crash
consistency with low write amplification and minimal memory
footprint. Minimally Ordered Durable (MOD) library [20] provides
STL-like persistent data structure interfaces to reduce the efforts
required to develop PM applications. Similar to MOD, Pronto [40]
can reduce the programming efforts required to add persistence to
volatile data structures, using asynchronous semantic logging.

PM indexes in data-intensive systems.Concurrent data struc-
tures are essential components of modern data-intensive systems,
such as database systems [45, 48], key-value stores [14, 16, 18, 28,
32, 36, 41, 50, 52, 53, 67], and file systems [47, 55]. However, the
performance of these systems is limited by the size of workloads,
especially when a systems need to recover and warm up their state
after a restart [17]. Thus, several storage systems [38, 65, 66], which
take full advantage of the features of hybrid memory systems con-
sisting of DRAM and PM, were proposed. HiKV [65] is a persistent
key-value store with a hybrid index (hash table in PM and B+-Tree
in DRAM). It inherits the efficiency of point query from hash ta-
ble and the range query from the B+-Tree. Another problem of
PM-based key-value store is that the small-sized access pattern in
key-value stores does not match with the persistence granularity in
PM, leaving the PM bandwidth underutilized [6, 33]. FlatStore [6]
is a PM-based key-value storage engine designed to alleviate this
issue, using CCEH [46] as its index.

7 CONCLUSION

This paper performs a comprehensive evaluation of hash tables
designed for PM based on the recently released Intel Optane DC
Persistent Memory. We extend the framework PiBench with more
hash table specific functionalities, and evaluate six state-of-the-art
hash indexes elaborately, considering not only the common met-
rics, but also hardware-related properties such as PM bandwidth,
flush/fence instructions, and NUMA architecture. We identify key
insights for the design PM-based hash tables. We hope our experi-
mental results would be valuable for researchers and practitioners
to develop more efficient and scalable PM-based hash tables.

ACKNOWLEDGMENTS

This research was supported by the National Key Research and
Development Program of China (No. 2018YFB1003502), and by the
National Science Foundation of China under Grants 61772183 and
61972137. We thank the anonymous reviewers for their valuable
suggestions in improving this paper.

796



REFERENCES
[1] Mohamed Arafa, Bahaa Fahim, Sailesh Kottapalli, Akhilesh Kumar, Lily P Looi,

Sreenivas Mandava, Andy Rudoff, Ian M Steiner, Bob Valentine, Geetha Vedara-
man, et al. 2019. Cascade lake: Next generation intel xeon scalable processor.
IEEE Micro 39, 2 (2019), 29–36.

[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake Larson. 2018.
Bztree: A High-Performance Latch-Free Range Index for Non-Volatile Memory.
Proceedings of the VLDB Endowment 11, 5 (2018), 553–565. https://doi.org/10.
1145/3164135.3164147

[3] Alex D. Breslow, Dong Ping Zhang, Joseph L. Greathouse, Nuwan Jayasena,
and Dean M. Tullsen. 2016. Horton Tables: Fast Hash Tables for in-Memory
Data-Intensive Computing. In Proceedings of the 2016 USENIX Conference on
Usenix Annual Technical Conference (USENIX ATC ’16). USENIX, Denver, CO,
USA, 281–294.

[4] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014. Atlas:
Leveraging Locks for Non-Volatile Memory Consistency. In Proceedings of the
2014 ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’14). ACM, Portland, Oregon, USA, 433–452.
https://doi.org/10.1145/2660193.2660224

[5] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile MainMemory.
Proceedings of the VLDB Endowment 8, 7 (2015), 786–797. https://doi.org/10.14778/
2752939.2752947

[6] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020.
FlatStore: An Efficient Log-Structured Key-Value Storage Engine for Persistent
Memory. In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS
’20). ACM, Lausanne, Switzerland, 1077–1091. https://doi.org/10.1145/3373376.
3378515

[7] Zhiwen Chen, Xin He, Jianhua Sun, and Hao Chen. 2018. Have Your Cake and Eat
It (Too): A Concurrent Hash Table with Hardware Transactions. Int. J. Parallel
Program. 46, 4 (2018), 699–709. https://doi.org/10.1007/s10766-017-0529-7

[8] Zhiwen Chen, Xin He, Jianhua Sun, Hao Chen, and Ligang He. 2018. Concurrent
hash tables on multicore machines: Comparison, evaluation and implications.
Future Generation Computer Systems 82 (2018), 127 – 141.

[9] Zhangyu Chen, Yu Huang, Bo Ding, and Pengfei Zuo. 2020. Lock-free Concurrent
Level Hashing for Persistent Memory. In 2020 USENIX Annual Technical Confer-
ence (USENIX ATC 20). USENIX Association, 799–812. https://www.usenix.org/
conference/atc20/presentation/chen

[10] Dave Chinner. 2015. xfs: DAX support. Retrieved January 14, 2021 from
https://lwn.net/Articles/635514/

[11] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. 2015. Asynchronized
Concurrency: The Secret to Scaling Concurrent Search Data Structures. In Pro-
ceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’15). ACM, Istanbul,
Turkey, 631–644. https://doi.org/10.1145/2694344.2694359

[12] Biplob Debnath, Alireza Haghdoost, Asim Kadav, Mohammed G Khatib, and
Cristian Ungureanu. 2016. Revisiting hash table design for phase change memory.
ACM SIGOPS Operating Systems Review 49, 2 (2016), 18–26.

[13] Intel Corporation et al. 2019. Processor Counter Monitor. Retrieved January 14,
2021 from https://github.com/opcm/pcm/

[14] Facebook. 2020. RocksDB. Retrieved January 14, 2021 from https://rocksdb.org
[15] Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H. Raymond Strong.

1979. Extendible Hashing-a Fast Access Method for Dynamic Files. ACM Trans.
Database Syst. 4, 3 (1979), 315–344. https://doi.org/10.1145/320083.320092

[16] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact
and Concurrent MemCache with Dumber Caching and Smarter Hashing. In
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI’13). USENIX, Lombard, IL, 371–384.

[17] Aakash Goel, Bhuwan Chopra, Ciprian Gerea, Dhruv Mátáni, Josh Metzler,
Fahim Ul Haq, and Janet Wiener. 2014. Fast Database Restarts at Facebook.
In Proceedings of the 2014 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’14). ACM, Snowbird, Utah, USA, 541–549. https:
//doi.org/10.1145/2588555.2595642

[18] Google. 2020. LevelDB. Retrieved January 14, 2021 from https://leveldb.org
[19] Xiangpeng Hao, Tianzheng Wang, Lucas Lersch, and Ismail Oukid. 2020. Interac-

tive Benchmarking of Persistent Memory Indexes. Retrieved January 14, 2021
from http://pibench.org/

[20] Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2020. MOD: Minimally
Ordered Durable Datastructures for Persistent Memory. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). ACM, Lausanne, Switzerland,
775–788. https://doi.org/10.1145/3373376.3378472

[21] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. 2008. Hopscotch Hashing. In
Proceedings of the 22nd International Symposium on Distributed Computing (DISC
’08). Springer-Verlag, Arcachon, France, 350–364. https://doi.org/10.1007/978-3-
540-87779-0_24

[22] M Hosomi, H Yamagishi, T Yamamoto, K Bessho, Y Higo, K Yamane, H Yamada,
M Shoji, H Hachino, C Fukumoto, et al. 2005. A novel nonvolatile memory with
spin torque transfer magnetization switching: Spin-RAM. In IEEE International
Electron Devices Meeting, 2005. IEEE, 459–462.

[23] Intel. 2018. Intel Optane DC Persistent Memory Operating Modes Explained.
Retrieved January 14, 2021 from https://itpeernetwork.intel.com/intel-optane-
dc-persistent-memory-operating-modes/

[24] Intel. 2020. libvmem of Persistent Memory Development Kit. Retrieved January
14, 2021 from https://pmem.io/vmem/libvmem/

[25] Intel. 2020. Persistent Memory Development Kit. Retrieved January 14, 2021
from https://pmem.io/

[26] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-Atomic
Persistent Memory Updates via JUSTDO Logging. In Proceedings of the Twenty-
First International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, Atlanta, Georgia, USA, 427–442.
https://doi.org/10.1145/2872362.2872410

[27] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R. Dulloor, Jishen
Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the
Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).
arXiv:1903.05714

[28] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and Young-Ri
Choi. 2019. SLM-DB: Single-Level Key-Value Store with Persistent Memory.
In Proceedings of the 17th USENIX Conference on File and Storage Technologies
(FAST’19). USENIX, Boston, MA, USA, 191–204.

[29] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch.
2016. High-Performance Transactions for Persistent Memories. In Proceedings of
the Twenty-First International Conference onArchitectural Support for Programming
Languages and Operating Systems (ASPLOS ’16). ACM, Atlanta, Georgia, USA,
399–411. https://doi.org/10.1145/2872362.2872381

[30] R. Madhava Krishnan, Jaeho Kim, Ajit Mathew, Xinwei Fu, Anthony Demeri,
ChangwooMin, and Sudarsun Kannan. 2020. Durable Transactional Memory Can
Scale with Timestone. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS ’20). ACM, Lausanne, Switzerland, 335–349. https://doi.org/10.1145/
3373376.3378483

[31] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: Converting Concurrent DRAM Indexes to Persistent-
Memory Indexes. In Proceedings of the 27th ACM Symposium on Operating Sys-
tems Principles (SOSP’19). ACM, Huntsville, Ontario, Canada, 462–477. https:
//doi.org/10.1145/3341301.3359635

[32] Baptiste Lepers, Oana Balmau, Karan Gupta, and Willy Zwaenepoel. 2019. KVell:
The Design and Implementation of a Fast Persistent Key-Value Store. In Proceed-
ings of the 27th ACM Symposium on Operating Systems Principles (SOSP ’19). ACM,
Huntsville, Ontario, Canada, 447–461. https://doi.org/10.1145/3341301.3359628

[33] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. Proceedings of
the VLDB Endowment 13, 4 (2019), 574–587. https://doi.org/10.14778/3372716.
3372728

[34] Dagang Li, Rong Du, Ziheng Liu, Tong Yang, and Bin Cui. 2019. Multi-copy
Cuckoo Hashing. In In Proceding of IEEE 35th International Conference on Data
Engineering (ICDE’19). 1226–1237.

[35] Xiaozhou Li, David G. Andersen, Michael Kaminsky, and Michael J. Freed-
man. 2014. Algorithmic Improvements for Fast Concurrent Cuckoo Hash-
ing. In Proceedings of the Ninth European Conference on Computer Systems (Eu-
roSys ’14). ACM, Amsterdam, The Netherlands, Article 27, 14 pages. https:
//doi.org/10.1145/2592798.2592820

[36] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. 2014.
MICA: A Holistic Approach to Fast in-Memory Key-Value Storage. In Proceedings
of the 11th USENIX Conference on Networked Systems Design and Implementation
(NSDI’14). USENIX, Seattle, WA, 429–444.

[37] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scalable
Hashing on Persistent Memory. Proceedings of the VLDB Endowment 13, 8 (2020),
1147–1161. https://doi.org/10.14778/3389133.3389134

[38] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017. Persistent
Memcached: Bringing Legacy Code to Byte-Addressable Persistent Memory. In
Proceedings of the 9th USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage’17). USENIX, Santa Clara, CA, 4.

[39] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ram-
natthan Alagappan, Karin Strauss, and Steven Swanson. 2017. Atomic In-Place
Updates for Non-Volatile Main Memories with Kamino-Tx. In Proceedings of the
Twelfth European Conference on Computer Systems (Belgrade, Serbia) (EuroSys
’17). ACM, Belgrade, Serbia, 499–512. https://doi.org/10.1145/3064176.3064215

[40] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:
Easy and Fast Persistence for Volatile Data Structures. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). ACM, Lausanne, Switzerland,
789–806. https://doi.org/10.1145/3373376.3378456

797

https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/3164135.3164147
https://doi.org/10.1145/2660193.2660224
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.14778/2752939.2752947
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1145/3373376.3378515
https://doi.org/10.1007/s10766-017-0529-7
https://www.usenix.org/conference/atc20/presentation/chen
https://www.usenix.org/conference/atc20/presentation/chen
https://lwn.net/Articles/635514/
https://doi.org/10.1145/2694344.2694359
https://github.com/opcm/pcm/
https://rocksdb.org
https://doi.org/10.1145/320083.320092
https://doi.org/10.1145/2588555.2595642
https://doi.org/10.1145/2588555.2595642
https://leveldb.org
http://pibench.org/
https://doi.org/10.1145/3373376.3378472
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
https://pmem.io/vmem/libvmem/
https://pmem.io/
https://doi.org/10.1145/2872362.2872410
https://arxiv.org/abs/1903.05714
https://doi.org/10.1145/2872362.2872381
https://doi.org/10.1145/3373376.3378483
https://doi.org/10.1145/3373376.3378483
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359635
https://doi.org/10.1145/3341301.3359628
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.14778/3372716.3372728
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.1145/2592798.2592820
https://doi.org/10.14778/3389133.3389134
https://doi.org/10.1145/3064176.3064215
https://doi.org/10.1145/3373376.3378456


[41] Memcached. 2019. Memcached. Retrieved January 14, 2021 from https://
memcached.org

[42] Zviad Metreveli, Nickolai Zeldovich, and M. Frans Kaashoek. 2012. CPHASH:
A Cache-Partitioned Hash Table. SIGPLAN Not. 47, 8 (2012), 319–320. https:
//doi.org/10.1145/2370036.2145874

[43] Micron. 2015. 3D-X-Point Technology. Retrieved January 14, 2021 from https:
//www.micron.com/products/advanced-solutions/3d-xpoint-technology

[44] Pulkit A. Misra, María F. Borge, Íñigo Goiri, Alvin R. Lebeck, Willy Zwaenepoel,
and Ricardo Bianchini. 2019. Managing Tail Latency in Datacenter-Scale File
Systems Under Production Constraints. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). ACM, Dresden, Germany, Article 17, 15 pages.
https://doi.org/10.1145/3302424.3303973

[45] MongoDB. 2020. MongoDB. Retrieved January 14, 2021 from https://www.
mongodb.com

[46] Moohyeon Nam, Hokeun Cha, Young ri Choi, Sam H. Noh, and Beomseok Nam.
2019. Write-Optimized Dynamic Hashing for Persistent Memory. In 17th USENIX
Conference on File and Storage Technologies. USENIX, Boston, MA, 31–44. https:
//www.usenix.org/conference/fast19/presentation/nam

[47] Oracle. 2019. Architectural Overview of the Oracle ZFS Storage Appliance.
Retrieved January 14, 2021 from https://www.oracle.com/technetwork/server-
storage/sun-unified-storage/documentation/o14-001-architecture-overview-
zfsa-2099942.pdf

[48] Oracle. 2020. MySQL. Retrieved January 14, 2021 from https://www.mysql.com
[49] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and Wolfgang

Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent and Concurrent B-Tree
for Storage Class Memory. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16). ACM, San Francisco, California, USA,
371–386. https://doi.org/10.1145/2882903.2915251

[50] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob
Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru Parulkar,
Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman.
2010. The Case for RAMClouds: Scalable High-Performance Storage Entirely
in DRAM. ACM SIGOPS Operating Systems Review 43, 4 (2010), 92–105. https:
//doi.org/10.1145/1713254.1713276

[51] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo Hashing. J. Algorithms
51, 2 (2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[52] Swapnil Patil and Garth Gibson. 2011. Scale and Concurrency of GIGA+: File
System Directories with Millions of Files. In Proceedings of the 9th USENIX Con-
ference on File and Stroage Technologies (FAST’11). USENIX, San Jose, California,
177–190.

[53] Markus Pilman, Kevin Bocksrocker, Lucas Braun, Renato Marroquin, and Don-
ald Kossmann. 2017. Fast scans on key-value stores. Proceedings of the VLDB
Endowment 10, 11 (2017), 1526–1537.

[54] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. 2017. Program-
ming for Non-Volatile Main Memory Is Hard. In Proceedings of the 8th Asia-
Pacific Workshop on Systems (APSys ’17). ACM, Mumbai, India, Article 13, 8 pages.
https://doi.org/10.1145/3124680.3124729

[55] Frank Schmuck and Roger Haskin. 2002. GPFS: A Shared-Disk File System for
Large Computing Clusters. In Proceedings of the 1st USENIX Conference on File
and Storage Technologies. USENIX, Monterey, CA, 19–es.

[56] David Schwalb, Markus Dreseler, Matthias Uflacker, and Hasso Plattner. 2015.
NVC-Hashmap: A Persistent and Concurrent Hashmap For Non-Volatile Mem-
ories. In Proceedings of the 3rd VLDB Workshop on In-Memory Data Mange-
ment and Analytics (IMDM’15). ACM, Kohala Coast, HI, USA, Article 4, 8 pages.
https://doi.org/10.1145/2803140.2803144

[57] Seunghee Shin, James Tuck, and Yan Solihin. 2017. Hiding the Long Latency of
Persist Barriers Using Speculative Execution. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA ’17). ACM, Toronto,
ON, Canada, 175–186. https://doi.org/10.1145/3079856.3080240

[58] Steve Scargall. 2020. Programming Persistent Memory. Apress. 186–189 pages.
[59] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.

2008. The missing memristor found. Nature 453, 7191 (2008), 80–83.
[60] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011. Mnemosyne:

Lightweight Persistent Memory. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS XVI). ACM, Newport Beach, California, USA, 91–104.
https://doi.org/10.1145/1950365.1950379

[61] Tianzheng Wang and Ryan Johnson. 2014. Scalable logging through emerging
non-volatile memory. Proceedings of the VLDB Endowment 7, 10 (2014), 865–876.
https://doi.org/10.14778/2732951.2732960

[62] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile Memory Systems.
In Proceedings of the 53rd IEEE/ACM International Symposium on Microarchitecture
(MICRO’20).

[63] Michèle Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier Iffrig,
Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson, and Mark
Parsons. 2019. An Early Evaluation of Intel’s Optane DC Persistent Memory Mod-
ule and Its Impact on High-Performance Scientific Applications. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC’19). Association for Computing Machinery, Denver, Colorado,
Article 76, 19 pages. https://doi.org/10.1145/3295500.3356159

[64] H-S Philip Wong, Simone Raoux, SangBum Kim, Jiale Liang, John P Reifenberg,
Bipin Rajendran, Mehdi Asheghi, and Kenneth E Goodson. 2010. Phase change
memory. Proc. IEEE 98, 12 (2010), 2201–2227.

[65] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index
Key-Value Store for DRAM-NVM Memory Systems. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference (USENIX ATC ’17).
USENIX, Santa Clara, CA, USA, 349–362.

[66] Jian Xu and Steven Swanson. 2016. NOVA: A Log-Structured File System for
Hybrid Volatile/Non-Volatile Main Memories. In Proceedings of the 14th Usenix
Conference on File and Storage Technologies (FAST’16). USENIX, Santa Clara, CA,
323–338.

[67] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, and Arvind.
2016. Bluecache: A Scalable Distributed Flash-Based Key-Value Store. Proceedings
of the VLDB Endowment 10, 4 (2016), 301–312. https://doi.org/10.14778/3025111.
3025113

[68] Jianhua Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven
Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable Persis-
tent Memory. In Proceedings of the 18th USENIX Conference on File and Storage
Technologies (FAST’20).

[69] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong Yong, and
Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost for NVM-Based Single
Level Systems. In Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST’15). USENIX, Santa Clara, CA, 167–181.

[70] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019. DPTree:
Differential Indexing for Persistent Memory. Proceedings of the VLDB Endowment
13, 4 (2019), 421–434. https://doi.org/10.14778/3372716.3372717

[71] Pengfei Zuo and Yu Hua. 2017. A write-friendly and cache-optimized hashing
scheme for non-volatile memory systems. IEEE Transactions on Parallel and
Distributed Systems 29, 5 (2017), 985–998.

[72] Pengfei Zuo, Yu Hua, and Jie Wu. 2018. Write-Optimized and High-Performance
Hashing Index Scheme for Persistent Memory. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation (OSDI’18). USENIX,
Carlsbad, CA, USA, 461–476.

[73] Yoav Zuriel, Michal Friedman, Gali Sheffi, Nachshon Cohen, and Erez Petrank.
2019. Efficient Lock-Free Durable Sets. Proceedings of the ACM on Programming
Languages 3, OOPSLA, Article 128 (2019), 26 pages. https://doi.org/10.1145/
3360554

798

https://memcached.org
https://memcached.org
https://doi.org/10.1145/2370036.2145874
https://doi.org/10.1145/2370036.2145874
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://www.micron.com/products/advanced-solutions/3d-xpoint-technology
https://doi.org/10.1145/3302424.3303973
https://www.mongodb.com
https://www.mongodb.com
https://www.usenix.org/conference/fast19/presentation/nam
https://www.usenix.org/conference/fast19/presentation/nam
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overview-zfsa-2099942.pdf
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overview-zfsa-2099942.pdf
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overview-zfsa-2099942.pdf
https://www.mysql.com
https://doi.org/10.1145/2882903.2915251
https://doi.org/10.1145/1713254.1713276
https://doi.org/10.1145/1713254.1713276
https://doi.org/10.1016/j.jalgor.2003.12.002
https://doi.org/10.1145/3124680.3124729
https://doi.org/10.1145/2803140.2803144
https://doi.org/10.1145/3079856.3080240
https://doi.org/10.1145/1950365.1950379
https://doi.org/10.14778/2732951.2732960
https://doi.org/10.1145/3295500.3356159
https://doi.org/10.14778/3025111.3025113
https://doi.org/10.14778/3025111.3025113
https://doi.org/10.14778/3372716.3372717
https://doi.org/10.1145/3360554
https://doi.org/10.1145/3360554

