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ABSTRACT
Ranking functions are commonly used to assist in decision-making
in a wide variety of applications. As the general public realizes the
significant societal impacts of the widespread use of algorithms
in decision-making, there has been a push towards explainability
and transparency in decision processes and results, as well as de-
mands to justify the fairness of the processes. In this paper, we focus
on providing metrics towards explainability and transparency of
ranking functions, with a focus towards making the ranking pro-
cess understandable, a priori, so that decision-makers can make
informed choices when designing their ranking selection process.
We propose transparent participation metrics to clarify the ranking
process, by assessing the contribution of each parameter used in
the ranking function in the creation of the final ranked outcome,
using information about the ranking functions themselves, as well
as observations of the underlying distributions of the parameter
values involved in the ranking. To evaluate the outcome of the
ranking process, we propose diversity and disparity metrics to mea-
sure how similar the selected objects are to each other, and to the
underlying data distribution. We evaluate the behavior of our met-
rics on synthetic data, as well as on data and ranking functions on
two real-world scenarios: high school admissions and decathlon
scoring.
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1 INTRODUCTION
Rankings are commonly used to make decisions and allocate re-
sources in a wide variety of applications such as school admissions,
job applications, public housing allocations, sport competition judg-
ing, and organ donation lists. Decision-making techniques resulting
in rankings of objects using multiple criteria have been studied for
centuries [18]. However, these techniques were traditionally devel-
oped with the decision-maker’s interests and constraints in mind,
and did not focus on transparency and explainability of the process
for the objects/individuals being affected by the outcome of the
rankings.

With today’s widespread use of algorithms to make decisions
in an information-based society, there has been a realization that
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the outcomes of these algorithms have significant societal impacts,
and that the algorithm designers have a responsibility to address
the ethical considerations that arise when applying algorithms
to individuals, groups, or entities. This has been recognized by
several research communities, such as Artificial Intelligence [14,
49], Machine Learning [17], and Data Management [46]. Without
transparent and explainable processes, it is not possible to verify
whether the outcomes satisfy ethical and fair constraints.

Traditionally, work on ranking algorithms and techniques has
either assumed that the ranking function was given and satisfied
some required properties, such as monotonicity [16], and consid-
ered the ranking function as an oracle, or has focused on designing
complex query functions applicable to specific domains [18, 32].
Little attention has been given to making the ranking function
itself transparent. In fact, many techniques preprocess the under-
lying data being ranked, typically via normalization, so that it has
desirable properties for the ranking algorithm. The resulting trans-
formation often murks the data and contributes to making the
process opaque.

This paper focuses on providing metrics to enable the analysis
of ranking functions and the relative impact of individual ranking
metrics on the overall ranked results in order to understand the
impact of the ranking process a priori, based on the ranking func-
tions and data distribution. Our goal is to help decision-makers
understand the behavior of their ranking functions, and to provide
entities being ranked with some transparent and understandable
explanation of the ranking process.

The paper makes the following contributions:
• The design of transparent and understandable participation
metrics to clarify the ranking process, by assessing the con-
tribution of each parameter used in the ranking function in
the creation of the final ranked outcome, using information
about the ranking functions themselves, as well as observa-
tions of the underlying distributions of the parameter values
involved in the ranking. (Section 4)

• The design of metrics to measure the similarity, or diversity,
within the objects selected as part of the ranking process, as
well as the disparity of the selected objects with respect to
the underlying data distribution. Our diversity and disparity
metrics can be used both on parameters involved in the
selection (ranking) and on other parameters of the data. We
also discuss how this work can be included in and support
wider efforts on fairness and diversity of rankings. (Section 5)

• An experimental evaluation of our metrics. We first illustrate
the behavior of the metrics using a variety of synthetic data
scenarios. Then, we show how our metrics can be used on
two real data sets: (a) NYC student data and school admis-
sion functions, and (b) decathlon scoring in international
competitions to evaluate both the behavior of the ranking
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functions used for admission and assess whether they re-
flect the intention of the decision-makers, and to analyse
the outcome of the ranking process in terms of diversity and
disparity of the selected objects. (Section 6)

In the next section, we present motivations for our work and
present a real-life application scenario involving public schools
using ranking functions for admissions in NYC. We discuss related
work in Section 3 and conclude in Section 7.

2 MOTIVATIONS
Ranking functions are used to make decisions in a wide variety of
application domains: public school systems, college rankings [50],
affordable housing [3], as well as in complex ranking processes
generated from Machine Learning (e.g., search engine results [32],
LambdaMart [8]). The prevalence of automated decisions systems
has raised numerous questions from the public, and increasingly
lawmakers are requiring public decisions systems to be transpar-
ent [27]

Consider the example of the NYC school admissions process.
NYC middle- and high-school admissions use a matching algo-
rithm [1] similar to the stable marriage algorithm designed by
Gale-Shapley [21], and used by medical schools. A typical school
matching process consists of three parts: the schools rank students
based on some desired criteria (academic, geographic, demographic),
the students list schools in order of preference, and the matching al-
gorithm, handled by a clearinghouse and designed to optimize some
notion of utility, produces the rankings. One common approach
is to focus on strategy-proof techniques that optimize students’
choices while guaranteeing stable matches. Several school-choice
matching algorithms have been proposed [2]. Such matching al-
gorithms have been well studied, but the literature assumes their
input (students’ and schools’ ranked lists) as given. Some attention
has been given to improve the quality of matches by providing
better information to students so that their choice lists better reflect
their preferences [4, 12], but to our knowledge, there has not been
much focus on the way schools rank their students.

Transparency in such a scenario is critical. The NYC public
school system has 1.1 million students, and every year, 160,000
rising middle- and high-schoolers are sorted into schools. Without
a transparent and explainable process, families are losing trust in
the system.

Even when made public, some fully detailed, published school
admission rubrics (ranking functions) raise more questions than
they answer. Table 1 shows the high school admission function of
a NYC public school (School A).

In addition to the transparency requirement, ranking functions
used for public policy must satisfy additional criteria to ensure
equity, fairness, and other legal considerations. For instance, NY
State Law requires that state scores may not be the “sole, primary
or major factor” in admissions [45], which has been interpreted by
schools and districts as meaning that at most half of the points (50%)
in the school rubrics can be derived from state scores. Of course,
a ranking function may abide by the 50% limit on the weights of
state scores, while still using these scores as the major factor possi-
bly unknowingly, because of the underlying data distribution. In
addition, these rubrics are typically designed by non-experts, who

CATEGORY POINTS

Course grades 35
ELA, Math, Science, A+,A (95-100) 8.75
Social Studies (each) A- (90-94) 7.75

B+,B (85-89) 6.75
B- (80-84) 5
Pass 3.5
Fail 0

State Scores 35
ELA, Math (each) 4.01−4.5 17.5

3.5−4.00 16
3−3.49 14.5
2.5−2.99 12
2.0−2.49 8
under 2.0 0

Attendance and Punctuality 30
Absences 0−2 days 15
Latenesses (each) 3−5 days 12

6−8 days 9
9−10 days 6
11−15 days 2
16+ days 0

Table 1: Example School Admission Rubric (School A)

do not realize the impact of the underlying data distribution. In
this particular school example, the school is located in a NYC dis-
trict [40] where 45% of the students have a test scores above 4, and
70% have test scores above 3. The coarseness of the point allocation
to the state score category does not allow to differentiate among
students, in effect using test scores as a filter. The weight given to
a small number of absences and latenesses is also disproportionate
to the likely intent of the school administrators. Furthermore, the
school has around 100 seats, for 1,800 applicants; because this is
a school district with many high-performing students, the school
ended up admitting only students who scored 100 on the rubric,
having to resort to a lottery among these top-ranked students.

Given these observations, it seems critical to design human-
understandable ranking functions that take into account real-life
constraints (e.g., fairness requirements, bounds on the use of some
parameters) and that can shared with non-technical audiences so
they know what to expect in the ranking process. We will investi-
gate how to simplify complex ranking processes and analyze the
behavior of these processes to create explainable ranking functions
that address the needs of the decision makers.

Transparency and accountability should be required of all public
decision systems. Without these, there cannot be fairness and eq-
uity. We propose metrics to allow for accountability of the ranking
systems by making transparency an integrated part of the process.

3 RELATEDWORK
Ranking functions have been widely studied in the literature. The
Multi Criteria Decision Analysis community focuses on making
decisions from a set of possibly conflicting criteria [18, 52]; com-
mon types of functions include weighted-sum and products [48].
These techniques are typically aimed at experts, and provide com-
plex computation, often hidden in black-box algorithms, with little
possibility of explanation. Often, the ranking functions are applied
on normalized parameters, which allows the decision making sys-
tem to better control for variations in the underlying parameters,
but results in opaque decisions for the candidates. Normalization
functions used in decision-making are based on statistical analy-
sis of the parameters; the choice of the normalization function is
domain-specific. Common such functions include z-score , vector,
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or logarithmic normalization [25, 48]. Most of these normaliza-
tion functions were designed for and by expert users and assume
some understanding of statistics and math. While this is a realistic
assumption in some ranking scenarios –we can expect medical
professionals who design and use organ wait lists to be fluent in
statistics, it is not reasonable to expect in every case. Individuals
who are concerned by public policy decisions that are based on
rankings cannot be expected to know introductory-level statistics
to understand, and therefore trust, the mechanisms that will assign
them to schools, public housing, or will decide the amount of public
support they are eligible for.

Ranking functions are widely used in Information Retrieval [32,
42]. More recently, the Information Retrieval community has fo-
cused on learning-to-rank approaches [29, 31]. However such tech-
niques produce complex ranking functions, that are impossible to
explain to a non-expert; for example, LambdaMART [8], a state-
of-the-art learning-to-rank algorithm based on gradient boosted
decision trees.

In the Data Management community, there has been a significant
focus on the optimization of ranking (top-𝑘) queries [7, 33], based on
the seminal work by Fagin et al. [16]. A survey can be found in [23].
This work typically focuses on the efficiency of the ranking process,
and assumes that the ranking function is already known and that
it satisfies some monotonicity properties. Some of this work has
looked at the impact of changes in the data distribution [10] or
uncertainty in the ranking function [43]; however, these authors
did not focus on the impact of ranking parameters on the ranking
outcome.

Several measures have been proposed to compare the outcomes
of ranking processes. The Spearman 𝜌 [44], and Kendall 𝜏 [26] are
the most commonly used metrics to compute rank correlation. More
recently, distance measures have been proposed by the Database
community [15]. These focus on comparing the outputs of ranking
processes. In contrast, we focus on the behavior of the ranking
functions before the ranking takes place, by analysing the impact
of different data distributions on the ranking functions.

Recently, there has been a lot of discussion in the research com-
munity and in the media on the impact of algorithms in societal
issues and on the inherent bias in many algorithms, including rank-
ing algorithms. Recent work have looked at how to include fairness
and diversity into ranking techniques [9, 41, 55] or in Machine
Learning settings [35]. Our work is complementary to these ap-
proaches: by providing tools to explain ranking processes, we can
design more ethical ranking functions.

Explainability and transparency have been at the forefront of
many works in Artificial Intelligence (e.g., [13]) and Machine Learn-
ing (e.g., [53]). This has been driven in part by political regulations
that call for “right to explanation” [22]. Work that aim to explain
rankings have mostly focused on a posteriori explanations of the
results. Most of these work focus on feature selection to explain the
contribution of each individual features to the final ranking out-
come, in a process similar to sensitivity analysis [11, 47]. In contrast,
we focus on making the process and parameter importance trans-
parent so that the information is shared a priori. The meaning of
explainability and how it is understood by system designers, users,
and stakeholders is still the subject of current interdisciplinary re-
search, such as work in interpretability of AI [30]. We focus on

capturing both an understanding of what the users want, and ex-
plaining the resulting functions to stakeholders in a trustworthy
and informative way [34].

4 MEASURING THE CONTRIBUTION OF
RANKING PARAMETERS

Many real-world ranking decisions are made using aggregation
functions on multiple parameters. Decision-makers often assume
that the weight of a parameter (or the number of points associ-
ated with the parameter) in the function are adequate proxies of
the importance of the parameter in the final decision. We aim at
defining a set of metrics that more accurately capture the true im-
pact, or participation, of each parameter in the ranking decision.
This impact depends on the ranking function design itself, but also,
importantly, on the distribution of the underlying data, and the cor-
relation between parameters, information that is often overlooked
by decision-makers.

In [20], we introduced some preliminary metrics, disqualifying
power and importance. In this paper, we revisit these metrics, dis-
cuss their limitations, and introduce new participation metrics that
better measure the contributions of each parameter towards the
top-𝑘 answer.

Any ranking decision is dependent on 𝑘 , the number of selected
objects. The relative contributions of each parameter is therefore
dependent on this value, and our importance and participation
functions are defined w.r.t. 𝑘 . Note that in some applications 𝑘 is
fixed and known in advance (e.g., the top-10 participants to a local
sport competition will qualify for the regional competition), in some
others 𝑘 is not known to the decision-makers in advance (e.g., in
our school example, because the students are assigned to schools
through a matching algorithm that includes their choices, schools
do not know how far down their lists they will admit students). In
our experimental evaluation (Section 6.2), we will investigate how
parameter participation evolves as 𝑘 varies.

Formally, we define a ranking function 𝑓 over a set of 𝑃 rank-
ing parameters 𝑝1, ...., 𝑝𝑃 , over an object 𝑜 as 𝑓 (𝑜) = 𝑓 (𝑝1, ...., 𝑝𝑃 ).
Typically, a ranking process will select the 𝑘 best objects, or the 𝑘
objects with the highest 𝑓 (𝑜) values its answer.

In this section, we focus onmonotonic ranking functions; a mono-
tonic ranking function 𝑓 over a set of 𝑛 𝑃 ranking parameters as
any function 𝑓 (𝑃) such that if 𝑝𝑎 ≥ 𝑝𝑏 then 𝑓 (𝑝𝑎, 𝑝2, ...𝑝𝑛) ≥
𝑓 (𝑝𝑏 , 𝑝2 ...𝑝𝑛). Monotonicity is a reasonable property of ranking
functions [16], and is widely assumed to hold in the ranking litera-
ture, as it ensures that objects with lower scores in a parameter 𝑝𝑖
cannot “leap-frog" an object with a higher 𝑝𝑖 score, everything else
being equal.

To illustrate ourmetrics, we consider as an example the following
weighted-sum ranking function 𝑓 over a set of 𝑃 ranking parameters
𝑝1, ...., 𝑝𝑃 , with weights𝑊1, ...,𝑊𝑃 such that

∑︁𝑃
𝑖=1𝑊𝑖 = 1, over an

object 𝑜 as 𝑓 (𝑜) =
∑︁𝑃
𝑖=1𝑊𝑖 ∗ 𝑝𝑖 (𝑜), where 𝑝𝑖 (𝑜) is the value of

parameter 𝑝𝑖 for object 𝑜 .
Figure 1 shows the behavior of a simple weighted-sum ranking

function over two parameters values 𝑋 (𝑜) and 𝑌 (𝑜) (denoted 𝑋
and 𝑌 for simplicity), 𝑓 (𝑜) = 0.5𝑋 + 0.5𝑌 , used to identify the
top-50 objects out of 1,000 objects, depending on the underlying
distributions of 𝑋 and 𝑌 . We observe that the score of the top 50𝑡ℎ
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(a) 𝑋 and 𝑌 both follow uniform
distributions in [0, 1].

(b) 𝑋 is normally distributed
(𝜇 = 0.5,𝜎 = 0.15), 𝑌 follows
a uniform distribution in [0, 1].

(c) 𝑋 and 𝑌 are both normally distributed
(𝜇𝑋 = 0.5, 𝜎𝑋 = 0.15,
𝜇𝑌 = 0.75, 𝜎𝑌 = 0.05).

Figure 1: Top-k thresholds (𝑠𝑐𝑜𝑟𝑒 = 0.5𝑋 + 0.5𝑌 ) based on the underlying distribution of values (N=1000, k=50), 𝑋 and 𝑌 are
independent variables.

object (defined as the threshold at 50, red line in Figure 1) varies
depending on the underlying distributions of 𝑋 and 𝑌 . This in turn
has an impact on the minimum score required in for each dimension
(parameter) for an object to qualify as being in the top-50, which
we define as the floor value. This threshold will become the basis
most of our proposed metrics, we define it as follows:

Definition 4.1. Threshold at k Given a ranking function 𝑓 , over a
set of 𝑃 ranking parameters 𝑝1, ...., 𝑝𝑃 , applied to a set of objects O,
we compute the threshold value 𝑇𝑘 as the 𝑘𝑡ℎ highest 𝑓 (𝑜) value
for all objects 𝑜 ∈ O.

This can also be understood as the lowest ranking score (𝑓 (𝑜))
that an object 𝑜 can have and still qualify for the top-𝑘 . For in-
stance, if 1,000 objects are distributed uniformly in both 𝑋 and 𝑌 as
shown in Figure 1(a), the sum 0.5𝑋 +0.5𝑌 would follow a triangular
distribution:

𝑓(0.5𝑋+0.5𝑌 ) (𝑥) =
{︄
𝑥 0 ≤ 𝑥 ≤ 0.5
1 − 𝑥 0.5 ≤ 𝑥 ≤ 1

From which we can trigonometrically estimate the value of the
threshold at 𝑘 = 50 (95𝑡ℎ𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒), 𝑇50, as 0.84.

To account for cases where the output of the ranking function is
not over the same domain as the ranking parameters 𝑝1, ...., 𝑝𝑃 , we
define the parameter-wise threshold as:

Definition 4.2. Parameter-wise Threshold at k Given a ranking
function 𝑓 , over a set of 𝑃 similarly scaled ranking parameters
𝑝1, ...., 𝑝𝑃 , applied to a set of objects O, We compute the parameter-
wise threshold value 𝑇𝑘𝑝 as the maximum real value of each 𝑃𝑛 of
a hypothetical object 𝑂ℎ where each of the parameters of 𝑂ℎ have
equal value and 𝑓 (𝑂ℎ) = 𝑇𝑘 .

This definition is useful in many real-life scenarios, ranking from
weighted-sum ranking functions where the sum of the weights is
greater than 1; to point-based ranking functions, to more complex
ranking functions.

For example consider a multiplicative function, if 𝑥,𝑦 ∈ [0, 5]
and 𝑓 (𝑥,𝑦) = 𝑥2 ×𝑦3, then 𝑓 (𝑥,𝑦) ∈ [0, 3125]. Consider a scenario
where and 𝑇𝑘 = 32 then we compute 𝑇𝑘𝑝 as 32 = 𝑇 2

𝑘𝑝
×𝑇 3

𝑘𝑝
, 32 =

𝑇 5
𝑘𝑝
,𝑇𝑘𝑝 = 2. Similarly, if 𝑥,𝑦 ∈ [0, 1] and 𝑓 (𝑥,𝑦) = 𝑥 +𝑦3, 𝑓 (𝑥,𝑦) ∈

[0, 2]. In a scenario where 𝑇𝑘 = 0.208 then we compute 𝑇𝑘𝑝 as

0.208 = 𝑇 3
𝑘𝑝

+𝑇𝑘𝑝 ,𝑇𝑘𝑝 = 0.2 since 0.2 is the largest real solution to
that equation.

As we describe in Section 6.1.3, the output of the scoring function
for decathlon competitions is the sum of 10 inputs, so 𝑇𝑘𝑝 = 1

10𝑇𝑘 .

Definition 4.3. Parameter Floor at k Given a threshold𝑇𝑘 a param-
eter 𝑝 and a ranking function 𝑓 , the floor at 𝑘 of 𝑝 , noted 𝑓 𝑙𝑜𝑜𝑟𝑘 (𝑝),
is the lowest value an object 𝑜 ′ can have in 𝑝 that would still al-
low for 𝑜 ′ to qualify in the top-𝑘 assuming all the other values are
maximized, that is for 𝑓 (𝑜 ′) ≥ 𝑇𝑘 .

For instance, the floor at 50 for 𝑋 if the objects are distributed
uniformly in both 𝑋 and 𝑌 as shown in Figure 1(a), would be:

𝑓 𝑙𝑜𝑜𝑟50 (𝑋 ) =
𝑇50 −𝑊𝑌
𝑊𝑋

=
0.84 − 0.5

0.5
= 0.68

which geometrically corresponds to the intersection between 𝑓 (𝑜) =
0.5𝑋 + 0.5𝑌 = 𝑇50 = 0.84, and 𝑌 = 1.

Figures 1(a-c) show the threshold values for various underlying
distributions of 𝑋 and 𝑌 . The computed 𝑓 𝑙𝑜𝑜𝑟50 (𝑋 ) for the distri-
butions of Figures 1(a-c) are 0.72, 0.52, and 0.5, respectively. For
the examples of Figure 1, the values for 𝑓 𝑙𝑜𝑜𝑟50 (𝑌 ) are the same as
𝑊𝑋 =𝑊𝑌 .

We can use the floor value to define the disqualifying power of
each parameter of the scoring function.

Definition 4.4. Disqualifying power of a Parameter at 𝑘 Given a
parameter floor 𝑓 𝑙𝑜𝑜𝑟𝑘 (𝑝) for parameter 𝑝 , the disqualifying power
of 𝑝 at 𝑘 , 𝐷𝑄𝑘 (𝑝), represents the percentage of objects 𝑜 ∈ O for
which the value of 𝑜 for 𝑝 , 𝑝 (𝑜) is lower than 𝑓 𝑙𝑜𝑜𝑟𝑘 (𝑝). Intuitively,
𝐷𝑄𝑘 (𝑝) is the percentile rank of 𝑓 𝑙𝑜𝑜𝑟𝑘 (𝑝) in 𝑝’s distribution.

The disqualifying power can be computed from the data, if
available a priori, or estimated from knowledge of the underly-
ing distribution. For instance, in Figure 1(b), 𝑌 is uniformly dis-
tributed in [0, 1] and 𝑓 𝑙𝑜𝑜𝑟50 (𝑌 ) = 0.52, the disqualifying factor
of 𝑌 at 50, 𝐷𝑄50 (𝑌 ), is then estimated to be 𝐷𝑄50 (𝑌 ) = 0.52. Sim-
ilarly, in the same Figure 1(b), 𝑋 follows a normal distribution
(𝜇 = 0.5, 𝜎 = 0.15), from which we can estimate 𝐷𝑄50 (𝑋 ) = 0.5517
(𝑧-𝑣𝑎𝑙𝑢𝑒 = (0.52 − 𝜇)/𝜎 = (0.52 − 0.5)/0.15 = 0.13). Figure 1(c)
exhibits distributions that are not centered on the same values,
which result in more variations in disqualifying power between 𝑋
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and 𝑌 : 𝐷𝑄50 (𝑋 ) = 0.5517 as X follows the same distribution as in
Figure 1(b), but 𝐷𝑄50 (𝑌 ) ≈ 0. As disqualifying power value of 0
means that the parameter is not enough, by itself to disqualify the
object from the top-𝑘 . In the example of Figure 1(c), all of the values
of 𝑌 (𝑜) are large enough for the objects to be part of the top-𝑘 . In
that particular scenario, it is the value 𝑋 (𝑜) that accounts for most
of the top-𝑘 decision for object 𝑜 , as a high 𝑋 value compensates
for even the lowest 𝑌 value in the data set.

The disqualifying power directly indicates the significance of
each parameter discussed above by taking into account the dis-
tribution from which it is drawn. Intuitively, a parameter is more
significant if it has more power to disqualify objects. However, as
we decrease 𝑘/𝑁 or increase the number of parameters in the rank-
ing function, we are less likely to observe positive disqualifying
power values, limiting the usefulness of the metric. In addition,
decision-makers need to be able to compare the usefulness, or im-
pact, of each parameter relative to each other, as well as relative to
their importance in the final decision.

To address these concerns, we define the participation of each
parameter in the final top-𝑘 ranking. In [20], we presented a pre-
liminary metric, called importance, to assess the contribution of
the parameter to the final ranking.

Definition 4.5. Importance of a Parameter at 𝑘 Given a ranking
function 𝑓 , over a set of 𝑃 ranking parameters 𝑝1, ...., 𝑝𝑃 , applied
to a set of objects 𝑜 ∈ O, and a threshold value 𝑇𝑘 , we compute
𝐼𝑘 (𝑝), the Importance of a parameter 𝑝 at 𝑘 , as the percentage of
objects in the top-𝑘 answers (i.e, with 𝑓 (𝑜) ≥ 𝑇𝑘 ) such that the value
𝑝 (𝑜) ≥ 𝑇𝑘 . If we only have distributions and not values this can be
expressed by the conditional probability Pr(𝑝 (𝑜) ≥ 𝑇𝑘 | 𝑓 (𝑜) ≥ 𝑇𝑘 )

Importance of a parameter 𝑝 expresses the percentage of objects
that dominate an idealized object 𝑜 ′ that would be exactly on the
threshold, with all parameter values equal to the threshold, for 𝑝 .
If 𝑝’s value falls behind this object for many other objects in the
top-𝑘 answer, it follows that objects are being selected as part of
the top-𝑘 despite their low values for 𝑝 . On the other hand, if values
of 𝑝 almost always exceed the value of 𝑝 for 𝑜 ′, we see that 𝑝 is
contributing to these objects’ selections, making 𝑝 an important
parameter in the ranking.

For example, in Figure 1(b), only 11 of the top-50 objects have
values higher than the threshold𝑇50 = 0.76 for both 𝑋 and 𝑌 (green
region). The rest of the 39 objects in the top-50 are qualified because
one of their values (𝑋 or 𝑌 ) compensates for a lower value in the
other parameter. For these distributions, most of the remaining
objects qualify thanks to a high value of 𝑌 (36 objects, orange
region), whereas only 3 objects qualify thanks to a high value of 𝑋
(blue region). For these particular distributions of 𝑋 and 𝑌 , we see
that for 𝑘 = 50, 𝑌 dominates the ranking, despite the underlying
scoring function 𝑓 = 0.5𝑋+0.5𝑌 giving the same importance to both
𝑋 and 𝑌 . We can compute the importance of 𝑋 and 𝑌 in Figure 1(b)
for 𝑓 , as 𝐼𝑘 (𝑋 ) = (11+3)/50 = 0.28, and 𝐼𝑘 (𝑌 ) = (11+36)/50 = 0.94.
In Figure 1(c), we can see that the relative importance of 𝑋 and 𝑌 is
more balanced, with 20 objects in the green region, 19 in the orange
region, and 11 in the blue region, resulting in importance values:
𝐼50 (𝑋 ) = (20 + 11)/50 = 0.62, and 𝐼50 (𝑌 ) = (20 + 19)/50 = 0.78.
The independent uniform distributions of Figure 1(a) result in equal
importance for 𝑋 and 𝑌 𝐼50 (𝑋 ) = 𝐼50 (𝑌 ) = (8 + 34)/50 = 0.84 with

34 objects in the common green region and 8 objects each in the
orange and blue regions.

The importance metric has some limitations. First, the sum of
all parameter importance is often greater than one, making it more
difficult for decision-makers to compare the contributions of each
parameter. Furthermore, because an object can contribute to the
importance of several parameters, if it has a high value for each
of them, some top-𝑘 objects end up weighting more in the overall
importance of all parameters than others. To address this last issue
we define a new metric, participation, which divided the contribu-
tion of each object 𝑜 in the top-𝑘 among the parameters for which
its value 𝑝 (𝑜) is greater than the threshold 𝑇𝑘 :

Definition 4.6. Participation of a Parameter at 𝑘 Given a ranking
function 𝑓 , over a set of 𝑃 ranking parameters 𝑝1, ...., 𝑝𝑃 , applied to
a set of objects 𝑜 ∈ O, and a parameter-wise threshold value 𝑇𝑘𝑝 ,
let 𝑆𝑘 (𝑜) be the set of parameters such that the value 𝑝𝑖 (𝑜) ≥ 𝑇𝑘𝑝
the participation of 𝑝 at 𝑘 is then defined as 𝐴𝑘 (𝑝) as:

𝐴𝑘 (𝑝𝑖 ) =
1
|O|

∑︂
𝑜∈O

{︄
1

|𝑆𝑘 (𝑜) | 𝑖 𝑓 𝑝𝑖 ∈ 𝑆𝑘 (𝑜)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For example, in in Figure 1, objects in the green area have values
higher then 𝑇𝑘 for both 𝑋 and 𝑌 . Their contribution to the partici-
pation of 𝑋 and 𝑌 is then split among the two parameters (𝑆𝑘 = 2).
We can compute the participation of𝑋 and 𝑌 in Figure 1(b) for 𝑓 , as
𝐴𝑘 (𝑋 ) = ((11/2) + 3)/50 = 0.17, and 𝐴𝑘 (𝑌 ) = ((11/2) + 36)/50 =

0.83. Participations for 𝑋 and 𝑌 in Figures 1(a) and (c), can be simi-
larly computed. For Figure 1(c), 𝐴𝑘 (𝑋 ) = ((20/2) + 11)/50 = 0.42,
and 𝐴𝑘 (𝑌 ) = ((20/2) + 19)/50 = 0.58. For Figure 1(a), 𝐴𝑘 (𝑋 ) =

((34/2) + 8)/50 = 0.5, and 𝐴𝑘 (𝑌 ) = ((34/2) + 8)/50 = 0.5; note
that the participation metric correctly identifies that both 𝑋 and
𝑌 contribute equally to the top-𝑘 answer in Figure 1(a), but that 𝑌
contributes more, despite the weights of 𝑋 and 𝑌 being the same,
in Figures 1(b-c).

As we increase the weight of a parameter its participation in-
creases as the threshold value and its slope changes. The partic-
ipation captures the fact that different underlying distributions’
contributions respond differently to weight increases. For example,
the contribution of normal distributions respond much slower than
that uniform ones. This allows participation to accurately repre-
sent the degree to which each parameter participates in the final
decision.

However, one issue with the participation as defined above is
that it assigns some contribution to parameters as long as that
parameter value for a selected point is higher than the threshold.
In some cases, this can happen by chance, or because of some
correlation, for a parameter that is not or very trivially, involved
in the ranking. Consider again the example of Figure 1(c). Imaging
that there is a third parameter 𝑍 , distributed uniformly, involved
in a very marginal way in the ranking, so that now our function
𝑓 = 0.49𝑋 +0.49𝑌 +0.02𝑍 . Assume that this is not enough to impact
the final result and that the top-50 selected objects, and 𝑇𝑘 are the
same as in Figure 1(c). Because 𝑍 is distributed uniformly, 25% of all
objects have values above the threshold for 𝑍 . The participation of
𝑋 and𝑌 have then to be recomputed1 as:𝐴𝑘 (𝑋 ) = (((11∗0.25)/3) +
1This is an approximated computation assuming 25% of the points in each region have
values for 𝑍 above𝑇𝑘 , for illustrative purposes
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((11 ∗ 0.75)/2) + ((3 ∗ 0.25)/2) + (3 ∗ 0.75))/50 = 0.15 to account for
all sets of {X,Y,Z}, and 𝐴𝑘 (𝑌 ) = (((11 ∗ 0.25)/3) + ((11 ∗ 0.75)/2) +
((36 ∗ 0.25)/2) + (36 ∗ 0.75))/50 = 0.73. The participation of 𝑍 is
𝐴𝑘 (𝑍 ) = (((11∗0.25)/3)+ ((36∗0.25)/2)+ ((3∗0.25)/2))/50 = 0.12
(no points qualifies thanks to𝑍 alone). The participation of𝑍 , which
does not contribute directly to the selection ends up being almost
as high as that of 𝑋 because selected objects tend to also have a
high value for 𝑍 .

For this reason, for ranking functions that include parameter
weights, we introduce a weighted version of the participation met-
ric:𝑊𝐴𝑘 (𝑝) that accounts for the impact of the parameter 𝑝 in the
selection of the top-𝑘𝑜𝑏 𝑗𝑒𝑐𝑡𝑠

Definition 4.7. Weighted Ranking Function A weighted ranking
function 𝑓 (𝑃 : 𝑊 ) where 𝑃 : 𝑊 is a list of ranking parameter,
weight pairs 𝑝1 : 𝑊1, ...., 𝑝𝑃 : 𝑊𝑃 , has a well defined value for
any given set 𝑃 : 𝑊 . Where 𝑃 is a set of parameters and𝑊 is a
corresponding set of weights.

Definition 4.8. Weighted Participation of a Parameter at 𝑘 Given a
weighted ranking function 𝑓 , over a set of 𝑃 :𝑊 ranking parameter
weight pairs applied to a set of objects 𝑜 ∈ O, and a parameter-
wise threshold value 𝑇𝑘𝑝 , let 𝑆 (𝑜) be the set of parameters such
that the value 𝑝𝑖 (𝑜) ≥ 𝑇𝑘𝑝 , let 𝑆 (𝑜) : 𝑊 be the set of ranking
parameter weight pairs such that the parameter is in 𝑆 (𝑜) and
has the maximum possible (or if that is not defined than dataset
maximum) value and𝑊 is that parameter normal weight. Weighted
Participation of a Parameter at 𝑘 is then defined as:

𝐴𝑊
𝑘
(𝑝𝑖 ) =

1
|O|

∑︂
𝑜∈O

{︄
𝑓 (𝑃𝑖 ,𝑊𝑖 )
𝑓 (𝑆 (𝑜) :𝑊 ) 𝑖 𝑓 𝑝𝑖 ∈ 𝑆𝑘 (𝑜)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑆𝑊
𝑘

(𝑜) = ∑︁
𝑝 𝑗 ∈𝑆𝑘 (𝑜)𝑊𝑗 .

In our example above, the weighted participation of 𝑋 , 𝑌 and 𝑍
are𝑊𝐴𝑘 (𝑋 ) = (((11 ∗ 0.25 ∗ 0.49)/1) + ((11 ∗ 0.75 ∗ 0.49)/0.98) +
(3 ∗ 0.25 ∗ 0.49/0.51) + (3 ∗ 0.75))/50 = 0.17,𝑊𝐴𝑘 (𝑌 ) = (((11 ∗
0.25 ∗ 0.49)/1) + ((11 ∗ 0.75 ∗ 0.49)/0.98) + ((36 ∗ 0.25 ∗ 0.49)/0.51) +
(36 ∗ 0.75))/50 = 0.82,𝑊𝐴𝑘 (𝑍 ) = (((11 ∗ 0.25 ∗ 0.02)/1) + ((36 ∗
0.25 ∗ 0.02)/0.51) + ((3 ∗ 0.25 ∗ 0.02)/0.51))/50 = 0.01. These value
are very similar to that of the original two parameters scenario of
Figure 1(c), and accurately identify that𝑍 only plays a marginal role
in the selection while 𝑌 has a much more important contribution
despite having the same weight as 𝑋 in the ranking function.

The weighted participation accurately measures the fact that
parameters that are unweighted do not participate in the decision,
while a parameter with a weight of 1 will get full participation of 1.

Note that the popular points functions, and other similar func-
tions, can easily be converted to weighted-sum functions by consid-
ering the maximum points for each parameter as the weight of that
parameter. For example, School A allocates 35 points for grades, 35
points for scores, and 30 points for attendance, for a total of 100. The
corresponding weighted-sum function 0.35∗𝑔𝑟𝑎𝑑𝑒𝑠 +0.35∗𝑠𝑐𝑜𝑟𝑒𝑠 +
0.3 ∗ 𝑎𝑡𝑡𝑒𝑛𝑑𝑎𝑛𝑐𝑒 . If a student receives a 3.0 on both their Math and
ELA state tests, their points for that rubric would be 29 out of a maxi-
mum 35. If the same student has perfect grades and attendance, their
score would be: 0.35∗ 35

35 +0.35∗
29
35 +0.3∗

30
30 = 0.35+0.29+0.30 = 0.96

(96 points).

The participation metric can be used to modify the weights
of the ranking function to match with the intended behavior of
the decision maker. We presented heuristics to adjust the ranking
functions weights in [20].

5 MEASURING THE SIMILARITY OF
SELECTED OBJECTS

We now turn our focus on the analysis of the type of results that
are produced by the ranking functions. In the previous section, we
measured the contribution of each parameter towards the answer
selection. We now discuss how to measure the similarity, or di-
versity, within the selected objects as well as the disparity of the
selected answers with respect to the underlying object distribution.

The metrics presented in this section apply to the output of the
ranking process. As such they do not depend on the type of ranking
function used, and can be computed on the output of any ranking
function (monotonic not non-monotonic) or selection function.

An interesting aspect of our metrics is that they can be used
to measure the diversity and disparity of selected objects over
parameters that were not involved in the ranking function 𝑓 . So if a
school selects students based on their Math test scores and grades,
we can measure how the decision choices impacts the distribution
of Math test scores (used in the ranking), the distribution of ELA
test scores (not used in the ranking), or the ratio of boys to girls
(not used in the ranking) in the set of selected students. Our metrics
could then help decision-makers to assess the fairness and diversity
of their ranking functions.

5.1 Diversity
Measuring the diversity among a group of selected objects has been
extensively studied on recommendation systems and search results.
In both domains, users are offered a list of objects/documents that
best match their needs. A critical aspect is to provide enough vari-
ety so that objects/documents are not all similar. A typical example
is that of a web search query for “jaguar," which should ideally
return a variety of web sources on the animal, the car, the oper-
ating system, the sports team, and not have all results on one of
these domains only. Maximizing the utility, or precision, of the
results is therefore not always the best approach, as it tends to
lead to homogeneous results. Instead, recommendation systems
and search engines also focus on maximizing diversity within the
set of recommendations [6]. Many work uses various pairwise met-
rics to measure diversity [28, 36], including euclidean or cosine
distance [51, 58].

In a decision-making scenario, similar goals are often desirable.
For example, a company using a ranking function for hiring deci-
sions would be better served by selecting a mix of employees with
diverse backgrounds rather than employees who all share the same
expertise and knowledge.

In addition, the pairwise approaches to measure similarity that
are discussed above work well in settings where the number of
selected objects 𝑘 is low; a recommendation system rarely recom-
mends more than 10-15 objects [37]. However, it does not scale well
to larger selections as the computation becomes inefficient, taking
𝑂 (𝑘2) time.
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(a) Disparity vector = (0.19, 0.11)
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(b) Disparity vector = (0.07, 0.06)
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(c) Disparity vector = (0.19, 0.15)

Figure 2: Three different top-𝑘 selection scenarios. The red points are selected and the gray points are not selected. The black cross
is the centroid of the entire distribution, the blue cross is the centroid of the selected set (red points).

To alleviate this problem, we propose a diversity metric that is
inspired from the popular k-means clustering algorithm. The goal
of k-means is to minimise the square euclidian distance from the
centroids in each cluster.

We use the ratio of the distance between the selected 𝑘 objects
and their centroid with that of the whole distribution distance to its
centroid as a measure of the diversity of the selection. As we will
show experimentally in Section 6, this distance approximates well
how similar the top-𝑘 selected objects are to each other, across the
selected dimensions. To be able to compare diversity of different
selections, we use a normalization factor of |𝑂 |∑︁

𝑜∈𝑂 | |𝑄𝑂−𝑜 | | , where
𝑄𝑂 is the centroid of the whole distribution.

We then define diversity as the Normalized Centroid Distance,
as follows:

Definition 5.1. Normalized Centroid Distance Given a set of ob-
jects 𝑂 and a selection 𝐾 of 𝑘 objects in 𝑂 , let 𝑜�⃗� be the vector
represending the objects values in a set of parameters 𝑃 . Let 𝑄𝑃

𝑆
⃗

be the centroid of a set of points 𝑆 over a set of parameters 𝑃 ,
𝑄𝑃
𝑆
⃗

= 1
|𝑆 |

∑︁
𝑜∈𝑆 𝑜�⃗� we then define the Normalized Centroid Dis-

tance as:

𝐶𝑃 (𝑂,𝐾) =
|𝑂 |
|𝐾 |

∑︁
𝑜∈𝐾 | |𝑄𝑃

𝐾
⃗ − 𝑜�⃗� | |∑︁

𝑜∈𝑂 | |𝑄𝑃
𝑂
⃗ − 𝑜�⃗� | |

Figure 2 shows selected candidates (in red) from a distribution
of all candidates (in gray) plotted along two dimensions: wealth,
representing the income of the candidates, and average interview
score, representing the scores the candidates received in an admis-
sion interview. The black cross represents the centroid of the whole
set of (gray and red) candidates, and the blue cross represents the
centroid of the set of selected (red) candidates. Figure 2 shows three
different selection scenarios.

The overall centroid distance in all three figures is (the average
distance of all the grey and red points from the black cross) 0.37.
Figure 2(a) shows a relatively typical case for weighted sum func-
tions; the decision is biased toward higher values in both wealth
and interview score. This leads the points to be concentrated in
the top right quadrant and leading to a selected centroid distance
(the average distance of the red points from the blue cross) of only
0.30 and a Normalized Centroid Distance 𝐶𝑃 (𝑂,𝐾) of 0.83. Figure
2 (b) shows selected points scattered throughout the distribution,

resulting in a selected centroid distance of 0.36 and a Normalized
Centroid Distance 𝐶𝑃 (𝑂,𝐾) of 0.99. Figure2 (c) shows an extreme
case where selected points have high wealth, or interview scores,
or both. This results in a larger selected centroid distance of 0.45
and a Normalized Centroid Distance 𝐶𝑃 (𝑂,𝐾) of 1.24.

A low Normalized Centroid Distance means that the selected
objects are more similar to each other, over the set of parameters
𝑃 than the objects in the overall distribution are. In Figure2 (a) we
can see the the selected (red) objects are less spread out than the
gray objects. When 𝐶𝑃 (𝑂,𝐾) is close to 1, the selected objects are
as diverse, with respect the the parameters in 𝑃 as the underlying
distribution (Figure2 (b)). A value of 𝐶𝑃 (𝑂,𝐾) greater than 1, as in
Figure2 (c), shows selection that have larger spreads than the set of
candidates. A extreme case of a value of 𝐶𝑃 (𝑂,𝐾) equal to 0 can
happen if all the selected objects are identical along the compared
dimensions. For example, if a school only admits students with
perfect scores.

5.2 Disparity
In addition to the diversity of results within the selected objects, we
are interested in identifying how similar to the underlying distribu-
tions the selected objects are. This idea is related to “group fairness"
in rankings, which has been explored in recent work [5, 9, 57].
These work focus on designing algorithm using a fairness criteria,
maximizing some notion of utility while satisfying a minimum fair-
ness requirement. Our approach differs from theirs in that we are
interested in defining a metric that allows decision-makers, who
are often not data or statistics experts, to quickly evaluate whether
their ranking selection function results in some disparate impacts
on some subsets of the parameters dimensions. Our disparity metric
can they be used to correct, or improve, the ranking function, or
to assess the impact of some modification (e.g., removing the SAT
admission requirement) on the disparity of the selected objects.

We define disparity as the following vector:

Definition 5.2. Disparity Given a set of 𝑂 objects and a selection
𝐾 of k objects in o, Let 𝑄𝑃

𝑂
⃗ be the centroid of a 𝑂 over a set of

parameters 𝑃 as defined above, and let 𝑄𝑃
𝐾
⃗ be the centroid of the 𝐾

over the same set of parameters. We define the disparity 𝑄𝑃
𝐷
⃗ as the

|𝑝 | dimensional disparity vector where 𝑄𝑃
𝐷
⃗ ≡ 𝑄𝑃

𝐾
⃗ −𝑄𝑃

𝑂
⃗ .
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The disparity represents the vector from the black cross to the
blue cross in Figure 2. The norm of this vector yields a scalar mea-
sure of the size of this difference and has values of 0.22, 0.09, and
0.24 respectively for Figures 2(a),(b), and (c), showing that the se-
lection of Figure 2(b) is closer to the underlying distribution than
the other two selection. Each dimension of the vector measures
the size and direction of the difference, or bias in the selection, for
that dimension. The vector values for Figures 2(a),(b), and (c) are
(0.19,0.11), (0.07,0.06), and (0.19,0.11) respectively, which means that
all three selections select candidates with higher interview scores
and wealth than would be expected from a random selection. The
selection in Figure 2(c) has the highest wealth disparity.

Our disparity metric (as well as our other metrics) can be used in
conjunction with recent work on fairness. For instance, Asudeh et.
al. [5] design algorithms for fair rankings using a fairness oracle. A
possibility is to use our disparity vectors, using thresholds for each
dimensions, or for the norm, as the binary fair/unfair assessment. A
strength of our disparity metric is that it can separate the disparity
in each dimensions, including those not used in the actual ranking
selection. Our metrics can also be included in ranking analysis
systems such as [56].

6 EXPERIMENTAL EVALUATION
6.1 Experimental Settings
All experiments were performed using Python 3.6.

6.1.1 Synthetic Data Sets. We generated synthetic uncorrelated
data distributions using Numpy. Unless otherwise noted, we per-
formed our experiments on data drawn from the four following
distributions: (1) 𝑝1 follows a uniform distribution in [0, 1]; (2) 𝑝2
follows a Normal distribution (𝜇 = 0.5, 𝜎 = 0.15); (3) 𝑝3 follows a
Normal distribution (𝜇 = 0.5, 𝜎 = 0.05); (4) 𝑝4 follows a Normal
distribution (𝜇 = 0.75, 𝜎 = 0.05).

We explore various weighted functions and selection sizes. Our
default parameters are: Size of the distribution 𝑁 : 10,000; Number of
selected objects 𝑘 : 500; Number of selection parameters 𝑝 : 4, with un-
derlying distribution as detailed above; Ranking function 𝑓 : We use
a weighted-sum scoring function with 4 equi-weighted parameters.

6.1.2 NYC High School Data. We evaluate our metrics using real
student data from NYC high schools, which we received through
a NYC Data Request [38], and for which we have secured IRB
approval.

The data used in this paper consists of the grades, test scores,
absences, and demographics of around 80,000 7th graders each for
the 2016-2017 and 2017-2018 academic years. NYC high schools use
the admission matching system described in Section 2 when stu-
dents are in the 8th grade; the various parameters used for ranking
students therefore are from their 7th grade report cards. We do not
have information about latenesses, when necessary we used the
number of absences as a proxy for lateness.

We consider the admission selection process that two real NYC
high schools used for admission in the years 2017 and 2018 (on
students from the data sets described above). School A uses the
point-based ranking system, described earlier in this paper in Ta-
ble 1. School B, also a real NYC school, uses aweighted-sum function
𝑓 = 0.55 ∗𝐺𝑃𝐴 + 0.45 ∗𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑠 , where 𝐺𝑃𝐴 is the normalized

average of the students’ math, ELA, science, and social studies
grades, and 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑠 is the normalized average of the math and
ELA state test scores.

Both schools are located in a NYC district, which includes around
2,500 students, where students come from higher income families
than the overall NYC student population and have typically higher
grades and scores. Because students tend to apply to schools close to
their homes, and because someNYC schools give some geographical
priority to students (by considering them in different admission
priority groups) we also report on our metrics at the district level,
in addition to the city level. We apply our metrics on the whole
set of students, as we do not have specific information as to who
applied to the schools, how they ranked the school in the matching
process, and which offers the students received. For conciseness, we
only report on the 2016-2017 dataset when results for both datasets
are similar.

6.1.3 Decathlon Data. We also evaluate our metrics on another
real-data set over a different domain (sport). We retrieved data
from several Decathlon sporting competitions [54]: the Olympics
from 2000-2016, the Decastar from 2006-2019, the IAAF World
Athletics Championships from 1991-2019, the Hypo-Meeting from
2006-2019, and the Multistars from 2010-2019. The dataset contains
1537 records, each containing the points that an athlete earned for
each of the ten events in one competition, as well as their overall
score and biographical information. For each athlete we were able
to extract their birthdate, performance and country of origin.

Decathlon is scored using a point ranking function where each
of the ten events earns the athlete a number of points, with a
calculation specific to each event [24]. The points from all ten
events are then summed up to produce the final score of the athlete
for that competition.

6.2 Experimental Results
6.2.1 Synthetic Data Experiments.

Weighted Participation. Figure 3 shows how our proposedweight-
ed participation changes as we increase the weight of each param-
eter in the ranking function. In Figure 3(b) and (d) we see that
low-means distributions do not participate in the selection unless
they have a high weight. This is particularly true for 𝑝2 which has
a low mean and a small standard deviation. In contrast, both 𝑝1 and
𝑝4 quickly account for a high weighted participation as they have a
relatively large number of high-scored values. When all parameters
are weighted equally (vertical line, same values for all four subfig-
ures), there is a significant difference in the participation of each
parameter to the selection, based on its underlying distribution and
the probability it produced values above the threshold 𝑇𝑘 .

Figure 5 shows how the weighted participation metrics vary, for
an equi-weighted ranking function over four parameters, each with
a different underlying distribution. First, despite the fact that the
parameters are weighted equally in the ranking function, their par-
ticipation to the selection is very different. The parameters whose
distributions follow a uniform distribution 𝑝1, or a normal distri-
bution with a high mean 𝑝4, contribute more to the selection, as
they produce more points with high values. In contrast, the param-
eters that follow a normal distribution with a lower mean, 𝑝2 and
𝑝3 contribute much less than their weight in 𝑓 , especially when
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𝑝3 (Normal distribution,
𝜇 = 0.5, 𝜎 = 0.15)
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Figure 3: Weighted Participation of each parameter 𝑝 as a function of the weight of each parameter 𝑃 . For each plot, we vary
the weight𝑊𝑖 of one parameter 𝑝𝑖 , the other parameters weights are then computed as 1−𝑊𝑖
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(b) Varying the weight of
𝑝2 (Normal distribution,
𝜇 = 0.5, 𝜎 = 0.05)
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(c) Varying the weight of
𝑝3 (Normal distribution,
𝜇 = 0.5, 𝜎 = 0.15)
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Figure 4: Distance Metrics: Euclidean Distance, Centroid Distance, and Normalized Centroid Distance (Diversity) as a function
of the weight of each parameter 𝑃 . For each plot, we vary the weight𝑊𝑖 of one parameter 𝑝𝑖 , the other parameters weights are
then computed as 1−𝑊𝑖
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Figure 5: Weighted
Participation as a
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Figure 6: Centroid and Nor-
malized Centroid Distance
(Diversity) as a function of 𝑘

their standard deviation is low, as all the values for the parameter
are similar, and relatively low. As we increase 𝑘 the behavior vary
slightly, depending on which distribution has more values above𝑇𝑘 ,
and would eventually converge to 𝐴𝑊

𝑁
(𝑝𝑖 ) = 0.25 for all 𝑝𝑖 when

𝑘 = 𝑁 .

Diversity. Figure 4 shows how our proposed Diversity metrics
(Normalized Centroid Distance and Centroid Distance) vary as we
change the weights of the the parameters compared to the existing
Euclidean distance. We vary each parameter weight separately to

show how each individually account for the diversity of the selec-
tion. Much of the diversity in the selected objects comes from the
uniform distribution since it is more spread than other distributions.
This explains why, across all the plots, diversity is highest when
the weight of the uniform distribution approaches 0. Since all the
parameters contribute to the diversity, the point indicated by the
light blue line where they are all equal is close to a local minimum
as the resulting selected objects tend to have high values in all
parameters. We see that the Centroid distance closely approximate
the pairwise Euclidean distance, justifying our choice to select it,
rather than the𝑂 (𝑘2) Euclidean distance. The normalization factor
of our Normalized Centroid Distance scales it to be a more useful
an expressive metric of diversity.

Figure 6 shows how the Normalized Centroid distance and Cen-
troid distance vary as we raise k from 1% to 50% of 𝑁 . By definition,
when k is 100%, the normalized centroid distance is 1 since the
two distributions become identical. This makes the normalized
version of the metric more insightful as it expresses some compar-
ison between the selected 𝑘 objects diversity and the underlying
distribution. It also shows nicely how selecting more objects in-
creases diversity; an interesting result in applications where 𝑘 is
not bounded.
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𝑝3 (Normal distribution,
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Figure 7: Disparity as a function of the weight of each parameter 𝑃 . For each plot, we vary the weight𝑊𝑖 of one parameter 𝑝𝑖 ,
the other parameters weights are then computed as 1−𝑊𝑖

3 .

School A (Points) Math Score ELA Score Grades Absences
City N=60,865 Floor 17.5 points 17.5 points 35.0 points 30.0 points
k = 304 (0.5%) Weighted Participation 0.175 0.175 0.0875 0.0875 0.0875 0.0875 0.300
City N=60,865 Floor 14.5 points 14.5 points 32.0 points 27.0 points
k = 3043 (5%) Weighted Participation 0.181 0.157 0.076 0.081 0.082 0.082 0.340
District N=2,376 Floor 15.5 points 15.5 points 33.0 points 28.0 points
k = 238 (10%) Weighted Participation 0.180 0.165 0.083 0.083 0.084 0.086 0.320
School B (Weighted Sum) Math Score ELA Score Grades 𝑇𝑘
City N=61,127 Floor 3.95 3.95 94.98 97.2375
k = 306 (0.5%) Weighted Participation 0.190 0.096 0.714
City N=61,127 Floor 3.28 3.28 88.89 93.8875
k = 3,056 (5%) Weighted Participation 0.150 0.106 0.745
District N=2,378 Floor 3.47 3.47 90.61 94.8375
k = 238 (10%) Weighted Participation 0.204 0.090 0.706

Table 2: Floor and Weighted Participation for the NYC high schools data

Disparity. Figure 7 shows disparity on the parameters used for
ranking on our synthetic dataset. Since all the parameters are posi-
tively weighted, the disparity never gets far bellow 0. In addition,
in Figure 7(a) we see that as we increase the weight of the uniform
distribution, we rapidly approach 0.5 disparity. This can easily be
explained by the fact that the best objects in for 𝑝1 (uniform dis-
tribution) are likely to be close to 1, and the mean of the entire
distribution is 0.5. Figure 7 (b-d) are especially interesting, where
we see the impact of the standard deviation on the disparity. When
𝑝2 (resp. 𝑝4) dominates the selection (has a high weight𝑊2), objects
are selected in the top-5% of 𝑝2, and tend to be very close to the
mean of the distribution itself, leading to small disparity scores.

6.2.2 Real-data experiments: NYC School Admissions. We now use
our metrics to analyse the behavior of school admission ranking
functions in the NYC data set. The floor and weighted participation
of the parameters used in the ranking functions of the two Schools
A and B are given in Table 2 for three different scenarios per school:
selecting the top 0.5% and top 5% of students citywide, and selecting
the top 10% of students district-wide. Because the data set has a
lot of missing information (e.g., some students leave the school
system, some opt out of tests) we only report on the ranking of 𝑁
students who have values for all the ranking function parameters.

This number is slightly different for School A and School B as their
ranking functions use a different set of parameters.

Table 2 shows that the ranking function of school B offers oppor-
tunities for students to compensate a (relatively) lower test score or
grade with a higher grade or test score in another subject and still
qualify to be selected, whereas the coarse point ranking of School
A, and the fact that it penalizes for every less-than-excellent grade
or score but does not reward extremely high grades and scores,
does not allow for much variation. In fact, in the first scenario, only
students with perfect scores on the point scale are selected.

While the participation of each parameters for School A is gen-
erally close to that of their relative points in the ranking function,
there are interesting variations for School B, whose weighted par-
ticipation of grades (above 70%) exceeds significantly the weight
the decision-maker had assigned to grades (55%). For both schools,
the Math scores account for more than the ELA scores, despite their
weights (or points) being equal in the school rubrics.

The disparity vector for the ranking functions used by Schools A
and B is given in Table 3 for the three scenarios highlighted above.
Note that while the schools have around 100 available seats each,
because the school admission is handled by a matching algorithm
(Section 2), schools typically go deeper in their ranked list.

649



School A (Points) GPA Math Score ELA Score Low-Income Sex ELL Special Ed norm
City N=60,865; k = 304 (0.5%) 0.167 0.348 0.293 -0.328 0.145 -0.107 -0.195 0.643
City N=60,865; k = 3043 (5%) 0.154 0.332 0.274 -0.243 0.121 -0.106 -0.196 0.576
District N=2,376; k = 238 (10%) 0.084 0.177 0.165 -0.167 0.124 -0.036 -0.173 0.375
School B (Weighted Sum) GPA Math Score ELA Score Low-Income Sex ELL Special Ed norm
City N=61,127; k = 306 (0.5%) 0.177 0.377 0.329 -0.354 0.191 -0.107 -0.204 0.705
City N=61,127; k = 3,056(5%) 0.160 0.346 0.294 -0.313 0.124 -0.107 -0.196 0.629
District N=2,378; k = 238 (10%) 0.088 0.189 0.181 -0.222 0.179 -0.036 -0.174 0.435

Table 3: Disparity vectors for the NYC high schools data
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Figure 8: Participation of the ten Decathlon events on
the score as a function of 𝑘 .

A first observation is that both schools select students with
higher GPA and scores than the student population as a whole
(disparity score between 0.084 and 0.377). This is not surprising as
both schools use grades and scores in their rankings. The disparity is
more important when selecting from the citywide population, than
when only students from the district are selected as that particular
district has a higher ratio of high-performing students than the city.

When looking at demographics dimensions, which are not in-
volved in the rankings, we can see some interesting disparities: both
schools select fewer low-income, English-language learners, and
special education students than are present in the candidate popu-
lations (school or district). The disparity is especially marked for
low-income. This is in part because a large percentage of NYC pub-
lic school students qualify as low income (around 70%). In contrast,
while the schools select little to no ELL students in all scenarios,
these represent approximately 11% of the city population, and 4%
of the district population, limiting the maximum potential disparity
for that dimension to these values. Interestingly, both schools select
more girls than boys (in our settings, a positive disparity value
means more girls are selected compared to their proportion in the
underlying data).

Finally, the norm column shows the norm of the vector, a measure
of the overall disparity over all the columns of Table 3. Both schools
selections are more disparate citywide than district-wide, which
can be explained by the fact that the district has more students
with high test scores and grades than the city, the selection of
students from the district is then more similar to the underlying
set of candidates.

6.2.3 Real-data experiments: Decathlon Competitions. In Figure 8,
we look at how each of the ten decathlon event participates in the
final scores of the top-performers. We see that the 110m hurdles

event has the largest impact, regardless of 𝑘 , as it is the event
with the widest range of performances. At the very top-level, the
fast running events (110m hurdles, 400m, 100m and long jump)
dominate the scoring. In contrast, shot put and 1500m have a very
low participation, as athletes tend to have similar scores in these.
Our results are consistent with recent analysis of decathlon scoring
in the news, which showed that running events have a larger impact
on the outcome of the competition [19].
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Figure 9: Diversity for
NYC Schools and Decathlon
datasets as a function of 𝑘 .
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a function of 𝑘
(School A,city-wide)

Figures 9 and 11 show the diversity and disparity measures as
a function of 𝑘 for both the NYC Schools and Decathlon datasets.
We report on the metrics behavior from selecting the best object,
according to the ranking function, to selecting half of the dataset.

In Figure 9, we see how the diversity of the selected items evolves
as the number of selected items increased. For this experiment,
diversity is computed with respect to the parameters involved in
the ranking function, so we are measuring how diverse selected
students are in terms of grades and scores, and athletes are in terms
of their individual events performances. By definition, our diversity
metric converges to 1 as more of the data set is selected. Comparing
the behavior of diversity for the two scenario is interesting: the
diversity of athletes stays pretty low, even as we select half the
data set, suggesting that most strong athletes have similar profiles
(and that a few low-performing athletes have very different results).
In contrast, while the diversity of selected students is low for low
values of 𝑘 (the best students will excel in every dimension), as
more students are selected, we see a greater diversity of profiles.

Figure 11 shows the disparity of the selection, based on attributes
not involved in the ranking, for both real-world scenarios. In Fig-
ure 11(a), we compare the disparity of School A and B admission
functions on the sex, low-income status (poverty), and disability
status of the selected students (citywide data). We see that both
schools have similar disparities, which become less marked as more
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(a) Disparity, measured on sex, students
with disabilities, and poverty parameters
on School A (solid line) and School B (dot-
ted line) (city-wide data).
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(b) Disparity, measured on sex, students
with disabilities, and poverty parameters
on School A in 2017-2018 (solid line) and
2016-2017 (dotted line) (district-wide data).
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(c) Disparity, measured on age and
geographic provenance on the
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Figure 11: Disparity (based as non-ranking parameters) for NYC Schools and Decathlon datasets as a function of 𝑘 .

students are selected. In Figure 11(b), we compare the disparity
of School A between the two school years. As we noted before,
School A tends to mostly select students from its district, so we
only consider district students in this plot. We see that the dispar-
ity is similar to that of the citywide dataset, and while there are
small year-to-year variations, the patterns of disparities stay the
same. Finally. Figure 11(c) shows the disparity on the Decathlon
data, where we looked at the geographical provenance and age
of the participants. The data shows that high-performers are dis-
proportionally European, with an age slightly older than average.
North American athletes are under-represented. For all three plots
of Figure 11, we report on the overall disparity (Norm).

6.2.4 Comparison with Existing Disparity Metrics. We compared
our disparity metric with two other metrics used to identify dispro-
portionality in the outcome of decision-making processes. The first
metric is the popular impact ratio [59] shown in Figure 10 for the
School A function on citywide data, as a function of 𝑘 . Impact ratio
is a simple ratio of the probability of an object of the protected class
being selected to the probability of an object not in the protected
class being selected. High values are desirable; an impact ratio of 1
means there is no disparity. In practice, and in legal applications,
a threshold is set (e.g., 0.8) under which the decision is said to be
biased. An issue with impact ratio, is that it treats all parameters
equally, regardless of their incidence in the data set. Therefore, it
tends to overstate the bias towards protected classes which have low
numbers of objects, such as students with disabilities in our dataset.
In contrast, our measure takes into account how many students are
impacted by the disparity.

A more recent metric used in ML systems is the Normalized
discounted KL-divergence. This metric uses a logarithmic discount
measure to express the likelihood that a complete ranking is fair [55]
KL-divergence is a very non-linear metric, something that is slightly
more fair can have orders of magnitude less KL-divergence. While
this is a very desirable trait for the domains for which themetric was
designed, learning fair rankings, it makes it less human-readable,
a number that diverges quickly will not allow them to accurately
gauge how different two unfairness values are. For example, on our
School A dataset for the entire city, the boy-girl disproportionality

is about half that of the low-income disproportionality. This is
reflected by a Disparity value which is around twice as large in
absolute value (0.12 vs. -0.33 when k=304 or 0.12 vs -0.24 when
k=3042) (Table 3). The KL-divergence for the same setting, however,
is ten times as small for sex as it is for low-income (0.03 vs 0.23),
which does not accurately identify the disparity when read by
decision-makers and stakeholders.

6.2.5 Discussions with real users. We have been collaborating with
one NYC School District as part of their NY State Integration
Plan [39]. After numerous discussions with school administrators
on their design process for their school ranking functions, a few
things became clear: (1) administrators often have no idea of the
distribution of students’ grades and scores and make ad hoc deci-
sions that seem reasonable to them (“I just give the same weight
to Math and ELA"), (2) they would welcome a system that would
show them the impact of their choices; we presented them with
a protoype interface and the response was enthusiastic (“This is
exactly what we have been asking for for years!"), (3) they are very
aware of the disproportionate impacts of their decisions, but are at
a loss as to how to address them. We plan to develop a full interface,
using the metrics proposed in this paper to provide explanations to
school administrators.
7 CONCLUSIONS
We proposed a set of metrics to explain the expected behaviors of
ranking processes. Our goal is to make ranking decision-processes
more transparent and explainable, both for decision-makers and for
the entities being ranked, especially in the context of public policy
decision systems. Our metrics provide information to decision-
makers so that they can understand the impact of their ranking
choices depending on the underlying distribution of data.

We performed experiments on synthetic data sets to study the
behavior of our metrics, and analysed real ranking decision pro-
cesses. We showed that the contribution of each parameters in the
ranking selection does not always match the weight, or the number
of points, the decision-maker had allocated to it. In addition, our
proposed disparity metric can be used to measure bias of decisions
on multiple data dimensions.

651



REFERENCES
[1] A. Abdulkadiroğlu, P. A. Pathak, and A. E. Roth. The new york city high school

match. American Economic Review, 95(2):364–367, 2005.
[2] A. Abdulkadiroğlu and T. Sönmez. School choice: A mechanism design approach.

American economic review, 93(3):729–747, 2003.
[3] Affordable housing online. https://affordablehousingonline.com/housing-

help/What-Does-It-Mean-Preferences.
[4] K. F. Ajayi, W. H. Friedman, and A. M. Lucas. The importance of information

targeting for school choice. American Economic Review, 107(5):638–43, 2017.
[5] A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das. Designing fair ranking

schemes. In Proceedings of the 2019 International Conference on Management of
Data, pages 1259–1276, 2019.

[6] K. Bradley and B. Smyth. Improving recommendation diversity. In Proceedings
of the Twelfth Irish Conference on Artificial Intelligence and Cognitive Science,
Maynooth, Ireland, pages 85–94. Citeseer, 2001.

[7] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-
accessible databases. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 369–380. IEEE, 2002.

[8] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Technical
report, June 2010.

[9] L. E. Celis, D. Straszak, and N. K. Vishnoi. Ranking with fairness constraints. In
45th International Colloquium on Automata, Languages, and Programming (ICALP
2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[10] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection queries over
multimedia repositories. IEEE Transactions on Knowledge and Data Engineering,
16(8):992–1009, 2004.

[11] S. B. Cohen, E. Ruppin, and G. Dror. Feature selection based on the shapley value.
In IJCAI, volume 5, pages 665–670, 2005.

[12] S. R. Cohodes, S. Corcoran, J. Jennings, and C. Sattin-Bajaj. NYC High School
Admissions Study, 2017. http://www.nychighschooladmissionstudy.com.

[13] M. G. Core, H. C. Lane, M. Van Lent, D. Gomboc, S. Solomon, and M. Rosenberg.
Building explainable artificial intelligence systems. In AAAI, pages 1766–1773,
2006.

[14] V. Dignum. Ethics in artificial intelligence: introduction to the special issue.
Ethics and Information Technology, 20(1):1–3, Mar 2018.

[15] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM Journal on
discrete mathematics, 17(1):134–160, 2003.

[16] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.
Journal of computer and system sciences, 66(4):614–656, 2003.

[17] ACM Conference on Fairness, Accountability, and Transparency.
https://facctconference.org/.

[18] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Analysis: State
of the Art Surveys. International Series in Operations Research & Management
Science. Springer, 2005.

[19] FiveThirtyEight. The scoring for the decathlon and heptathlon favors run-
ning over throwing. https://fivethirtyeight.com/features/the-scoring-for-the-
decathlon-and-heptathlon-favors-running-over-throwing/.

[20] A. Gale and A. Marian. Metrics for explainable ranking functions. In Proceedings
of the 2nd International Workshop on ExplainAble Recommendation and Search
(EARS 2019), 2019.

[21] D. Gale and L. S. Shapley. College admissions and the stability of marriage. The
American Mathematical Monthly, 69(1):9–15, 1962.

[22] B. Goodman and S. Flaxman. European union regulations on algorithmic decision-
making and a “right to explanation”. AI magazine, 38(3):50–57, 2017.

[23] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing
techniques in relational database systems. ACM Computing Surveys (CSUR),
40(4):11, 2008.

[24] J. Jablonsky. Multicriteria analysis of classification in athletic decathlon. Multiple
Criteria Decision Making, 7:112–120, 2012.

[25] A. Jahan and K. L. Edwards. A state-of-the-art survey on the influence of nor-
malization techniques in ranking: Improving the materials selection process in
engineering design. Materials & Design (1980-2015), 65:335–342, 2015.

[26] M. G. Kendall. Rank correlation methods. 1948.
[27] J. A. Kroll, S. Barocas, E. W. Felten, J. R. Reidenberg, D. G. Robinson, and H. Yu.

Accountable algorithms. U. Pa. L. Rev., 165:633, 2016.
[28] M. Kunaver and T. Požrl. Diversity in recommender systems–a survey. Knowledge-

Based Systems, 123:154–162, 2017.
[29] H. Li. A short introduction to learning to rank. IEICE TRANSACTIONS on

Information and Systems, 94(10):1854–1862, 2011.
[30] Z. C. Lipton. The mythos of model interpretability. Communications of the ACM,

61(10):36–43, 2018.

[31] T.-Y. Liu et al. Learning to rank for information retrieval. Foundations and Trends®
in Information Retrieval, 3(3):225–331, 2009.

[32] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[33] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-
accessible databases. ACM Transactions on Database Systems (TODS), 29(2):319–
362, 2004.

[34] T. Miller. Explanation in artificial intelligence: Insights from the social sciences.
Artificial Intelligence, 267:1–38, 2019.

[35] M. Mitchell, D. Baker, N. Moorosi, E. Denton, B. Hutchinson, A. Hanna, T. Gebru,
and J. Morgenstern. Diversity and inclusion metrics in subset selection. In
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pages 117–
123, 2020.

[36] J. Möller, D. Trilling, N. Helberger, and B. van Es. Do not blame it on the algorithm:
an empirical assessment of multiple recommender systems and their impact on
content diversity. Information, Communication & Society, 21(7):959–977, 2018.

[37] T. T. Nguyen, P.-M. Hui, F. M. Harper, L. Terveen, and J. A. Konstan. Exploring
the filter bubble: the effect of using recommender systems on content diversity. In
Proceedings of the 23rd international conference on World wide web, pages 677–686,
2014.

[38] NYC DOE. Doing research in or about new york city public schools.
https://infohub.nyced.org/reports-and-policies/research/doing-research-in-
new-york-city-public-schools.

[39] NY State Integration Plan NYCD2. https://www.district2nyc.org/nysip.html.
[40] N. OpenData. Nyc opendata - education.

https://data.cityofnewyork.us/browse?category=Education.
[41] F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-

armed bandits. In Proceedings of the 25th international conference on Machine
learning, pages 784–791. ACM, 2008.

[42] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.
Information processing & management, 24(5):513–523, 1988.

[43] M. A. Soliman, I. F. Ilyas, D. Martinenghi, and M. Tagliasacchi. Ranking with
uncertain scoring functions: semantics and sensitivity measures. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data, pages
805–816. ACM, 2011.

[44] C. Spearman. The proof and measurement of association between two things.
The American journal of psychology, 15(1):72–101, 1904.

[45] N. State Senate. Assembly bill a8556d.
https://www.nysenate.gov//legislation/bills/2013/A8556.

[46] J. Stoyanovich, S. Abiteboul, and G. Miklau. Data, responsibly: Fairness, neutrality
and transparency in data analysis. In International Conference on Extending
Database Technology, 2016.

[47] M. ter Hoeve, A. Schuth, D. Odijk, and M. de Rijke. Faithfully explaining rankings
in a news recommender system. arXiv preprint arXiv:1805.05447, 2018.

[48] C. Tofallis. Add or multiply? a tutorial on ranking and choosing with multiple
criteria. INFORMS Transactions on Education, 14(3):109–119, 2014.

[49] J. Torresen. A review of future and ethical perspectives of robotics and ai. Frontiers
in Robotics and AI, 4:75, 2018.

[50] US News College Rankings. https://www.usnews.com/best-colleges.
[51] S. Vargas and P. Castells. Rank and relevance in novelty and diversity metrics for

recommender systems. In Proceedings of the fifth ACM conference on Recommender
systems, pages 109–116, 2011.

[52] M. Velasquez and P. T. Hester. An analysis of multi-criteria decision making
methods. International Journal of Operations Research, 10(2):56–66, 2013.

[53] L. S. Whitmore, A. George, and C. M. Hudson. Explicating feature contribution
using random forest proximity distances. arXiv preprint arXiv:1807.06572, 2018.

[54] World athletics. https://www.worldathletics.org/.
[55] K. Yang and J. Stoyanovich. Measuring fairness in ranked outputs. In Proceed-

ings of the 29th International Conference on Scientific and Statistical Database
Management, page 22. ACM, 2017.

[56] K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish, and G. Miklau. A
nutritional label for rankings. In Proceedings of the 2018 International Conference
on Management of Data, pages 1773–1776. ACM, 2018.

[57] M. Zehlike, F. Bonchi, C. Castillo, S. Hajian, M. Megahed, and R. Baeza-Yates. Fa*
ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, pages 1569–1578, 2017.

[58] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. Drn: A deep
reinforcement learning framework for news recommendation. In Proceedings of
the 2018 World Wide Web Conference, pages 167–176, 2018.
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