
Efficient Streaming Subgraph Isomorphism with Graph Neural
Networks

Chi Thang Duong

EPFL

thang.duong@epfl.ch

Trung Dung Hoang

HUST

dungmin97@gmail.com

Hongzhi Yin
∗

The University of Queensland

h.yin1@uq.edu.au

Matthias Weidlich

Humboldt-Universität zu Berlin

matthias.weidlich@hu-berlin.de

Quoc Viet Hung Nguyen

Griffith University

quocviethung.nguyen@griffith.edu.au

Karl Aberer

EPFL

karl.aberer@epfl.ch

ABSTRACT
Queries to detect isomorphic subgraphs are important in graph-

based data management. While the problem of subgraph isomor-

phism search has received considerable attention for the static

setting of a single query, or a batch thereof, existing approaches do

not scale to a dynamic setting of a continuous stream of queries.

In this paper, we address the scalability challenges induced by a

stream of subgraph isomorphism queries by caching and re-use

of previous results. We first present a novel subgraph index based

on graph embeddings that serves as the foundation for efficient

stream processing. It enables not only effective caching and re-use

of results, but also speeds-up traditional algorithms for subgraph

isomorphism in case of cache misses. Moreover, we propose cache

management policies that incorporate notions of reusability of

query results. Experiments using real-world datasets demonstrate

the effectiveness of our approach in handling isomorphic subgraph

search for streams of queries.

PVLDB Reference Format:
Chi Thang Duong, Trung Dung Hoang, Hongzhi Yin, Matthias Weidlich,

Quoc Viet Hung Nguyen, and Karl Aberer. Efficient Streaming Subgraph

Isomorphism with Graph Neural Networks. PVLDB, 14(5): 730 - 742, 2021.

doi:10.14778/3446095.3446097

1 INTRODUCTION
Graphs are a natural representation of relations between entities

in complex systems, such as social networks, chemical compounds,

or biological structures [10, 11, 20, 40, 41]. Hence, efficient man-

agement of graph-structured data is of crucial importance in di-

verse domains and subgraph isomorphism queries are an important

means to detect patterns in larger graphs [37, 42, 45]. Specifically,

given a query graph q (i.e., the pattern) and a data graph д, such a

query returns all mappings of nodes of q to nodes of д that preserve

the respective edges. Answering subgraph isomorphism queries

is useful, for instance, to analyze propagation patterns in social

networks or to query protein interactions in protein networks.

∗
Corresponding author

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.

doi:10.14778/3446095.3446097

Since the problem of subgraph isomorphism search is NP-Hard,

various heuristics to speed up the search have been proposed [8, 18,

42, 45]. These algorithms have in common that they are based on

measures of node similarity and subgraph similarity. The former

enables conclusions on nodes of the data graph that cannot be

mapped to nodes of the query graph and are, therefore, filtered.

The latter, in turn, is the first step of verifying whether a subgraph

of the data graph is isomorphic to the query graph.

In domains such as social networks, chemistry, or biology, sub-

graph isomorphism queries occur frequently. They are issued con-

currently by many users and systems. For instance, ChemSpider is

a search engine with an API that answers subgraph isomorphism

queries for molecular structures in a database of more than 77

million molecules [7]. Once a stream of queries is considered, the

aforementioned algorithms to subgraph isomorphism search be-

come infeasible. They employ notions of similarity for nodes and

subgraphs that are based on the actual structure of the graphs.

Since the respective structural comparison has a worst-case run-

time complexity ofO(N ! ·N 2) in the size of the graphs [8] for large

query graphs, or O(N k) for small query graphs with k nodes [30],

traditional approaches do not scale to a streaming setting.

For other data models, techniques to process a continuous stream

of queries are commonly addressed using caching strategies. Caching

is possible in these cases as the queries show a large overlap, which

enables re-use of previous results. Examples include techniques

to evaluate queries in web search engines [2, 26, 34] and to an-

swer resource requests in web applications [1, 12, 13]. In either

case, cached query results are re-used when answering subsequent

queries. However, this principle cannot be adopted directly for sub-

graph isomorphism queries, since it was shown empirically that

most existing techniques for structural indexing have an exponen-

tial runtime [22]. Hence, it is infeasible to index the data graph,

or parts thereof, as it would be required for efficient caching and

re-use of query results.

In this paper, we use embeddings as a foundation for the eval-

uation of subgraph isomorphism queries. An embedding maps a

graph to a numerical space, such that structurally-similar nodes

and subgraphs are close to each other [17, 33, 36]. Embeddings

support indexing naturally. Nodes and subgraphs are points in a

high-dimensional space, so that indices for space partitioning, e.g.,

R-tree [16] or kd-tree [9], may be leveraged. Based thereon, similar-

ity computation or nearest neighbor search are realized efficiently.

Using embeddings as the basis for subgraph isomorphism further

enables cache management based on diversity considerations. A

730

https://doi.org/10.14778/3446095.3446097
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446097

diversified cache is more effective since query graphs in a stream

are more likely to be similar to those cached already. However,

diversity-based caching for subgraph isomorphism is infeasible for

traditional structural indexing due to the computational overhead

induced by a structural comparison of query graphs and cached

graphs. Yet, using embeddings, the graph comparisons becomes

fast and accurate, so that our work is the first to propose such

diversity-based cache management for subgraph isomorphism.

To realize the above vision, we define the problem of streaming
subgraph isomorphism and propose a framework for it (§2). We then

instantiate this framework, making the following contributions:

• Graph indexing using embeddings (§3). As the basis for our
work, we propose an indexing mechanism based on node,

edge, and subgraph embeddings. While we incorporate state-

of-the-art techniques for graph representation learning, we

provide a theoretical justification for our mechanism by

showing that the embedding process is similar to Weisfeiler-

Lehman isomorphism testing [31].

• Query stream processing with a cache (§4). Using the indices,

we show how to answer a stream of subgraph isomorphism

queries while exploiting cached results. Specifically, upon

the arrival of a query, similar past queries are identified to

re-used their results. In the case of a cache miss, subgraph

embeddings are exploited to speed up traditional algorithms

for subgraph isomorphism (e.g., TurboISO [18]). In case of a

cache hit, we assess the overlap of the current query with the

cached ones and derive an answer from the cached results.

• Cache management (§5). As the cache size is limited, we

need to control cache admission and eviction. To this end,

we propose a policy that minimizes the number of cache

misses. Compared to traditional policies (LRU [44] or Greedy-

Dual [44]), it assesses the utility of a query result not only

based on processing time, but includes a notion of diversity.

We evaluate our approach using several real-world datasets in §6.

We show that our embedding-based index outperforms structural

indices by two orders of magnitude. When answering subgraph

isomorphism queries, our approach based on caching and re-use of

results leads to runtime improvements of at least 100% over state-

of-the-art algorithms such as MQO [37] and TurboISO [18]. We

review related work in §7 and conclude in §8.

2 MODEL AND APPROACH
2.1 Model
We target the problem of subgraph isomorphism search for undi-

rected, labelled graphs. Let д = (V , E) be a graph with a set of nodes

V and a set of edges E ⊆ V ×V . It is associated with a labeling func-

tion l : V → Σ that captures intrinsic properties of its nodes. If the

alphabet of labels Σ is defined asRk
, i.e., labels are k-dimensional

real vectors, we refer to (д, l) as an attributed graph.

Two attributed graphs (д1, l1) and (д2, l2) are isomorphic, if there
exists an edge-preserving bijective function f : V1 → V2 such

that: (1) ∀ v ∈ V1 : l1(v) = l2(f (v)), and (2) ∀ (v1,v2) ∈ E1 :

(f (v1), f (v2)) ∈ E2. If д1 is isomorphic to an induced subgraph д′
2

of д2, д1 is subgraph isomorphic to д2, written as д1 ⪯ д2. We call

the bijection between д1 and д
′
2
a mapping, and д1 is said to have

a mapping in д2. There may be several mappings of д1 in д2. We

Figure 1: Framework for streaming subgraph isomorphism.

write F (д1,д2) = { f1, f2, . . . , fk } for the set of all mappings. The

subgraph isomorphism problem is to find all mappings F (д1,д2) for
a given pair of graphs.

In graph-based datamanagement, a subgraph isomorphism query

is defined through a query graph q = (V ′, E ′) for which the sub-

graph isomorphism problem shall be solved regarding a data graph
д = (V , E). We target scenarios in which queries arrive continu-

ously. We therefore define a query stream as a sequence of queries,

Q = ⟨q1,q2, . . .⟩, arriving one after another. Each query arrives at

a particular point in time, denoted by qi .t , and the stream is totally

ordered by these time points, i.e., for any two queries qi and qj of
the stream, if i < j then qi .t < qj .t . We denote the finite prefix of

stream Q until index k as Q[k] = ⟨q1, . . . ,qk ⟩. In our setting, the

queries in the stream may overlap or repeat, so that results stored

for previous queries may be re-used.

Query processing incurs a latency, i.e., the time between the

arrival of a query and the time it is answered. Based thereon, we

capture the problem addressed in this paper, as follows:

Problem 1 (Streaming Subgraph Isomorphism).

Given a data graph, the problem of streaming subgraph isomorphism

is to solve the subgraph isomorphism problem for all queries of a query
stream, while minimizing the processing latency.

2.2 Approach
To address the problem of streaming subgraph isomorphism, we

propose a framework that exploits caching strategies. Our idea is

to re-use query results for a large number of the queries in the

query stream, thereby minimizing the processing latency. However,

a realization of this idea raises several research questions: (Q1) how
to index nodes, edges, and subgraphs for efficient caching and re-

use of query results? (Q2) how to answer queries based on cached

results? (Q3) how to manage the result cache? The interplay of these
questions is shown in the illustration of our framework in Fig. 1.

Below, we summarize our techniques to instantiate this framework.

We present a novel method for graph indexing, which speeds

up the search for isomorphic subgraphs. The index is based on

embeddings of nodes, edges, and subgraphs, in which similar nodes,

edges, and subgraphs have similar index values. While the sub-

graph index enables us to identify re-usable query results in a swift

731

manner, the node and edge indices accelerate traditional algorithms

for subgraph isomorphism by pruning the search space.

Our indices serve as a foundation for a novel evaluation algo-

rithm for streaming subgraph isomorphism. It exploits cached re-

sults whenever possible. In case of a cache miss, our node and edge

indices speed up any existing branch-and-bound algorithm used to

solve the subgraph isomorphism problem.

In the light of a limited cache size, we further present policies for

cache management. Specifically, we propose to store only a fixed

amount of results per query to enable uniform retrieval. To guide

cache admission and eviction, we adapt the Landlord algorithm

to the setting of streams of subgraph isomorphism queries, which

results in a high ratio of cache hits.

3 GRAPH INDEXING
This section introduces indices for nodes, edges, and subgraphs

based on graph embeddings. To this end, we first give further back-

ground on embeddings (§3.1). We then introduce approaches to

learn node and edge embeddings (§3.2) and subgraph embeddings

(§3.3). Based there, we define the respective indices (§3.4).

3.1 Background on Embeddings
Embeddings are a model to represent concepts in some numeric

space. Yet, this representation shall be such that semantically related

concepts have close representations, i.e., their geometric relation

in the embedding space encodes their semantic relation. Compared

to symbolic representations that consider each concept as indepen-

dent, embeddings enable conclusions on the relation of the concepts

based on their representations. Moreover, embeddings are succinct

in the sense that with a d-dimensional embedding space (d is called

the embedding size) where the domain of each dimension has size

k , kd concepts can uniquely be described.

In our setting, the embeddings of nodes in a graph that are

structurally similar are vectors that are close to each other. Similarly,

subgraphs of similar structure are assigned close vectors.

3.2 Node and Edge Embeddings
When computing embeddings for nodes, there are two kinds of

semantic information to consider: The labels assigned to nodes

and their connections to other nodes. Assuming that semantically

similar nodes are assigned similar labels, the respective representa-

tion can be incorporated directly in a node embedding. Yet, labels

commonly capture external knowledge, not the graph structure.

Therefore, we follow the idea of message passing neural networks

to enrich the node embeddings with structural information.

Note that we use embeddings as a means to index nodes, edges,

and subgraphs. This is different from traditional graph indexing [5,

25] that relies on subgraphs such as paths, triangles, and cliques

as reference points in graph comparison. Our approach avoids the

need to detect such subgraphs to construct the respective indices.

Message-passing framework. In a Message Passing Neural Net-

work (MPNN) [14], a node representation is created by combining

the representation of its own properties with those of its neigh-

bors, through message-based interactions. A message sent from one

node to its neighbors is constructed based on the node’s current

representation. Since messages are exchanged only between nodes

connected by edges, the graph structure is incorporated. Message

passing happens in several rounds, each involving three steps [11]:

Sending: A nodeu constructs a message in i-th round based on its

representation z
(i)
u . The node sends the message to a set of selected

neighbors using a parameterized function f
(i)
s :m

(i)
u = f

(i)
s (z

(i)
u).

Receiving:Once a nodev receivedmessages from all its neighbors,

denoted by N (v), in a round, it aggregates them using a parameter-

ized function f
(i)
a : z

(i)
N (v) = f

(i)
a ({m

(i)
u ,∀ u ∈ N (v)}).

Updating: A node updates its representation, combining its cur-

rent representation with the aggregated messages:

z
(i+1)
v = f

(i)
u (z

(i)
N (v), z

(i)
u) (1)

An MPNN can be formulated as a function f (д, l), where д is a

graph and l is a labeling function. The function f represents the

combination of the above functions used in the sending, receiving,

and updating steps of all rounds and returns a set of node embed-

dings {zu } for each node in the graph. Note that the parameters of

f need to be learned before the model can be used, though.

Example 1. Given the graph on the left of Fig. 2, an embedding for
node B is created using a 1-layer MPNN as: z(1)B = f

(0)
u (z

(0)

N (B), z
(0)

B)

where z(0)N (B) = f
(0)
a ({ f

(0)
s (z

(0)

C), f
(0)
s (z

(0)

A)}) is the embedding of the
neighborhood of B. In its basic form, function fs of the sending step
is parameterized by a matrixWs , i.e., fs (z) =Wsz. The aggregation
function in the receiving step derives the mean of the node embeddings,
i.e., fa (N (v)) = 1/|N (v)|

˝
u ∈N (v) zu . Function fu of the updating

step is parameterized by a matrixWa , before applying a non-linearity,
i.e., fu (zN (v), zv) = σ (zN (v) + zv)Wa . Based thereon, the node
embedding of B is computed:

z
(1)

B = fu ({m
(0)
u | u ∈ N (B)}, z

(0)

B) = σ ((z
(0)

A Ws+z
(0)

C Ws)/2+z
(0)

B)Wa

Anode-centric view.AnMPNNmay also be viewed from a node’s

perspective. Then, the operations to compute the embedding for

a node u induce a k-layer tree, rooted at u. The embedding of u is

based on the nodes at the i-th layer of the tree, which are neighbors

of u within distance i in the graph. Information at the leaves of the

tree is given by the labels of the respective nodes, which is then

aggregated to the root: The i-th layer employs the parameterized

function fi to aggregate the results of the i+1-th layer.

Node u and its neighbors within distance k induce a subgraph,

called the receptive field of u. The higher the number of rounds

of message passing, the larger the receptive field. The embedding

of u represents a summarization of its receptive field, in terms of

both structure (as message passing follows the graph structure) and

node labels (as messages are constructed initially from node labels).

Example 2. The node-centric view is illustrated in Fig. 2. Given the
graph on the left and using a 2-layer MPNN, the embedding of node
B is constructed by aggregating the embeddings of nodes C and A in
the first layer. These embeddings are, in turn, constructed from the
embeddings of their neighbors. This process is captured by a 2-layer
tree rooted at B.

MPNN and isomorphism testing. The use of MPNN in our set-

ting is theoretically well-grounded, as it is related to the Weisfeiler-

Lehman (WL) isomorphism test [31]. The WL algorithm also pro-

ceeds in rounds and, in the k-th iteration, constructs a node labeling

732

lk : V → Σ by considering the labels assigned to nodes and their

neighbors in the previous iteration. That is, the label of a node v at

the k-th iteration is derived as:

l
(k)
v = h {l

(k−1)
u | u ∈ N (v)}, l

(k−1)
v (2)

where h is a hash function that maps to a new label, not used in

previous iterations. Running the above procedure on two graphs

simultaneously, we can test if they are isomorphic: If in any it-

eration, the constructed node labels differs, the graphs are not

isomorphic [31]. This process is illustrated in Fig. 2.

Example 3. In Fig. 2, right side, labels are visualized by a pattern.
In the first iteration, we construct the label of node C by hashing the
set containing its own label and the labels of its neighbors. The same
is done for node A. The results are used in the 2nd iteration to derive
the label for node B.

The formulations of the MPNN in Eq. 1 and the WL algorithm

in Eq. 2 are similar. Their relationship is formalized as follows.

Theorem 1 (Weisfeiler-Lehman Testing & MPNN). Given a
labeled graph (д, l), let l (k) be the node labeling obtained using the
WL algorithm after k iterations and z(k) be the embeddings obtained
by a k-layer MPNN. Then, with suitable initial embeddings z(0) and
parameterized functions of the MPNN, for all nodes u,v of д, if l (k)u =

l
(k)
v then z(k)u = z

(k)
v .

The above result follows directly from Theorem 1 in [31]. It

shows that the MPNN-based formulation is as strong as the WL

isomorphism test, which provides a theoretical basis for applying

MPNN in our framework for streaming subgraph isomorphism.

However, the WL algorithm and the MPNN differ in how they

represent node labels. The labels derived with theWL algorithm are

symbolic representations, i.e., unrelated symbols. The embeddings

obtained with the MPNN capture semantic relations, so that an

assessment of their similarity is meaningful. In Fig. 2, we distinguish

both representations by color gradients and patterns, respectively.

WL vs. MPNN. Theorem 1 shows that WL and the MPNN have

the same strength to detect graph isomorphism. However, WL

requires defining a hash function to compress a multiset to a label

as shown in Fig. 4. This is problematic, once isomorphism shall be

detected for graphs with unseen properties. Consider Fig. 4, where a

query graph comprises two multisets (1,23) and (3,12) that have not

yet been encountered. WL cannot compress the label and, hence,

cannot conduct the isomorphism test effectively. This issue could

be addressed in three ways: 1) assuming knowledge of all graphs,

a multi-graph WL algorithm is employed to construct all required

hash functions; 2) new labels are assigned to new multisets, which

are then added in the featurization; or 3) hash functions are removed

and the comparison is performed directly on the multiset. While

the first solution is not realistic, the second one incurs many zero

values in the embeddings, so that comparison becomes imprecise.

The third solution incurs significant overhead in terms of processing

time to measure the similarity of multisets. The MPNN, in turn,

can handle new query graphs seamlessly. Intuitively, it compares

multisets, but relies on the embeddings as succinct representations

of fixed size, which renders this comparison more efficient. We later

confirm empirically that WL is computationally more expensive

than the MPNN regarding new queries.

Parameter learning. To learn the parameters of the MPNN, a loss

function needs to be defined. As mentioned, a node embedding

represents a summarization of its receptive field. Hence, we define

a loss function that rewards if similar embeddings are assigned to

similar nodes, i.e., those that are close in the graph:

L(zv) = −loд(σ (z
T
v zu)) −QEun∼Pn (v)loд(σ (−z

T
v zun))

where v is called a positive sample such as u’s neighbor, un is a

negative sample obtained from a negative sampling distribution Pn ,
andQ is the number of negative samples. The above function strives

for similar representations for similar nodes u,v by maximizing

zTv zu , while minimizing zTv zun fosters different representations for

dissimilar nodes v,un . We observe that adding a supervised loss

function to reconstruct the node labels to the unsupervised loss

can also improve the model’s performance.

Edge embeddings. As usual, we construct edge embeddings by

averaging the embeddings of the adjacent nodes. We later show that

edge embeddings are more discriminative than node embeddings as

they enable better pruning of candidates for subgraph isomorphism.

3.3 Subgraph Embeddings
For subgraph embeddings to be meaningful, similar subgraphs shall

have close embeddings and the labels of nodes shall be incorporated.

Moreover, when considering the problem of streaming subgraph

isomorphism, we need to cater for large differences in the sizes of

the assessed graphs. Given a small query graph, there are potentially

very many isomorphic subgraphs in a large data graph [37]. An

embedding shall support a test for isomorphism that is independent

of the specific locations of these subgraphs.

Truncatedmessage-passing for subgraph embedding.Our ap-
proach to embed subgraphs of a labeled graph (д, l) (the data graph,
in our setting) builds on the function Z = f (д, l) that returns em-

beddings for all nodes in д. This model, learned on the whole graph,

captures the graph’s structure in a comprehensive manner. Hence,

for a labeled subgraph (s, l ′), we can project themodel on the respec-

tive nodes and their labels, which yields an embedding Z ′ = f (s, l ′).
Such a projection is akin to truncated message passing, in which

solely the nodes in s send messages to neighboring nodes that are

also in s . Note though that the parameters of the functions used for

sending, receiving, and updating are taken from the MPNN learned

to embed the individual nodes.

Example 4. Fig. 5 illustrates truncatedmessage passing for a graph
of four nodes, A-D, which is a subgraph of the one in Fig. 2. Messages
are exchanged only within the subgraph, but not with node E. Hence,
the tree of operations, rooted at B, does not include E.

The above process yields embeddings for all nodes in a subgraph.

Since each embedding summarizes the node’s receptive field, i.e.,

the subgraph, it is a candidate to represent the whole subgraph.

Against this background, we follow a compositional approach and

average the node embeddings to represent the subgraph.

We additionally propose an approach to construct subgraph

embeddings from edge embeddings. A compositional approach

is adopted by averaging edge embeddings to represent the sub-

graph. This is equivalent to a degree-weighted combination of node

embeddings because: zs =
1

|Es |
˝
(u ,v)∈Es z(u ,v) =

2˝
u∈Vs deд(u)˝

(u ,v)∈Es
zu+zv

2
= 2˝

u∈Vs deд(u)
˝
u ∈Vs deд(u)zu =

˝
u∈Vs deд(u)zu˝
u∈Vs deд(u)

.

733

