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ABSTRACT

Interactive response time is important in analytical pipelines for

users to explore a sufficient number of possibilities and make in-

formed business decisions. We consider a forecasting pipeline with

large volumes of high-dimensional time series data. Real-time fore-

casting can be conducted in two steps. First, we specify the part of

data to be focused on and the measure to be predicted by slicing,

dicing, and aggregating the data. Second, a forecasting model is

trained on the aggregated results to predict the trend of the spec-

ified measure. While there are a number of forecasting models

available, the first step is the performance bottleneck. A natural

idea is to utilize sampling to obtain approximate aggregations in

real time as the input to train the forecasting model. Our scalable

real-time forecasting system FlashP (Flash Prediction) is built based

on this idea, with two major challenges to be resolved in this pa-

per: first, we need to figure out how approximate aggregations

affect the fitting of forecasting models, and forecasting results; and

second, accordingly, what sampling algorithms we should use to

obtain these approximate aggregations and how large the samples

are. We introduce a new sampling scheme, called GSW sampling,

and analyze error bounds for estimating aggregations using GSW

samples. We introduce how to construct compact GSW samples

with the existence of multiple measures to be analyzed. We conduct

experiments to evaluate our solution its alternatives on real data.
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1 INTRODUCTION

Large volumes of high-dimensional data are generated on eCom-

merce platforms every day, from data sources about, e.g., sales and

browsing activities of online customers. Forecasting is among the
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most important BI analytical tasks to utilize such data, as sound

prediction of future trends helps make informed business decisions.

Motivating scenario and challenges.An online advertising plat-

form enables advertisers to target certain user visits and submit

their bids for displaying advertisements on these visits during a time

window (i.e., targeting ads campaigns). To make the right decision

about which customers to target and the bid prices, it is imperative

for an advertiser to access reliable forecasts of important measures

about the targeted customers and their activities, e.g., Impression,

the number of times an advertisement is showed to such customers,

and ViewTime, the time a customer spends each visit.

Time-series data about customers can be very high-dimensional,

with tens or hundreds attributes about customers’ profiles and ac-

tivities, including their demographics, devices (e.g., mobile/PC),

machine-learned tags (e.g., their preferences and intents of visits),

and so on. An advertiser may decide to target a group of customers

for any combination of the attributes and values, based on the

merchandise in the advertisement and fine-grained forecasts after

different ways of slicing and dicing in the attribute space. For exam-

ple, she may decide to target 20-30 year old females interested in

sports and located in some cities for skirt sets in the advertisement.

Consider a time series of relation data in Figure 1. A forecasting

task, e.g., the one in Figure 2, asks to predict the total number of

impressions by female customers under age 30.

Unlike in traditional forecasting applications such as airline

planning, real-time response is critical in our scenario. First, it is

an exploratory process to find the right attribute combination for

targeting. An advertiser may try a number of combinations and

read the forecasting results within a short period of time in order

to support the decision. High latency can easily make advertisers

impatient during the exploration. Second, real-time bidding for

targeting ads campaigns is very competitive and dynamic market.

Slow response may result in loss of displaying opportunities and

higher prices. Thus, it is important to make our platform interactive.

It is challenging to provide real-time response to such forecasting

tasks. The volume of input time-series data to the analytical pipeline

is huge, with hundreds of millions of rows per day, and commonly

months of historical data is used to forecast a future point. Moreover,

as a result of the high-dimensionality of our data, there could be

trillions of possible attribute/value combinations; a forecasting

task is given online with any combination, and it would be too
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Age a(1) Gender a(2) Location a
(3) Impressionm

(1) ViewTimem(2) TimeStamp 𝑡

30 F WA 5 1.6min 20200301
60 M WA 1 1.8min 20200301
20 F NY 10 3.2min 20200301
40 M NY 20 6.3min 20200302

Figure 1: A time series of relational data (yellow cells are relevant to the task)

... ...

Forecasting Model

Fitting

the model
(training)

Forecasting
Processing Aggregation Queries

FORECAST SUM(Impression) FROM T WHERE Age <= 30 AND Gender = F

USING(20200101, 20200331)

SELECT SUM(Impression) FROM T WHERE Age <= 30 AND Gender = F AND t = 20200101 ⇒ M1

SELECT SUM(Impression) FROM T WHERE Age <= 30 AND Gender = F AND t = 20200102 ⇒ M2

SELECT SUM(Impression) FROM T WHERE Age <= 30 AND Gender = F AND t = 20200331 ⇒ M91

Figure 2: Processing a real-time forecasting task
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Figure 3: Forecasting example

expensive to precompute and store all possible combinations and

the corresponding time series during an offline phase.

The task and solution phases. Our forecasting system FlashP is

designed to process real-time forecasting tasks, in which we spec-

ify: i) a constraint specifying the portion of data to be focused on

(e.g., targeting customers “Age <= 30 AND Gender = F” in the ex-

ample in Figure 2); ii) the aggregated measure to be predicted (e.g.,

SUM(Impression)); iii) historical data points to be used to train a

forecasting model (e.g., from 20200101 to 20200331).

We give an overview of the solution. Consider the example in

Figure 2. A forecasting task is specified in a SQL-like language,

with the goal to predict the total number of impressions by female

customers under age 30. To prepare training data for a forecasting

model, we need to know the total number of impressions on each

day (𝑀𝑡 ), which can be written as an aggregation query. As the

time-series data is partitioned on time, we can process these 91

aggregation queries with one scan of the data. After that, we have

91 data points to fit (train) the forecasting model. Processing the

91 aggregation queries (or, equivalently, a query with GROUP BY)
is the bottleneck. A natural idea is to utilize sampling (e.g., [21])

or sample-based approximate query processing (e.g., [19, 34]) to

estimate their answers. Figure 3 shows an example of prediction

for the next 7 days: the red line shows estimated aggregations;

the estimations are used to train the model, which then produces

forecasts (green line) with confidence intervals (green dashed lines).

Contributions and organization. FlashP is implemented in Al-

ibaba’s advertising system. The first technical question is how the

errors in sample-based estimations affect the fitting of forecasting

models (Section 3). Error bounds of estimating aggregations us-

ing samples are well studied e.g., for priority sampling [37] which

has been shown to be optimal for aggregating SUM. However, it is
unclear what the implications of such error bounds are in predic-

tion results. We provide both analytical and experimental evidence

showing that aggregation errors add up to the forecasting model’s

noise (from historical data points), and they together decide how

confident we could be with the prediction. We give formal analysis

for a concrete forecasting model (i.e., ARMA(1, 1), defined later),

and experimental results for more complicated models (e.g., LSTM).

The second question is about the space budget needed for sam-

ples (Section 4). Uniform sampling provides unbiased estimations

for aggregations, but the estimation error is proportional to the

range of a measure (max−min) [28]. Weighted sampling schemes

offer optimal estimations, with much better error bounds that are

independent on the range [37]; however, as the sampling distribu-

tion is decided by the measure values [10, 21], we have to draw

one weighted sample per measure independently. When there are a

number of measures (as in our scenario), the total space consump-

tion could be prohibitive. We propose a new sampling scheme called

GSW (Generalized Smoothed Weighted) sampling, with sampling

distributions that can be arbitrarily specified. We analyze estima-

tion error bounds by quantify the correlation between the sampling

distribution and measure values. We introduce how to use this

scheme to generate a compact sample which takes care of multiple

measures, using a sampling distribution that averages distributions

of different measures, and analyze its estimation errors.

We describe how FlashP is implemented in Section 5. We report

experimental results on real datasets in Section 6, and discuss related

work in Section 7. All missing proofs are in the full version [41].

2 SOLUTION OVERVIEW

Time-series data model. The input to our forecasting pipeline

is a time series of relation 𝑇 , i.e., a sequence of observed rows at

successive time. We assume that time is a discrete variable here.

A row in the table 𝑇 is specified by a pair (𝑖, 𝑡): an item 𝑖 and
a time stamp 𝑡 . An item is associated with multiple dimensions,

each denoted by a, which are used to filter data (e.g., Age and

Location), and multiple measures, each denoted by m, which we

want to analyze and forecast (e.g., Impression and ViewTime). We

use 𝑎𝑖,𝑡 and𝑚𝑖,𝑡 to denote the values of a dimension and a measure,

respectively, on each row; or, simply, 𝑎𝑖 and𝑚𝑖 , if the time stamp

𝑡 is clear from the context or not important. The schema of 𝑇 is

(a(1) , a(2) , . . . , a(𝑑𝑎) ;m(1) ,m(2) , . . . ,m(𝑑𝑚) ; 𝑡).
Real-time forecasting task. A forecasting tasks is specified as:

FORECAST SUM(m) FROM 𝑇 WHERE C USING (𝑡𝑠 , 𝑡𝑒 ) (1)

OPTION (MODEL = ′model_x′, FORE_PERIOD = t_future)

m is the measure we want to forecast from data 𝑇 on a given set

of rows satisfying the constraint C. FlashP allows C to be any logi-

cal expression on the dimension values of a(1) , . . . , a(𝑑𝑎) . We want

to use historical data from time stamp 𝑡𝑠 to 𝑡𝑒 to fit the forecast-

ing model. We can also specify the forecasting model we want to

use in the OPTION clause with the parameter MODEL, and the num-

ber of future time stamps we want to predict with the parameter

FORE_PERIOD (e.g., 7 days). In most of our application scenarios, we

care about SUM aggregation, e.g., total number of impressions from

a certain group users; FlashP can also support COUNT and AVG.
FlashP facilitates the following class of forecasting models. Let

𝑀𝑡 be the value of metric 𝑀 (= SUM(m) in our case) at time 𝑡 . A
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model is specified by a time-dependent function 𝑓𝑡 with order 𝐾 :

𝑀𝑡 = 𝑓𝑡 (𝑀𝑡−1, 𝑀𝑡−2, . . . , 𝑀𝑡−𝐾 ). (2)

The model 𝑓𝑡 is fitted on historical data 𝑀1, 𝑀2, . . . , 𝑀𝑡0 with train-

ing data tuples, each in the form of (𝑀𝑡 ;𝑀𝑡−1, . . . , 𝑀𝑡−𝐾 ) with

𝑀𝑡−1, . . . , 𝑀𝑡−𝐾 as the input to 𝑓𝑡 and 𝑀𝑡 as the output, for 𝑡 =
𝑡0, 𝑡0 − 1, . . . , 𝐾 + 1. The fitted model can then be used to forecast

future values𝑀𝑡0+1, 𝑀𝑡0+2, . . . as �̂�𝑡0+ℎ |𝑡0 for ℎ = 1, 2, . . ., iteratively

(i.e., �̂�𝑡0+1 |𝑡0 can be used forecast 𝑀𝑡0+2).
For the forecasting models supported by FlashP, we now give

brief introduction to both classic ones, e.g., ARMA [26], and those

based on recurrent neural networks and LSTM [29].

Forecasting using ARMA. An ARMA (autoregressive moving av-

erage) [26] model uses stochastic processes to model how 𝑀𝑡 is

generated and evolves over time. It assumes that 𝑀𝑡 is a noisy

linear combination of the previous 𝑝 values; each 𝑢𝑡 is an indepen-

dent identically distributed zero-mean random noise at time 𝑡 , and
historical noise at previous 𝑞 time stamps impacts 𝑀𝑡 too:

ARMA(𝑝, 𝑞) : 𝑀𝑡 =
𝑝∑
𝑖=1

𝛼𝑖𝑀𝑡−𝑖 + 𝑢𝑡 +
𝑞∑
𝑖=1

𝛽𝑖𝑢𝑡−𝑖 . (3)

For example, an ARMA model is: 𝑀𝑡 = 0.8𝑀𝑡−1 + 0.2𝑀𝑡−2 +𝑢𝑡 +
0.1𝑢𝑡−1. It falls into the form of (2), and is parameterized by𝛼1 . . . 𝛼𝑝
and 𝛽1 . . . 𝛽𝑞 . The model can be fitted on 𝑀1, . . . , 𝑀𝑡0 , using, e.g.,

least squares regression, to find the values of 𝛼𝑖 and 𝛽 𝑗 which
minimize the error term, and used to forecast future values. We can

estimate forecast intervals, i.e., confidence intervals for forecasts

�̂�𝑡0+ℎ |𝑡0 : with a confidence level (probability) 𝛾 , the true future value
𝑀𝑡0+ℎ is within [�̂�𝑡0+ℎ |𝑡0 − 𝑙𝛾 , �̂�𝑡0+ℎ |𝑡0 + 𝑟𝛾 ].

When there are deterministic trends over time, the differential

method can be used: the first order difference is defined �𝑀𝑡 =
𝑀𝑡 − 𝑀𝑡−1, and the second order �2𝑀𝑡 = �𝑀𝑡 − �𝑀𝑡−1, and in

general, the 𝑑-th order �𝑑𝑀𝑡 = �𝑑−1𝑀𝑡 − �𝑑−1𝑀𝑡−1. If {�𝑑𝑀𝑡 }𝑡
is an ARMA(𝑝, 𝑞) model, {𝑀𝑡 }𝑡 is an ARIMA(𝑝,𝑑, 𝑞) model.

Forecasting using LSTM. LSTM (long short-term memory) [29]

is a network architecture that extends the memory of recurrent

neural networks using a cell. It is natural to use LSTM to learn

and memorize trends and patterns of time series for the purpose of

forecasting. In a typical LSTM-based forecasting model, e.g., [35], an

LSTM unit with dimensionality 𝑑 in the output space takes (𝑀𝑡−1,
. . . , 𝑀𝑡−𝐾 ) as the input; the LSTM unit is then connected to a 𝑑 × 1

fully-connected layer which outputs the forecast of 𝑀𝑡 . This model

also falls into the general form (2). Here, the cell state is evolving

over time and, at each time stamp 𝑡 , is encoded in 𝑓𝑡 , which can be

learned from training data tuples (𝑀𝑡 ; 𝑀𝑡−1, . . . , 𝑀𝑡−𝐾 ) in order.

2.1 Overview of Our Approach

Our system FlashP works in two online phases to process a fore-

casting task: preparing training data points by issuing aggregation

queries, and fitting the forecasting model using the training data.

• Aggregation query. In a forecasting task, specified in (1), to predict

SUM(m), we have 𝑡𝑒 − 𝑡𝑠 + 1 historical data points:

𝑀𝑡𝑠 = SELECT SUM(m) FROM 𝑇 WHERE C AND 𝑡 = 𝑡𝑠

. . . . . .

𝑀𝑡𝑒 = SELECT SUM(m) FROM 𝑇 WHERE C AND 𝑡 = 𝑡𝑒 (4)

Each data point is given by an aggregation query with constraint

C, which can be any logical expression on the dimension values

of a(1) , . . . , a(𝑑𝑎) . We would compute them in the online phase.

• Forecasting. In the next online phase, we use 𝑀𝑡𝑠 , . . . , 𝑀𝑡𝑒 as

training data to fit the forecasting model. And we use the model

to predict future aggregations, 𝑀𝑡𝑒+1, . . . , 𝑀𝑡𝑒+t_future.
Performance bottleneck. Suppose we have 𝑁 rows in𝑇 for each

time stamp, and use a history of 𝑡0 = 𝑡𝑒 − 𝑡𝑠 + 1 time stamps to train

a forecasting model with size (number of weights) 𝑠 . The total cost
of processing a forecasting task is O(𝑡0 · 𝑁 ) + Train(𝑡0, 𝑠), where
O(𝑡0 ·𝑁 ) is the cost of processing 𝑡0 aggregation queries by scanning
the table𝑇 , and Train(𝑡0, 𝑠) is the time needed to train a forecasting

model with size 𝑠 using 𝑡0 training data tuples. Train(𝑡0, 𝑠) is in the

form of, e.g., (𝑡0 · 𝑠 · iter) where iter is the number of iterations for

the model training to converge. We typically have 𝑡0 in hundreds

(𝑡0 = 365 if we use one year’s history for training with one data

point per day), 𝑁 (number rows in 𝑇 per day) in tens or hundreds

of millions in our application, and 𝑠 in tens. Therefore, as 𝑡0, 𝑠 � 𝑁 ,

processing of aggregation queries is the performance bottleneck

(even in comprison to training a complex model).

Real-time forecasting on approximate aggregations. In order

to process a forecasting task in an interactive way in FlashP, we

propose to estimate 𝑀𝑡𝑠 , . . . , 𝑀𝑡𝑒 as �̂�𝑡𝑠 , . . . , �̂�𝑡𝑒 from offline sam-

ples drawn from 𝑇 , and use these estimates to form training data

tuples and to fit the model (2). Several questions to be answered: i)

If estimates �̂�𝑖 , instead of 𝑀𝑖 , are used to fit the forecasting model,

how much the prediction would deviate. ii) How to draw these

samples efficiently (preferably in a distributed manner). iii) How

much space we need to store these samples for multiple measures.

3 REAL-TIME FORECASTING

We first analyze how sampling and approximate aggregations im-

pact model fitting and, resultingly, forecasts. We give an analytical

result for an ARMA model, and will conduct experimental study

for more complex models, e.g., LSTM-based ones in Section 6. It is

not surprising that there is a tradeoff between sampling rate (or,

quality of estimated aggregations) and forecast accuracy.

Required properties of sampling and estimates. In FlashP, we

have no access to the accurate value of𝑀𝑡 ; but instead, we have �̂�𝑡

estimated from offline samples. We require the estimates to have

two essential properties for the fitting of forecast models:

• (Unbiasedness) �̂�𝑡 = 𝑀𝑡 + 𝜖𝑡 with E[𝜖𝑡 ] = 0;

• (Independence) 𝜖𝑡 ’s for different time stamps 𝑡 are independent.

GSW sampling introduced in Section 4 offers unbiased estimates,

with bounded variance of 𝜖𝑡 . GSW samplers are run independently

on the data for each 𝑡—that is how we get independence.

Impact on ARMA(𝑝, 𝑞). When an ARMA(𝑝, 𝑞) model has to be

trained only on noisy metric values {�̂�𝑡 }, we rewrite (3) as

�̂�𝑡 =
𝑝∑
𝑖=1

𝛼𝑖�̂�𝑡−𝑖 + (𝑢𝑡 + 𝜖𝑡 )+ (5)

+
{∑𝑝

𝑖=1 (𝛽𝑖𝑢𝑡−𝑖 − 𝛼𝑖𝜖𝑡−𝑖 ) +
∑𝑞
𝑖=𝑝 𝛽𝑖𝑢𝑡−𝑖 (1 < 𝑝 ≤ 𝑞)∑𝑞

𝑖=1 (𝛽𝑖𝑢𝑡−𝑖 − 𝛼𝑖𝜖𝑡−𝑖 ) −
∑𝑝
𝑖=𝑞 𝛼𝑖𝜖𝑡−𝑖 (1 < 𝑞 ≤ 𝑝)
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Figure 4: LSTM-based forecasting model with noisy inputs

The above model (with noisy inputs) is a combination of an au-

toregressive model of order 𝑝 (the first line of (5)), and a moving

average model of order max{𝑝, 𝑞} (the two casese on the second line
of (5)). It differs from the ARMAmodel in (3) only on the additional

zero-mean error terms 𝜖𝑡 , which are independent on other terms

in the model and have known variance (for fixed sampling and the

estimation methods). Thus, the model can be fitted on {�̂�𝑡 } using,
e.g., maximum likelihood estimator, as normal ARMA models. 𝜖𝑡
increases the model’s uncertainty, and, together with the model

noise terms 𝑢𝑡 , it decides the confidence of the model prediction.

For a fixed confidence level, the narrower the forecast intervals

are, the more confident we are about the prediction. Their widths

are proportional to the standard deviations of forecasts of �̂�𝑡 , which

in turn depends on the variance of noise terms 𝑢𝑡 ’s and 𝜖𝑡 ’s.
In comparison to the original ARMA model in (3), the additional

noise term 𝜖𝑡 will indeed incur wider forecast intervals. However,

with a proper sampling-estimation scheme, if 𝜖𝑡 ’s variance is negli-
gible in comparison to𝑢𝑡 ’s, 𝜖𝑡 will have little impact on the forecast

error/interval, which will be demonstrated in our experiments later.

Here, we give a formal analysis for the ARMA(1, 1) model:

Proposition 1. Suppose we have a time series {𝑀𝑡 } satisfies

ARMA(1, 1). Let �̂�𝑡 = 𝑀𝑡 + 𝜖𝑡 be an estimation of 𝑀𝑡 satisfying

unbiasedness and independence. Then, Var[�̂�𝑡 ] = 𝑎 · 𝜎2𝑢 + 𝜎2𝜖 , where
𝜎2𝑢 = Var[𝑢𝑡 ], 𝜎2𝜖 = Var[𝜖𝑡 ], and 𝑎 = (1 + 2𝛼1𝛽1 + 𝛽21)/(1 − 𝛼2

1) is a
constant decided by parameters in ARMA(1, 1).

We can use normal random variables to approximate 𝑢𝑡 and 𝜖𝑡 ,
and estimate forecast intervals for a given confidence level.

Impact on LSTM-basedmodel. LSTM can be applied for forecast-

ing tasks thanks to its ability to memorize trends and patterns of

time series. Figure 4 depicts such a forecasting model and illustrates

where noise in the estimates impacts the model fitting.

At time stamp 𝑡 , we want to forecast 𝑀𝑡 with the previous 𝐾
metric values𝑀𝑡−1, . . . , 𝑀𝑡−𝐾 and the “memory” (c𝑡−1, h𝑡−1). How-
ever, we have only estimates �̂�𝑡−𝑖 = 𝑀𝑡−𝑖 + 𝜖𝑡−𝑖 available; these
estimates are fed into the LSTM unit as inputs. LSTM then gener-

ates an output vector h𝑡 and update its memory cell from c𝑡−1 to c𝑡 .
h𝑡 can be interpreted as the current status of LSTM and it is used

as the input to a fully-connected layer for forecasting 𝑀𝑡 . Again,

we have only �̂�𝑡 = 𝑀𝑡 + 𝜖𝑡 available as an approximation, which

we learn to fit with LSTM and the fully-connected layer. c𝑡 and h𝑡

are used to deliver memory to the next time stamp.

Noise terms 𝜖𝑡 ’s may affect how the weight matrices in LSTM

and the fully-connected layer are learned and the values of c𝑡 and

h𝑡 derived (via linear transformations and activation functions). We

conjecture that the LSTM-based forecasting model performs well

as long as the estimates �̂�𝑡 ’s are accurate enough (or 𝜖𝑡 ’s are small

enough). It is difficult to derive any formal analytical result here,

but we will evaluate it experimentally in Section 6.

4 GENERALIZEDWEIGHTED SAMPLER

We now focus on how to draw samples for estimating results of

aggregation queries. An aggregation query in (4) is essentially to

compute the sum of a subset of measure values in a relation 𝑇 at

time 𝑡 ; the subset is decided online by the constraint C specified in

the forecasting task. W.l.o.g., suppose the subset of rows satisfying

C is [𝑛] = {1, . . . , 𝑛}, we want to estimate the metric 𝑀 =
∑𝑛
𝑖=1𝑚𝑖 ,

for a measure m = [𝑚𝑖 ]. The (offline) sampling algorithm should

be independent on C, but could depend on m.

Existing samplers. There are two categories of sampling schemes

for estimating subset sums: uniform sampling and weighted sam-

pling. In uniform sampling, each row in the relation is drawn into

the sample with equal probability; an unbiased estimation for 𝑀 is

simply the rescaled sum of values in the sample. It has been used in

online aggregation extensively, but the main deficiency is that the

error bound is proportional to the difference between the maximum

and minimum (or, the range of) measure values [28].

In weighted sampling, each row 𝑖 is drawn with probability

proportional to𝑚𝑖 , so that we can remove the dependency of the

estimation’s error bound on the range of the measure values. More

concretely, [17] and [19] give efficient implementations of such

a sampling distribution: for some fixed constant 𝜏 (deciding the

sampling size), if𝑚𝑖 < 𝜏 , the probability of drawing a row 𝑖 is𝑚𝑖/𝜏 ,
and if𝑚𝑖 ≥ 𝜏 , multiple (roughly 𝜏/𝑚𝑖 ) copies of 𝑖 are included into

the sample. Threshold sampling [20] and priority sampling [10, 21]

differ from the above one in that, if𝑚𝑖 ≥ 𝜏 , exactly one copy of 𝑖 is
included. Priority sampling has been shown to be optimal [37] in

terms of the sampling efficiency with relative standard deviation√
Var[estimation]/𝑀 =

√
1/(sample_size − 1).

Requirements for the sampler in FlashP. Weighted sampling

offers much better sampling efficiency than uniform sampling, es-

pecially for heavy tailed distributions, which is common in practice.

However, in all the above weighted sampling schemes, the sam-

pling distribution is decided by the measure’s values. In FlashP, we

have 𝑑𝑚 different measures to forecast; and thus, we have to draw

𝑑𝑚 such weighted samples independently; when 𝑑𝑚 is large (e.g.,

10), the storage cost of all the samples (e.g., even with sampling

rate 1%) is prohibitive in memory. Therefore, the requirement here

is: whether we can generate a compact sample which takes care of

multiple measures and still have accuracy guarantees.

To this end, we propose GSW (Generalized Smoothed Weighted)

sampling. We introduce its sampling distribution and analyze its

sampling efficiency in Section 4.1. We utilizes the “generality” of its

sampling distribution to generate a compact sample which takes

care of multiple measures, and analyzes under which conditions it

gives provable accuracy guarantees in Section 4.2.

4.1 Generalized Smoothed Sampling

The GSW sampling scheme is parameterized by a positive constant

Δ and positive sampling weights w = [𝑤𝑖 ]: each row 𝑖 in the

given relation𝑇 is drawn into the sample 𝑆Δ with probability 𝑤𝑖
Δ+𝑤𝑖

,

independently. For fixed sampling weights, Δ decides the sample

size; and the choice of w decides the estimation accuracy.

Inspired by the Horvitz–Thompson estimator [30], we define the

calibrated measure to be �̂�𝑖 =𝑚𝑖 (Δ +𝑤𝑖 )/𝑤𝑖 if row 𝑖 is drawn into

the sample 𝑆Δ, and �̂�𝑖 = 0 otherwise. We would associate �̂�𝑖 with
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each sample row 𝑖 and store it in 𝑆Δ. Formally, we have{
Pr[𝑖 ∈ 𝑆Δ ∧ �̂�𝑖 =

𝑚𝑖 (Δ+𝑤𝑖 )
𝑤𝑖

] = 𝑤𝑖
Δ+𝑤𝑖

Pr[𝑖 ∉ 𝑆Δ ∧ �̂�𝑖 = 0] = 1 − 𝑤𝑖
Δ+𝑤𝑖

= Δ
Δ+𝑤𝑖

. (6)

We can estimate 𝑀 as �̂� =
∑
𝑖∈𝑆Δ �̂�𝑖 , which is unbiased since

E
[
�̂�

]
=

𝑛∑
𝑖=1

E[�̂�𝑖 ] =
𝑛∑
𝑖=1

𝑚𝑖 (Δ +𝑤𝑖 )
𝑤𝑖

· 𝑤𝑖

Δ +𝑤𝑖
= 𝑀.

Simple and efficient implementations. A GSW sampler can be

easily implemented in a distributed manner: each row 𝑖 generates
uniformly random number 𝑝𝑖 from [0, 1], independently; according
to (6), if 𝑝𝑖 ≤ 𝑤𝑖

Δ+𝑤𝑖
, the row 𝑖 is put into the sample 𝑆Δ.

A GSW sample 𝑆Δ can be maintained in an incremental way.

Suppose we have drawn 𝑆Δ from rows [𝑛] for some fixed Δ. If more

rows 𝑛 + 1, . . . , 𝑛 + 𝑘 are coming, we want to increase Δ to Δ′ and
obtain a GSW sample 𝑆Δ′ from [𝑛 +𝑘] with size comparable to |𝑆Δ |.
Suppose rows in 𝑆Δ are sorted by ( 1

𝑝𝑖
− 1)𝑤𝑖 in an ascending order;

we only need to delete those with Δ ≤ ( 1
𝑝𝑖

− 1)𝑤𝑖 < Δ′ from 𝑆Δ,

and insert those with Δ′ ≤ ( 1
𝑝𝑖

− 1)𝑤𝑖 , for 𝑖 = 𝑛 + 1, . . . , 𝑛 + 𝑘 . In

this way, we update 𝑆Δ to 𝑆Δ′ without touching any row in [𝑛] −𝑆Δ.

4.1.1 Accuracy Guarantee on Aggregations. We now analyze esti-

mation errors of the class of GSW-based estimators �̂� , instantiated

by (Δ,w). We consider relative standard deviation (RSTD) and rela-

tive error (RE). As �̂� is unbiased,

RSTD(�̂�) �
√√√
E

[(
�̂� −𝑀

𝑀

)2]
≥ E

[ |�̂� −𝑀 |
𝑀

]
�RE(�̂�) .

The goal of our analysis is to establish a relationship between

the sample size and the (expected) RSTD and RE. Intuitively, when

the sampling weight 𝑤𝑖 is “consistent” with the measure𝑚𝑖 , the

estimation error is minimum (for fixed sample size). We introduce

the following notation to quantify the “consistency”.

Definition 2. ((𝜃, 𝜃 )-consistency) Sampling weights w = [𝑤𝑖 ]
are (𝜃, 𝜃 )-consistent with measure m = [𝑚𝑖 ], iff 𝜃 = min𝑖 (𝑚𝑖/𝑤𝑖 )
and 𝜃 = max𝑖 (𝑚𝑖/𝑤𝑖 ). 𝜃 � 𝜃/𝜃 is called the consistency scale.

The above notation about “consistency” says, for any row 𝑖 ,

𝜃 ≤ 𝑚𝑖/𝑤𝑖 ≤ 𝜃 . It allowsm andw to differ in scale (e.g., both 𝜃 and

𝜃 could be large) but measures their similarity in patterns and trends.

For example, suppose m = [100, 100, 200, 400] and w = [10, 10, 20,
50]. We have 𝜃 = 400/50 = 8, 𝜃 = 10, and thus 𝜃 = 10/8 = 1.25. In
general, we have 𝜃 ≥ 1, and the following theorem shows that, the

relative error has an upper bound that is proportional to
√
𝜃 .

Theorem 3. (Sampling efficiency of GSW) Suppose the sam-

pling weights w used in GSW sampling are (𝜃, 𝜃 )-consistent with
measure values m, the estimate �̂� is unbiased and has expected rela-

tive standard deviation and error bounded by: (𝜃 � 𝜃/𝜃 )

RE(�̂�) ≤ RSTD(�̂�) ≤
√

𝜃/𝜃
E[|SΔ |]

=

√
𝜃

E[|SΔ |]
.

An open question raised by Alon et al. when introducing prior-

ity sampling [10] is: whether we can provide any error bound if

subset sum on a measure (m) is estimated using a priority sample

drawn based on a different measure (w). Theorem 3 answers this

question in GSW sampling by specifying under what condition

((𝜃, 𝜃 )-consistency)) there is an error bound.

4.1.2 A Special Case: Optimal GSW Sampler. We can choose w to

minimize the variance of estimation, while the expected sample

size is bounded. Please refer to [41] for a precise formulation and

the optimal solution. From Theorem 3, a nearly-optimal solution

is w = m, as in this case, w is (1, 1)-consistent with m (𝜃 = 1). We

call it optimal GSW sampler. Directly from Theorem 3, we have

Corollary 4. (Optimal GSW sampler) If we use w = m (𝑤𝑖 =
𝑚𝑖 for each row 𝑖) as the sampling weights, we have

RE(�̂�) ≤ RSTD(�̂�) ≤
√

1

E[|SΔ |]
.

The optimal GSW sampler has sampling efficiency that is com-

parable to the best known sampler for estimating subset sums, e.g.,

priority sampling [10] with RSTD =
√
1/(sample_size − 1). We will

compare their empirical performance in Section 6.

4.2 Compact Sample for Multiple Measures

The size of GSW sample can be controlled by the parameterΔ.When

there is only one measure m, we draw an optimal GSW sample

(setting w = m). A more common scenario is that we have multiple

measures (e.g., in Figure 1) in one relation. We can draw one optimal

GSW sample per each measure, which, however, increases the space

consumption significantly. The question is whether we can use one

sample to take care multiple measures.

Suppose there are 𝑘 measures in a relation to be aggregated

and predicted, m(1) , . . . , m(𝑘) . For each measure 𝑗 , we want to

estimate 𝑀 ( 𝑗) =
∑𝑛
𝑖=1𝑚

( 𝑗)
𝑖 for rows in a set [𝑛] (satisfying the

constraintC in a forecasting task). A GSW sample 𝑆Δ is drawn using

weights w = [𝑤𝑖 ]. The calibrated measure on each sample row 𝑖

for each measure 𝑗 is �̂�
( 𝑗)
𝑖 = 𝑚

( 𝑗)
𝑖 (Δ +𝑤𝑖 )/𝑤𝑖 . From Theorem 3,

�̂� ( 𝑗) =
∑
𝑖∈𝑆Δ �̂�

( 𝑗)
𝑖 is an unbiased estimation of 𝑀 ( 𝑗) .

Intuitively, if the chosen samplingweight vectorw centers around

m
(1) , . . . , m(𝑘) and is not too far away from any of the 𝑘 , from

Theorem 3, the error can be better bounded. We can find such cen-

ters by taking the average of measures. For example, for m(1) =
[100, 100, 200, 400] and m

(2) = [1, 1, 2, 1], the geometric mean is

w
× = [√100 · 1 = 10, 10, 20, 20], and the arithmetic mean is w+ =

[(100+ 1)/2 = 50.5, 50.5, 101, 200.5]. We now analyze how the error

can be bounded for these two choices.

Geometric compressed GSW sampling.We can use the geomet-

ric mean of the 𝑘 measures as the sampling weights:

𝑤×
𝑖 =

���
𝑘∏
𝑗=1

𝑚
( 𝑗)
𝑖

���
1/𝑘

. (7)

Among the 𝑘 measures to be grouped, define the trend deviation

between any two measures m(𝑝) , m(𝑞) (for 𝑝, 𝑞 ∈ [𝑘]):

𝜌𝑝,𝑞 � max
𝑖∈[𝑛]

𝑚
(𝑝)
𝑖

𝑚
(𝑞)
𝑖

, 𝜌
𝑝,𝑞
� min

𝑖∈[𝑛]
𝑚

(𝑝)
𝑖

𝑚
(𝑞)
𝑖

, and 𝜌𝑝,𝑞 �
𝜌𝑝,𝑞

𝜌
𝑝,𝑞

, (8)
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which measures how similar the trends (instead of their absolute

values) of the two measures are1. The smaller 𝜌𝑝,𝑞 is, the more

similar m(𝑝) and m
(𝑞) are. For example, if m(𝑝) = 𝑐 · m(𝑞) for a

constant 𝑐 , 𝜌𝑝,𝑞 = 𝑐/𝑐 = 1. Define 𝜌 � max𝑝,𝑞∈[𝑘 ] 𝜌𝑝,𝑞 to be the

maximum deviation among the 𝑘 measures. From Theorem 3,

Corollary 5. If we use w× = [𝑤×
𝑖 ] as the sampling weights for

a relation with 𝑘 measures, with a GSW sample 𝑆Δ, we can estimate

𝑀 (𝑝) as �̂� (𝑝) for each measure 𝑝 with error

RE(�̂� (𝑝) ) ≤ RSTD(�̂� (𝑝) ) ≤

√√∏
𝑗 : 𝑗≠𝑝 𝜌

1/𝑘
𝑝,𝑗

E[|SΔ |]
≤

√
𝜌

𝑘−1
𝑘

E[|SΔ |]
.

Arithmetic compressed GSW sampling. Another choice is to

use the arithmetic mean as the sampling weights:

𝑤+
𝑖 =

1

𝑘

𝑘∑
𝑗=1

𝑚
( 𝑗)
𝑖 . (9)

Define the range deviation 𝛿 among 𝑘 measures: for each row 𝑖 ,
consider the ratio between themaximummeasure and theminimum

one; 𝛿 is the maximum ratio among all rows:

𝛿 � max
𝑖∈[𝑛]

(
max𝑗 ∈[𝑘 ] 𝑚

( 𝑗)
𝑖

min𝑗 ∈[𝑘 ] 𝑚
( 𝑗)
𝑖

)
. (10)

From the definitions, for any measure 𝑝 , we have 1/𝛿 ≤𝑚
(𝑝)
𝑖 /𝑤+

𝑖
≤ 𝛿 . Thus, directly from Theorem 3, we have the following bound.

Corollary 6. If we use w+ = [𝑤+
𝑖 ] as the sampling weights for a

relation with 𝑘 measures, with a GSW sample 𝑆Δ, we can estimate

𝑀 (𝑝) as �̂� (𝑝) for each measure 𝑝 with error

RE(�̂� (𝑝) ) ≤ RSTD(�̂� (𝑝) ) ≤
√

𝛿2

E[|SΔ |]
.

How to group measures? In the above, we have shown that, for

chosen sampling weights, how the error can be bounded with some

parameters (𝜌 and 𝛿) decided by the data about a group of measures.

When there are many (e.g., 𝑘 = 100) measures, 𝜌 and 𝛿 could be

huge and thus the above error bounds are not informative. We

want to partition measures into small groups of size 4-5 based

on their correlation, so that within each group one GSW sample

gives good estimations for the measures. To this end, we establish a

relationship between (𝜃, 𝜃 )-consistency and 𝐿1 distance as follows.

Proposition 7. (consistency and 𝐿1 distance) Suppose sam-

pling weights w = [𝑤𝑖 ] are (𝜃, 𝜃 )-consistent with measure m = [𝑚𝑖 ].
We normalize w as w′ = [𝑤 ′

𝑖 = 𝑤𝑖/
∑

𝑗 𝑤 𝑗 ]𝑖 , and similarly, m as m′.
Let 𝜃 = 𝜃/𝜃 . We have ‖m′ −w

′‖1 ≤ (𝜃 − 1).
(𝜃, 𝜃 )-consistency is a “worst-case” notion about all the rows.

It is not a good metric for grouping measures, because first, it is

expensive to compute 𝜃 , and second, an aggregation query may not

touch all the rows. Instead, we use 𝐿1 distance (after normalization)

as in Proposition 7 to quantify the correlation between twomeasures.

Intuitively, it quantifies how two measures are similar in trends

and patterns regardless of their absolute values.

1Or, equivalently,m(𝑞) is (𝜌
𝑝,𝑞

, 𝜌𝑝,𝑞 )-consistent withm
(𝑝 ) .

We consider a formulation based on the KCenter problem [27].

The goal is to partition the measures into 𝑔 groups so that the max

𝐿1 distance (after normalization) between any measure to the center

of the group it belongs to is minimized. The 𝐿1 distance between
two measures can be estimated using a sample of rows. We apply

the standard greedy algorithm [27] to find a 2-approximation. For

each group, we use the geometric/arithmetic mean as the sampling

weight vector. It is a heuristic strategy without any formal guaran-

tee, but from Proposition 7 and the triangle inequality in 𝐿1, at least
we know that we’d better not group two measures that are far way

(e.g., > 2(𝜃 − 1)) together, as there is no sampling weight vector

that is consistent with both of them at the same time. A preliminary

evaluation of this grouping strategy can be found in [41].

5 DEPLOYMENT

Offline Sample Preprocessor of FlashP is built on Alibaba’s dis-

tributed data storage and analytics service, MaxCompute [1]. Time

series of relations, partitioned by time, are stored in MaxCompute’s

data warehouse. Relations can be joined, e.g., tables UserProfile and

AdTraffic are joined on UserID. GSW sampler is implemented as

UDFs (user-defined functions), and draws samples from one rela-

tion or the view of joined relation. A set of samples of different sizes

(with increasing values of Δ) are drawn and stored as Multi-layer

Samples of Relations for response time-accuracy tradeoff.

Online Forecasting Service first pulls Multi-layer Samples of

Relations into Alibaba’s in-memory OLAP engine, Hologres [1], to

enable real-time response. There are 30 servers in the cluster to

support this service, each with 96 CPU cores and 512G memory.

Sample data is partitioned by time in the OLAP engine.

Users submit forecasting tasks to an Application Server via a

Web UI. For a task, aggregation queries in (4) are generated from

Query Rewriter and processed on samples in the OLAP engine to

obtain estimated answers. These estimations are used as training

data to fit the Forecasting Model, which is built on a Python server.

Two models are implemented. One is ARIMA. An open-source

library [2] (built on X-13ARIMA-SEATS [3]) that trains ARIMA

and automatically tunes for the best values of parameters 𝑝, 𝑑, 𝑞 is

used. We also support an LSTM-based model (in Figure 4), which is

implemented using Keras [4]. We use the LSTM and fully-connected

layers in Keraswith𝐾 = 7 and𝑑 = 4 as the default parameter setting.

Other forecasting models can be plugged in here, too. After fitting

the model, we send forecasts back to users.

6 EXPERIMENTAL EVALUATION

We evaluate our system FlashP under the implementation and hard-

ware specified in Section 5, on a real-life dataset with 11 dimensions

about users’ profiles and 4 numeric measures to be predicted, in-

cluding Favorite, Impression, Click, and Cart. There are around 15

million rows per day, and 200 days of data.

We compare different samplers: Uniform sampling, which is

also used in [7], is the baseline; Priority, the optimal weighted sam-

pler [21]; our Optimal GSW and Arithmetic/Geometric com-

pressed GSW introduced in Section 4. We also compare our sam-

pling based methods with PIM (Partwise Independence Model) [7]

based on a Bayesian model assuming partially independence.
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Table 1: A summary of results (0.1% sample, Opt-GSW = Op-

timal GSW, C-GSW = Arithmetic compressed GSW)

Full PIM Uniform Opt-GSW C-GSW

Favorite 0.105 0.695 0.248 0.131 0.196

Impression 0.140 0.374 0.147 0.142 0.144

Click 0.157 0.681 0.161 0.151 0.153

Cart 0.704 1.931 0.718 0.704 0.709

In the following, forecasting tasks are randomly picked with

different measures to be predicted and different combinations of

dimensions in their constraints, with some (approximately) fixed

selectivity (the fraction of rows satisfying the constraint). By de-

fault, we use 150 days’ data to fit the model and predict the next 7

days; we report relative aggregation errors (average of the 150 days),

relative forecast error, and forecast intervals (average of the next 7

days), taking the average of 400 independent runs of different tasks,

together with one standard deviation, for each measure and for

each value of selectivity (on independent samples).

Exp-I: A summary of results. We first give a brief summary of

experimental results. Table 1 reports the average forecast errors on

20 random tasks with selectivity from 0.5% to 10% using ARIMA.

“Full” stands for the result when we use the full data to process

aggregation queries for training. With a sampling rate 0.1%, our
optimal GSW and compressed GSW in FlashP perform consistently

better than Uniform and PIM in terms of forecast errors, and some-

times are very close to Full (the best we can do). These two also offer

interactive response time (less than 100ms). In the rest part, we will

report more detailed results about response time and performance

of different sampling-based methods.
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Figure 5: E2E response time (with ARIMA)

Exp-II: Real-time response. The end-to-end response time is

reported in Figure 5, partitioned into the portion for processing

(estimating) aggregation queries, and the portion for forecasting

(model fitting + prediction using ARIMA). It can be seen that the

portion for aggregation queries is the bottleneck, but with sampling,

the response time can be reduced from around 20sec on the full data

to 30ms on a 0.02% sample, which still gives reasonable prediction as

will be shown later. If LSTM is used, the model fitting is much more

expensive, but we still have an interactive response time around

1sec if a 1% sample is used.

Exp-III: Varying number of time stamps used in training.We

consider different numbers of training data points used to fit the

ARIMA and LSTM models. Please refer to the full version [41] for

more details. It shows that the number of time stamps used to fit

model has an obvious impact on the forecast error, with 150 (days)

giving the most accurate and stable prediction for both ARIMA and

LSTM. It motivates us to speedup the processing of aggregation

queries, as more time stamps mean more aggregation queries.
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Figure 6: Aggregation error of different sampling methods

for varying selectivity and sampling rate (Favorite)
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Figure 7: Forecast error of different sampling methods for

varying sampling rate (selectivity 0.5%, Favorite)

Exp-IV: Varying sampling rate and selectivity. We compare

different samplers in FlashP, for varying sampling rate and se-

lectivity. Note that for Arithmetic/Geometric compressed GSW,

one sample suffices for the relation; Priority are Optimal GSW are

measure-dependent, and thus using either of them we need four

samples (one per measure), with the total space consumption four

times of Uniform and compressed GSW for a fixed sampling rate.

For tasks on Favorite with selectivity 0.5%-5%, Figure 6 reports
aggregation errors, and Figure 7 reports forecast errors when using

ARIMA and LSTM as forecasting models; the results on Impression

are plotted in Figure 9 (those with selectivity 5% can be found in

the full version [41]). In terms of both aggregation errors and fore-

casting errors, Priority and Optimal GSW are very close and better

than the others (indeed, at the cost of storing four samples). In some

cases, Optimal GSW is even slightly better than Priority (theoreti-

cally optimal). This is because, in Priority, if the measure is above

some threshold, a row is included in the sample deterministically,

which favors the long tail; however, the long tail may or may not

satisfy the constraint specified online in the forecasting task. Uni-

form is the worst one which is consistent with its analytical error

bound [28]. Arithmetic/Geometric compressed GSW needs only

one sample, too; they are better than Uniform, and get very close

to Priority and Optimal GSW when the sampling rate is close to

1%. For larger selectivity, with more rows satisfying the constraint

included in the samples, every sampler gets better.

Figure 8(a) reports widths of forecast intervals of ARIMA with a

confidence level of 90% on measure Favorite for varying sampling

rate. With larger sampling rate, every sampler gives narrower fore-

cast intervals, meaning predictions with more confidence. Uniform

727



100.0% 1.0% 0.1% 0.05% 0.02%

Sampling rate

0

20000

40000

60000

F
o
re

ca
st

 i
n

te
rv

a
l

Optimal GSW

Priority

Arithmetic compressed GSW

Geometric compressed GSW

Uniform

(a) Varying sampling rate

20200101 20200131 20200301 20200331

-10000

0

10000

20000

30000

40000

F
a
v
o
r
it
e

No sampling

Optimal GSW

Uniform

Arithmetic compressed GSW

Geometric compressed GSW

True Value

(b) Forecast intervals of a real query on
0.02% sampling

Figure 8: Forecast intervals (ARIMA) with different sam-

pling methods for varying sampling rate (selectivity 0.5%,

Favorite)
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Figure 9: Forecast error of different sampling methods for

varying sampling rate (selectivity 0.5%, Impression)

gives the widest one and Priority and Optimal GSW give the nar-

rowest ones. Figure 8(b) shows the forecast intervals (dashed lines)

for one particular task using different samplers.

In terms of forecasting, LSTM performs consistently better than

ARIMA, at the cost of longer response time (as discussed in Exp-

II). It is observed that, with increasing sampling rates, when the

aggregation error is small enough (e.g., when sampling rate = 1% in

Figures 6-9), it will have little impact on the forecast error/interval

in comparison to the case when we use the full data (sampling

rate = 100%), because it is negligible in comparison to the model

and data’s noise (e.g., 𝑢𝑡 in (3) for ARIMA). Forecast errors and

forecast intervals have similar trends as aggregation errors. Both

observations are consistent with our analytical results in Section 3.

Exp-V: Space cost under the same accuracy requirement.We

evaluate the space cost needed to achieve the same accuracy for

different samplers. Since Priority and Optimal GSW perform simi-

larly, we focus on Optimal GSW and compare it with Arithmetic

compressed GSW. We fix the sample size of Arithmetic compressed

GSW (from 0.02% to 1%). And for each measure, we choose the

size of an Optimal GSW sample so that it gives approximately the

same aggregation error as Arithmetic compressed GSW does. In

Figure 10(a), we report the total size of the four Optimal GSW sam-

ples (the portions for different measures are stacked and labeled

with different colors), and the size of the Arithmetic compressed

GSW sample; 𝑥-axis is the max aggregation error in Arithmetic

compressed GSW with the parameter Δ in brackets. It shows that,

under the same accuracy requirement, the total size of Optimal

GSW samples is around 1.8 times of the size of Arithmetic com-

pressed GSW. Figure 10(b) reports forecast errors (of ARIMA) using
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Figure 10: Space cost for given accuracy requirement

the samples chosen above on different measures. Due to the way

how we choose the sizes of Optimal GSW samples, Optimal GSW

and Arithmetic compressed GSW give very close forecast errors.

7 RELATEDWORK

Approximate query processing and other samplers. An or-

thogonal line of work is approximate query processing (AQP),

which has been studied extensively during last few decades. One

can refer to [16] for a comprehensive review. There are two ma-

jor lines of AQP techniques. i) Online aggregation [18, 28, 33] and

online sampling-based AQP [31] either assume that the data is ran-

domly ordered, or need to draw random rows from the data table

via random I/O accesses which is inefficient in our setting. ii) Offline

sampling-based AQP draws offline samples before queries come:

some are based on historical workloads [5, 8, 14, 15, 22, 32, 36], and

some are workload-independent [5, 6, 11, 13, 19, 34].

The most relevant part in the line of AQP techniques are the sam-

plers proposed to estimate aggregations. We have reviewed such

samplers at the beginning of Section 4. There are other samplers

such as universe (hashed) sampling and stratified sampling intro-

duced in AQP systems [8, 31, 34]. These samplers were proposed to

handle orthogonal aspects such as missing groups in GroupBy and

joins. They can also be used in our system if we want to extend the

task class and data schema we want to support.

Precomputing aggregations. Another choice is to precompute

aggregations or summaries using techniques such as view material-

ization [9], datacube [25], histograms [23], and wavelets [12, 23, 39].

These techniques either have too large space overhead (super-linear)

to be applicable for enterprise-scale high-dim datasets, or cannot

support complex constraints in our forecasting tasks.

Aggregation-forecasting analytics. [7] studies a very similar

problem of forecasting multi-dimensional time series. It considers

capturing correlations across the high-dimensional space using

either Bayesian models or uniform sampling, and shows that the

one based on uniform sampling (which is also evaluated in our

experimentes) offers much better forecast accuracy. Another rele-

vant line of work is about aggregation-disaggregation techniques

[38, 40] in the forecasting literature. These techniques share some

similarity with the Bayesian model in [7], but focus on one-time

offline analysis with smaller scale and lower dimensional data.

For multi-dimensional time series, there are works about how to

conduct fast similarity search [24], but they are less relevant here.
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