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ABSTRACT
JavaScript Object Notation (JSON) and its variants have gained great
popularity in recent years. Unfortunately, the performance of their
analytics is often dragged down by the expensive JSON parsing. To
address this, recent work has shown that building bitwise indices on
JSON data, called structural indices, can greatly accelerate querying.
Despite its promise, the existing structural index construction does
not scale well as records become larger and more complex, due to its
(inherently) sequential construction process and the involvement
of costly memory copies that grow as the nesting level increases.

To address the above issues, this work introduces Pison – a
more memory-efficient structural index constructor with supports
of intra-record parallelism. First, Pison features a redesign of the
bottleneck step in the existing solution. The new design is not only
simpler but more memory-efficient. More importantly, Pison is
able to build structural indices for a single bulky record in parallel,
enabled by a group of customized parallelization techniques. Finally,
Pison is also optimized for better data locality, which is especially
critical in the scenario of bulky record processing. Our evaluation
using real-world JSON datasets shows that Pison achieves 9.8X
speedup (on average) over the existing structural index construction
solution for bulky records and 4.6X speedup (on average) of end-to-
end performance (indexing plus querying) over a state-of-the-art
SIMD-based JSON parser on a 16-core machine.
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1 INTRODUCTION
JSON (JavaScript Object Notation) has emerged as a popular data
type in modern software applications [36]. Its derivatives, such as
NetJSON [33], GeoJSON [32], JSON-LD [34], CoverageJSON [29],
and others, span multiple domains. Together, they play critical roles
in microservices [28, 60], Internet of Things (IoT) [61], NoSQL data
stores [35, 45], and cloud computing [24, 47]. As the popularity of
JSON increases, its data volume grows faster than ever. Many web
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applications, such as social networks (e.g., Twitter [14] and Face-
book [15]) and online shopping (e.g., Bestbuy [1] and Walmart [10])
continuously produce a broad range of data in JSON format through
open APIs. Public data sources, like Data.gov [4], host more datasets
in JSON format of sizes easily reaching several gigabytes. However,
analyzing JSON data requires parsing – an expensive task. Recent
study [44] shows that JSON data parsing takes over 80% of the
total time for complex queries and even a larger portion for simple
queries. Hence, it is critical to accelerate the parsing in order to
make the querying over JSON data performant.
State of The Art. Traditional ways of JSON parsing involve stack-
based abstract machines, known as pushdown automata. Basically,
an automaton traverses a JSON record in serial and recognizes
the nested syntactical structures with a stack. Most popular JSON
parsers, like Jackson [8] andGSON [5], fall into this category. Recent
work JPStream [38] proposes a dual-stack automaton to carry out
path queries simultaneously with the parsing. However, an inherent
limitation with the automata-based solutions is that they have to
traverse the JSON data stream character by character to perform
the parsing and query matching.

In fact, it is possible to “skip” irrelevant parts of the data stream
with the help of indexing techniques. Recently, Mison [44] proposes
a novel algorithm that generates bitwise indices (bitmaps) for the
structural characters in a JSON record (i.e., “:” and “,”) – structural
indices. With the indices, a parser can directly jump into relevant
positions of the JSON record to find matches. As the construction
can leverage bitwise and SIMD-level parallelism, it can process tens
of or even hundreds of characters simultaneously [44].

Despite its promise, there are several issues in the existing design
of structural index construction that may limit its scalability as the
records become larger and more complex. First, most steps in the
structural index construction are inherently sequential, preventing
it from taking advantage of the coarse-grained parallelism. For
bulky records, lack of intra-record parallelism fundamentally limits
the efficiency of structural index construction. Second, one critical
step in the current design of structural index construction [44]
involves many costly memory operations, which gets worsen as the
record becomes larger and more deeply nested. At last, the existing
design assumes the record can fit into the caches, which is not the
case for bulky records – naively using the current design to process
bulky records may suffer from poor data locality.
Overview of This Work. The primary goal of this work is to scale
the structural index construction to larger and more complex JSON
records. To achieve this, we identify all the dependences involved
in each step of the index construction, then develop specialized
parallelization solutions to “break” those dependences. Specifically,
we address the dependences related to backlash sequences with
dynamic partitioning. However, partitioning may still cut the JSON
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strings and the nested structures of a JSON record. To handle broken
JSON strings, we propose a combination of techniques, including a
contradiction-based context inference, a speculation technique with
fast bitwise reprocessing. Finally, to handle broken nested JSON
structures, we leverage a reduction-based parallelization technique.

Besides parallelization, we also identify the inefficiencies in the
bottleneck step of the construction and propose a new design which
is not only easier to implement but also more efficient to execute,
thanks to its reduced memory accesses. Our evaluation shows the
new design brings 1.4X speedup to the total serial execution time.

Moreover, to cope with the large working set in processing bulky
records, we propose to build structural indices word by word, rather
than step by step for the whole record. This locality optimization
itself brings 1.7X speedup on average for bulky records.

Finally, we integrated the above techniques and developed a
structural index constructor called Pison. To ease the programming,
Pison provides intuitive APIs that hide the details of index traversals.
We evaluated Pison using a group of real-world JSON datasets with
a focus on the bulky-record processing scenario. According to the
results, Pison outperforms the existing structural index construction
solution Mison [44] by 9.8X (on average) for bulky records, and
achieves 4.6X speedup (on average) of end-to-end performance over
the popular SIMD-based JSON parser simdjson[43]. The results
confirm the effectiveness of the proposed techniques.
Contributions. This work makes three main contributions:

• First, it presents a group of parallelization techniques that
enable intra-record data parallelism to the JSON structural
index construction.

• Second, it proposes two key optimizations to the serial design
of structural index construction: a redesign of the bottleneck
step and a locality optimization.

• Finally, it implements the proposed ideas into a C++ library
(Pison) and compares it with multiple state-of-the-art JSON
tools using real-world datasets. The source code of Pison is
available at https://github.com/AutomataLab/Pison.

Next, we provide the background of this work.

2 BACKGROUND
This section introduces JSON basics, followed by an overview of
the current structural index construction and its limitations.

2.1 JSON and Its Querying
JSON Syntax. JSON data follows a rigorous syntax, which can be
defined by a context-free grammar (CFG), as shown in Figure 1.
At high level, there are two major structures: object and array. An
object always starts with a left brace { and ends with a right brace }.
Between them, there could be a series of key-value pairs, separated
by commas, known as the attributes. By contrast, an array is placed
between a pair of brackets [ and ]. Inside an array, there is a linear
sequence of elements, separated by commas. Both object and array
can be self-nested and also nested within each other. Here, we use
the term “record” to refer to the top-level syntax structure in the
nested JSON data, which could be either an object or an array.
Querying JSON Data. Essentially, each JSON record is a serialized
hierarchy of an object or an array. A basic group of queries to JSON

object ::= {} | {members}
members ::= pair | pair, members

pair ::= string:value
array ::= [] | [elements]

elements ::= value | value, elements
value ::= object | array | 

string | primitive
string ::= "" | "characters"

(a) BNF Grammar of JSON

(b) Sample JSON Data (Twitter)

{"user": [ {
"id": 1,
"name": "\\\":A" },

{"id": 2 }
]

} 

1
2
3
4
5
6

Figure 1: JSON Grammar and Example.

data is to identify the sub-structures of interest inside the JSON
hierarchy, known as JSONPath queries [36]. A JSONPath query
specifies paths from the root of the hierarchy to the sub-structures
of interest. For example, $.user[0].id asks for the id of user[0],
the first element of array user. A dot . refers to the attributes of
an object; two dots (like $..id) refer to all recursive descendant
objects. For all elements in an array, use star *, as in $.user[*].id.
More details regarding the JSONPath queries can be found in [36].

Conventionally, evaluating JSON queries requires parsing a JSON
record into a tree structure. Queries are evaluated by walking down
the tree from the root and matching tree nodes against the queries.
Many popular JSON tools follow this approach, like Jackson [8],
GSON [5], RapidJSON [11], and FastJSON [2]. Alternatively, the
parsing and querying can be merged into a single pass, as shown
in JPStream [38], which avoids building any parse tree. In either
approach, the parsing essentially simulates a pushdown automaton
that consumes the JSON data character by character (i.e., one byte
per time). However, modern CPUs can perform 64-bit (i.e., 8-byte)
calculation, and even 512-bit calculation (i.e., 64-byte) with SIMD
units [57]. In this perspective, existing automata-based parsers
underutilize the fine-grained parallelism in modern CPUs.

To effectively utilize bitwise and SIMD parallelism, recent work
Mison [44] proposes a bitwise indexing scheme for JSON data. The
basic idea is to construct bitwise indices on structural characters in
a JSON record, such as “:” and “,”. With the indices, a query can be
quickly evaluated based on locations of object attributes and array
elements of different levels. We next describe it.

2.2 Structural Index Construction
This section summarizes the structural index construction proposed
in Mison [44], with some steps adopted from simdjson [43]. In
general, the construction has five steps 1, as illustrated in Figure 2.
Step 1: Build Metacharacter Bitmaps. It first builds a bitmap
for each metacharacter in JSON, including ,, :, [, ], {, }, ", and
\. In the bitmap, 1s represent the positions of the metacharacter
in the record. The bitmap can be constructed by comparing the
metacharacter against the characters in the JSON record one by
1We slightly modified steps in [44] for better illustration.
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JSON Record   {"user":[{"id":1,"name":"\\\":A"},{"id":2}]}
-----------------------------------------------------------

Step 1: Build Metacharacter Bitmaps
'\' bitmap    00000000000000000000000001110000000000000000
'"' bitmap    01000010001001000100001010001001000100100000
':' bitmap    00000001000000100000000100000100000000010000
',' bitmap    00000000000000001000000000000000010000000000
'{' bitmap    10000000010000000000000000000000001000000000
'[' bitmap    00000000100000000000000000000000000000000000
']' bitmap    00000000000000000000000000000000000000000010
'}' bitmap    00000000000000000000000000000000100000000101
-----------------------------------------------------------

Step 2: Remove Escaped Quotes
'"' bitmap    01000010001001000100001010000001000100100000
----------------------------------------------------------

Step 3: Build String Mask Bitmap
string mask   01111100001110000111110011111110000111000000
----------------------------------------------------------

Step 4: Remove Pseudo-Metacharacters
':' bitmap    00000001000000100000000100000000000000010000
',' bitmap    00000000000000001000000000000000010000000000
'{' bitmap    10000000010000000000000000000000001000000000
'[' bitmap    00000000100000000000000000000000000000000000
']' bitmap    00000000000000000000000000000000000000000010
'}' bitmap    00000000000000000000000000000000100000000100
----------------------------------------------------------

Step 5: Generate Leveled Bitmaps
Level 1    00000001000000000000000000000000000000000000
Level 2       00000000000000000000000000000000010000000000
Level 3       00000000000000100000000100000000000000010000

Figure 2: Example Structural Index Construction.

one. For better efficiency, SIMD instructions can be leveraged to
compare multiple characters simultaneously. Assume that the SIMD
width is 256-bit, then a 8-bit metacharacter is duplicated 32 times to
populate a 256-bit vector (_mm256_setr_epi8). The vector is then
compared against the characters in JSON data, 256 bits (32 bytes)
each time (_mm256_cmpeq_epi8). The result is in a 256-bit vector
where each 8-bit lane is either all 1s or all 0s. Finally, the most
significant bit of each lane is selected and packed into a 32-bit
integer (_mm256_movemask_epi8). On a 64-bit machine, two such
32-bit integers are combined into a long type. This step runs in
O( 8nW ) instructions, wheren is the number of characters in the JSON
record andW is the SIMD width (e.g., 256).

Note that themetacharactersmay appear inside a string, inwhich
case they are not actually effective in defining the JSON structure.
To exclude them, we need to first identify the strings in JSON, which
are marked by quotes. However, a quote may be escaped by \, which
can be further escaped, as in \\\". The next three steps are to find
the actual strings in a JSON record and exclude the metacharacters
in strings from the corresponding bitmaps.
Step 2: Remove Escaped Quotes. This step excludes all the escaped
quotes – quotes following an odd number of consecutive \s, from
the quote bitmap. To achieve this, Mison [44] iterates through all
the quotes with backslashes ahead. In comparison, simdjson [43]
uses a bitwise solution: it locates the starting and ending positions
of backslash sequences, then finds odd-length backslash sequences
based on the fact that a sequence of characters that starts at an odd
(or even) position and ends at an even (or odd) position must have
an odd length, thus, any following quotes should be escaped. More
details about step and its implementation can be found in [43].

JSON Text   {"user":[{"id":1,"name":"\\\":A"},{"id":2}]}

Level 2     00000000000000100000000100000000000000010000

Level 0 00000001000000000000000000000000000000000000
"user"

Query: $.user[0].name

Level 1     00000000000000000000000000000000010000000000

[0] [1]

"id" "name" "id"

Output: ["\\\":A"]
"\\\":A"

Figure 3: Querying via Structural Indices.

Figure 2 (Step 2) shows the updated quote bitmap, with one
escaped quote (the 4th to the right) removed. This step needsO( nw )

instructions, wherew is the word size.
Step 3: Build String Mask Bitmap. Next, it generates a string
mask bitmap, where 1s correspond to characters in strings. Here, a
bitwise approach can be also adopted from simdjson [43]. First, a
prefix-sum of XOR is applied to the quote bitmap. The resulted bit
at index i equals to the XOR of all bit values up to i (inclusive). In
fact, this operation can be implemented by performing a carry-less
multiplication PCLMUQDQ between the quote bitmap and a 64-bit
value with all 1s. This step also runs in O( nw ) instructions.
Step 4: Remove Pseudo-Metacharacters. This step removes those
metacharacters that appear in strings, from their corresponding
bitmaps. It can be implemented as an ANDNOT operation between
the metacharacter bitmaps and the string mask bitmap.
Step 5: Generate Leveled Bitmaps. The final step is to separate
the colon and comma bitmaps based on the levels that colons and
commas appear in the record, dictated by the brackets [, ], {, }.
As shown in Figure 2 (step 5), the top level is an object with one
key-value pair, so there is a 1 at Level 1, corresponding to a colon.
Next, as the value in the key-value pair is an array of two elements,
Level 2 has one 1, for the comma in the array. This process repeats
until it reaches the deepest level in the record (or in the path query).
These leveled bitmaps are the final outputs – structural indices.

To implement this step, Mison [44] proposes to scan the brackets
([, ], {, }) bitmaps and employ a stack to recognize the nesting
levels of colons and commas. Though the idea is intuitive, this
solution actually involves expensive memory copy operations. We
will elaborate this step in detail later in the paper.

In summary, the structural indices can be effectively constructed
by taking advantages of bitwise and SIMD parallelism. For example,
on a 64-bit processor, the construction can operate on 64-bit vectors,
where a bit corresponds to one character (byte) in the JSON record.
That is, the structural index construction can process 64 characters
simultaneously. With the use of SIMD instructions, some of these
operations can operate on vectors of 256 bits or even 512 bits, which
can significantly accelerate the JSON data processing.
Querying Structural Indices. With the structural indices, we can
quickly evaluate JSONPath queries. As illustrated in Figure 3, for
a given JSONPath query ($.user[0].name), the evaluation starts
from the top level of JSON structure (an object in the example),
locates its key ("user") through backward parsing from all 1s in
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this level, finds the range in the bitmap for its value – between this
1 and the next 1, then moves to the next level. This process stops
when no match is found in a certain level or continues until the
whole query expression has been matched.

2.3 Scalability Issues for Bulky Records
Despite its exploration of fine-grained parallelism, the existing
structural index construction design [44] fails to scale well to bulky
JSON records with complex structures, due to three reasons.

• No Intra-Record Data Parallelism. Existing construction
processes each record only in serial. For bulky records, the
serial processing can seriously limit the scalability, resulting
significant delay for answering a query.

• Heavy Memory Operations. The last step (bottleneck step)
of the existing construction requires to duplicate the colon
and comma bitmaps K times, where K is the number of
nesting levels in the record or query expression. For bulky
records, making copies of whole bitmaps are very expensive.
Then, the algorithm masks bits with overlapped ranges, with
an increasing overhead as it moves to deeper levels. Finally, it
employs a stack which also makes intensive memory copies
during the push and pop operations.

• Poor Data Locality. A simple adoption of the existing index
construction algorithm to bulky records may suffer from
poor data locality, as the generated intermediate bitmaps
may not fit into the CPU cache(s).

The primary goal of this work is to bring coarse-grained data
parallelism to the structural index construction such that a bulky
record can be processed in parallel effectively. Moreover, this work
also tries to improve the memory access efficiency by redesigning
the critical step of structural index construction algorithm (Step 5)
and offering a more locality friendly construction process.

3 DATA-PARALLEL CONSTRUCTION
For a sequence of small JSON records, parallelism naturally exists
among different records. The challenge lies in the parallelization of
building indices for a single bulky JSON record, which could cause
significant delay when it is processed sequentially.

3.1 Dependences
When a bulky JSON record is partitioned, as illustrated in Figure 4,
most steps of the structural index construction (except Steps 1 and 4)
involve certain kinds of dependences. For Step 2 (removing escaped
quotes), when a backslash sequence is broken into two partitions,
we need to know the number of backslashes appearing at the suffix
of the prior partition to tell if a following quote is escaped or not.
For Step 3 (building string mask bitmap), we need to know whether
the current partition starts inside a string or not. Finally, for Step
5 (generating leveled bitmaps), we need to know at which level of
the JSON structure the current chunk begins.

To construct structural indices in parallel, we need to effectively
address the above dependence challenges. In the following of this
section, we will introduce an assembly of parallelization techniques
that are integrated together to solve the dependences, including (i)
dynamic partitioning, (ii) contradiction-based context inference, (iii)
speculation, and (iv) reduction-style parallelization. Note that the

Partition1 Partition2
Step 1

Step 2

Step 3

Step 4

Step 5

Step 1

Step 2

Step 3

Step 4

Step 5

number 
of “\” ?
inside a 
string ?

current 
level ?

Partition3
Step 1

Step 2

Step 3

Step 4

Step 5

number 
of “\” ?
inside a 
string ?

current 
level ?

Figure 4: Dependences in Index Construction.

last one (reduction-style parallelization) is based on a redesign of
the Step 5 in the existing construction algorithm.

3.2 Dynamic Partitioning
Naively partitioning a JSON record may break a string, a keyword
(e.g., true or null), or a sequence of backslashes, into different
chunks. The first and third cases are related to the dependences
in Step 3 and Step 2, respectively (see Figure 4). One way to avoid
such cases is adjusting the boundary (e.g., moving it to the left)
between two chunks dynamically such that no strings, keywords,
or backslash sequences get cut. However, for a string, avoiding a
bad cutting is non-trivial. Considering a piece of JSON data · · · "· · · ,
in general, it is hard to tell if the quote is the start or the end of a
string. For this reason, we only use this dynamic partitioning to
avoid cutting of backslash sequences and keywords. Broken strings
will be addressed next with more advanced techniques.

3.3 Contradiction-based Context Inference
In fact, issues related to broken strings also arise in other contexts
of parallel processing. Recently, Ge and others [30] addressed the
ambiguity issue caused by broken strings in parallel CSV parsing
with a pattern-based approach. Two string patterns (each with two
chars) are carefully designed for CSV data, such that once they
are observed, the parsing ambiguity can be immediately resolved.
Though the idea is inspiring, it is unclear how similar patterns
can be designed for JSON whose syntax is much more complex.
Next, we will present a contradiction-based string context inference.
Unlike prior work [30], this inference is not based on the specific
data syntax, thus may also work for data types beyond JSON.

The key insight behind the contradiction-based inference is that
characters inside a string, most of the time, do not form valid tokens.
For example, in string "user", user cannot be interpreted as any
valid JSON token(s). In fact, any string with some alphabet letters
([a-zA-Z]), except keywords2 and scientific numbers (e.g., 2e+7),
cannot be tokenized successfully. Based on this insight, we propose
to build hypothesis and leverage contradiction to infer the string
status at the beginning of a JSON partition.

Algorithm 1 shows the contradiction-based context inference.
First, it assumes that the input chunk starts inside a string (i.e.,
hypothesis = IN). Based on that, it tries to recognize the tokens in
the first K bytes of the chunk. Once it hits an error of tokenization,
it gets a contradiction – the current assumption is wrong, therefore

2Alphabetical keywords in JSON: true, false, and null.
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Algorithm 1 Contradiction-based Context Inference
1: Inputs: head : the first K bytes of a chunk
2: Outputs: IN/OUT/UNKNOWN: string status at beginning
3: Procedure:
4: while hypothesis = {IN, OUT} do
5: while TRUE do
6: /* reach the end of the head */
7: if head .hasNextToken() == END then
8: break
9:
10: /* cannot recognize the next token */
11: if head .hasNextToken() == ERROR then
12: return opposite(hypothesis)
13:
14: head .nextToken()
15:
16: return UNKNOWN

101", "id": "102", ...

101, "name": "Jay",...

101, null, 103, ......

(a)

(b)

(c)

Hypothesis Tokenization Conclusion

IN ERROR OUT

IN/OUT PASS/ERROR IN

IN/OUT PASS/PASS UNKNOWN

First K bytes of a chunk

Figure 5: Examples of Context Inference.

it returns the opposite status – OUT (Line 11-12), as the conclusion.
An example of such cases is Figure 5-(a). Otherwise, if the first K
bytes are all successfully tokenized (Line 7), the algorithmwould fail
to draw any conclusion, because some sequences of characters can
be interpreted in either way correctly: part of a string or valid JSON
tokens, like the example in Figure 5-(c). In this case, the algorithm
tries the opposite assumption – hypothesis = OUT, and tokenizes
the first K bytes again. If it encounters a tokenization error (i.e., a
contradiction), it would return IN as the conclusion, like the case in
Figure 5-(b). Finally, if both attempts fail to draw any conclusion,
the algorithm returns UNKNOWN, as in the case of Figure 5-(c).

The more bytes (i.e., larger K ) the algorithm checks, usually the
higher chances it can draw a conclusion, but this will also incur
higher overhead. In evaluation, we set K = 64 by default, and found
it rarely fails to draw the conclusion. But, what if it does fail to
draw any conclusion? We next address such cases with speculation.

3.4 Speculative Parallelization
Note that, even when the conclusion is UNKNOWN, the chances
for being inside and being outside a string are usually not equal. In
fact, most of the time, they are highly biased, for the same reason
mentioned earlier: it is rarely seen that characters inside a JSON
string form valid JSON tokens. In another word, if the inference has
successfully recognized the first K bytes as valid JSON tokens, it is
very unlikely they are part of a string. Therefore, if we speculatively
consider the status is OUT, there is a high chance that it is true.

Based on this intuition, we propose a speculative parallelization
scheme for structural index construction. If the context inference
of one chunk returns UNKNOWN, the construction enters into
speculative mode, in which chunks with UNKNOWN inference
results are processed speculatively by assuming they start from a
position outside a string. The next question is when the speculation
is validated. If we validate it after all the five steps are finished (on
each chunk), once a speculation fails, we have to rerun all the steps
on the corresponding chunk. To minimize the misspeculation cost,

JSON chunk 
infer status:
----------------
speculate:
string mask
----------------
validate:
rectify(bi=¬bi)

102, 103, null", "name":"Alex", "month": 2}
UNKNOWN
-------------------------------------------
OUT
0000000000000011110000111000011110000011111
-------------------------------------------
FAIL
1111111111111100001111000111100001111100000

Figure 6: Bitwise Rectification for Misspeculation.

we should validate the speculation right after Step 3. To achieve this,
we add a synchronization between Steps 3 and 4, where chunks
in speculative modes are validated against the ground truth (IN or
OUT) of prior non-speculative chunks. In cases some speculation
fails, a naive handling is reprocessing the corresponding chunks
(up to Step 3). In fact, this is an overkill for this particular kind of
misspeculation. We will present a faster alternative shortly.

Similar to our situation, the pattern-based approach [30] used in
parallel CSV parsing may also fail to resolve the parsing ambiguity
sometimes, thus turns to speculation for parallelization. However, as
we show next, for structural index construction, the misspeculation
can be handled efficiently at bit level with bitwise rectification.
Bitwise Rectification. Instead of reprocessing the JSON chunk
that was misinterpreted, we found it is possible to directly recover
the correct bit values from the incorrect string mask bitmap with
a simple bitwise logic operation bi = ¬bi . Figure 6 illustrates this
idea with an example JSON chunk. In the example, the string status
inference fails to draw any conclusion (i.e., UNKNOWN), thus the
index construction switches to the speculative mode and assumes
the string status is OUT. However, during the validation, it turns
out that the correct string status is IN. Interestingly, as shown in
Figure 6, the correct string mask bitmap is exactly the “opposite” of
the incorrect bitmap. Essentially, this is due to the parity of quotes
in defining strings – a string always starts from an odd-number
quote and ends at the next (even-number) quote. An incorrect
interpretation of the quote parity would flip all the following string
definitions. Based on this observation, we can generate the correct
bitmap by flipping values in the incorrect bitmap, that is, bi = ¬bi .
As expected, we found this bitwise rectification is much faster than
reprocessing the JSON chunk (up to Step 3).

3.5 Parallel Generation of Leveled Bitmaps
The last dependence to address is the “level” at the beginning of a
chunk in Step 5 (generating leveled bitmaps). Before introducing
the solution, we first summarize the existing design of Step 5 from
Mison [44] and present a new design for this step which is simpler
yet more efficient. After that, we will explain how the new design
can be parallelized based on the reduction-style parallelism.

3.5.1 Redesign of Step 5. The main task of Step 5 is to separate
colons and commas of different levels into different bitmaps.
Existing Design. Figure 7-(a) illustrates the basic idea of Step 5
in Mison [44]. For easier explanation, the figure only shows curly
brackets and colons that capture JSON objects, but the idea can be
easily extended to cover JSON arrays. First, it duplicates the colon
bitmap K times, where K is the number of levels in the JSON record
or in the query expression (e.g., two times for $.user.name). The
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Input     { : { : , : } }
-----------------------------

'{'    100010000000000
'}'    000000000000101

-----------------------------
duplicate colon bitmap

L0 ':' 001000100010000
L1 ':' 001000100010000
-----------------------------

reset { : , : }
L0 ':’ 001000000000000
L1 ':’ 001000100010000

000010000000000

100000000000000

Stack

(a) Prior Design: Stack + Bit Reset

u

v

100000000000000

Stack x
w

push;push

pop

level++

(b) New Design: Counter + Bit Copy

Input     { : { : , : } }
-----------------------------

'{'    100010000000000
'}'    000000000000101
':' 001000100010000

-----------------------------
copy { : {

L0 ':' 001000000000000
-----------------------------

copy { : , : }
L0 ':' 001000000000000
L1 ':' 000000100010000

u

v level--

Figure 7: Generation of Leveled Bitmaps: Existing Design (left) vs. New Design (right).

duplicated bitmaps, denoted as L0 · · · LK−1, will be turned into the
leveled bitmaps; Then, it tries to locate the objects from inner levels
to outer levels by traversing the bitmaps of { and } with the help
of a stack. Basically, from left to right, the bitmap corresponding
each { is pushed onto the stack. The stack top has the beginning
position of the inner most object (the position with 1). From there,
Mison scans forward to find the first } – the ending position of
the inner most object. Then, it resets the bits in the same range
in L0, as highlighted in Figure 7-(a). After that, Mison pops the
stack, moves to the second inner most level, and repeats the same
operations. This process continues until Mison reaches the outer
most level of the JSON structure. In practice, we found that an
implementation based on the above design executes efficiently for
small JSON records, taking 30-40% of the total construction time.
However, for bulky records, this ratio is raised to 60-70%, making
Step 5 the bottleneck of structural index construction. Our further
investigation reveals two main factors limiting its efficiency:

• Intensive Bit Value Updates. First, bitmap duplication involves
intensive memory writes to (pre-allocated) bitmaps. Second,
from an inner level to an outer level, as the object range
becomes larger, more bits need to be reset. The complexity
of the bit resetting is O( nw · b), where n is the number of
bytes,w is the word size, and b is the number of brackets.

• Expensive Stack Operations. Employing a stack to record the
nesting level and the start positions of objects needs to copy
bitmaps onto and off the stack (push and pop), which are
relatively expensive operations.

To address the efficiency issues in the existing design of Step 5,
we next introduce a new algorithm for generating leveled bitmaps.
NewDesign. Figure 7-(b) illustrates the basic idea of the new design.
First, instead of duplicating the colon bitmap and reseting the bits,
the new design first allocates leveled bitmaps with all 0s (calloc()),
then copies bits of different levels from the colon bitmap to the
corresponding leveled bitmaps, which reduces the bit value updates.

Second, the new design recognizes objects from outer levels to
inner levels – the opposite of the existing solution. This avoids the
use of stacks for recording the beginning positions in the existing
design. In this case, a counter, like variable level in Figure 7-(b), is
sufficient for recognizing the levels of objects.

More details of this new design are shown in Algorithm 2, which
covers the generation of leveled bitmaps for both fields inside an

Algorithm 2 Generating Leveled Bitmaps
1: Inputs: bitmaps bcolon , bcomma , blbracket , brbracket
2: Outputs: leveled bitmaps l [0...k − 1]
3:
4: Procedure:
5: level = -1
6: for each wordw in bitmaps do
7: wbracket = wlbracket ∨wrbracket
8:
9: /* if no brackets, copy all bits fromwcolon orwcomma */
10: if wbracket == 0 then
11: if wcolon , 0 then /* part of an object */
12: wl [level ] =wcolon
13: else/* part of an array */
14: wl [level ] =wcomma

15: else
16: /* iterate over intervals separated by brackets */
17: wbeдin = 1 /* beginning position of an interval */
18: done = false
19: while done == false do
20: if wbracket , 0 then /* locate next interval */
21: wend = E(wbracket ) /* end of an interval */
22: wbracket = R(wbracket )
23: winterval =wend −wbeдin
24: wbeдin =wend
25: else/* locate the last interval */
26: wend = 2|w |−1 /* end of the word */
27: winterval = (wend −wbeдin ) ∨wend
28: done = true;
29:
30: /* copy bits of this interval to leveled bitmap */
31: if wcolon ∧winterval , 0 then
32: wl [level ] =wl [level ] ∨ (wcolon ∧wranдe )
33: else
34: wl [level ] =wl [level ] ∨ (wcomma ∧wranдe )
35:
36: /* update level based on left/right bracket */
37: if wend ∧wlbracket > 0 then
38: level = level + 1
39: if wend ∧wrbracket > 0 then
40: level = level - 1
41: return l [0...k − 1]

object and members inside an array. The inputs to the algorithm
include bitmaps of colon, comma, left bracket, and right bracket.
Note that blbracket combines bitmaps of { and [, and brbracket
combines bitmaps of } and ]. Since both kinds of brackets add
levels, there is no need to distinguish between them (the same as
in [44]). The outputs of the algorithm are leveled bitmaps, each of
which consists of the 1s from the colon and comma bitmaps in the
corresponding level.

Initially, the algorithm marks the current level to -1 (Line 5).
Then, it iterates over the bitmapsword byword. For better efficiency,
it combines two words wlbracket and wrbracket into wbracket
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Figure 8: Two-Phase Index Construction.

(Line 7). Ifwbracket contains only 0s (no brackets), it simply copies
the current word of colon/comma bitmap to the corresponding
leveled bitmap (Line 10-14); Otherwise, the algorithm iterates over
all the intervals separated by two consecutive brackets. Line 21-28
are to find the current interval. Here, the algorithm uses functions
E and R defined in Mison [44] to extract the right most bracket and
remove it, respectively. Once the interval is located, the algorithm
copies the word from colon/comma bitmap to the same interval of
the corresponding leveled bitmap (Line 31-34). Finally, it updates
the current level based on the bracket is left or right. The same
process repeats until all the words of the bitmaps are processed.

Next, we show that the new design of Step 5 can be parallelized
based on a reduction-style parallelism. Note that, in theory, the
prior design of Step 5 [44] might also be parallelized in a similar
fashion, but the reduction in that case would become more involved
for its stack-based design and the efficiency may suffer even more
with multiple threads, given its intensive memory operations.

3.5.2 Reduction and Index Merging. Partitioning a JSON record
makes it difficult to tell at which level the beginning of a chunk is.
To “break” the level dependence among JSON chunks, we adopt a
reduction-style parallelization with two phases: (i) parallel leveled
index generation and (ii) index merging, as illustrated in Figure 8.

In the first phase, all JSON chunks are processed in parallel under
the assumption that they all start from Level 0. The outputs of this
phase are the partial leveled bitmaps for individual JSON chunks,
as depicted in Figure 9. After all chunks have been processed, the
construction enters into the second phase, where levels of different
chunks are aligned with those in the prior chunks one by one – the
ending level of chunk i is the beginning level of chunk i + 1. In the
example in Figure 9, thread T1 ends at Level 1, which is aligned
with Level 0 of thread T2. As a result, the original Level 1 of thread
T2 becomes Level 2, which is then aligned with Level 0 of thread
T3. Thus, levels -2 and -1 of T3 turn into levels 0 and 1, respectively.

After adjusting the levels, the partial bitmaps are connected based
on their actual levels, forming an array of linked lists, as shown in
Figure 10. Note that the outputs from parallel index construction
are slightly different from those in serial index construction, where
each leveled bitmap is a single array. In principle, this differencemay
increase the cost of bitmap accessing. However, since the number
of chunks (i.e., #CPU cores) is relatively very small comparing to
the number of bits, this extra cost is small (within 2%).

In summary, we address multiple types of dependences involved
in the structural index construction with an assembly of customized
parallelization techniques. Next, we integrate them.

T1

level: 0

T2 T3

level: -2

partial index

level: 1

level: 0

level: -1

level: 2

level: 1

level: 0

partial index partial index

ending level
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Figure 9: Level Alignment.
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Figure 10: Index Merging.
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Figure 11: Workflow of Data-Parallel Construction.

3.6 Putting it All Together
Figure 11 shows the high-level workflow of data-parallel structural
index construction. From the top to the bottom, the construction
process is divided into five stages. The first stage partitions the
JSON record into chunks with dynamic partitioning to avoid break-
ing any keywords and backlash sequences. By default, the number
of chunks n is set to the number available CPU cores. After parti-
tioning, the construction leverages the contradiction-based context
inference to find out if each chunk starts inside a string or not.
When some inferences fail, speculation is immediately triggered to
process the corresponding chunks speculatively. If speculation is
enabled for at least on one JSON chunk, the construction would
next enter into Stages 2, 3, and 4, one by one; Otherwise, it skips
Stage 3 and combines Stages 2 and 4 (i.e., all five steps are com-
pleted without synchornization). Before entering Stage 3, all the
parallel executions of different chunks (in Stage 2) should have
been finished, that is, a barrier is required. In Stage 3, chunks
with speculation are validated in order based on the actual string
statuses (i.e., inside a string or not). When some misspeculation
is detected, the corresponding input chunk would be reprocessed
(only Step 3). For fast reprocessing, bitwise rectification would be
applied. The outputs of after Stage 4 are partial structural indices
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built for each input chunk. Finally, Stage 5, performs the index level
matching and merging to produce the final structural indices.

4 LOCALITY OPTIMIZATION
So far, our design of parallel structural index construction (including
a new Step 5) is performed step by step. In each step, it traverses
the JSON record and/or its (intermediate) bitmaps entirely. Since
steps share the access of some bitmaps (e.g., one step writes to it
and another step reads from it), repetitively traversing them cause
poor data locality. This issue might less be a concern for small JSON
records, but could become serious when processing large records,
as the memory footprint can easily exceed cache capacities.

Instead of constructing the bitmaps step by step, in fact, we can
build them word by word 3, where a word consists of only a few
bytes (e.g., 8 bytes on 64-bit machines). Figure 12 illustrates the two
granularities of bitmap construction.

chunk i word1 word2 wordN…

(a) Step-by-Step (b) Word-by-Word

Step 2
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…
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Step 2

Step 1

Step 3

Step 4

Step 5

Index

Step 2

Step 1

Step 3

Step 4

Step 5

Index

Step 2

Step 1

Step 3

Step 4

Step 5

Index

num ‘\’ 
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Figure 12: Index Construction Granularities.

To implement word-by-word bitmap construction, the algorithm
has to generate and consume bitmaps partially and incrementally.
This requires recording some “context” of each step between two
adjacent words. For example, after finishing one word at Step 2,
the algorithm needs to record how many consecutive \s have been
observed by the end of the current word. Despite these extra work
of “bookkeeping”, the benefits of word-by-word processing are
significant for bulky JSON records, as we will report later.

5 QUERYING USING INDEX
In this section, we first present the APIs for accessing the bitmaps
and demonstrate their usage in evaluating common JSON path
queries, then we further discuss the strategies for enabling parallel
query evaluation on bulky JSON records.
APIs. To simplify the programming, we hide the low-level bitmap
traversal details into a set of high-level JSON data accessing APIs
that are similar to the existing tools [43]. The APIs include one
BitmapConstructor class for generating leveled bitmaps in parallel
and one BitmapIterator class for navigating through the leveled
bitmaps and locating keys in objects or elements in arrays.

Algorithm 3 demonstrates an example usage of these APIs for
evaluating query $.user[0].name. Note that even though the bitmap
indices are constructed in parallel (Line 6), the bitmap traversal

3Note that word-by-word processing could also be adopted in Mison [44].

Algorithm 3 API Usage Example (query $.user[0].name)
1: Procedure:
2: Inputs: input : JSON record(s)
3: Outputs: r esult : a list of matched JSON contents
4:
5: BitmapConstructor bc = new BitmapConstructor ()
6: Bitmap bm = bc .construct (input , 16) /* with 16 threads */
7: BitmapI terator iter = bc .дet I terator (bm)

8: if iter .isObject () && iter .moveToKey(“user”) then
9: iter .down() /* value of “user” */
10: if iter .isArray() && iter .moveToIndex (0) then
11: iter .down() /* “user[0]” */
12: if iter .isObject () && iter .moveToKey(“name”) then
13: r esult = дetV alue()

(Line 8-13) remains serial. To make JSON analytics scalable, we next
describe a strategy that enables parallel bitmap traversals.
Parallel Query Evaluation. Given the indices of many small JSON
records, we can easily traverse them in parallel and evaluate the
query on different records independently. However, for a bulky
JSON record, it is non-trivial to traverse its indices in parallel. Our
parallelization of the index traversal stems from a simple yet critical
observation 4 – a bulky JSON record usually consists of a JSON
array at an upper level (closer to the root level) which dominates
the size of the JSON records and divides lower levels of the JSON
record into many smaller elements. We refer to such an array as the
dominating array. Based on this observation, we propose to first
locate the index level of the dominating array, from where we then
traverse different elements in the array in parallel. The criteria for
defining the dominating array are configurable. In our experiments,
we require the array to occupy 80% of the whole record in size and
consist of at least 256 elements. Elements of the dominating array
are processed using a thread pool where each thread gets a copy of
the current bitmap iterator and proceeds independently. For better
load balancing, elements of the dominating array are inserted into
a worklist and then consumed on demand by worker threads.

6 EVALUATION
This section presents evaluation results of the proposed techniques,
with a focus on the parallel performance on bulky JSON records.

6.1 Methodology
We implemented the parallel JSON structure index constructor in
C++, namely Pison, and used Pthread for its parallelization. We
compare Pison with the existing solution Mison [44]. As Mison
is not publicly available, we use a third-party implementation of
Mison, called Pikkr [7], as well as our own implementation of Mison
for this comparison. Moreover, we also implemented an optimized
version of Mison, denoted as Mison+, where Steps 2 and 3 are
implemented using ideas from simdjson [43] (see Section 2).

In addition, we compare Pison with simdjson [43] – a popular
SIMD-based JSON processing tool, RapidJSON [11] – a popular
JSON parser based on character by character processing, as well as
JPStream [38] – a streaming-based JSON tool. Table 1 lists all the
methods in our evaluation.

We evaluate Pison for processing a sequence of small JSON
records and individual bulky JSON records in terms of processing
time and memory consumption. Table 2 reports the statistics of

4According to real-world datasets [1, 3, 9, 10, 13, 16].
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Table 1: Methods in Evaluation

Method Brief Description
simdjson A SIMD-based JSON parser [43]
CMison Our C++ implementation of Mison [44]
Mison+ Improved Mison (Steps 2-3) based on simdjson [43]
Pikkr Third-party implementation of Mison in Rust [7]

RapidJSON A JSON parser in C++ from Tencent [11]
JPStream A parallel streaming JSON processor in C [38]
Pison(SbS) Pison with step-by-step processing (this work)
Pison(WbW) Pison with word-by-word processing (this work)

JSON datasets used in our evaluation. These include Best Buy (BB)
product dataset [1], tweets from Twitter (TT) developer API [13],
Google Maps Directions (GMD) dataset [3], National Statistics Post-
code Lookup (NSPL) dataset for UK [9], Walmart (WM) product
dataset [10], and Wikipedia (WP) entity dataset [17]. The default
size of each dataset is approximately 1GB for easy comparison. Each
dataset forms a single large JSON record. To create scenarios of
small records processing, we manually extracted the dominating
array from each dataset, broke it into smaller records, and inserted
a new line after each small record – a common way to organize
small JSON records. The number of small records for each dataset
is shown in the column #subrec. in Table 2.

Table 2: Dataset Statistics

Data #objects #arrays #K-V #prim. #subrec. depth
TT 2.39M 2.29M 26.5M 24.3M 150K 11
BB 1.91M 4.88M 40.7M 35.8M 230K 7

GMD 10.3M 43K 29.0M 21.0M 4.44K 9
NSPL 613 3.50M 1.66K 84.2M 1.74M 9
WM 333K 34K 8.19M 9.92K 275K 4
WP 17.3M 6.53M 53.2M 35.0M 137K 12

To evaluate the querying performance, we first include 8 queries
used in Mison [44] on Twitter dataset (TT1-TT8), then for each
other dataset, we created a JSONPath query, as shown in Table 3.
Note that 8 of out the 13 queries consist of two subqueries. For bulky
records made of small records, we add a prefix [*]. to each of its
queries. Together, they cover common patterns of path queries, as
well as queries of different complexities and selectiveness.

All experiments were conducted on a 16-core machine equipped
with two Intel 2.1GHz Xeon E5-2620 v4 CPUs and 64GB RAM. The
CPUs support 64-bit ALU instructions, 256-bit SIMD instruction
set, and the carry-less multiplication instruction (pclmulqdq). Both
servers run on CentOS 7 and are installed with G++ 7.4.0 and JDK
1.8.0_191. All C++ programs are compiled with "-O3" optimization
flag. In the case of small records, they are stored in a single array
with the beginning position of each record stored in a separate
offset array. The timing results are the average of 10 runs; no 95%
confidence interval is shown when the variation is not significant.

Next, we first report the performance of serial and parallel index
constructions of different methods.

Table 3: JSONPath Queries

Queries TT1-TT8 are from Mison [44]
ID Query structure #matches #visited fields
TT1 { ur.id } 150,135 1,979,268
TT2 { ur.id, rtct } 300,270 3,076,477
TT3 { ur.id, ur.la } 300,270 4,681,698
TT4 { ur.nm, rp } 300,270 2,279,538
TT5 { ur.la, la } 300,270 6,767,260
TT6 { id, rtst } 252,524 3,243,333
TT7 { id, en.urls[*].url } 239,016 3,615,763
TT8 { id, en.urls[*].idc[*] } 327,897 3,862,762
BB { pd[*].cp[1:3].id } 459,332 7,362,758

GMD { rt[*].lg[*].st[*].dt.tx } 1,716,752 5,215,576
NSPL { mt.vw.co[*].nm } 44 121
WM { it[*].bmpr.pr, it[*].nm } 288,391 7,867,449
WP { cl.P[*].ms.pty } 15,603 1,974,693

6.2 Index Construction Performance
Figure 13 reports the time of index construction for bulky JSON
records using different methods. We exclude JPStream since it does
not construct any indices. Among them, RapidJSON and simdjson
create parse trees while the other methods create structural indices.
RapidJSON vs. Others. First, according to the results, RapidJSON
takes substantially longer to construct indices than other evaluated
methods, even though it is known for its superior performance than
many other popular JSON parsers (e.g., FastJSON [2]). The reason
is that RapidJSON does not leverage bitwise parallelism and SIMD
instructions. The results confirm the effectiveness of leveraging
fine-grained parallelism in JSON data processing.
Mison vs. simdjson vs. Serial Pison. For methods with bitwise
parallelism and SIMD supports, the two versions of Mison (Pikkr
and CMison) take slightly longer time. In comparison, Mison+ runs
faster than the prior two, by 31% and 11%, thanks to its optimized
Steps 2 and 3 based on simdjson. Following these, simdjson and
serial Pison(SbS) show similar performance on average. Note that
the only difference between Mison+ and serial Pison(SbS) is the
new design of Step 5 (Section 3.5.1). Therefore, the time difference
between the two shows the benefits of this new design – 1.41X
speedup on average, which is substantial for an optimization of one
step. Finally, serial Pison(WbW) performs the best among all the
serial methods. The performance gap between Pison(WbW) and
Pison(SbS) indicates the benefits of locality optimization (Section 4),
which is 1.67X speedup on average, demonstrating the importance
of the proposed locality optimization. Adding the benefits of the
new design of Step 5 and the locality optimization together, we find
that serial Pison(WbW) runs 3.1X faster than Pikkr, 2.6X faster than
CMison, and 2.3X faster than Mison+.

So far, the comparison are among only serial methods. Next, we
discuss the performance of parallel Pison – the main contribution
of this work. Note that we cannot run other methods in parallel
due to the lack of parallelization.
Parallel Pison vs. Others. First, running two versions of Pison
(SbS and WbW) in parallel with eight threads, achieves 3.3X and
3.8X speedups over the serial counterparts, respectively. The sub-
linear speedups indicate that the structural index construction is
not only computation-intensive, but also memory-intensive; while
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Figure 13: Comparison of Index Construction Time of Different Methods on Bulky JSON Records.
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Figure 14: Comparison of Index Construction Time of Dif-
ferent Methods on Small JSON Records.

the parallelization helps address the former, the performance could
be limited by the latter. Despite this limitation, when compared to
the other indexing methods, parallel Pison still shows significant
improvements – 19X faster than RapidJSON, 11.6X faster than Pikkr,
9.8X faster than CMison, and 8.8X faster than Mison+.

So far, the performance results are for building indices on bulky
JSON records – the focus of Pison. For completeness, we also report
the performance of small record indexing.
Small Record Indexing. For many small records, parallelism can
be easily achieved at the task level, we thus only report the serial
performance of Pison for fairness. Figure 14 shows the performance
results of differentmethods, which are consistent with those in large
record indexing, except that the two implementations of Mison and
its optimized version Mison+ run relatively faster than they do in
large record indexing. The reason is that when the records are small,
they can easily fit into the caches; the locality of their step-by-step
processing gets much improved.

Next, we break down the benefits of parallelization by steps and
evaluate the effectiveness of the parallelization techniques in detail.

6.3 Benefits and Costs Breakdown
Time Breakdown by Steps. Table 4 reports the sequential and
parallel execution times of for each step in the structural index
construction, as well as the averaged parallelization speedup of
each step. The results show that parallelization improvements vary
among steps. Step 3 achieves the highest speedup – 6.5X, while
Step 4 achieves the lowest – 2.8X. As discussed earlier, the variation
of benefits mainly depends on the memory-computation ratio. Step
3 is relatively more complex computation-wise, meanwhile only

Table 4: Time Breakdown by Steps

Entry is [seq. time(s) : para. time(s) w/ 8 threads] of Pison(SbS)
Step 1 Step 2 Step 3 Step 4 Step 5

TT 0.48 : 0.14 0.03 : 0.01 0.06 : 0.01 0.12 : 0.05 0.83 : 0.25
BB 0.59 : 0.18 0.05 : 0.01 0.06 : 0.01 0.15 : 0.06 0.65 : 0.20

GMD 0.65 : 0.19 0.05 : 0.02 0.06 : 0.01 0.21 : 0.06 0.92 : 0.27
NSPL 0.65 : 0.18 0.06 : 0.03 0.07 : 0.02 0.20 : 0.06 0.42 : 0.15
WM 0.59 : 0.17 0.06 : 0.01 0.08 : 0.01 0.19 : 0.06 0.27 : 0.10
WP 0.67 : 0.19 0.06 : 0.01 0.06 : 0.01 0.15 : 0.07 1.55 : 0.51

Geo SP 3.55X 5.04X 6.54X 2.83X 3.04X

writes results to one bitmap (see Figure 2). By contrast, Step 4 only
involves a single bitwise operation (ANDNOT), but needs to write to
six bitmaps. As a result, Step 4 is more memory-bound than Step 3,
leading to less speedups. Similar reasoning also holds to the other
three steps. After reporting the time and speedups, we next further
evaluate the main parallelization techniques used in different steps.
Context Inference. To parallelize Step 3, we proposed contradiction-
based context inference to find if a chunk starts inside a string. To
confirm its effectiveness, we profiled the success rate of context
inferences in all the parallel executions reported in Figure 13. The
results show that all the inferences succeeded, which indicates that
a contradiction is derived in all the evaluated cases.
Speculation. Since no context inferences failed in evaluation, we
artificially failed a few context inferences when 8 threads are used to
examine the performance under speculative mode. Thus, 20 threads
entered into the speculative mode across 6 datasets. Interestingly,
none of them failed, which demonstrates the effectiveness of the
heuristic used by the speculation – usually characters inside a
string do not form valid tokens (see Section 3.4). Despite the high
speculation accuracy, the performance suffers from another aspect
– loss of data locality. As discussed in Section 3.5.2, once entering
speculative mode, the validation stage would isolate the word-by-
word optimizations within Steps 1-3 and Steps 4-5. Figure 15 shows
the cost of speculation – reducing speedups from 3.76X to 2.45X.

In principle, misspeculation can still happen, in which cases
there are costs of recovering. To measure these costs, we manually
flipped the speculated string status for 1 and 2 speculative threads,
respectively. Figure 15 reports the costs of reprocessing. With 2
cases of misspeculation, the speedup only drops from 2.45X to 2.33X.
This is due to the bitwise rectification introduced in Section 3.4.
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Without this technique, we have to reprocess the chunk, in which
case the cost would be quite significant.
Costs of Index Merging. The costs associated with index merging
are of two types: (i) the cost of index merging – the second phase
of the two-phase parallel index construction and (ii) the extra cost
of accessing of merged (linked) indices. For the former, we profiled
the cost of each phase and found that the merging cost is less
than 0.01% for all test cases. This is because the index merging only
needs to connect the partial indices of different chunks together (see
Figure 10), including the adjustment of index levels (Figure 9), both
of which are low-cost operations. For the latter, our profiling results
show that overhead of accessing linked indices is 1.5% on average,
comparing to the single-array indices from serial construction.
Scalability. Figure 16 reports the parallel performance of Pison
with different numbers of threads. The results show that additional
benefits from more threads diminish slightly as the number of
threads grows. This is due to that the structural index construction
is both computation and memory intensive. As computations get
parallelized with more threads, the memory bandwidth gets more
saturated, limiting the performance benefits.
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Figure 18: Comparison of Memory Consumption

Table 5: End-to-End Time (s) Comparison.

JPS(8) RapidJ Mison+(1) simdjson Pison(1) Pison(8)
TT 6.64 4.73 4.92 2.13 4.10 0.86
BB 1 5.27 2.61 1.84 1.55 0.34

GMD 1.01 5.18 3.64 1.88 2.32 0.58
NSPL 1.02 5.26 2.46 2.22 0.76 0.22
WM 0.43 3.98 2.14 1.19 1.2 0.25
WP 1.38 6.7 3.67 2.64 2.21 0.6
Geo 1.26 5.12 3.11 1.93 1.76 0.42
Sum 11.48 31.12 19.44 11.9 12.14 2.85

To better understand how Pison and Mison scale as the record
size increases, we further vary the size of the record in the BB
dataset from 256MB to 8GB. Figure 17 shows the scalabilities of
Mison and Pison as the record size increases. As the trend indicates,
the larger the records are, the more time saving Pison provides
comparing to Mison.
Memory Consumption. The other concern in processing large
records is the memory consumption. As shown in Figure 18, the
memory footprint of Pison is about 3.0GB on average, which is the
least among the indexing or parsing-based methods. Comparing
to step-by-step processing, the word-by-word processing of Pison
eliminates the needs of storing large intermediate bitmaps, resulting
in 40.8% less memory footprint. This figure does not include the
memory footprint of JPStream, which in fact is configurable (set it
to 1GB) thanks to its streaming-style processing strategy.

6.4 End-to-End Performance
Finally, we evaluate end-to-end performance that includes both
index construction and query evaluations. The queries used for this
evaluation are from Table 3.

Table 5 reports the end-to-end performance of different methods
under evaluation. Except for JPStream, the time for all the other
methods include both the index construction time and the querying
time. For bulky JSON records, we cache the indices and reuse them
for multiple queries. For dataset TT, this means the 8 queries share
the constructed indices. In the case of JPStream, a streaming-based
method, its execution time is only about the querying.
JPStream vs. Others. First, the performance results of JPStream
shows a large gap (over 5.2X) between the case of TT and cases
of other datasets. In fact, JPStream performs the worst in the case
of TT among all evaluated methods. The reason is that, for TT,
multiple individual queries are evaluated. Without any indices, the
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evaluation has to traverse the entire raw dataset once for each
query, causing repeated overhead, which is expected as JPStream is
designed for streaming scenarios. For other datasets where a single
query is evaluated, JPStream clearly shows better performance than
other methods, except for parallel Pison. On average, parallel Pison
runs 3X faster than JPStream when both running with 8 threads.
Parallel Pison vs. Others. Among the indexing-based methods,
parallel Pison achieves 12.2X speedup over RapidJSON, 7.4X speedup
over Mison+, 4.6X speedup over simdjson, and 4.2X over its own
serial version. Note that for Mison+, we do not have the parallel
implementation for its querying. However, we find that its indexing
time alone (2.28s) already takes significantly longer than the total
running time of parallel Pison (0.42s).

In summary, the above results confirm that the efficiency of
parallel Pison, showing substantial performance boosts over a set
of state-of-the-art JSON processing tools.

7 RELATEDWORK
This section discusses existing research on raw semi-structured
data processing and the parallelization of large-record processing.
Raw Semi-structured Data Processing. There is a rich body of
research on processing raw semi-structured data such as XML and
JSON. Typical solutions often involve in some forms of automata [21,
27, 62] and stacks [25, 41], which are essential in recognizing the
nesting structures and matching the queries. Most existing JSON
tools [2, 6, 8, 11] follow this direction and convert the JSON data
stream into in-memory tree structures before querying. However,
it takes time and memory to generate the parsing trees [38]. One
way to avoid the cost of parsing is to adopt streaming schemes [12,
31, 38, 40, 52]. For instance, JSONSurfer [12] directly evaluates path
queries without any pre-parsing of the JSON data. However, it is
inefficient in performing the query matching due to a lack of the
capability of tracking the matching status. JPStream [38] improves
this by compiles a set of JSONPath queries and JSON syntax into a
dual stack pushdown automaton which records both the parsing
status and the matching status of queries.

One common limitation with the above methods is the "one-
character-each-time" processing strategy. To deal with this limita-
tion, Mison [44] proposes to build structural indices with bitwise
operations, which can process tens of or even hundreds of char-
acters simultaneously with the help of bitwise and SIMD-level
parallelism. This idea originates from NoDB [19, 20, 37, 42], which
builds structural index on raw CSV files and adaptively uses the
index to load the data. In fact, simdjson [43] also adopts this bitwise
processing in its first stage of JSON parsing. Besides JSON data, the
idea of bitwise processing is also seen in other contexts, including
regular expression matching [23], XML parsing [46], as well as
some database systems [18, 22, 26, 51]. Based on bitwise process-
ing, Sparser [53] applies filtering before performing the parsing to
further accelerate the processing.
Parallel Processing of Large Records. In addition to the explo-
ration of bitwise and SIMD-level parallelism, it is also important
to exploit coarse-grained parallelism (such as multicores) in the
processing of individual large records. In fact, many efforts have
been put into the parallelization of XML stream processing [39, 48,
52, 54, 58], including the use of hardware accelerators [49, 50]. The

key in enabling parallel processing of individual XML record is
“breaking” the dependences in the data processing. For example, in
[48, 54], a pre-scan is applied to the XML record first to partition
it according its high-level structures. In another work [52], the au-
thors design parallel pushdown transducers that numerate all the
possible states at the beginning of an arbitrary XML partition to
break the state dependences. To reduce the cost of state enumer-
ation, GAP [39] leverages the XML grammar to prune infeasible
states. By contrast, there are few studies in the parallelization of
JSON stream processing. JPStream [38] adopts ideas from parallel
XML processing [39, 52] to JSON processing so that an individual
large JSON record can be effectively processed in parallel. This
shares a similar goal with Pison.

Besides the above work, there are also prior studies that design
speculative parallelization for parallel processing other types of raw
data [56, 59, 63–65]. For example, HPar [63] proposes speculative
parsing of HTML documents. In [56, 64, 65], FSMs are executed
speculatively to perform pattern matching over unstructured tex-
tual data. Recently, Parparaw [59] leverages speculation techniques
to process delimiter-separated raw data in parallel, and PBS [55]
speculatively parallelizes bitstream processing by modeling it into
FSM computations. As far as we know, Pison is the first work that
leverages speculation for parallel indexing of JSON data.

8 CONCLUSIONS
Constructing structural indices for JSON data has shown promises
in accelerating JSON analytics, but its serial design makes it difficult
to scale to large and complex JSON records. This work addresses this
challenge by introducing intra-record parallelism and redesigning
the structural indices construction process. It proposes an assembly
of parallelization techniques that make it possible to construct the
structural indices of individual JSON records in parallel. Evaluation
on datasets collected from real-world applications show that the
developed system – Pison, surpasses the performance of state-of-
the-art tools, including simdjson and Mison, in both small-record
and large-record processing scenarios.
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