
Hierarchical Core Maintenance on Large Dynamic Graphs
Zhe Lin

East China Normal University

linzhe@stu.ecnu.edu.cn

Fan Zhang

Guangzhou University

zhangf@gzhu.edu.cn

Xuemin Lin

University of New South Wales

East China Normal University

lxue@cse.unsw.edu.au

Wenjie Zhang

University of New South Wales

zhangw@cse.unsw.edu.au

Zhihong Tian

Guangzhou University

tianzhihong@gzhu.edu.cn

ABSTRACT

The model of 𝑘-core and its decomposition have been applied in

various areas, such as social networks, the world wide web, and

biology. A graph can be decomposed into an elegant 𝑘-core hierar-

chy to facilitate cohesive subgraph discovery and network analysis.

As many real-life graphs are fast evolving, existing works proposed

efficient algorithms to maintain the coreness value of every vertex

against structure changes. However, the maintenance of the 𝑘-core

hierarchy in existing studies is not complete because the connec-

tions among different 𝑘-cores in the hierarchy are not considered.

In this paper, we study hierarchical core maintenance which is to

compute the 𝑘-core hierarchy incrementally against graph dynam-

ics. The problem is challenging because the change of hierarchy

may be large and complex even for a slight graph update. In order

to precisely locate the area affected by graph dynamics, we conduct

in-depth analyses on the structural properties of the hierarchy, and

propose well-designed local update techniques. Our algorithms

significantly outperform the baselines on runtime by up to 3 orders

of magnitude, as demonstrated on 10 real-world large graphs.

PVLDB Reference Format:

Zhe Lin, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Zhihong Tian.

Hierarchical Core Maintenance on Large Dynamic Graphs. PVLDB, 14(5):

757-770, 2021.

doi:10.14778/3446095.3446099

1 INTRODUCTION

The structure modeling of complex networks has been widely stud-

ied in the form of graphs. Applications of graph analytics exist in

various areas, and the mining of cohesive subgraphs is a fundamen-

tal graph problem. One of the most well-studied cohesive subgraph

model is the 𝑘-core, defined as a maximal connected subgraph in

which every vertex is connected to at least 𝑘 other vertices in the

same subgraph [42, 52]. For a fixed parameter 𝑘 , there may be more

than one 𝑘-core in the graph 𝐺 , and we use the 𝑘-core set to de-

note the subgraph formed by all the (connected) 𝑘-cores in 𝐺 . The

coreness of a vertex is the largest 𝑘 s.t. a 𝑘-core contains the vertex.

∗
Zhe Lin and Fan Zhang are the joint first authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.

doi:10.14778/3446095.3446099

A graph can be decomposed by 𝑘-core into an elegant hierarchical

structure: for every integer 𝑘 , (i) each 𝑘-core is contained by ex-

actly one (𝑘 − 1)-core, and (ii) for every integer 𝑘 , the 𝑘-cores are

disjoint. The 𝑘-core hierarchy can be represented by a tree, where

each 𝑘-core 𝑆 corresponds to a tree node containing the vertices

with coreness 𝑘 in 𝑆 , and each tree edge represents a parent 𝑘-core

containing its child 𝑘 ′-core with 𝑘 ′ > 𝑘 .
The 𝑘-core and its hierarchical decomposition have a wide spec-

trum of applications, e.g., discovering communities in the web [16]

and social networks [19, 56, 65], modeling the dynamics of user

engagement [41, 64], discovering molecular complexes in protein

interaction networks [2], analyzing the underlying structure of

the Internet and its functional consequences [4], and predicting

structural collapse in mutualistic ecosystems [44]. The hierarchi-

cal structure is effective to locate communities of a network and

explore the insights of network phenomena [12].

In the detection of cohesive subgraphs, a recent work computes

the (connected) 𝑘-core 𝐶∗ with the largest density (average degree)

for any 𝑘 value in the hierarchy of core decomposition, which

is the state-of-the-art approximate solution to find the densest

subgraph [11]. This algorithm is much more efficient than other

approaches. The resulting 𝐶∗ has a 0.5-approximation guarantee

and often a higher density than other approximations. It is vali-

dated that finding 𝐶∗ can also help the computation of maximum

clique and size-constraint 𝑘-core. For the study of user engage-

ment, the coreness of a vertex is regarded as the “best practice” to

capture its engagement level [41]. It is validated that the average

engagement (e.g., the number of check-ins) of the vertices with a

same coreness is usually in a positive correlation with the value

of their coreness [35]. However, our experimental results find that

the engagement evaluation of a vertex can be more accurate by

considering both its coreness and its position in the hierarchy of

core decomposition.

In real-life, many graphs are highly dynamic, e.g., the users in

a social network may add new friends or remove existing friend

relations, new links are constantly established in the web due to

the creation of new pages. Consequently, there are numerous stud-

ies on dynamic graphs, e.g., [18, 69], where vertices/edges will be

inserted/removed dynamically. Nevertheless, the existing works of

core decomposition on dynamic graphs focus on maintaining the

coreness of each vertex [49, 60, 66], while the maintenance of the

connections among 𝑘-cores in the hierarchy are not considered . As

the structural information is critical for core decomposition (e.g., the

𝑘-core is defined on connected subgraphs), in this paper, we study

the problem of hierarchical core maintenance, which is to update

757

https://doi.org/10.14778/3446095.3446099
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446099

𝐶2
5

𝑣1𝑣0

𝑣2

𝑣3𝑣4

𝑣5

𝑣7𝑣6

𝑣8

𝑣9𝑣10

𝑣11

𝑣12

𝑣13

𝑣14

𝑣15𝑣16

𝑣17

𝑣18

𝑣20𝑣19

𝑣22 𝑣21

𝐶1
5

𝐶1
4

(a) graph

root

𝑣19

𝑣12 𝑣13 𝑣14 𝑣15
𝑣16 𝑣17 𝑣18

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4 𝑣5

𝑣20 𝑣21 𝑣22

𝐶2
5

𝐶1
5

𝐶1
4

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑘 = 5
𝑣6 𝑣7 𝑣8
𝑣9 𝑣10 𝑣11

(b) 𝑘-core hierarchy

𝐶2
5

𝑣1𝑣0

𝑣2

𝑣3𝑣4

𝑣5

𝑣7𝑣6

𝑣8

𝑣9𝑣10

𝑣11

𝑣12

𝑣13

𝑣14

𝑣15𝑣16

𝑣17

𝑣18

𝑣20𝑣19

𝑣22 𝑣21

𝐶1
5

𝐶2
4

𝐶1
4

(c) remove edge (𝑣2, 𝑣17)

𝐶2
4

𝑣12 𝑣13
𝑣14 𝑣15 𝑣16

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10 𝑣11

𝑣19

𝑣18

root

𝑣20 𝑣21 𝑣22

𝑣17

𝐶1
5

𝐶1
4

𝑘 = 1

𝑘 = 2

𝑘 = 3

𝑘 = 4

𝑘 = 5

𝐶2
5

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4 𝑣5

(d) updated 𝑘-core hierarchy

Figure 1: Hierarchical Core Decomposition

the 𝑘-core hierarchy incrementally against edge insertion/removal.

The insertion (resp. removal) of vertices can be simulated as a se-

quence of edge insertions (resp. edge removals) [66].

Example 1. Figure 1(a) illustrates a graph𝐺 with 23 vertices and
their connections, where the color depth of a vertex represents the
coreness of this vertex. The whole graph is a 2-core, and the 3-core is
induced by 𝑉 (𝐺) \ {𝑣20, 𝑣21, 𝑣22}. The 4-core is induced by the 3-core
minus 𝑣19. So, the coreness of 𝑣19 is 3. The core decomposition of 𝐺
iteratively removes a vertex with the smallest degree in current 𝐺 s.t.
the 𝑘-cores with different 𝑘 values are retrieved. The 5-cores (𝐶5

1
and

𝐶5

2
) are circled by dotted lines.
The 𝑘-core hierarchy 𝑇 (𝐺) is shown in Figure 1(b) which contains

both the coreness of each vertex and the connections among different
𝑘-cores. For instance, the coreness of 𝑣17 is 4 as it is on the 4𝑡ℎ layer.
Let 𝑛1 denote the node that includes 𝑣17, the 4-core containing 𝑣17 is
induced by the subtree rooted at 𝑛1, which contains two 5-cores.

If we remove the edge (𝑣2, 𝑣17) from 𝐺 , the coreness value for
each vertex and the 𝑘-cores will be updated as shown in Figure 1(c).
As the coreness of 𝑣17 decreases to 3, it is moved to the 3𝑟𝑑 layer in
Figure 1(d). Then, the previous 4-core (𝐶4) splits to two 4-cores 𝐶4

1

and 𝐶4

2
. Accordingly, the node at the 4𝑡ℎ layer splits to two nodes as

shown in the figure. The tree edges of 𝑇 (𝐺) are adjusted based on the
containment property of different 𝑘-cores.

The coreness of each vertex in a graph can be computed in linear

time by core decomposition, which iteratively removes a vertex

with the smallest degree in the remaining graph [3]. The state-

of-the-art solution for updating the vertex coreness is proposed

in [66], based on the vertex deletion order in core decomposition.

However, as the algorithm is only designed for updating coreness,

we have to traverse the graph with the updated coreness to find a

(connected) 𝑘-core. It means that, for the maintenance of the 𝑘-core

hierarchy on dynamic graphs, the existing solutions have to rebuild

the 𝑘-core hierarchy from scratch by executing its construction

algorithm which is costly. The state-of-the-art algorithm (named

LCPS) constructs the 𝑘-core hierarchy on static graphs with a time

complexity of𝑂 (𝑚) [42], if buckets are used to maintain the search

priority [51]. It sequentially pushes a vertex and its neighbors (un-

visited) into queues according to a priority function s.t. the subtree

containing the vertex is traversed and built. As the search priority

in LCPS can be either partially bottom-up or partially top-down,

given a set of inserted/removed edges, we have to execute LCPS

from scratch on 𝐺 or a part of 𝐺 which is cost-prohibitive. Thus,

in this paper, we aim to incrementally update the 𝑘-core hierarchy

through precisely locating the structure of the hierarchy affected

by the graph updates.

The problem of hierarchical core maintenance is challenging

because the hierarchy may change a lot even for a slight graph

update, and the connectivity changes among different 𝑘-cores are

non-trivial, as illustrated in Example 1. In order to capture the

effect of an inserted/removed edge towards the 𝑘-core hierarchy

𝑇 , we conduct in-depth analyses on the structural connections of

the 𝑘-cores in the hierarchy. A series of theorems are proposed to

fast identify the unchanged structure in 𝑇 , and facilitate efficient

update operations, e.g., node mergence, node split, and adjusting

the parent-child relations. Our focus is to propose the maintenance

solution for instant update, i.e., the case of one inserted/removed

edge. The algorithms are extended to address the (one-time) update

for multiple inserted/removed edges. Several well-designed local

update techniques are proposed s.t. the 𝑘-core hierarchy can be

maintained efficiently on large dynamic graphs.

Contributions. The principal contributions are as follows.

• To the best of our knowledge, this is the first work to study

hierarchical core decomposition on dynamic graphs.

• In-depth analyses are conducted to explore the structural

change of the 𝑘-core hierarchy. A series of theorems are

presented to tackle the effect of edge insertion/deletion on

the 𝑘-core hierarchy.

• Efficient algorithms are proposed for hierarchical core main-

tenance against the insertion/removal of one edge, with ef-

fective local update techniques. The algorithms are extended

to handle multiple inserted/removed edges in a batch.

• Extensive experiments are conducted on 10 real-world net-

works with up to billions of edges. Our algorithms outper-

form the baselines on runtime by up to 3 orders of magnitude.

The algorithms are shown effective in maintaining cohesive

subgraphs and evaluating user engagement.

2 PRELIMINARIES

We consider an unweighted and undirected graph 𝐺 = (𝑉 , 𝐸), with
𝑛 = |𝑉 | vertices and𝑚 = |𝐸 | edges (assume𝑚 > 𝑛). A graph 𝐺 ′

is the subgraph of 𝐺 , denoted by 𝐺 ′ ⊆ 𝐺 , if 𝑉 (𝐺 ′) ⊆ 𝑉 (𝐺) and
𝐸 (𝐺 ′) ⊆ 𝐸 (𝐺). The notations are summarized in Table 1.

758

Table 1: Summary of Notations (When the context is clear, we ab-

breviate the notations, e.g., using 𝑁 (𝑣) instead of 𝑁 (𝑣,𝐺))

Notation Definition

𝐺 = (𝑉 , 𝐸) an undirected and unweighted graph

𝑉 (𝐺) , 𝐸 (𝐺) the vertex/edge set of𝐺

𝑁 (𝑣,𝐺) the neighbor set of vertex 𝑣 in𝐺

𝐶𝑘
𝑖
;𝐶𝑘 (𝑣,𝐺) a 𝑘-core; the 𝑘-core includes 𝑣 in𝐺

𝑐𝑜𝑟𝑒 (𝑣,𝐺) the coreness of 𝑣 in𝐺

𝐶 (𝑣,𝐺) 𝐶𝑐𝑜𝑟𝑒 (𝑣) (𝑣) on𝐺
𝑇 (𝐺) 𝑘-core hierarchy of graph𝐺

𝑇 a 𝑘-core hierarchy

𝑛1 a tree node (on𝑇)

𝑉 (𝑛1) the vertex set of 𝑛1

𝐿𝑘 (𝑇) the 𝑘𝑡ℎ layer of𝑇

𝑐𝑜𝑟𝑒 (𝑛1,𝐺) 𝑐𝑜𝑟𝑒 (𝑣,𝐺) for any 𝑣 ∈ 𝑉 (𝑛1)
𝑇 ′ (𝑛1) the subtree rooted at 𝑛1

𝐺 [𝑛1]
the subgraph of 𝐺 induced by the vertices in

𝑇 ′ (𝑛1)
𝐺0 the original graph

𝐸′ the edge set inserting into/removing from𝐺0

𝐺∗ the graph with inserted/removed edges

𝑉 ∗ {𝑣 ∈ 𝑉 (𝐺) | 𝑐𝑜𝑟𝑒 (𝑣,𝐺0) ≠ 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) }
𝑇0,𝑇

∗
the 𝑘-core hierarchy of𝐺0 and𝐺

∗
, respectively

𝑛𝑜𝑑𝑒 (𝑣,𝑇) the tree node of𝑇 containing vertex 𝑣

𝑃 (𝑛1) the parent node of 𝑛1 in𝑇 (𝐺)
𝑐𝑛 (𝑛1, 𝑣) a child node 𝑛𝑐 of 𝑛1’s with 𝑣 ∈ 𝑇 ′ (𝑛𝑐 ,𝑇)
𝑐𝑛 (𝑛1, 𝑛2) 𝑐𝑛 (𝑛1, 𝑣) for any 𝑣 ∈ 𝑉 (𝑛2,𝑇)

2.1 Core Maintenance

Definition 1 (𝑘-core [42, 52]). Given a graph𝐺 and an integer
𝑘 , a subgraph 𝑆 is a 𝑘-core of 𝐺 , if (i) each vertex 𝑣 ∈ 𝑆 has at least
𝑘 neighbors in 𝑆 , i.e., |𝑁 (𝑣, 𝑆) | ≥ 𝑘 ; (ii) 𝑆 is connected; and (iii) 𝑆 is
maximal, i.e., any supergraph of 𝑆 is not a 𝑘-core except 𝑆 itself. Let
𝐶𝑘
𝑖
denote the 𝑖𝑡ℎ 𝑘-core of 𝐺 for a given 𝑘 .

Given a fixed integer 𝑘 , we use the 𝑘-core set to denote the

subgraph that containing every (connected) 𝑘-core.

Definition 2 (𝑘-core set). Given a graph 𝐺 and an integer
𝑘 , the 𝑘-core set of 𝐺 is the subgraph formed by all the (connected)
𝑘-cores in G, i.e., ∪𝑖∈𝑁 + {𝐶𝑘𝑖 }.

If 𝑘 ′ ≥ 𝑘 , the 𝑘 ′-core set is always a subgraph of (i.e., contained

by) the 𝑘-core set. Each vertex in 𝐺 has a fixed coreness value [3].

Definition 3 (coreness). Given a graph 𝐺 , the coreness of a
vertex 𝑣 ∈ 𝑉 (𝐺), denoted by 𝑐𝑜𝑟𝑒 (𝑣), is the largest 𝑘 such that 𝑣 is in
the 𝑘-core, i.e. 𝑐𝑜𝑟𝑒 (𝑣) = max𝑣∈𝐶𝑘 {𝑘}.

For any vertex 𝑣 ∈ 𝑉 (𝐺), we use 𝐶𝑘 (𝑣) to denote the 𝑘-core

containing the vertex 𝑣 . Let𝐶 (𝑣) represent𝐶𝑘 (𝑣) with 𝑘 = 𝑐𝑜𝑟𝑒 (𝑣).

Definition 4 (core decomposition). Given a graph 𝐺 , core
decomposition is to compute the coreness 𝑐𝑜𝑟𝑒 (𝑣) for every vertex
𝑣 ∈ 𝑉 (𝐺).

The algorithm of core decomposition recursively removes a ver-

tex with the smallest degree in the remaining graph, with a time

complexity of 𝑂 (𝑚) [3].

Definition 5 (core maintenance). Given a graph 𝐺 , if the
edges in 𝐸 ′ are inserted into (resp. removed from)𝐺 , core maintenance
is to update the corenesses of all the vertices, after the graph (𝑉 , 𝐸)
evolves to (𝑉 , 𝐸 + 𝐸 ′) (resp. (𝑉 , 𝐸 − 𝐸 ′)).

The algorithm of core maintenance utilizes the ordering of vertex

removal in core decomposition to fast update the corenesses of the

vertices affected by edge insertion/deletion [66].

2.2 Hierarchical Core Maintenance

According to the definition of 𝑘-core, we can get the following two

properties for every integer 𝑘 :

• Containment. Each 𝑘-core is contained by exactly one (𝑘−1)-
core.

• Disjointness. 𝐶𝑘
1
∩𝐶𝑘

2
= ∅, for any two different 𝑘-cores 𝐶𝑘

1

and 𝐶𝑘
2
.

Given a graph 𝐺 , the 𝑘-core hierarchy of 𝐺 can be represented

by a tree, where each 𝑘-core of 𝐺 is induced by a subtree of 𝑇 (𝐺).
Definition 6 (𝑘-core hierarchy). Given a graph 𝐺 , the 𝑘-

core hierarchy, denoted as 𝑇 (𝐺), is a tree structure containing all the
𝑘-cores and their connections, for every 𝑘 value:
• Tree Node. For each 𝑘-core 𝐶𝑘

𝑖
in 𝐺 , there is a uniquely as-

sociated tree node 𝑛1 located at the 𝑘𝑡ℎ layer of 𝑇 , if there

is at least one vertex in 𝐶𝑘
𝑖
with coreness equals to 𝑘 . The

node 𝑛1 contains all the vertices in 𝐶
𝑘
𝑖
with coreness 𝑘 , i.e.

𝑉 (𝑛1) = {𝑣 | 𝑣 ∈ 𝐶𝑘𝑖 ∧ 𝑐𝑜𝑟𝑒 (𝑣) = 𝑘}.
• Tree Edge. For a 𝑘1-core 𝐶

𝑘1
𝑖

associated with tree node 𝑛1,

and a 𝑘2-core 𝐶
𝑘2
𝑗

associated with 𝑛2 in 𝐺 , the tree node 𝑛1

is the parent node of 𝑛2 iff (i) 𝑘1 < 𝑘2; (ii) 𝐶
𝑘2
𝑗
⊂ 𝐶𝑘1

𝑖
; and

(iii) for any 𝑘 ′-core with 𝑘1 < 𝑘 ′ < 𝑘2, the associated tree

node is not the parent of 𝑛2.

• Root. The isolated vertices are recorded in the root node of

𝑇 (𝐺). We create a tree edge between the root and each tree

node associated with a connected component of𝐺 (i.e., each

1
𝑠𝑡

layer node).

The 𝑘-core hierarchy can be constructed in 𝑂 (𝑚) time by LCPS

algorithm (level component priority search) [42, 51]. It sequentially

pushes a vertex and its neighbors (unvisited) into queues s.t. the

subtree containing the vertex is traversed and built.

To avoid ambiguity, we use vertex to indicate the vertex in𝑉 (𝐺)
and (tree) node to indicate the node in 𝑇 (𝐺).

Given a graph 𝐺 , its 𝑘-core hierarchy 𝑇 = 𝑇 (𝐺), and a node

𝑣 ∈ 𝑉 (𝐺). We use 𝑛𝑜𝑑𝑒 (𝑣,𝑇) = 𝑛1 to denote the tree node 𝑛1
containing vertex 𝑣 . For the node 𝑛1, let 𝑇

′(𝑛1) denote the subtree
rooted at the 𝑛1 and 𝐺 [𝑛1] denote the subgraph induced by the

vertices in 𝑇 ′(𝑛1). We have 𝐺 [𝑛1] = 𝐶 (𝑣,𝐺). Let 𝐿𝑘 (𝑇) denote the
𝑘𝑡ℎ layer of 𝑇 (𝐺).
Problem Definition. Given a graph𝐺 , and the edges set 𝐸 ′ insert-
ing to (resp. removing from) 𝐺 . Let 𝐺0 denote the original graph,

i.e.,𝐺0 = 𝐺 . Let𝐺
∗
denote the changed graph, i.e.,𝐺∗ = (𝑉 , 𝐸 + 𝐸 ′)

(resp.𝐺∗ = (𝑉 , 𝐸 −𝐸 ′)). Hierarchical core maintenance is to update

the 𝑘-core hierarchy from 𝑇 (𝐺0) to 𝑇 (𝐺∗).
If a vertex 𝑣 is inserted to the graph, we first record 𝑣 in the root

node, and then maintain the 𝑘-core hierarchy by inserting every

759

edge incident to 𝑣 . If a vertex 𝑢 is removed from the graph, we

maintain the hierarchy by deleting each edge incident to 𝑣 . As the

update of vertices can be processed by the update of their incident

edges, we focus on edge insertion/deletion in this paper.

Let 𝑇0 = 𝑇 (𝐺0), 𝑇 ∗ = 𝑇 (𝐺∗), and 𝑇 denote current 𝑘-core hier-

archy under the maintenance process. In the algorithms, we divide

the maintenance process into several stages. After processing each

stage, we use 𝑇1, 𝑇2, ..., 𝑇𝑛 to record current 𝑇 .

Given a node 𝑛𝑖 in 𝑇𝑖 , 𝑃 (𝑛𝑖) denotes the parent node of 𝑛𝑖 , and
𝑇 ′(𝑛𝑖) denotes the subtree rooted at 𝑛𝑖 in 𝑇𝑖 . Given an integer 𝑗 , if

a node 𝑛 𝑗 in 𝑇𝑗 satisfies 𝑇
′(𝑛 𝑗) = 𝑇 ′(𝑛𝑖) (resp. 𝑉 (𝑛 𝑗) = 𝑉 (𝑛𝑖)), we

say 𝑇 ′(𝑛𝑖) (resp. 𝑛𝑖) keeps the same in 𝑇𝑗 . If 𝑇 ′(𝑛𝑖) keeps the same

in 𝑇𝑗 , 𝑛𝑖 also keeps the same in 𝑇𝑗 .

3 EDGE INSERTION

In this section, we first maintain the 𝑘-core hierarchy against one

inserted edge, and then address a batch of inserted edges.

3.1 Insertion Analysis

Let (𝑥1, 𝑥2) denote the edge to be inserted into𝐺0, where (𝑥1, 𝑥2) ∉
𝐸 (𝐺0). W.l.o.g, we suppose 𝐾 = 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) ≤ 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0).

In order to better present our algorithm, we first analyze the

effect of inserting one edge.

Coreness Update. After the insertion of (𝑥1, 𝑥2), we adopt the state-
of-the-art algorithm for core maintenance [66] to update the core-

nesses of all the affected vertices. Let 𝑉 ∗ denote the set of vertices
with coreness changed after the insertion of (𝑥1, 𝑥2). According to

existing study of maintaining coreness, there exist some key rules

for the insertion of one edge [33, 49].

• For each vertex 𝑣 ∈ 𝑉 ∗, we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺0) = 𝐾 and

𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝐾 + 1.
• If 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) < 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0), we have 𝑉 ∗ ⊆ 𝑉 (𝐶 (𝑥1)), the
subgraph induced by 𝑉 ∗ on 𝐺0 is connected, and 𝑥1 ∈ 𝑉 ∗.
• If 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) = 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0), we have 𝑉 ∗ ⊆ {𝑉 (𝐶 (𝑥1)) ∪
𝑉 (𝐶 (𝑥2))}. The subgraph induced by 𝑉 ∗ on 𝐺0 either is

connected, or consists of two connected components that

one contains 𝑥1 and the other contains 𝑥2.

• The induced subgraph of 𝑉 ∗ in 𝐺∗ is connected.

Hierarchy Analysis. For the update of 𝑘-core hierarchy with insert-

ing (𝑥1, 𝑥2), we discuss the following cases for each 𝑘-core 𝐶𝑘
𝑖
in

the original graph 𝐺0. Note that 𝐾 = 𝑐𝑜𝑟𝑒 (𝑥1) ≤ 𝑐𝑜𝑟𝑒 (𝑥2).

(i) 𝑘 > 𝐾 + 1. For every vertex 𝑣 with 𝑐𝑜𝑟𝑒 (𝑣,𝐺0) > 𝐾 + 1, we
have 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝑐𝑜𝑟𝑒 (𝑣,𝐺0). 𝐶𝑘𝑖 keeps the same after the

insertion, as 𝐶𝑘
𝑖
does not contain 𝑥1, 𝑥2, or any vertex in 𝑉 ∗.

(ii) 𝑘 ≤ 𝐾 . (a) If𝐶𝑘
𝑖
contains either 𝑥1 or 𝑥2. W.l.o.g, suppose we

have 𝑥1 ∈ 𝐶𝑘𝑖 , the insertion of (𝑥1, 𝑥2) will connect (merge)

𝐶𝑘
𝑖
and 𝐶𝑘 (𝑥2). (b) Besides, if 𝑘 = 𝐾 , the coreness of each

vertex in 𝑉 ∗ increases to 𝐾 + 1 from 𝐾 . 𝐶𝑘
𝑖
may lose some

vertices(i.e., in 𝑉 ∗) and we will discuss this case in details

later.

(iii) 𝑘 = 𝐾 + 1. The vertices in 𝑉 ∗ may connect to 𝐶𝑘
𝑖
on 𝐺∗. We

will discuss this case later too.

Algorithm 1: InsertOne

Input : a graph𝐺0, the 𝑘-core hierarchy𝑇0, an edge

(𝑥1, 𝑥2) ∉ 𝐸 (𝐺0)
Output :𝑇 ∗

𝑇 ← 𝑇0;𝐺 ← 𝐺0; 𝐾 ← 𝑐𝑜𝑟𝑒 (𝑥1) (suppose 𝑐𝑜𝑟𝑒 (𝑥1) ≤ 𝑐𝑜𝑟𝑒 (𝑥2));1

𝑉 ∗ ← vertices with coreness changed by inserting (𝑥1, 𝑥2) to𝐺 ;2

𝑛1 ← 𝑛𝑜𝑑𝑒 (𝑥1) ; 𝑛2 ← 𝑛𝑜𝑑𝑒 (𝑥2) ;3

while 𝑛1 ≠ 𝑛2 do4

swap 𝑛1 and 𝑛2 if 𝑐𝑜𝑟𝑒 (𝑛1) > 𝑐𝑜𝑟𝑒 (𝑛2) ;5

𝑝1 ← 𝑃 (𝑛1) ; 𝑝2 ← 𝑃 (𝑛2) ;6

if 𝑐𝑜𝑟𝑒 (𝑛1) = 𝑐𝑜𝑟𝑒 (𝑛2) then7

𝑛0 ← merge 𝑛1 and 𝑛2 in𝑇 ;8

𝑃 (𝑛0) ← 𝑝1 or 𝑝2 whose coreness is larger;9

𝑛1 ← 𝑝1; 𝑛2 ← 𝑝2;10

else11

𝑃 (𝑛2) ← 𝑛1 if 𝑐𝑜𝑟𝑒 (𝑛1) > 𝑐𝑜𝑟𝑒 (𝑝2) ;12

𝑛2 ← 𝑝2;13

𝑇1 ← 𝑇 ; 𝑛′ ← 𝑛𝑜𝑑𝑒 (𝑉 ∗) of𝑇 ;14

create a node 𝑛+ on 𝐿𝐾+1 in𝑇 as a child of 𝑛′;15

move 𝑣 to𝑉 (𝑛+) from𝑉 (𝑛′) for each 𝑣 ∈ 𝑉 ∗;16

𝑁𝐶 = {𝑐𝑛 (𝑛′,𝑢,𝑇) | 𝑢 ∈ 𝑁 (𝑉 ∗,𝐺∗) };𝑇2 ← 𝑇 ;17

for each 𝑛𝑐 ∈ 𝑁𝐶 do18

if 𝑐𝑜𝑟𝑒 (𝑛𝑐 ,𝐺∗) = 𝐾 + 1 then19

merge 𝑛𝑐 into 𝑛
+
;20

else21

𝑃 (𝑛𝑐 ,𝑇) ← 𝑛+;22

if 𝑉 (𝑛′) = ∅ then23

𝑃 (𝑛0) ← 𝑃 (𝑛′) for each child 𝑛0 of 𝑛
′
;24

remove 𝑛′ from𝑇 ;25

return𝑇 (i.e.,𝑇 ∗)26

3.2 Merge Ancestors of 𝑛𝑜𝑑𝑒 (𝑥1) and 𝑛𝑜𝑑𝑒 (𝑥2)
As shown in the above subsection, the hierarchy of 𝑘-cores keeps

the same in case (i), i.e., when 𝑘 > 𝐾 + 1. For case (ii), we show how

to merge the 𝑘-cores in this subsection. We leave the techniques

for case (iii) in next subsection.

According to the definition of 𝑘-core hierarchy, the ancestors of

𝑛𝑜𝑑𝑒 (𝑥1,𝑇0) and 𝑛𝑜𝑑𝑒 (𝑥2,𝑇0) at the same layer of𝑇0 will be merged

into one tree node of 𝑇 ∗. After merging the ancestor nodes at the

same layer, the tree edges (parent-child relations) incident to them

should be adjusted accordingly. For the nodes not on the branches

containing 𝑥1 or 𝑥2, Theorem 1 proves that the associated 𝑘-cores

of these nodes keep the same for the insertion of (𝑥1, 𝑥2).

Theorem 1. For any tree node 𝑛0 ∈ 𝑇0 satisfying 𝐺0 [𝑛0] ∩
{𝐶 (𝑥1) ∪𝐶 (𝑥2)} = ∅, we have 𝑇 ′(𝑛0) keeps the same in 𝑇 ∗.

Proof. Let 𝑘0 = 𝑐𝑜𝑟𝑒 (𝑛0). As𝐺0 [𝑛0] ∩ {𝐶 (𝑥1) ∪𝐶 (𝑥2)} = ∅ and
𝑉 ∗ ⊆ 𝑉 (𝐶 (𝑥1) ∪𝐶 (𝑥2)), in core decomposition of 𝐺∗, the vertices
in all ancestors of 𝑛0 will still be deleted when we compute the

𝑘0-core set of 𝐺
∗
. Thus, 𝑇 ′(𝑛0) keeps the same in 𝑇 ∗. □

Line 1-13 of Algorithm 1 shows the pseudo-code to merge the

ancestors of 𝑛𝑜𝑑𝑒 (𝑥1) and 𝑛𝑜𝑑𝑒 (𝑥2). Suppose 𝑐𝑜𝑟𝑒 (𝑥1) ≤ 𝑐𝑜𝑟𝑒 (𝑥2),
the coreness value of 𝑐𝑜𝑟𝑒 (𝑥1) is recorded by 𝐾 at Line 1. After the

insertion of (𝑥1, 𝑥2), we update the coreness of each vertex at Line

760

2 by the state-of-the-art algorithm in [66]. Let 𝑛1 and 𝑛2 denote the

two nodes under processing, which are initialized by 𝑛𝑜𝑑𝑒 (𝑥1) and
𝑛𝑜𝑑𝑒 (𝑥2), respectively (Line 3).

We merge the tree nodes in a bottom-up manner from 𝑛1 and

𝑛2 in 𝑇 until there is no further mergence, i.e., 𝑛1 = 𝑛2 (Line 4-13).

In each iteration, we use Line 5 to ensure 𝑐𝑜𝑟𝑒 (𝑛1) ≤ 𝑐𝑜𝑟𝑒 (𝑛2), and
record the parent nodes of 𝑛1 and 𝑛2 (Line 6). (i) When 𝑐𝑜𝑟𝑒 (𝑛1) =
𝑐𝑜𝑟𝑒 (𝑛2), we merge 𝑛1 and 𝑛2 to 𝑛0 where the child relations inherit

(Line 8). Then, we adjust the parent relation of 𝑛0 based on the def-

inition of 𝑘-core hierarchy (Line 9). (ii) When 𝑐𝑜𝑟𝑒 (𝑛1) < 𝑐𝑜𝑟𝑒 (𝑛2),
we only need to adjust the parent relation of 𝑛2 (Line 12). The next

nodes to process are set accordingly (Line 10 or 13).

After the mergence (Line 1-13), we get an intermediate 𝑘-core

hierarchy 𝑇1 where the upper part (each 𝐿𝑘 with 𝑘 < 𝐾) has been

maintained correctly.

Example 2. A graph 𝐺0 is shown in Figure 2(a) and its 𝑘-core
hierarchy 𝑇0 is depicted in Figure 2(b). If an edge (𝑣0, 𝑣5) is inserted
to 𝐺0, after running Line 1-14 of Algorithm 1, we will retrieve an
intermediate 𝑇1 as shown in Figure 2(c). In the first iteration, as
𝑐𝑜𝑟𝑒 (𝑣5) < 𝑐𝑜𝑟𝑒 (𝑣0), we have 𝑛1 = 𝑛𝑜𝑑𝑒 (𝑣5) and 𝑛2 = 𝑛𝑜𝑑𝑒 (𝑣0) af-
ter running Line 5. Since 𝑐𝑜𝑟𝑒 (𝑛1) < 𝑐𝑜𝑟𝑒 (𝑃 (𝑛2)) at Line 12, we just
set 𝑛2 = 𝑃 (𝑛2). In the second iteration, as 𝑐𝑜𝑟𝑒 (𝑛1) > 𝑐𝑜𝑟𝑒 (𝑃 (𝑛2)),
we set 𝑛𝑜𝑑𝑒 (𝑣5) as the parent node of 𝑛𝑜𝑑𝑒 (𝑣15). Iteratively, we merge
the ancestors of 𝑛𝑜𝑑𝑒 (𝑣5) and 𝑛𝑜𝑑𝑒 (𝑣0), and retrieve 𝑇1.

3.3 Adjust the Subtree under 𝐿𝐾 .

After merging the ancestors of 𝑛𝑜𝑑𝑒 (𝑥1) and 𝑛𝑜𝑑𝑒 (𝑥2), we need to

adjust some tree nodes in 𝐿𝐾 (𝑇1) ∪ 𝐿𝐾+1 (𝑇1) and the associated

edges (parent-child relations). We first show that there is a node 𝑛′
1

in 𝑇1 containing 𝑉
∗
, and only the subtree rooted at the node 𝑛′

1
in

𝑇1 should be updated in the maintenance.

Theorem 2. (i) There is a node 𝑛′
1
∈ 𝑇1 satisfying 𝑉 ∗ ⊆ 𝑉 (𝑛′

1
).

(ii) For any node 𝑛0 ∈ 𝑇1 with 𝐺∗ [𝑛0] ∩𝐺∗ [𝑛′
1
] = ∅, 𝑇 ′(𝑛0) keeps

the same in 𝑇 ∗.

Proof. (i) When 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) < 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0), we have 𝑛′
1
=

𝑛𝑜𝑑𝑒 (𝑥1,𝑇1) and 𝑉 ∗ ⊆ 𝑉 (𝑛′
1
). When 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) = 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0),

since𝑛𝑜𝑑𝑒 (𝑥1,𝑇0) and𝑛𝑜𝑑𝑒 (𝑥2,𝑇0) are merged in𝑇1, we have𝑉 (𝑛′
1
)

= 𝑉 (𝑛𝑜𝑑𝑒 (𝑥1,𝑇0)) ∪ 𝑉 (𝑛𝑜𝑑𝑒 (𝑥2,𝑇0)), and thus 𝑉 ∗ ⊆ 𝑉 (𝑛′
1
). (ii)

Similar to Theorem 1, for any node 𝑛0 with 𝐺
∗ [𝑛0] ∩𝐺∗ [𝑛′

1
] = ∅,

core decomposition on 𝐺∗ [𝑛0] is the same to that on 𝐺 [𝑛0]. Thus,
𝑇 ′(𝑛0) keeps the same in 𝑇 ∗. □

Theorem 3. There is a node 𝑛∗ ∈ 𝑇 ∗ satisfying 𝑉 ∗ ⊆ 𝑉 (𝑛∗).

Proof. The proof is straightforward as 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝐾 + 1 for
each 𝑣 ∈ 𝑉 ∗, and the induced subgraph of𝑉 ∗ in𝐺∗ is connected. □

Then, we compute the next intermediate hierarchy 𝑇2 from Line

14 of Algorithm 1. According to Theorem 2, let 𝑛′ denote the node
in 𝑇 equals to 𝑛′

1
when recording 𝑇1 (Line 14), and 𝑛

′
2
denote the

node in 𝑇2 equals to 𝑛
′
when recording 𝑇2 (Line 17). At Line 15,

we create a node 𝑛+ in 𝐿𝐾+1 (𝑇) as the child node of 𝑛′, to process

the node adjustment. The vertices in 𝑉 ∗ are moved to 𝑉 (𝑛+), as
their coreness increases to 𝐾 + 1 from 𝐾 (Line 16). Now we get

𝑇2 where each vertex is in the correct layer and the first 𝐾 layers

𝑣12𝑣11

𝑣14 𝑣13
𝑣16

𝑣5

𝑣8

𝑣7

𝑣6 𝑣10

𝑣9
𝑣4

𝑣3

𝑣2

𝑣1

𝑣0

𝑣15

(a) 𝐺0 + (𝑣0, 𝑣5)

root

𝑣16

𝒗𝟓

𝑣11 𝑣12
𝑣13 𝑣14

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝑣15

𝒗𝟎 𝑣1 𝑣2
𝑣3 𝑣4

K

K+1

(b) 𝑇0

root

𝑣16

𝒗𝟓

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝒗𝟎 𝑣1 𝑣2
𝑣3 𝑣4

𝑣15
𝑣11 𝑣12
𝑣13 𝑣14

K

K+1

𝑛′(𝑛1
′)

(c) 𝑇1

root

𝑣16

𝑣15

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝒗𝟎 𝑣1 𝑣2
𝑣3 𝑣4

𝒗𝟓
𝑣11 𝑣12
𝑣13 𝑣14

∅
𝑛+

𝑛′(𝑛2
′)

(d) 𝑇2

root

𝑣16

𝒗𝟓 𝑣11 𝑣12
𝑣13 𝑣14 𝑣15

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝒗𝟎 𝑣1 𝑣2
𝑣3 𝑣4

K

K+1
𝑛∗

(e) 𝑇 ∗

Figure 2: Insert (𝑣0, 𝑣5) to𝐺0

are maintained except 𝑛′
2
if it becomes empty. If 𝑛′

2
is empty, we

address it later in Line 23-25 for fewer operations.

Remaining Nodes to Update. In order to find out the operations

required for completing the maintenance, we introduce the notation

𝑐𝑛(𝑛0, 𝑣0). Given a node 𝑛0 and a vertex 𝑣0, let 𝑐𝑛(𝑛0, 𝑣0) denote the
node 𝑛𝑐 satisfying 𝑃 (𝑛𝑐) = 𝑛0 and 𝑇 ′(𝑛𝑐) contains 𝑣0. For example

in Figure 2(d), 𝑐𝑛(𝑛′, 𝑣0) = 𝑛𝑜𝑑𝑒 (𝑣15,𝑇2).
Let 𝑁 (𝑉 ∗,𝐺∗) = ∪𝑣∈𝑉 ∗𝑁 (𝑣,𝐺∗). After running Line 17 (record-

ing 𝑇2) of Algorithm 1, the set of candidate nodes to update in 𝑇2 is

NC = {𝑐𝑛(𝑛′
2
, 𝑢) | 𝑢 ∈ 𝑁 (𝑉 ∗,𝐺∗)}. For each node 𝑛𝑐 in 𝑁𝐶 (note

that 𝑛𝑐 ∈ 𝑇2), there is at least one vertex 𝑢 in 𝑇 ′(𝑛𝑐) where 𝑢 is the

neighbor of a vertex in 𝑉 ∗.

Theorem 4. For each 𝑛𝑐 ∈ 𝑁𝐶 , 𝐺∗ [𝑛𝑐] ⊆ 𝐺∗ [𝑛∗] holds.

Proof. For each𝑛𝑐 ∈ 𝑁𝐶 , according to𝑁𝐶’s definition, we have
the following two properties: (i) 𝑐𝑜𝑟𝑒 (𝑛𝑐) ≥ 𝑐𝑜𝑟𝑒 (𝑛+) = 𝐾 + 1; (ii)
∃𝑣1 ∈ 𝑛𝑐 , 𝑣2 ∈ 𝑛+(i.e., 𝑉 ∗) satisfying (𝑣1, 𝑣2) ∈ 𝐸 (𝐺∗). According to

the definition of 𝑘-core hierarchy, the vertices of 𝑛𝑐 and 𝑛
+
are in

one node of 𝑇 ∗ when 𝑐𝑜𝑟𝑒 (𝑛𝑐) = 𝐾 + 1 (Line 20 of Algorithm 1),

or 𝑛+ will be the ancestor of 𝑛𝑐 when 𝑐𝑜𝑟𝑒 (𝑛𝑐) > 𝐾 + 1 (Line 22).
Thus, 𝐺∗ [𝑛𝑐] ⊆ 𝐺∗ [𝑛∗] holds as 𝑉 ∗ = 𝑉 (𝑛+) ⊆ 𝑉 (𝑛∗). □

For each node 𝑛𝑐 ∈ 𝑁𝐶 , according to Theorem 4, we can adjust

it easily in Line 20 or 22. When Algorithm 1 is returned, we have

𝑇 ∗ = 𝑇 and𝑛+ of𝑇 is exactly𝑛∗ of𝑇 ∗ in Theorem 3. For conciseness,

we defer the computation of 𝑐𝑛(𝑛′, 𝑢) to Algorithm 5 at Section 4.2.

For the remaining nodes not in 𝑁𝐶 , the following theorem holds.

Theorem 5. For any node 𝑛0 ∈ 𝑇 ′(𝑛′
2
) and 𝑛0 ∉ 𝑁𝐶 , 𝑇 ′(𝑛0)

keeps the same in 𝑇 ∗.

Proof. For each𝑛0 mentioned above, if 𝑐𝑜𝑟𝑒 (𝑛0) > 𝐾+1,𝑇 ′(𝑛0)
keeps the same according to the point (i) in the hierarchy analysis

of Section 3.1; if 𝑐𝑜𝑟𝑒 (𝑛0) = 𝐾 + 1, the definition of 𝑁𝐶 implies that

there is no vertex in 𝑛0 which is the neighbor of 𝑉 ∗, and 𝑇 ′(𝑛0)
keeps the same. □

761

Algorithm 2: InsertX

Input : a graph𝐺0, the 𝑘-core hierarchy𝑇0, an edge set

𝐸′ ⊈ 𝐸 (𝐺0)
Output :𝑇 ∗, i.e., the updated𝑇0
𝑉 ∗ ← ∅;𝐶 ← ∅;𝐺∗ ← 𝐺0;𝑇 ← 𝑇0;1

for each 𝑒 ∈ 𝐸′ do2

𝑉 ′ ← vertices with coreness changed by inserting 𝑒 to𝐺∗;3

N← the set of 𝑛𝑜𝑑𝑒 (𝑣) in𝑇 for each 𝑣 ∈ 𝑉 ′;4

𝑛′ ← any node from N;5

create 𝑛∗ on (𝑐𝑜𝑟𝑒 (𝑛′) + 1)𝑡ℎ layer in𝑇 as a child node of 𝑛′;6

𝐶 ← 𝐶 ∪ {(𝑛∗, 𝑛0) } for each 𝑛0 ∈ N;7

move each 𝑣 ∈ 𝑉 ′ to𝑉 (𝑛∗) ; remove empty nodes in𝑇 ;8

𝐺0 ← 𝐺0 + {𝑒 };𝑉 ∗ ← 𝑉 ∗ ∪𝑉 ′;9

𝑇1 ← 𝑇 ;10

for each (𝑢, 𝑣) ∈ 𝐸′ do11

𝐶 ← 𝐶 ∪ (𝑛𝑜𝑑𝑒 (𝑢,𝑇), 𝑛𝑜𝑑𝑒 (𝑣,𝑇)) ;12

for each 𝑣 ∈ 𝑉 ∗ do13

for each 𝑢 ∈ 𝑁 (𝑣,𝐺∗) with 𝑐𝑜𝑟𝑒 (𝑢,𝐺∗) > 𝑐𝑜𝑟𝑒 (𝑣) do14

𝐶 ← 𝐶 ∪ (𝑛𝑜𝑑𝑒 (𝑢,𝑇), 𝑛𝑜𝑑𝑒 (𝑣,𝑇)) ;15

for each integer 𝐾 from 𝑘𝑚𝑎𝑥 to 0 do16

𝑛0 ← an unvisited node in a node pair of𝐶 with 𝑐𝑜𝑟𝑒 (𝑛0) = 𝐾 ;17

N1 ← {𝑛0 }; N2 ← ∅;18

while there is an unvisited node 𝑛1 in N1 do19

N2 ← N2 ∪ {𝑃 (𝑛1) }; 𝑛1 ← visited;20

for each node 𝑛2 with (𝑛1, 𝑛2) ∈ 𝐶 do21

if 𝑐𝑜𝑟𝑒 (𝑛2) = 𝐾 then22

N1 ← N1 ∪ {𝑛2 };23

else24

N2 ← N2 ∪ {𝑛2 };25

𝑛′ ← a node in N2 with the largest coreness;26

𝐶 ← 𝐶 ∪ (𝑛′, 𝑛2) for each 𝑛2 ∈ N2;27

merge 𝑛1 into 𝑛0 for each 𝑛1 ∈ N1;28

𝑃 (𝑛0) ← 𝑛′;29

return𝑇 , i.e.,𝑇 ∗;30

As the hierarchy of 𝑘-cores (the subtrees) with 𝑘 > 𝐾 + 1 keeps
the same in 𝐺0 and 𝐺

∗
, only these nodes on the (𝐾 + 1)𝑡ℎ layer

need to be merged. According to Theorem 4, we merge them with

𝑛+ (Line 20). The other nodes (not at 𝐿𝐾+1) in 𝑁𝐶 need to correct

their parent relations (Line 22). After all the updates in Line 18-22,

if 𝑉 (𝑛′) is empty, we set the parent of 𝑛+ to 𝑃 (𝑛′), and remove 𝑛′

from 𝑇 (Line 23-24). Then, the maintenance is completed.

Example 3. For the graph in Figure 2(a), after running Line 1-13
of Algorithm 1, we get 𝑇1 in Figure 2(c). Then, as 𝑉 ∗ = {𝑣5}, we have
𝑛′ = 𝑛𝑜𝑑𝑒 (𝑣5) by Line 14. At Line 15, 𝑛+ is created as a child node of
𝑛′ and collects 𝑣5 from 𝑛′.𝑇2 is shown in Figure 2(d). Next, at Line 18-
22, we select the nodes containing the neighbors of 𝑉 ∗, i.e., 𝑛𝑜𝑑𝑒 (𝑣0),
𝑛𝑜𝑑𝑒 (𝑣6), and 𝑛𝑜𝑑𝑒 (𝑣11), and mark their ancestors with the smallest
coreness while not less than 𝐾 + 1 = 4, i.e., 𝑛𝑜𝑑𝑒 (𝑣15), 𝑛𝑜𝑑𝑒 (𝑣6), and
𝑛𝑜𝑑𝑒 (𝑣11). Then, for above nodes which are at 𝐿𝐾+1, we merge them
with 𝑛+, and change the parent of 𝑛𝑜𝑑𝑒 (𝑣6) to 𝑛+. After the processing
when 𝑛′ is empty (Line 24-25), we get 𝑇 ∗ in Figure 2(e).

Correctness. The correctness of Algorithm 1 is guaranteed by the

theorems in this section. According to Theorem 1 and 2, after mov-

ing 𝑉 ∗ to the created node 𝑛+ and removing 𝑛′ if it is empty, all

nodes in 𝑇2 are already maintained except those in 𝑇 ′(𝑛′
2
). For all

nodes in 𝑇 ′(𝑛′
2
), by Theorem 4, the nodes in 𝑁𝐶 are maintained

correctly in Line 19-22; by Theorem 5, the other nodes (not in 𝑁𝐶)

keep the same in 𝑇 ∗.
Complexity. The space complexity of Algorithm. 1 is 𝑂 (|𝑉 | + |𝐸 |),
as |𝑇0 | ≤ |𝑉 |. The time cost of it is the sum of three parts

as follows. (i) In Line 1-13, we can get the complexity analy-

sis of maintaining coreness (Line 2) from [66], and it runs in

𝑂 (logmax{|𝑂𝐾 |, |𝑂𝐾+1 |} ×
∑
𝑣∈𝑉 + |𝑁 (𝑣,𝐺∗) |), where𝑂𝐾 is the set

of vertices with coreness 𝐾 , and 𝑉 + is the subset of 𝑂𝐾 , which

is the vertex candidate set whose coreness may increase after

the insertion.Then it takes 𝑂 (𝑘𝑚𝑎𝑥) to merge the ancestors of

𝑛𝑜𝑑𝑒 (𝑥1) and 𝑛𝑜𝑑𝑒 (𝑥2), where 𝑘𝑚𝑎𝑥 is the height of 𝑇0. (ii) In Line

14-16, the running time of moving the vertices in𝑉 ∗ is𝑂 (|𝑂𝐾 |), as
𝑉 (𝑛𝑜𝑑𝑒 (𝑥1)) ∪𝑉 (𝑛𝑜𝑑𝑒 (𝑥2)) ∈ 𝑂𝐾 . (iii) In Line 17-25, adjusting the

subtree rooted at 𝑛′ takes 𝑂 (|𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥1)) | + |𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥2)) |) as
there are at most |𝑇 ′(𝑛′) | nodes to adjust their parent relations, and
𝑇 ′(𝑛′) ⊂ 𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥1)) ∪𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥2)). Thus, the time complexity

of Algorithm 1 is𝑂 ((logmax{|𝑂𝐾 |, |𝑂𝐾+1 |} ×
∑
𝑣∈𝑉 + |𝑁 (𝑣,𝐺∗) |) +

𝑘𝑚𝑎𝑥 + |𝑉 ∗ | + |𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥1)) | + |𝑇 ′(𝑛𝑜𝑑𝑒 (𝑥2)) |).

3.4 Insertion of 𝑥 Edges

In this section, the𝑘-core hierarchy is updated in a batch-processing

manner, i.e., update once for the insertion of multiple edges. Com-

pared with the update for one inserted edge, it is more complex to

update 𝑇0 with the insertion of 𝑥 edges: (1) the coreness of each

vertex may increase by more than 1; and (2) the affected area in 𝑇0
would be larger.

Let 𝐸 ′ denote the edge set to be inserted to𝐺0, where 𝐸
′ ⊈ 𝐸 (𝐺0).

Accordingly, we use 𝐺∗ to denote 𝐺0 + 𝐸 ′.
Algorithm 2 shows the maintenance against the insertion of 𝐸 ′.

In order to avoid unnecessary cost (e.g., duplicate visit of some

nodes), we defer the adjustment (Line 11-13, 17-25 of Algorithm 1)

of the nodes in 𝑇0 to the last part of the algorithm (Line 16-29 of

Algorithm 2), and use the candidate set𝐶 to store all the node pairs

that need to be adjusted (Line 7, 11-15 and 27), i.e., the nodes will ei-

ther bemerged at the same layer, or have their parent-child relations

to be updated. Essentially, the mergence of ancestors (correspond-

ing to Section 3.2) and the subtree adjustment (corresponding to

Section 3.3) are combined by exploring the set 𝐶 once in a bottom-

up manner on the tree (Line 16-29). When |𝐸 ′ | = 1, Algorithm 2 is

actually the same to Algorithm 1.

In details, we insert each edge 𝑒 ∈ 𝐸 ′ one by one, and generate𝑉 ′
which contains all the vertices with coreness changedwith inserting

𝑒 , by coreness maintenance [66] (Line 2-3). Similar to Line 14-16 of

Algorithm 2, we create a node 𝑛∗ as a child node of 𝑛′ in 𝑇 , where
𝑛′ is a node containing at least one vertex in 𝑉 ′ (Line 4-6). Note
that the vertices in 𝑉 ′ may locate at different nodes, as 𝑇 has not

been fully updated in former iterations. Let N be a node set where

each node contains at least one vertex in 𝑉 ′ (Line 4). According to

Theorem 3, the nodes in N will be merged into one node on 𝑇 ∗ at
last, we can set 𝑛′ as any node from N in Line 5. Thus, the node

pair (𝑛∗, 𝑛0) for each 𝑛0 ∈ N is added to the candidate set𝐶 in Line

762

𝑣12𝑣11

𝑣14 𝑣13
𝑣16

𝑣5

𝑣8

𝑣7

𝑣6 𝑣10

𝑣9
𝑣4

𝑣3

𝑣2

𝑣1

𝑣0

𝑣15

(a) 𝐺0 + (𝑣1, 𝑣14) + (𝑣5, 𝑣16)

root

𝑣16

𝑣5

𝑣11 𝑣12
𝑣13 𝑣14

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝑣15

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4

(b) 𝑇0

root

∅

𝑣5

𝑣11 𝑣12
𝑣13 𝑣14

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝑣15

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4

𝑣16

(c) 𝑇1

root

𝑣5 𝑣16

𝑣11 𝑣12
𝑣13 𝑣14 𝑣15

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4

(d) 𝑇 ∗

Figure 3: Insert (𝑣1, 𝑣14) and (𝑣5, 𝑣16) to𝐺0

7 for later update. In Line 8, we move each vertex 𝑣 in 𝑉 ′ to the

correct layer, i.e., from 𝑉 (𝑛𝑜𝑑𝑒 (𝑣)) to 𝑉 (𝑛∗). The empty nodes are

removed and the related tree edges are adjusted. Line 9 updates 𝐺0

and 𝑉 ∗. As the vertices in 𝑉 ′ may be moved in later iterations, we

only mark the vertices to move and the nodes containing them, in

order to move them by one time after running Line 2-9.

We get 𝑇1 till now, in which each vertex is in the correct layer.

According to Algorithm 1, an edge (𝑢, 𝑣) ∈ 𝐸 (𝐺∗) may incur the

update of the tree structure, where (𝑢, 𝑣)mustmeet either (i) (𝑢, 𝑣) ∈
𝐸 ′ or (ii) 𝑣 ∈ 𝑉 ∗ ∧ 𝑢 ∈ 𝑁 (𝑣,𝐺∗) ∧ 𝑐𝑜𝑟𝑒 (𝑢,𝐺∗) > 𝑐𝑜𝑟𝑒 (𝑣). At Line
11-12, we add all the candidate edges to𝐶 for case (i); The candidate

edges from case (ii) are added to 𝐶 at Line 13-15.

Example 4. For the graph𝐺0 in Figure 3(a), its𝑘-core hierarchy is
shown in Figure 3(b). We first insert the edge (𝑣1, 𝑣14), and find𝑉 ′ = ∅
s.t. no update is triggered in Line 3-9. Next, we insert another edge
(𝑣5, 𝑣16), and find𝑉 ′ = {𝑣16}. At Line 6, a tree node𝑛∗ is created in the
layer 𝐿𝑐𝑜𝑟𝑒 (𝑣16)+1 = 𝐿2, as a child node of 𝑛

′ = 𝑛𝑜𝑑𝑒 (𝑣16), and 𝑣16 is
moved from 𝑛′ to 𝑛∗, as shown in Figure 3(c). The node pair (𝑛∗, 𝑛′) is
added to𝐶 at Line 7. Now we focus on the intermediate tree𝑇1, for the
candidates in 𝐶 from 𝐸 ′ (Line 11-12), we add (𝑛𝑜𝑑𝑒 (𝑣5), 𝑛𝑜𝑑𝑒 (𝑣16))
and (𝑛𝑜𝑑𝑒 (𝑣1), 𝑛𝑜𝑑𝑒 (𝑣14)) to 𝐶 , as marked by red dashed lines in
Figure 3(c). The other candidates in 𝐶 are from the neighbors of each
vertex in 𝑉 ∗ = {𝑣16} (Line 13-15), i.e., (𝑛𝑜𝑑𝑒 (𝑣5), 𝑛𝑜𝑑𝑒 (𝑣16)) and
(𝑛𝑜𝑑𝑒 (𝑣15), 𝑛𝑜𝑑𝑒 (𝑣16)), as marked by blue dashed lines.

Next we focus on the update operations based on 𝐶 (Line 16-

29). In order to update 𝑇1 through only the necessary operations,

we scan the nodes of 𝐶 layer-by-layer in the tree in a bottom-up

manner, i.e., from nodes with large coreness to the ones with small

coreness (Line 16). Here 𝑘𝑚𝑎𝑥 represents the largest coreness of a

vertex in 𝐺∗. For the coreness value 𝐾 in one iteration, we select

an unvisited node 𝑛0 in 𝐶 with 𝑐𝑜𝑟𝑒 (𝑛0) = 𝐾 in 𝑇 (Line 17). We

use N1 to store each visited node 𝑛1 ∈ 𝐶 with coreness 𝐾 (Line 18

and 23), where the nodes will be merged into one node, W.l.o.g,

𝑛0, at Line 28. Besides, N2 records the parent node of each node

in N1, and each node 𝑛2 if there is a node pair (𝑛1, 𝑛2) ∈ 𝐶 and

𝑐𝑜𝑟𝑒 (𝑛2) < 𝐾 (Line 20 and 25). Each node in N2 will become (part

of) an ancestor of 𝑛0 on 𝑇
∗
. To maintain the tree structure, after

collecting the nodes for N1 and N2, we pick a node 𝑛′ ∈ N2 with
the largest coreness. The node 𝑛′ is actually a child node of other

nodes inN2 with corenesses smaller than 𝑐𝑜𝑟𝑒 (𝑛′), and these nodes
on the same layer will be merged into one node in later iterations.

So, we add (𝑛′, 𝑛2) to 𝐶 for each 𝑛2 ∈ N2 \ 𝑛2. Then, we merge the

nodes in N1 to one node (Line 28) and reset its parent node (Line

29). Iteratively, the 𝑘-core hierarchy is correctly maintained.

Example 5. We use Figure 3(c)(d) to illustrate the mergence proce-
dure (Line 16-29 of Algorithm 2) on the case in Figure 3(a). In the first
iteration, 𝑛0 = 𝑛𝑜𝑑𝑒 (𝑣1) is selected at Line 17 and pushed into N1 at
Line 18. Then, 𝑃 (𝑛𝑜𝑑𝑒 (𝑣1)) = 𝑛𝑜𝑑𝑒 (𝑣15) is pushed intoN2. After Line
25, we get N1 = {𝑛𝑜𝑑𝑒 (𝑣1)} and N2 = {𝑛𝑜𝑑𝑒 (𝑣15), 𝑛𝑜𝑑𝑒 (𝑣14)}. We
push (𝑛𝑜𝑑𝑒 (𝑣15), 𝑛𝑜𝑑𝑒 (𝑣14)) into𝐶 at Line 27. In the second iteration
of Line 16, if 𝑛0 = 𝑛𝑜𝑑𝑒 (𝑣15), we have N1 = {𝑛𝑜𝑑𝑒 (𝑣15), 𝑛𝑜𝑑𝑒 (𝑣14)}
and N2 = {𝑛𝑜𝑑𝑒 (𝑣16), 𝑛𝑜𝑑𝑒 (𝑣5)} after Line 25. If 𝑛′ = 𝑛𝑜𝑑𝑒 (𝑣5) at
Line 26, we push (𝑛𝑜𝑑𝑒 (𝑣5), 𝑛𝑜𝑑𝑒 (𝑣16)) into 𝐶 at Line 27. The nodes
in N1 are merged at Line 28, and 𝑃 (𝑛𝑜𝑑𝑒 (𝑣15)) = 𝑛𝑜𝑑𝑒 (𝑣5) at Line
29. After all the iterations, we get 𝑇 ∗ as shown in Figure 3(d).

Theorem 6. After running Algorithm 2, for each node 𝑛0 ∈ 𝑇0
if 𝑛0 is not in𝐶 , we have (i) 𝑛0 keeps the same in𝑇 ∗ and (ii) the child
nodes of 𝑛0 keeps the same in 𝑇 ∗.

Proof. (i) Suppose𝑉 (𝑛0) changed, there is a vertex in𝑉 (𝑛0)∩𝑉 ∗
moved out of 𝑛0, or a vertex in𝑉

∗
is moved to𝑉 (𝑛0). In both cases,

𝑛0 will be added to a node pair in 𝐶 by Line 7, which contradicts

with 𝑛0 ∉ 𝐶 . (ii) Now we confirm that 𝑛0 keeps the same as in 𝑇 ∗,
i.e. 𝑉 ∗ ∉ 𝑉 (𝑛0). Thus no vertex is added to any child node of 𝑛0.

(ii.a)For a child of 𝑛0 changed its parent node, there must be a vertex

moved out of 𝑛0, which contradicts with that 𝑛0 keeps the same in

𝑇 ∗. (ii.b) Suppose there is a vertex moved out of a 𝑛0’s child node

𝑛𝑐 , 𝑛𝑐 will be added in 𝐶 by Line 7, and thus (𝑛𝑐 , 𝑛0) will be added
to 𝐶 by Line 26, which contradicts with 𝑛0 ∉ 𝐶 . Thus, the theorem

holds. □

Correctness. According to Theorem 6, the local structure of each

node 𝑛0 ∉ 𝐶 keeps the same, i.e., its vertex set and child nodes are

same in 𝑇0 and 𝑇
∗
. Thus, we only need to process the nodes in 𝐶

for the update of𝑇0. As we follow the definition of 𝑘-core hierarchy

to maintain 𝑇0, the correctness of Algorithm 2 is guaranteed.

Complexity. The space complexity of Algorithm 2 is 𝑂 (𝑚). As Al-
gorithm 2 combines with the operations in Algorithm 1 for each

inserted edge, according to the time complexity of Algorithm 1,

the worst-case time complexity of Algorithm 2 is 𝑂 (∑ |𝑉 ∗ | + 𝑥 ·
(𝑘𝑚𝑎𝑥 + |𝑇0 |)) where |𝑇0 | is the number of tree nodes in 𝑇0.

4 EDGE REMOVAL

In this section, we first study the maintenance of 𝑘-core hierarchy

against the removal of one edge. Then, we extend the study to

the removal of multiple edges. Let (𝑥1, 𝑥2) denote the edge to be

removed from 𝐺0, where (𝑥1, 𝑥2) ∈ 𝐸 (𝐺0). W.l.o.g, we suppose

𝐾 = 𝑐𝑜𝑟𝑒 (𝑥1) ≤ 𝑐𝑜𝑟𝑒 (𝑥2). Let 𝐺∗ denote the graph updated from

𝐺0, i.e., 𝐺
∗ = (𝑉 , 𝐸 − (𝑥1, 𝑥2)). Let 𝑇0 = 𝑇 (𝐺0) and 𝑇 ∗ = 𝑇 (𝐺∗).

When the context is clear, we use 𝑛𝑜𝑑𝑒 (𝑣0) to represent 𝑛𝑜𝑑𝑒 (𝑣0,𝑇).

763

4.1 Removal Analysis

Similar to the case of edge insertion, we apply [66] to update the

corenesses of all the affected vertices. For the update of 𝑘-core

hierarchy against edge removal, we need to check the connectivity

of the vertices in some tree nodes to examine whether a node will

split or not. As the insertion of edges will not split the tree nodes,

the cost of maintaining the 𝑘-core hierarchy against edge removal

is generally higher than that against edge insertion. Thus, in order

to reduce the cost, we should carefully limit the search space to

address the connectivity change.

Let 𝑉 ∗ denote the set of vertices with coreness changed after

the removal of (𝑥1, 𝑥2). Essentially, the removal of an edge (𝑥1, 𝑥2)
from 𝐺0 is a reverse procedure of inserting (𝑥1, 𝑥2) to 𝐺∗. So, we
can immediately deduce the following rules.

• For every vertex 𝑣 ∈ 𝑉 ∗, we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺0) = 𝐾 and

𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝐾 − 1.
• We have 𝑉 ∗ ⊆ 𝑉 (𝐶 (𝑥1,𝐺0)), and the induced subgraph of

𝑉 ∗ in 𝐺0 is connected.

Similar to the analysis for insertion, for the update of 𝑘-core

hierarchy with removing (𝑥1, 𝑥2), we discuss the following cases
for all the 𝑘-cores in 𝐺0.

(i) The 𝑘-cores with 𝑘 > 𝐾 . For every vertex 𝑣 with 𝑐𝑜𝑟𝑒 (𝑣) >
𝐾 , we have 𝐶 (𝑣,𝐺∗) = 𝐶 (𝑣,𝐺0), because (𝑥1, 𝑥2) ∉ 𝐶 (𝑣,𝐺0).
Thus, the hierarchy of 𝑘-cores (the subtrees rooted on 𝐿𝑘)

with 𝑘 > 𝐾 keeps the same in 𝐺0 and 𝐺
∗
.

(ii) The 𝑘-cores with 𝑘 ≤ 𝐾 . For every vertex 𝑣 with 𝑐𝑜𝑟𝑒 (𝑣) <
𝐾 , we have 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝑐𝑜𝑟𝑒 (𝑣,𝐺0). The removal of

(𝑥1, 𝑥2) will move the vertices in 𝑉 ∗ to 𝐿𝐾−1 from 𝐿𝐾 . Be-

sides, the ancestors of 𝑛𝑜𝑑𝑒 (𝑥1) or 𝑛𝑜𝑑𝑒 (𝑥2) may split, be-

cause some 𝑘-cores become disconnected by the removal of

(𝑥1, 𝑥2) and the move of the vertices in 𝑉 ∗.

Let 𝑛′ denote the node in 𝑇0 containing 𝑉 ∗. Note that the ver-
tices in 𝑉 ∗ are actually in one node of 𝑇0 before the removal

of (𝑥1, 𝑥2); otherwise Theorem 3 is violated if we insert (𝑥1, 𝑥2)
back. As 𝑐𝑜𝑟𝑒 (𝑥1,𝐺0) ≤ 𝑐𝑜𝑟𝑒 (𝑥2,𝐺0) is supposed, we have 𝑉 ∗ ⊆
𝑉 (𝑛𝑜𝑑𝑒 (𝑥1,𝑇0)).

4.2 Adjust the Subtree rooted at 𝑛′

As shown in above subsection, the hierarchy of 𝑘-cores keeps the

same when 𝑘 > 𝐾 . Here, we show how to adjust the subtree rooted

at 𝑛′ in 𝑇0. We will split the ancestors of 𝑛′ in next subsection.

Algorithm 3 shows the pseudo-code to maintain the 𝑘-core hier-

archy against the removal of (𝑥1, 𝑥2). We first compute the set 𝑉 ∗

at Line 2, where the coreness of each vertex decreases to 𝐾 − 1 from
𝐾 , and get 𝑛′ which contains 𝑉 ∗ at Line 3. If the parent node of 𝑛′

is not in 𝐿𝐾−1, we create a new child node of 𝑃 (𝑛′) in 𝐿𝐾−1 and set
the parent node of 𝑛′ to it (Line 7-9). Let 𝑛∗ denote the parent node
of 𝑛′ (Line 4 or 8), we move 𝑉 ∗ to 𝑛∗ from 𝑛′ in Line 10.

Split 𝑛′. As the move of 𝑉 ∗ may disconnect 𝐺∗ [𝑛′], we need to

find all connected components of it in Line 12. For each child node

𝑛𝑐 of 𝑛
′
, we make sure that 𝐺∗ [𝑛𝑐] is already a complete (𝐾 + 1)-

core otherwise Theorem 4 is violated if we insert (𝑥1, 𝑥2) back.
Thus, instead of traversing all vertices in𝐺∗ [𝑛′], we can regard the

vertices in 𝑇 ′(𝑛𝑐) as a unit for each child node 𝑛𝑐 of 𝑛
′
. We will

describe it in details later. In this way, we can immediately find the

Algorithm 3: RemoveOne

Input : a graph𝐺0, the 𝑘-core hierarchy𝑇0, an edge

(𝑥1, 𝑥2) ∈ 𝐸 (𝐺0)
Output :𝑇 ∗, i.e., the updated𝑇0
𝑇 ← 𝑇0;1

𝑉 ∗ ← vertices with coreness changed by removing (𝑥1, 𝑥2) from𝐺0;2

𝑛′ ← node(𝑥1) in𝑇 (suppose 𝑐𝑜𝑟𝑒 (𝑥1) ≤ 𝑐𝑜𝑟𝑒 (𝑥2));3

𝑛∗ ← 𝑃 (𝑛′) ;4

if 𝑉 ∗ ≠ ∅ then5

if 𝑐𝑜𝑟𝑒 (𝑃 (𝑛′)) ≠ 𝐾 − 1 then6

create 𝑛0 on 𝐿𝐾−1 as a child node of 𝑛∗ ;7

𝑛∗ ← 𝑛0;8

𝑃 (𝑛′) ← 𝑛∗;9

move each vertex in𝑉 ∗ from 𝑛′ to 𝑛∗;10

𝑇1 ← 𝑇 ;11

𝑇2 ← SplitNode(𝑛′,𝑇1);12

flag← true;13

𝑖 ← 2;14

while flag = true do15

𝑖 ← 𝑖 + 1; 𝑛∗
𝑖
= 𝑃 (𝑛∗

𝑖−1) ;16

𝑇𝑖 ← SplitNode(𝑛∗
𝑖
,𝑇𝑖−1);17

flag← (𝑇𝑖−1 ≠ 𝑇𝑖) ;18

𝑇 ∗ ← 𝑇𝑖 ;19

return𝑇 ∗20

Algorithm 4: SplitNode

Input : a subtree rooted at 𝑛𝑟 to split, the 𝑘-core hierarchy𝑇

Output : the updated𝑇

𝑛∗𝑟 ← 𝑃 (𝑛𝑟) ;𝑉𝑟 ← 𝑉 (𝑛𝑟) ; 𝐾 = 𝑐𝑜𝑟𝑒 (𝑛𝑟) ;1

for each vertex 𝑢 ∈ 𝑉 (𝑛𝑟) do2

create an empty node 𝑛𝑐 on 𝐿𝐾 as a child node of 𝑛𝑟 ;3

move 𝑢 to 𝑛𝑐 from 𝑛𝑟 ;4

for each node 𝑛𝑐 ∈ 𝑛𝑟 .children do5

for each node 𝑛𝑑 ∈ 𝑇 ′ (𝑛𝑐) do6

𝑐𝑛 (𝑛𝑟 , 𝑛𝑑) ← 𝑛𝑐 ;7

for each vertex 𝑢 ∈ 𝑉𝑟 do8

for each vertex 𝑣 ∈ 𝑁 (𝑢,𝐺∗) do9

if 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) = 𝐾 then10

merge 𝑛𝑜𝑑𝑒 (𝑢) and 𝑛𝑜𝑑𝑒 (𝑣) ;11

else if 𝑐𝑜𝑟𝑒 (𝑣,𝐺∗) > 𝐾 then12

𝑛𝑐 ← 𝑐𝑛 (𝑛𝑟 , 𝑣) ; /* FindSubroot(𝑛′, 𝑣) */13

if 𝑃 (𝑛𝑐) = 𝑛𝑟 then14

𝑃 (𝑛𝑐) ← 𝑛𝑜𝑑𝑒 (𝑢) ;15

else16

merge 𝑛𝑜𝑑𝑒 (𝑢) and 𝑃 (𝑛𝑐) ;17

for each node 𝑛𝑐 ∈ 𝑛𝑟 .children do18

𝑃 (𝑛𝑐) ← 𝑛∗𝑟 ;19

remove 𝑛𝑟 from𝑇 ;20

return𝑇 , i.e., updated𝑇21

vertices in 𝑉 (𝑛′) which should exist in the same node of 𝐿𝐾 (𝑇 ∗),
and its child node on 𝑇 ∗.

764

Algorithm 5: FindSubroot

Input : a node 𝑛0, a vertex 𝑣0

Output : the node 𝑛𝑐 , i.e., 𝑐𝑛 (𝑛0, 𝑣0)
𝐴← empty set; 𝑛𝑐 ← 𝑛1 ← 𝑛𝑜𝑑𝑒 (𝑣0) ;1

while 𝑛1 ≠ 𝑛0 do2

𝐴← 𝐴 ∪ {𝑛1 };3

𝑛𝑐 ← 𝑛1; 𝑛1 ← 𝐽 𝑢𝑚𝑝 (𝑛1) ;4

𝐽 𝑢𝑚𝑝 (𝑛2) ← 𝑛𝑐 for each node 𝑛2 ∈ {𝐴 \ 𝑛𝑐 };5

return 𝑛𝑐6

Algorithm 4 shows the process of splitting the subtree rooted at

𝑛𝑟 . Let 𝑛
∗
𝑟 denote the parent node of 𝑛𝑟 , and 𝑉𝑟 denote the vertex

set of 𝑛𝑟 (Line 1). We first logically split 𝑛𝑟 by regarding each vertex

as a single child node of 𝑛∗𝑟 in 𝐿𝑐𝑜𝑟𝑒 (𝑛𝑟) (Line 2-4). The node 𝑛𝑟 will
become an empty node while the existing parent-child relations of

𝑛𝑟 are temporally preserved. In the implementation, we mark the

nodes and address the split together later to reduce cost.

Use 𝑐𝑛(𝑛0, 𝑣0). In order to fast check whether two vertices are in

a same 𝐾-core on𝐺∗, we use 𝑐𝑛(𝑛0, 𝑣0) which has been discussed

above. Note that 𝑐𝑛(𝑛0, 𝑣0) = 𝑐𝑛(𝑛0, 𝑛𝑜𝑑𝑒 (𝑣0)). For an edge (𝑢, 𝑣) ∈
𝐸 (𝐺∗) with 𝑢 ∈ 𝑉𝑟 , (i) if 𝑐𝑜𝑟𝑒 (𝑣) = 𝐾 , we merge 𝑛𝑜𝑑𝑒 (𝑢) and
𝑛𝑜𝑑𝑒 (𝑣) as they are linked by (𝑢, 𝑣) (Line 10-11); (ii) if 𝑐𝑜𝑟𝑒 (𝑣) > 𝐾 ,
we can retrieve that 𝑛𝑐 = 𝑐𝑛(𝑛0, 𝑣0) is a child node of 𝑛𝑜𝑑𝑒 (𝑢), and
thus there is a node containing 𝑃 (𝑛𝑐) and 𝑛𝑜𝑑𝑒 (𝑢) on 𝐿𝐾 (Line

12-17). When 𝑃 (𝑛𝑐) = 𝑛𝑟 , we just set 𝑃 (𝑛𝑐) as 𝑛𝑜𝑑𝑒 (𝑣) because 𝑛𝑟
is an empty set now with some parent-child relations temporarily

preserved (Line 14-15); otherwise, we merge 𝑃 (𝑛𝑐) and 𝑛𝑜𝑑𝑒 (𝑢) as
their vertices are in the same node on 𝐿𝐾 (Line 16-17).

After running Line 8-17 of Algorithm 4, for each child node 𝑛𝑐
of 𝑛′ left, 𝑛𝑐 is not a child node of any node on 𝐿𝐾 \ 𝑛′, and we set

𝑃 (𝑛𝑐) = 𝑛∗ (Line 18-19). Finally, we remove 𝑛′ and its associated

tree edges from 𝑇 ′ at Line 20, and the split process is completed.

Example 6. Consider the graph in Figure 1(a). Suppose an edge
(𝑣2, 𝑣17) is removed from the graph. In the process of maintaining
𝑘-core hierarchy, after we move 𝑉 ∗ = {𝑣17} to 𝑛∗ and get 𝑇1 in
figure 4(a), figure 4(b) shows the process of spliting 𝑛′(Line 12 of
Algorithm 3). For each vertex in𝑉 (𝑛′), we first logically create a node
at 𝐿𝐾 as a child of 𝑛∗ = 𝑛𝑜𝑑𝑒 (𝑣19)) and move the vertex to the new
node (Line 1-4 of Algorithm 4), as shown in the left part of Figure 4(b).
Now 𝑛′ becomes an empty node with tree edges temporarily preserved.

At Line 5-7 of Algorithm 4, we initialize 𝑐𝑛(𝑛′, 𝑛𝑑) to fast re-
trieve the child node 𝑛𝑐 of 𝑛′ which is an ancestor of 𝑛𝑑 (or itself),
e.g., 𝑐𝑛(𝑛𝑜𝑑𝑒 ′, 𝑣0) = 𝑛𝑜𝑑𝑒 (𝑣0). Then, we can traverse each vertex
at 𝐿𝐾 and visit its neighbors s.t. the nodes to merge and the tree
edges to adjust can be immediately determined. For instance, we set
𝑃 (𝑛𝑜𝑑𝑒 (𝑣0)) = 𝑛𝑜𝑑𝑒 (𝑣18) at Line 15, because 𝑣0 is a neighbor of 𝑣18
and 𝑐𝑛(𝑛𝑜𝑑𝑒 ′, 𝑣0) = 𝑛𝑜𝑑𝑒 (𝑣0). After the traversal, as 𝑛𝑜𝑑𝑒 (𝑣6) is not
visited, we set 𝑃 (𝑛𝑜𝑑𝑒 (𝑣6)) = 𝑛𝑜𝑑𝑒 (𝑣17) at Line 18-19. The updated
𝑇0 is shown on the right part of Figure 4(b).

Implementation of Computing 𝑐𝑛(𝑛0, 𝑣0). The pseudo-code to com-

pute 𝑐𝑛(𝑛0, 𝑣0) is shown in Algorithm 5. It is not necessary to gener-

ate 𝑐𝑛(𝑛0, 𝑛𝑑) for every descendent 𝑛𝑑 of 𝑛𝑐 . In the implementation,

we use a global pointer 𝐽𝑢𝑚𝑝 (𝑛𝑜𝑑𝑒 (𝑣0)) to compute and preserve

𝑐𝑛(𝑛0, 𝑣0) in a lazy manner, i.e., only when it is required at Line

13 of Algorithm 4. The pointer 𝐽𝑢𝑚𝑝 (𝑛0) is initialized by 𝑃 (𝑛0)

𝑣19𝒗𝟏𝟕

root

𝑣20𝑣21𝑣22

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10 𝑣11

𝑣13 𝑣15 𝑣17
𝑣12𝑣14 𝑣16 𝑣18

𝑛′

𝑛∗

(a) 𝑇1

𝑣19𝑣17

root

𝑣20𝑣21𝑣22

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10 𝑣11

𝑣18 𝑣12 𝑣13 𝑣14 𝑣15 𝑣16

𝑣19𝑣17

root

𝑣20𝑣21𝑣22

𝑣0 𝑣1 𝑣2
𝑣3 𝑣4 𝑣5

𝑣6 𝑣7 𝑣8
𝑣9 𝑣10 𝑣11

𝑣18
𝑣12 𝑣13

𝑣14 𝑣15 𝑣16
∅

𝑛’

𝑛∗

(b) SplitNode(𝑛′)

Figure 4: Split 𝑛′ in𝑇1

for each node 𝑛0 to facilitate the search. We use 𝐴 to record the

visited nodes in the search, i.e., some ancestors of 𝑛𝑜𝑑𝑒 (𝑣0). The
currently visited node is denoted by 𝑛1, and the last visited node is

denoted by 𝑛𝑐 . They are initialized at Line 1. We search the subtree

rooted at 𝑛0 layer-by-layer in a bottom-up manner, starting from

𝑛1 = 𝑛𝑜𝑑𝑒 (𝑣0) until 𝑛1 = 𝑛0 (Line 2). Each visited node is pushed

into 𝐴 at Line 3. Then, 𝑛𝑐 is set by 𝑛1, and 𝑛1 is set by 𝐽𝑢𝑚𝑝 (𝑛1)
at Line 4. When 𝑛1 = 𝑛0, the node 𝑛𝑐 is the child node of 𝑛0 with

𝑇 ′(𝑛𝑐) containing 𝑣 , i.e., 𝑐𝑛(𝑛0, 𝑣0) = 𝑛𝑐 . For each node 𝑛0 in 𝐴,

we have 𝑐𝑛(𝑛0, 𝑛0) = 𝑛𝑐 , and thus 𝐽𝑢𝑚𝑝 (𝑛0) is set by 𝑛𝑐 at Line 5
(except 𝑛0 = 𝑛𝑐 to maintain stop condition). Finally, we return 𝑛𝑐 .

4.3 Split Ancestors of 𝑛′

After adjusting the subtree rooted at 𝑛′ (Line 1-10 of Algorithm 3),

the parent node of 𝑛′, i.e., 𝑛∗ may also split. The split process may

further spread to the ancestors of 𝑛′.
We will continue to try to split the node 𝑛∗ as 𝑉 ∗ moves to 𝑛∗.

The child nodes of 𝑛∗ keep the same in 𝑇 ∗ according to Theorem 2

and the correctness of Algorithm 4. The split procedure of 𝑛∗ is
essentially same to that of 𝑛′, because the split spreads in layer-

by-layer manner from bottom to up, we use splitNode to adjust the

subtree rooted at 𝑛∗ (Line 15-18). After processing 𝑛∗, we iteratively
set its parent node as the next node to split (Line 16-17). Once the

tree does not change (Line 18), the split stops.

For any other node which has not been an input of SplitNode

(Algorithm 4), the following theorem holds.

Theorem 7. After running Algorithm 3, for any node 𝑛0 in 𝑇0
which has not been an input of SplitNode (Algorithm 4), 𝑛0 keeps the
same in 𝑇 ∗ and the child nodes of 𝑛0 keep the same in 𝑇 ∗.

Proof. For the removal of (𝑥1, 𝑥2), as only the vertices in 𝑛′

move to 𝑛∗, the vertex set of each layer 𝐿𝑘 keeps the same except

for 𝑘 = 𝐾 or𝐾−1. (i) Suppose𝑉 (𝑛0) changes. We have𝑛0 ∉ {𝑛′, 𝑛∗}
as 𝑛′ (resp. 𝑛∗) is an input of SplitNode in Line 9 (resp. Line 12). As

𝑉 (𝑛0) changes and 𝑛0 ∉ {𝑛′, 𝑛∗}, 𝐺∗ [𝑛0] must be disconnected in

𝐺∗. For each 𝑘-core 𝐶𝑘
0
⊆ 𝐺0 [𝑛0], (𝑥1, 𝑥2) ∈ 𝐶𝑘

0
, and 𝑘 ≤ 𝐾 , we

have𝐶𝑘
0
is also disconnected in𝐺∗; otherwise,𝐺0 [𝑛0] will not split.

Then, in Line 11-14 of Algorithm 3, 𝑛0 will be an input of SplitNode
which causes a contradiction. Thus, 𝑛0 keeps the same in 𝑇 ∗.

(ii) Suppose the child nodes of 𝑛0 are different in 𝑇 and 𝑇 ∗. If
𝑉 ∗ = ∅, the child nodes of 𝑛0 split, and the split stops at 𝑛0 as 𝑛0
keeps the same. Then 𝑛0 is an input of SplitNode according to Line

13. If 𝑉 ∗ ≠ ∅, when 𝑛∗ is a child node of 𝑛0, 𝑛0 is also an input of

SplitNode according to Line 13; when 𝑛′ is a child node of 𝑛0, we

have 𝑛0 = 𝑛
∗
or 𝑛0 = 𝑃 (𝑛∗) in 𝑇 ∗ (Line 6), 𝑛0 is an input; for other

765

Algorithm 6: RemoveX

Input : a graph𝐺0, the 𝑘-core hierarchy𝑇0, an edge set 𝐸′ ⊆ 𝐸 (𝐺0)
Output :𝑇 ∗, i.e., the updated𝑇0
𝑇 ← 𝑇0;𝐺 ← 𝐺0;𝐶 ← ∅;1

for each (𝑢, 𝑣) ∈ 𝐸′ do2

𝑉 ∗ ← vertices with coreness changed by removing (𝑢, 𝑣) from𝐺 ;3

𝐺 ← 𝐺 − (𝑢, 𝑣) ;4

𝑛𝑜𝑑𝑒′ ← 𝑛𝑜𝑑𝑒 (𝑢,𝑇𝑖) (suppose 𝐾 =𝑐𝑜𝑟𝑒 (𝑢,𝐺) ≤ 𝑐𝑜𝑟𝑒 (𝑣,𝐺));5

if 𝑐𝑜𝑟𝑒 (𝑃 (𝑛𝑜𝑑𝑒′)) = 𝐾 − 1 then6

𝑛𝑜𝑑𝑒∗ ← 𝑃 (𝑛𝑜𝑑𝑒′) ;7

else8

create an empty node 𝑛𝑜𝑑𝑒∗ on 𝐿𝐾−1 as a child of 𝑃 (𝑛𝑜𝑑𝑒′) ;9

𝑃 (𝑛𝑜𝑑𝑒′) ← 𝑛𝑜𝑑𝑒∗;10

move each vertex 𝑣 ∈ 𝑉 ∗ from 𝑛𝑜𝑑𝑒′ to 𝑛𝑜𝑑𝑒∗;11

𝐶 ← 𝐶 ∪ {𝑛𝑜𝑑𝑒′, 𝑛𝑜𝑑𝑒∗ };12

𝑇1 ← 𝑇 ;𝐺∗ ← 𝐺 ; 𝑖 = 1;13

for each 𝑛′ ∈ 𝐶 in descending order of coreness do14

𝑖 ← 𝑖 + 1;15

𝑇𝑖 ← SplitNode(𝑛′,𝑇𝑖−1) ;16

𝐶 ← 𝐶 ∪ {𝑃 (𝑛′) } if 𝑇𝑖−1 ≠ 𝑇𝑖 ;17

return𝑇 , i.e.,𝑇 ∗18

cases, the split stops at 𝑛0 as 𝑛0 keeps the same in 𝑇 ∗. Thus, 𝑛0 is
an input of SplitNode, which causes a contradiction. □

Correctness. According to Theorem 2, Theorem 3 and the definition

of the 𝑘-core hierarchy, the correctness from𝑇0 to𝑇1 is guaranteed.

By Theorem 7, the local structure of each node 𝑛0, which has not

been an input of SplitNode, keeps the same, i.e., its vertex set and

child nodes are same in𝑇1 and𝑇
∗
. So, we iteratively execute SplitN-

ode for the update of𝑇1. As we follow the definition of the hierarchy

to maintain 𝑇1, the correctness of Algorithm 3 is guaranteed.

Complexity. We show it in Section 4.4, as Algorithm 3 is essentially

same to the update algorithm for removing 𝑥 edge(s) when 𝑥 = 1.

4.4 Remove 𝑥 Edges

In this section, we update the 𝑘-core hierarchy once for the removal

of 𝑥 edges. Let 𝐸 ′ denote the edge set to be removed from𝐺0, where

𝐸 ′ ⊆ 𝐸 (𝐺0). Algorithm 6 shows the pseudo-code to maintain the

𝑘-core hierarchy against the removal of 𝐸 ′. Similar to Algorithm 2

and in the way of Algorithm 3, for each edge (𝑢, 𝑣) ∈ 𝐸 ′, we re-
move it from 𝐺 (the changing graph), compute 𝑉 ∗ at Line 3, and
adjust the parent node of 𝑛𝑜𝑑𝑒 ′ (Line 5-10) where 𝑛𝑜𝑑𝑒 ′ = 𝑛𝑜𝑑𝑒 (𝑢)
with 𝑐𝑜𝑟𝑒 (𝑢,𝐺) ≤ 𝑐𝑜𝑟𝑒 (𝑣,𝐺). If 𝑃 (𝑛𝑜𝑑𝑒 ′) is at 𝐿𝑐𝑜𝑟𝑒 (𝑢)−1, we set
𝑛𝑜𝑑𝑒∗ by 𝑃 (𝑛𝑜𝑑𝑒 ′) (Line 6-7); otherwise, we create a node 𝑛𝑜𝑑𝑒∗
at 𝐿𝑐𝑜𝑟𝑒 (𝑢)−1 as a child node of 𝑃 (𝑛𝑜𝑑𝑒 ′), and reset 𝑃 (𝑛𝑜𝑑𝑒 ′) by
𝑛𝑜𝑑𝑒∗ (Line 8-10). We move the vertices in 𝑉 ∗ to 𝑛𝑜𝑑𝑒∗ (Line 11).

We use a candidate set 𝐶 to store all the nodes that should be

visited by SplitNode. Due to the removal of some edges and/or the

coreness change of some vertices, (i) a node 𝑛′ may split and/or

(ii) a child node of 𝑛′ may change its parent node to 𝑃 (𝑛′), i.e., the
subtree rooted at 𝑛′ may change. Thus, we push every such node

𝑛′ into 𝐶 at Line 12 and 17. It is correct to split a node 𝑛′ in 𝐶 from

large coreness to small (by Algorithm 4), as the subtree of each

child node of 𝑛′ is already updated (Line 14). We make sure that,

Table 2: Statistics of Datasets

Dataset |𝑉 | |𝐸 | 𝑑𝑎𝑣𝑔 𝑘𝑚𝑎𝑥 |𝑇 |
Gowalla 196,591 950,327 9.7 51 75

DBLP 317,080 1,049,866 6.6 113 767

Human-Jung 784,262 267,844,669 683.1 1200 4088

Hollywood 1,069,126 56,306,653 105.3 2208 679

Skitter 1,696,415 11,095,298 13.1 131 903

Orkut 3,072,441 117,185,083 76.3 253 254

Wiki 12,150,976 378,142,420 62.2 1122 5049

Rgg 16,777,216 132,557,200 15.8 20 117422

Twitter 41,652,230 1,468,365,182 8.8 2488 3049

FriendSter 65,608,366 1,806,067,135 55.1 304 451

after changing 𝑘-core hierarchy to𝑇𝑖 , each node in current𝐶 is not

changed between 𝑇𝑠𝑡𝑒𝑝2 and 𝑇𝑖 . After processing all the nodes in 𝐶 ,

there is no other node to split, and we get 𝑇 ∗.
Correctness. Splitting the nodes in 𝐶 from bottom to up is essen-

tially same to the split process of removing one edge (Algorithm 3).

Thus, by Theorem 7, the correctness of Algorithm 6 is guaranteed.

Complexity. The space complexity of Algorithm 6 is 𝑂 (|𝐸 |). The
time cost of Algorithm 6 is the sum of two parts. The first part is to

maintain each vertex’s coreness and to move the vertices in 𝑉 ∗ to
the correct layers, which costs𝑂 (∑𝑤∈𝑉 ∗ |𝑁 (𝑤) |+

∑
𝑤∈𝑉 ∗ |𝑁 (𝑤) |×

𝑙𝑜𝑔 |𝑂𝐾 | + |𝑉 ∗ | × 𝑙𝑜𝑔|𝑂𝐾−1 | + |𝑉 ∗ | + | ∪𝑣∈𝑉 ∗ 𝑛𝑜𝑑𝑒 (𝑣) |) for each edge

need to be deleted. The second part is to split all nodes in 𝐶 in

Line 14-17. For each node 𝑛′ as the input of Algorithm 4, we visit

the neighbors of each vertex and maintain 𝑐𝑛(·) for each visited

descendant of it, which takes 𝑂 (∑𝑣∈𝑉 (𝑛′) |𝑁 (𝑣,𝐺∗) | + |𝑇 ′(𝑛′) |).
Time complexity of Algorithm 6 is the sum of the above two parts.

5 EXPERIMENTAL EVALUATION

Datasets. In the experiments, we use 10 public real-world networks

with size up to billion-scale. The datasets are from different areas in-

cluding collaboration networks, Internet topology, brain networks,

and social networks. Hollywood, Human-Jung, and Rgg[47] can

be downloaded from http://networkrepository.com; Twitter [28] is

from http://an.kaist.ac.kr/traces/WWW2010.html; and the rest are

from http://snap.stanford.edu/data. Table 2 shows the statistics of

the datasets where 𝑑𝑎𝑣𝑔 is the average vertex degree, 𝑘𝑚𝑎𝑥 is the

largest coreness and |𝑇 | is the number of nodes in 𝑘-core hierarchy.

Algorithms. We evaluate the update algorithms against the inser-

tion/removal of one edge, i.e., Algorithm 1 and 3, denoted by InsOne
and RmOne, respectively. We also evaluate the update algorithms to

address a batch of inserted/removed edges, i.e., Algorithm 2 and 6,

denoted by InsX and RmX, respectively. The state-of-the-art algo-
rithm for building the 𝑘-core hierarchy 𝑇 is LCPS [42, 51] (denoted

by LCPS). It can be used to compute the hierarchy from scratch on

dynamic graphs. Given a set 𝐸 ′ of edges to be inserted/removed,

an improved baseline is denoted by LCPS+, where we use the state-
of-the-art algorithm to update the coreness of each vertex [66],

and apply LCPS to compute the 𝑘-core hierarchy of the connected

component(s) containing the endpoints of 𝐸 ′.
Environment. We perform the experiments on a CentOS Linux

server with Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GH, and 256G

memory. All the algorithms are implemented in C++. The source

code is compiled by GCC under O3 optimization.

766

http://networkrepository.com
http://an.kaist.ac.kr/traces/WWW2010.html
http://snap.stanford.edu/data

G D HJ H S O W R T FS
1ms

100ms
10s

1000s

ru
nn

in
g

tim
e InsOne, RmOne, LCPS+, LCPS (from left to right)

(a) single edge

G D HJ H S O W R T FS
1ms

100ms
10s

1000s

ru
nn

in
g
tim

e InsX, RmX, LCPS+, LCPS (from left to right)

(b) 10 edges

Figure 5: Performance on All the Datasets

20 22 24 26 28 210
�

1ms
10ms

100ms
1s

10s

ru
nn

in
g
tim

e

(a) Insertion (InsX)

20 21 22 23 24 25 26
�

1ms
10ms

100ms
1s

10s
100s

1000s

ru
nn

in
g
tim

e

(b) Removal (RmX)

Figure 6: Performance on Inserting/Removing 𝑥 Edges

5.1 Performance on Runtime

In the evaluation of performance, for each test case, we randomly

remove 𝑥 edge(s) in each graph for RmOne (𝑥 = 1) and RmX,

and insert the edges back for InsOne and InsX. We execute the

algorithms by 100 independent cases and report the running time

of one case in average.

Inserting/Removing One Edge. We first evaluate InsOne for the

insertion of one edge, and RmOne for the removal of one edge,

compared with LCPS+ as introduced at the beginning of Section 5.

Figure 5(a) shows the running time of four algorithms on all the

datasets. As our algorithmswell capture a small part of𝑇 that will be

changed, the runtime is more fluctuant than LCPS and LCPS+. Thus,

we show the standard box-plot of InsOne (RmOne) on each dataset

where the red line represent the median runtime. Our incremental

algorithms significantly outperform LCPS/LCPS+ on different scales

of graphs, by up to 3100 times for InsOne and up to 270 times for

RmOne. The running time of RmOne is generally larger than that of

InsOne, because some tree nodes may split due to the removal and

we have to checkwhether a𝑘-core is still connected. In real-life data,

the case of insertion is more important, as it is usuallymore frequent

than removal. Besides, the outperformance of our algorithms can

be better on larger datasets, because the insertion/removal of 𝑥

edges affects 𝑇 less on larger graphs. InsOne and RmOne can also

be iteratively executed to update 𝑇 instantly. It is quite promising

to apply InsOne and RmOne against graph dynamics.

Inserting/Removing 𝑥 Edges. If a low update frequency is accept-

able, we can update 𝑇 once until 𝑥 edges are received to be in-

serted/removed. InsX is used for the insertion of 𝑥 edges and RmX

is used for the removal. The results are reported in Figure 5(b) when

𝑥 = 10. InsX and RmX are faster than the baselines on most datasets,

especially for large data. Note that the 𝑘-core hierarchy may change

a lot for such 𝑥 values on small datasets. For instance, when 𝑥 = 50,

Table 3: The engagement of users in node 𝑛1, compared with

the parent node of𝑛1 (T-edge), or the nodeswith smaller sub-

trees (T-size), on DBLP from Year 19-20 (Win Percent)

𝑘 1 2 3 4 5 6 7 8 total

T-edge(%) - 100 99.7 98.9 100 100 100 100 99.44

T-size(%) 80.9 78.6 86.2 93.4 80.6 44.1 100 100 84.58

the nodes in 𝐶 (the candidates to split) of RmX occupy more than

95% of |𝑉 (𝐺) | on small graphs (e.g., G and D).

Figure 6 reports the trends of InsX and RmX with different 𝑥

values. As edge insertion is more frequent than edge removal in

real-life, the 𝑥 values are from 1 to 1024 for InsX, and from 1 to

64 for RmX, respectively. For very large 𝑥 values, we recommend

to rebuild the hierarchy, or apply InsOne and RmOne for instant

update. When 𝑥 is small, the affected area of𝑇 is very small for both

insertion and removal. For insertion, as only a few number of nodes

are affected, the fluctuation is small. However, for removal, we need

to traverse the vertices in the whole affected node for connectivity

check which causes a larger fluctuation. When 𝑥 becomes larger,

the affected area of 𝑇 is larger. For insertion, the number of node

pairs in 𝐶 may be large (whenever they satisfy the relationship

in 𝑇1 or not). In some cases, many node pairs in 𝐶 are already in

correct parent-child relations (no adjustment is required), which

causes a large fluctuation. However, for removal, the fluctuation

is small, because almost all the nodes in the candidate set will be

traversed for connectivity check. When 𝑥 is even larger in Figure

6, the fluctuation becomes smaller because a large portion of the

graph and the hierarchy are visited.

Runtime Analysis on Different Cases. For different orders of inser-

tion/deletion on a same set of edges, the runtime difference of

maintenance is too small to observe. In Figure 5, the main factors

to affect the runtime are |𝑉 (𝐺) |, |𝐸 (𝐺) | and |𝐸 ′ |. For insertion, the
effect of |𝑉 (𝐺) | may relate to the size of 𝑉 ∗, as the size of 𝑉 ∗ is
relatively proportional to |𝑉 (𝐺) |. For deletion, the effect of |𝑉 (𝐺) |
is less obvious as shown in Figure 5(b). Figure 5 shows that |𝐸 (𝐺) |
also largely affects the performance, e.g., HJ and H. We also test

our algorithms by removing top-100 edges with the highest/lowest

betweenness centrality scores and then inserting them back, while

the overall cost of runtime is not affected by different scores.

5.2 Application on User Engagement Analysis

The status of user engagement is a key indicator of a network. The

existing works use the coreness of a vertex to estimate its engage-

ment level [35]. Here we investigate the engagement of the authors

(users) and their characteristics in the 𝑘-core hierarchy of the coau-

thor graph from DBLP data in 2019 and 2020 [15]. Each author is

a vertex and two authors are connected if they coauthored in a

paper as the first 5 authors (to avoid noise from a paper with many

authors). The engagement of a tree node is the average number of

papers published by the users in the node. We compute the per-

centage of the users in the 𝑘𝑡ℎ layer (𝐿𝑘) which is in a node with

higher activity than its parent node, denoted by T-edge for each 𝑘

value. Let 𝑛𝑚 denote the node in 𝐿𝑘 with the largest subtree, i.e.,

𝑇 ′(𝑛𝑚). We compute the percentage of the users in 𝐿𝑘 which is in a

subtree (𝑘-core) smaller than𝑇 ′(𝑛𝑚) and with smaller activity than

𝑛𝑚 , denoted by T-size for each 𝑘 value. Table 3 shows that both

T-edge and T-size are close to 100% for most 𝑘 values. It implies

767

Table 4: Finding the densest subgraph by extracting a 𝑘-core

dataset

CoreApp

Opt-D (output 𝑆∗)
Opt-D+ Ins-D Rm-D

density time(s) density time(s)

G 76 0.2 87.59 0.06 <0.01 <0.03

D 113 0.25 113.13 0.07 <0.01 <0.05

HJ 2013.88 15.27 2114.92 6.54 <0.01 <0.58

H 2208 3.64 2208 1.60 <0.06 0.01-0.12

S 150.02 1.6 178.8 0.69 <0.02 <0.34

O 438.64 24.17 455.73 9.56 0.01-0.02 0.03-1.06

W 1142.43 61.9 1200.88 17.25 0.04-0.11 0.03-3.29

R 21.41 47.81 27.43 10.29 0.09-0.29 0.08-5.60

T 2873.15 448.6 3286.51 134.44 0.16-0.24 0.12-8.95

FS 513.85 1249.83 547.04 343.02 1.88-2.27 0.46-20.86

that the engagement evaluation of a vertex can be more accurate by

considering both its coreness and its position in 𝑘-core hierarchy.

5.3 Application on Cohesive Subgraph Mining

Densest Subgraph. Finding the densest subgraph (𝐷𝑆) on static

graphs is a fundamental NP-hard problem in graph analytics [20],

which aims to find the subgraph with the largest average vertex

degree (i.e., density). Recently, a 0.5-approximate solution (Opt-D)

is proposed in [11] by extracting a 𝑘-core in 𝑇 with the largest

density, whose output is denoted as 𝑆∗. The previous state-of-the-
art approximate solution is CoreApp proposed in [20].

A baseline solution is Opt-D+ which first updates 𝑇 by LCPS+,

and then uses Opt-D to compute 𝐷𝑆 . In this experiment, we apply

our algorithms to Opt-D, denoted by Ins-D and Rm-D, to maintain

𝐷𝑆 against edge insertion and removal, respectively. In Ins-D and

Rm-D, we first maintain 𝑇 by our algorithms (i.e., InsOne and

RmOne), and mark each node whose vertex set changed or child

node set changed during the update of 𝑇 . Then, we run Opt-D on

the subtrees of 𝑇 containing the marked nodes, to update 𝐷𝑆 .

Table 4 shows that the solution 𝑆∗ produced by the algorithms

based on Opt-D has a higher density than that from CoreApp. The

outperformance is similar on dynamic graphs. The runtime of Opt-

D+ on dynamic graphs is much faster than the re-computation from

scratch (i.e., CoreApp). As our Ins-D and Rm-D efficiently update

the 𝑘-core hierarchy, the runtime is smaller than Opt-D+ by up to

3 orders of magnitude.

Maximum Clique. Given a graph𝐺 , the maximum clique (MC) prob-

lem is to find the largest subgraph of 𝐺 such that every pair of

vertices in the subgraph are adjacent [5]. Let 𝑀𝐶 (𝑆) denote the
size of the maximum clique on subgraph 𝑆 . As shown in Table 5,

the maximum clique on 𝑆∗ (the result from Ins-D and Rm-D) well

approximates the maximum clique on𝐺 on most datasets, although

the size of 𝑆∗ is less than 1.2% of 𝐺 on all the datasets. This finding

benefits the algorithm design for MC problem on dynamic graphs.

6 RELATED WORK

We review more works besides those in the introduction. Many

cohesive subgraph models are proposed to accommodate differ-

ent scenarios, e.g., clique [10], quasi-clique [45], nucleus [51], 𝑘-

core [3, 11, 26, 36, 52], 𝑘-truss [13, 25, 38, 55, 57], 𝑘-plex [59], and

𝑘-ecc [6, 68]. A graph can be decomposed into a hierarchical struc-

ture by some of the models, e.g., core decomposition [35, 37, 43, 60],

truss decomposition [53, 55, 67], and ecc decomposition [6, 62].

Table 5: Finding the maximum clique by shrinking a 𝑘-core

datasets G D HJ H S O W R T FS

𝑀𝐶 (𝑆∗)
𝑀𝐶 (𝐺) (%) 60 100 100 100 87 57 100 100 98.1 17

|𝑆∗ |
|𝐺 | (%) 0.28 0.04 1.15 0.21 0.03 0.85 <0.01 <0.01 0.01 0.07

Core decomposition is one of the most well-studied models, due

to its effectiveness in various applications including community

discovery [7, 8, 22, 29, 30, 32, 56, 58, 63], influential spreader identi-

fication [17, 27, 34, 40], and network analysis [1, 14, 23, 54]. Core

decomposition is surveyed in [39].

The model of 𝑘-core is often used to find high-quality commu-

nities, where the connectivity is often required for modeling a

community, e.g., (𝑘, 𝑟)-core [65], diversified coherent 𝑘-core [70],

persistent 𝑘-core [32], temporal 𝑘-core [61], and skyline 𝑘-core [30].

The 𝑘-core hierarchy 𝑇 can be used as an effective index to speed

up the community discovery, e.g., [31]. Recently, a time and space

optimal solution is proposed to find the best 𝑘-core subgraphs in

the 𝑘-core hierarchy [11].

An in-memory algorithm for core decomposition is proposed

in [3], with a time complexity of 𝑂 (𝑚). The 𝑘-core hierarchy can

also be constructed in 𝑂 (𝑚) time [42]. Core decomposition has

been studied under different configurations, including distributed

environment [43], graph stream [50], parallel setting [21], and Map-

Reduce [46]. For graphs that are too large to fit in the memory, an

I/O efficient algorithm for core decomposition is proposed in [60],

and EM-Core [9] is an external algorithm that runs in a top-down

manner. Core decomposition of large graphs on a single PC is

studied using GraphChi, WebGraph, and external model [26]. The

pressing problems in large graph processing are surveyed in [48].

7 CONCLUSION AND FUTUREWORK

Due to the wide applications of core decomposition and the fast

evolving of real-world graphs, in this paper, we study the problem

of maintaining the 𝑘-core hierarchy on dynamic graphs. Through

rigorous theoretical analyses, we propose effective local update tech-

niques. Our algorithms for updating the 𝑘-core hierarchy largely

outperform the baselines for one or a small batch of updated edge(s).

Our approach may be adapted to other decompositions if they hold

the same hierarchical structure. Nevertheless, it may be non-trivial

to design novel techniques if the connectivity issue becomes dif-

ferent to that in 𝑘-core. Besides, the framework of our algorithms

may inspire a sound solution for parallel maintenance of 𝑘-core

hierarchy. The first challenge is to construct the 𝑘-core hierarchy

on static graphs in parallel. Then, when a set of edges are inserted,

(i) the coreness of each vertex can be updated in parallel, e.g., [24],

and (ii) for each 𝑘 value in decreasing order from 𝑘𝑚𝑎𝑥 to 0, each

node in the 𝑘𝑡ℎ layer may be merged by one thread. The case of

edge deletion is similar to the insertion, because the split of each

node may be handled by one thread from the last layer to the root.

ACKNOWLEDGMENTS

This work is partially supported by the National Key R&D Program

of China under grant 2018AAA0102502 and the National Natural

Science Foundation of China under Grant U20B2046. Fan Zhang

is also partially supported by NSFC62002073. Xuemin Lin is also

partially supported by ARC DP180103096 and DP170101628. Wenjie

Zhang is also partially supported by ARC DP180103096.

768

REFERENCES

[1] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro

Vespignani. 2008. K-core decomposition of Internet graphs: hierarchies, self-

similarity and measurement biases. NHM 3, 2 (2008), 371–393. https://doi.org/

10.3934/nhm.2008.3.371

[2] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated method

for finding molecular complexes in large protein interaction networks. BMC
Bioinformatics 4 (2003), 2. https://doi.org/10.1186/1471-2105-4-2

[3] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[4] Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir. 2007.

A model of Internet topology using k-shell decomposition. PNAS 104, 27 (2007),
11150–11154.

[5] Lijun Chang. 2019. Efficient Maximum Clique Computation over Large Sparse

Graphs. In KDD. 529–538. https://doi.org/10.1145/3292500.3330986

[6] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Xuemin Lin, Chengfei Liu, and Weifa Liang.

2013. Efficiently computing k-edge connected components via graph decomposi-

tion. In SIGMOD. 205–216. https://doi.org/10.1145/2463676.2465323

[7] Lu Chen, Chengfei Liu, Kewen Liao, Jianxin Li, and Rui Zhou. 2019. Contextual

Community Search Over Large Social Networks. In ICDE. 88–99. https://doi.org/

10.1109/ICDE.2019.00017

[8] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang.

2018. Maximum Co-located Community Search in Large Scale Social Networks.

PVLDB 11, 10 (2018), 1233–1246. https://doi.org/10.14778/3231751.3231755

[9] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE, Serge Abiteboul, Klemens Böhm,

Christoph Koch, and Kian-Lee Tan (Eds.). IEEE Computer Society, 51–62. https:

//doi.org/10.1109/ICDE.2011.5767911

[10] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. 2011.

Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36, 4
(2011), 21:1–21:34. https://doi.org/10.1145/2043652.2043654

[11] Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia,

and Chenyi Zhang. 2020. Finding the Best k in Core Decomposition: A Time and

Space Optimal Solution. In ICDE. 685–696. https://doi.org/10.1109/ICDE48307.

2020.00065

[12] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. 2008. Hierarchical

structure and the prediction of missing links in networks. Nature 453, 7191 (2008),
98.

[13] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.

National Security Agency Technical Report 16 (2008), 3–1.
[14] Madelaine Daianu, Neda Jahanshad, Talia M. Nir, Arthur W. Toga, Clifford R. Jack

Jr., Michael W. Weiner, and Paul M. Thompson. 2013. Breakdown of Brain

Connectivity Between Normal Aging and Alzheimer’s Disease: A Structural

k-Core Network Analysis. Brain Connectivity 3, 4 (2013), 407–422. https://doi.

org/10.1089/brain.2012.0137

[15] The dblp team. 2020. Monthly snapshot release. In DBLP computer science bibli-
ography. https://dblp.org/xml/release

[16] Yon Dourisboure, Filippo Geraci, and Marco Pellegrini. 2009. Extraction and

classification of dense implicit communities in the Web graph. TWEB 3, 2 (2009),

7:1–7:36. https://doi.org/10.1145/1513876.1513879

[17] Sarah Elsharkawy, Ghada Hassan, Tarek Nabhan, and Mohamed Roushdy. 2017.

Effectiveness of the k-core nodes as seeds for influence maximisation in dynamic

cascades. International Journal of Computers 2 (2017).
[18] Wenfei Fan, Jianzhong Li, Jizhou Luo, Zijing Tan, Xin Wang, and Yinghui Wu.

2011. Incremental graph pattern matching. In SIGMOD. 925–936. https://doi.

org/10.1145/1989323.1989420

[19] Yixiang Fang, Reynold Cheng, Xiaodong Li, Siqiang Luo, and Jiafeng Hu. 2017.

Effective community search over large spatial graphs. PVLDB 10, 6 (2017), 709–

720. https://doi.org/10.14778/3055330.3055337

[20] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin

Lin. 2019. Efficient Algorithms for Densest Subgraph Discovery. PVLDB 12, 11

(2019), 1719–1732. https://doi.org/10.14778/3342263.3342645

[21] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. 2019. Improved Parallel

Algorithms for Density-Based Network Clustering. In ICML. 2201–2210. http:

//proceedings.mlr.press/v97/ghaffari19a.html

[22] Christos Giatsidis, Fragkiskos D. Malliaros, Dimitrios M. Thilikos, and Michalis

Vazirgiannis. 2014. CoreCluster: A Degeneracy Based Graph Clustering Frame-

work. In AAAI. 44–50. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/

view/8530

[23] Laurent Hébert-Dufresne, Antoine Allard, Jean-Gabriel Young, and Louis J Dubé.

2013. Percolation on random networks with arbitrary k-core structure. Physical
Review E 88, 6 (2013), 062820.

[24] Qiang-Sheng Hua, Yuliang Shi, Dongxiao Yu, Hai Jin, Jiguo Yu, Zhipeng Cai,

Xiuzhen Cheng, and Hanhua Chen. 2020. Faster Parallel Core Maintenance

Algorithms in Dynamic Graphs. IEEE Trans. Parallel Distributed Syst. 31, 6 (2020),
1287–1300. https://doi.org/10.1109/TPDS.2019.2960226

[25] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322. https:

//doi.org/10.1145/2588555.2610495

[26] Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. 2015. K-Core

Decomposition of Large Networks on a Single PC. PVLDB 9, 1 (2015), 13–23.

https://doi.org/10.14778/2850469.2850471

[27] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,

H Eugene Stanley, and Hernán A Makse. 2010. Identification of influential

spreaders in complex networks. Nature physics 6, 11 (2010), 888.
[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is

Twitter, a social network or a news media?. In WWW (Raleigh, North Carolina,

USA). ACM, New York, NY, USA, 591–600. https://doi.org/10.1145/1772690.

1772751

[29] Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin.

2019. Efficient Progressive Minimum k-core Search. PVLDB 13, 3 (2019), 362–375.

https://doi.org/10.14778/3368289.3368300

[30] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, and

Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks. In

SIGMOD. 457–472. https://doi.org/10.1145/3183713.3183736

[31] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential Community

Search in Large Networks. PVLDB 8, 5 (2015), 509–520. https://doi.org/10.14778/

2735479.2735484

[32] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent

Community Search in Temporal Networks. In ICDE. 797–808. https://doi.org/10.

1109/ICDE.2018.00077

[33] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. TKDE 26, 10 (2014), 2453–2465. https://doi.org/10.1109/

TKDE.2013.158

[34] Jian-Hong Lin, Qiang Guo, Wen-Zhao Dong, Li-Ying Tang, and Jian-Guo Liu.

2014. Identifying the node spreading influence with largest k-core values. Physics
Letters A 378, 45 (2014), 3279–3284.

[35] Qingyuan Linghu, Fan Zhang, Xuemin Lin, Wenjie Zhang, and Ying Zhang. 2020.

Global Reinforcement of Social Networks: The Anchored Coreness Problem.

In SIGMOD, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan,

Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2211–2226. https://doi.org/

10.1145/3318464.3389744

[36] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou.

2019. Efficient (𝛼 , 𝛽)-core Computation: an Index-based Approach. In WWW.

1130–1141. https://doi.org/10.1145/3308558.3313522

[37] Boge Liu, Fan Zhang, Chen Zhang, Wenjie Zhang, and Xuemin Lin. 2019. Core-

Cube: Core Decomposition in Multilayer Graphs. In WISE. 694–710. https:

//doi.org/10.1007/978-3-030-34223-4_44

[38] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021. Efficient

Community Search with Size Constraint. In ICDE.
[39] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and

Michalis Vazirgiannis. 2020. The core decomposition of networks: theory, algo-

rithms and applications. VLDB J. 29, 1 (2020), 61–92. https://doi.org/10.1007/

s00778-019-00587-4

[40] Fragkiskos D Malliaros, Maria-Evgenia G Rossi, and Michalis Vazirgiannis. 2016.

Locating influential nodes in complex networks. Scientific reports 6 (2016), 19307.
[41] Fragkiskos D. Malliaros and Michalis Vazirgiannis. 2013. To stay or not to stay:

modeling engagement dynamics in social graphs. In CIKM. 469–478. https:

//doi.org/10.1145/2505515.2505561

[42] David W. Matula and Leland L. Beck. 1983. Smallest-Last Ordering and clustering

and Graph Coloring Algorithms. J. ACM 30, 3 (1983), 417–427. https://doi.org/

10.1145/2402.322385

[43] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Dis-

tributed k-Core Decomposition. IEEE TPDS 24, 2 (2013), 288–300. https:

//doi.org/10.1109/TPDS.2012.124

[44] Flaviano Morone, Gino Del Ferraro, and Hernán A Makse. 2019. The k-core as a

predictor of structural collapse in mutualistic ecosystems. Nature Physics 15, 1
(2019), 95.

[45] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-

cliques. In KDD. 228–238. https://doi.org/10.1145/1081870.1081898

[46] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Hong Cheng, Chengqi Zhang, and Xuemin

Lin. 2014. Scalable big graph processing in mapreduce. In SIGMOD. 827–838.
https://doi.org/10.1145/2588555.2593661

[47] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with

Interactive GraphAnalytics and Visualization. InAAAI. http://networkrepository.
com

[48] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M. Tamer

Özsu. 2017. The Ubiquity of Large Graphs and Surprising Challenges of Graph

Processing. Proc. VLDB Endow. 11, 4 (2017), 420–431. https://doi.org/10.1145/

3186728.3164139

[49] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,

and Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition.

PVLDB 6, 6 (2013), 433–444. https://doi.org/10.14778/2536336.2536344

[50] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,

and Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition.

PVLDB 6, 6 (2013), 433–444. https://doi.org/10.14778/2536336.2536344

769

https://doi.org/10.3934/nhm.2008.3.371
https://doi.org/10.3934/nhm.2008.3.371
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1145/3292500.3330986
https://doi.org/10.1145/2463676.2465323
https://doi.org/10.1109/ICDE.2019.00017
https://doi.org/10.1109/ICDE.2019.00017
https://doi.org/10.14778/3231751.3231755
https://doi.org/10.1109/ICDE.2011.5767911
https://doi.org/10.1109/ICDE.2011.5767911
https://doi.org/10.1145/2043652.2043654
https://doi.org/10.1109/ICDE48307.2020.00065
https://doi.org/10.1109/ICDE48307.2020.00065
https://doi.org/10.1089/brain.2012.0137
https://doi.org/10.1089/brain.2012.0137
https://dblp.org/xml/release
https://doi.org/10.1145/1513876.1513879
https://doi.org/10.1145/1989323.1989420
https://doi.org/10.1145/1989323.1989420
https://doi.org/10.14778/3055330.3055337
https://doi.org/10.14778/3342263.3342645
http://proceedings.mlr.press/v97/ghaffari19a.html
http://proceedings.mlr.press/v97/ghaffari19a.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8530
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8530
https://doi.org/10.1109/TPDS.2019.2960226
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.14778/2850469.2850471
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.14778/3368289.3368300
https://doi.org/10.1145/3183713.3183736
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.14778/2735479.2735484
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1109/ICDE.2018.00077
https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.1109/TKDE.2013.158
https://doi.org/10.1145/3318464.3389744
https://doi.org/10.1145/3318464.3389744
https://doi.org/10.1145/3308558.3313522
https://doi.org/10.1007/978-3-030-34223-4_44
https://doi.org/10.1007/978-3-030-34223-4_44
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1145/2505515.2505561
https://doi.org/10.1145/2505515.2505561
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/2402.322385
https://doi.org/10.1109/TPDS.2012.124
https://doi.org/10.1109/TPDS.2012.124
https://doi.org/10.1145/1081870.1081898
https://doi.org/10.1145/2588555.2593661
http://networkrepository.com
http://networkrepository.com
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.14778/2536336.2536344
https://doi.org/10.14778/2536336.2536344

[51] Ahmet Erdem Sariyüce andAli Pinar. 2016. Fast Hierarchy Construction for Dense

Subgraphs. PVLDB 10, 3 (2016), 97–108. https://doi.org/10.14778/3021924.3021927

[52] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269–287.

[53] Yingxia Shao, Lei Chen, and Bin Cui. 2014. Efficient cohesive subgraphs detection

in parallel. In SIGMOD. 613–624. https://doi.org/10.1145/2588555.2593665

[54] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. CoreScope: Graph

Mining Using k-Core Analysis - Patterns, Anomalies and Algorithms. In ICDM.

469–478. https://doi.org/10.1109/ICDM.2016.0058

[55] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

PVLDB 5, 9 (2012), 812–823. https://doi.org/10.14778/2311906.2311909

[56] Kai Wang, Xin Cao, Xuemin Lin, Wenjie Zhang, and Lu Qin. 2018. Efficient

Computing of Radius-Bounded k-Cores. In ICDE. 233–244. https://doi.org/10.

1109/ICDE.2018.00030

[57] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

Bitruss Decomposition for Large-scale Bipartite Graphs. In ICDE. IEEE, 661–672.
https://doi.org/10.1109/ICDE48307.2020.00063

[58] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang.

2021. Efficient and Effective Community Search on Large-scale Bipartite Graphs.

In ICDE.
[59] YueWang, Xun Jian, Zhenhua Yang, and Jia Li. 2017. Query Optimal k-Plex Based

Community in Graphs. DSE 2, 4 (2017), 257–273. https://doi.org/10.1007/s41019-

017-0051-3

[60] Dong Wen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O

efficient Core Graph Decomposition at web scale. In ICDE. 133–144. https:

//doi.org/10.1109/ICDE.2016.7498235

[61] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data. IEEE Computer Society, 649–658. https:

//doi.org/10.1109/BigData.2015.7363809

[62] Long Yuan, Lu Qin, Xuemin Lin, Lijun Chang, and Wenjie Zhang. 2017. I/O

efficient ECC graph decomposition via graph reduction. VLDB J. 26, 2 (2017),
275–300. https://doi.org/10.1007/s00778-016-0451-4

[63] Chen Zhang, Fan Zhang, Wenjie Zhang, Boge Liu, Ying Zhang, Lu Qin, and

Xuemin Lin. 2020. Exploring Finer Granularity within the Cores: Efficient (k, p)-

Core Computation. In ICDE. IEEE, 181–192. https://doi.org/10.1109/ICDE48307.

2020.00023

[64] Fan Zhang, Wenjie Zhang, Ying Zhang, Lu Qin, and Xuemin Lin. 2017. OLAK:

An Efficient Algorithm to Prevent Unraveling in Social Networks. PVLDB 10, 6

(2017), 649–660. https://doi.org/10.14778/3055330.3055332

[65] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. When En-

gagement Meets Similarity: Efficient (k, r)-Core Computation on Social Networks.

PVLDB 10, 10 (2017), 998–1009. https://doi.org/10.14778/3115404.3115406

[66] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast Order-Based

Approach for Core Maintenance. In ICDE. IEEE Computer Society, 337–348.

https://doi.org/10.1109/ICDE.2017.93

[67] Feng Zhao and Anthony K. H. Tung. 2012. Large Scale Cohesive Subgraphs

Discovery for Social Network Visual Analysis. PVLDB 6, 2 (2012), 85–96. https:

//doi.org/10.14778/2535568.2448942

[68] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin

Li. 2012. Finding maximal k-edge-connected subgraphs from a large graph. In

EDBT. 480–491. https://doi.org/10.1145/2247596.2247652

[69] Andy Diwen Zhu, Wenqing Lin, Sibo Wang, and Xiaokui Xiao. 2014. Reachability

queries on large dynamic graphs: a total order approach. In SIGMOD. 1323–1334.
https://doi.org/10.1145/2588555.2612181

[70] Rong Zhu, Zhaonian Zou, and Jianzhong Li. 2018. Diversified Coherent Core

Search on Multi-Layer Graphs. In ICDE. 701–712. https://doi.org/10.1109/ICDE.

2018.00069

770

https://doi.org/10.14778/3021924.3021927
https://doi.org/10.1145/2588555.2593665
https://doi.org/10.1109/ICDM.2016.0058
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1109/ICDE.2018.00030
https://doi.org/10.1109/ICDE.2018.00030
https://doi.org/10.1109/ICDE48307.2020.00063
https://doi.org/10.1007/s41019-017-0051-3
https://doi.org/10.1007/s41019-017-0051-3
https://doi.org/10.1109/ICDE.2016.7498235
https://doi.org/10.1109/ICDE.2016.7498235
https://doi.org/10.1109/BigData.2015.7363809
https://doi.org/10.1109/BigData.2015.7363809
https://doi.org/10.1007/s00778-016-0451-4
https://doi.org/10.1109/ICDE48307.2020.00023
https://doi.org/10.1109/ICDE48307.2020.00023
https://doi.org/10.14778/3055330.3055332
https://doi.org/10.14778/3115404.3115406
https://doi.org/10.1109/ICDE.2017.93
https://doi.org/10.14778/2535568.2448942
https://doi.org/10.14778/2535568.2448942
https://doi.org/10.1145/2247596.2247652
https://doi.org/10.1145/2588555.2612181
https://doi.org/10.1109/ICDE.2018.00069
https://doi.org/10.1109/ICDE.2018.00069

