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ABSTRACT
Data processing pipelines that are designed to clean, transform
and alter data in preparation for learning predictive models, have
an impact on those models’ accuracy and performance, as well on
other properties, such as model fairness. It is therefore important to
provide developers with the means to gain an in-depth understand-
ing of how the pipeline steps affect the data, from the raw input
to training sets ready to be used for learning. While other efforts
track creation and changes of pipelines of relational operators, in
this work we analyze the typical operations of data preparation
within a machine learning process, and provide infrastructure for
generating very granular provenance records from it, at the level
of individual elements within a dataset. Our contributions include:
(i) the formal definition of a core set of preprocessing operators,
and the definition of provenance patterns for each of them, and
(ii) a prototype implementation of an application-level provenance
capture library that works alongside Python. We report on prove-
nance processing and storage overhead and scalability experiments,
carried out over both real ML benchmark pipelines and over TCP-
DI, and show how the resulting provenance can be used to answer
a suite of provenance benchmark queries that underpin some of the
developers’ debugging questions, as expressed on the Data Science
Stack Exchange.
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1 INTRODUCTION
Dataset selection and data wrangling pipelines are integral to ap-
plied Data Science workflows. These typically culminate in the
generation of predictive models through training, for a broad range
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of data types and application domains. A number of critical choices
are made when these pipelines are designed, starting with the
choice of which datasets to include or exclude, how these should be
merged [18], and which transformations are required to produce
a viable training set, given a choice of target learning algorithms.
The main intended consequence of these transformation pipelines
is to optimise the predictive performance and generalisation char-
acteristics of the models that are derived from the ground data.
There are however also un-intended consequences, as these trans-
formations alter the representation of the domain that the learning
algorithms generalise from, and they may remove or inadvertently
introduce new bias in the data [11]. In turn, this may reflect on
non-performance properties of the models, such as their fairness.
Fairness, formally defined in terms of statistical properties of the
model’s predictions [29], broadly refers to the capability of a model
to ensure that its predictions are not affected by an individual be-
longing to one of the groups defined by some sensitive attribute(s),
such as sex, ethnicity, income band, etc.
Motivation. Fair models are also perceived as more trustworthy,
an important feature at a time when machine learning models are
increasingly used to support and complement human expert judg-
ment, in areas where decisions have consequences on individuals
as well as on businesses. Substantial recent research has produced
techniques for explanation using: counterfactuals [27], local expla-
nations [40], data [19] and meta-models [2]. While these techniques
focus primarily on the model itself, relatively little work has been
done into trying to explain models in terms of the transformations
that occur before the data is used for learning. In this work, we
enable the explanation on the effect of each transformation in a
pre-processing pipeline on the data that is ultimately fed into a
model. Specifically, we have developed a formal model and practical
techniques for recording data derivations at the level of the atomic
elements in the dataset, for a general class of data transformation
operators. These derivations are a form of data provenance, and
are expressed using the PROV data model [26], a standard and a
widely adopted ontology. Data derivations form a corpus of graph-
structured metadata that can be queried as a preliminary step to
support user questions about model properties.
Problem scope.We consider transformations that apply to com-
monly used tabular or relational datasets and across application
domains.1 These steps have been systematically enumerated in

1However, we are not going to consider more specialised data pre-processing steps
that may apply to data types such as video, audio, images, etc.
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multiple reviews, see eg. [10, 23] and include, among others: fea-
ture selection, engineering of new features; imputation of missing
values, or listwise deletion (excluding an entire record if data is
missing on any variable for that record); downsampling or upsam-
pling of data subsets in order to achieve better balance, typically
on the class labels (for classification tasks) or on the distribution of
the outcome variable (for regression tasks); outlier detection and
removal; smoothing and normalisation; de-duplication, as well as
steps that preserve the original information but are required by
some algorithms, such as “one-hot” encoding of categorical vari-
ables. A complex pipelinemay include some or all of these steps, and
different techniques, algorithms, and choice of algorithm-specific
parameters may be available for each of them. These are often
grounded in established literature but variations can be created
by data scientists to suit specific needs. We consider the space of
all configured pipelines that can potentially be composed out of
these operators, and we focus on relational datasets, which are
arguably the most common data structures in popular analytics-
friendly scripting languages like R, Spark, and Python (where they
are called dataframes).
Overview of the approach. Firstly, we propose a formalisation
and categorisation of a core set of these operators. Then, with each
of those operators we associate a provenance pattern that describes
the effect of the operator on the data at the appropriate level of
detail, i.e., on individual dataframe elements, columns, rows, or
collections of those. Effectively, the provenance patterns defined
in this work for well-defined data science operators play a sim-
ilar role to that of provenance polynomials [13], i.e., annotations
that are associated to relational algebra operators to describe the
fine-grained provenance of the result of relational as well as linear
algebra operators [47, 48]. We then associate a provenance function
pfo () to each operator o, which generates a provenance document
pfo (𝐷) when a dataset 𝐷 is processed using o. The document is
an instance of the pattern associated with o. Provenance functions
are implemented as part of a python module. Collecting all the
provenance documents from each operator’s execution results in
a seamless, end-to-end provenance document that contains the
detailed history of each dataset element in the final training set,
including their creation (e.g. as a new derived feature), transforma-
tion (value imputation, for example) and possibly deletion (e.g., by
feature selection, removal of null values).
Contributions. Our contributions can be summarised as follows.

• A formalisation and categorisation of a core set of operators
for data reduction, augmentation, and transformation, where
we show how common data pre-processing pipelines can be
expressed as a composition of these operators, described in
Section 4;
• An application-level provenance capture facility for Python,
underpinned by the formal model, backed by a MongoDB
database used as a provenance store, and discussed in Sec-
tion 5;
• A validation of the query capabilities of the resulting gran-
ular provenance, using a collection of machine learning
datasets using real data pre-processing pipelines, to show
that using the resulting provenance we can successfully an-
swer a suite of benchmark provenance queries. We then

further tested these queries on real questions asked on the
Data Science Stack Exchange2 for machine learning pipelines
in Section 6.1.
• An experimental analysis of the scalability properties of the
facility. We show that while the overall provenance docu-
ment can be arbitrarily large, it is created incrementally in a
persistent data store, making the entire process scalable in
the number of operators. We run extensive experiments on a
synthetic TPC-DI dataset at multiple scales [37], and report
on the time and space overhead of using the provenance
functions in Section 6.2;

2 RELATEDWORK
Established techniques and tools are available to generate prove-
nance, and provenance polynomials in particular, through query
instrumentation, however these operate in a relational database
setting and assume that queries use relational operators [3, 12, 30].
While we show how some of the pipeline operators considered in
this work map to relational algebra, this is not true for all of them,
so we prefer to avoid techniques that are tightly linked to SQL or
to first-order queries [20] as these would preclude other types of
operators from being included in the future. We therefore consider
this an unwise strategy in an “open world” of data pre-processing
operators, consider e.g. one-hot and other kinds of categorical data
encodings. We also note that tools that operate on a database back-
end, like GProm [30], Smoke [38] and older ones like Post-it [6] for
provenance capture cannot be used in our setting. Interestingly,
extensions to the polynomials approach have been proposed to de-
scribe the provenance of certain linear algebra operations, such as
matrix decomposition and tensor-product construction [48]. While
these can potentially be useful, it is a partially developed theory
with limited and specialised applicability.

Moving beyond relational data provenance, capturing prove-
nance within scripts is also not new, but efforts have mostly fo-
cused on the provenance of script definition, deployment, and ex-
ecution [35]. Specifically, a number of tools are available to help
developers build machine learning pipelines [1, 7, 43] or debug
them [46], but these lack the ability to explain the provenance of a
certain data item in the processed dataset. Others link provenance
to explainability in a distributed machine learning setting [42] but
without offering specific tools. Amazon identify that there are com-
mon and reusable components to a machine learning pipeline, but
that there is no way to track the exploration of pipeline construc-
tion effectively, and call for metadata capture to support reasoning
over pipeline design [41]. Vamsa [28] attempts to tackle some of
these problems by gathering provenance of pipeline design, how-
ever the resulting provenance documents the invocation of specific
ML libraries, by way of automated script analysis, rather than data
derivations. Some systems are designed to help debug ML pipelines.
BugDoc [21] looks at changes in a pre-processing pipeline that
cause the models to fail, where high-level script and ordering is
used to identify bad configurations. Others provide quality assur-
ance frameworks [44] or embedded simulators to estimate fairness
impacts of a particular pipeline [9]. Again, however, these are not

2https://datascience.stackexchange.com

508

https://datascience.stackexchange.com


geared for deep data introspection. Priu [47], helps users under-
stand data changes, particularly deletions, that are used in regres-
sion models. Unfortunately, this work only tracks deletions, and
not additions or updates to data.

Other tools record the execution of generic (python) scripts, but
fail to capture detailed data provenance, like NoWorkflow [34, 36].
This has been combined with YesWorkflow [22, 49] which provides
a workflow-like description of scripts, but again without a focus
on data derivations.

A further class of tools instrument scripts that are specifi-
cally designed for Big Data processing frameworks: [16] (Hadoop),
[14, 17, 39, 45] (Spark). They provide detailed information mostly
for debugging purposes, but are restricted in their scope of applica-
bility.

3 MODELS AND PROBLEM STATEMENT
3.1 Data model
The data collected for a ML problem is usually a single table or a
single statistical data matrix in which columns represent specific
features of a phenomenon being observed and rows are records of
data for those features describing observations of the phenomenon.
Therefore, we will refer to a generic notion of dataset that try
to capture both formats and is similar in spirit to the concept of
ordered relation [5].

A (dataset) schema 𝑆 is an array of distinct names called fea-
tures: 𝑆 = [a1, . . . , a𝑛] . Each feature is associated with a domain of
atomic values (such as numbers, strings, and timestamps). With a
little abuse of notation, hereinafter we will compare schemas using
set containment over their features. A dataset 𝐷 over a schema
𝑆 = [a1, . . . , a𝑛] is an ordered collection of rows (or records) of the
form: 𝑖 : (𝑑𝑖1, . . . , 𝑑𝑖𝑛) where 𝑖 is the unique index of the row and
each element 𝑑𝑖 𝑗 (for 1 ≤ 𝑗 ≤ 𝑛) is either a value in the domain of
the feature a𝑗 or the special symbol ⊥, denoting a missing value.
Indexes can be implemented in different ways (e.g., with RID anno-
tations [39]). We only assume here that a row of any dataset can be
uniquely identified.

Given a dataset 𝐷 over a schema 𝑆 we denote by 𝐷𝑖a the element
for the feature a of 𝑆 occurring the 𝑖-th row of 𝐷 . We also denote
by 𝐷𝑖∗ the 𝑖-th row of 𝐷 , and by 𝐷∗a the column of 𝐷 associated
with the feature a of 𝑆 .

Example 3.1. A possible dataset 𝐷 over the schema 𝑆 =

[CId,Gender,Age,Zip] is as follows:
CId Gender Age Zip

1 113 𝐹 24 98567
2 241 𝑀 28 ⊥
3 375 𝐶 ⊥ 32768
4 578 𝐹 44 32768

𝐷∗Age and 𝐷2∗ denote the third column and the second row of 𝐷 ,
respectively.

3.2 Data manipulation model
Ageneral classification.As part of this work, we analyzed several
packages that allow users to build data preprocessing pipelines.
Table 1 contains an example overview of the available operators
from the ML pipeline building tool Orange [8] and the popular

SciKit packages [31]. As indicated in left hand side of the table, all
of them can be classified in three main classes, according to the
type of manipulation done on the input dataset 𝐷 over a schema 𝑆 :
• Data reductions: operations that reduce the size of 𝐷 by
eliminating rows (without changing 𝑆) or columns (changing
𝑆 to 𝑆 ′ ⊂ 𝑆) from 𝐷 ;
• Data augmentations: operations that increase the size of 𝐷
by adding rows (without changing 𝑆) or columns (changing
𝑆 to 𝑆 ′ ⊃ 𝑆) to 𝐷 ;
• Data transformations: operations that, by applying suitable
functions, transform (some of) the elements in 𝐷 without
changing its size or its schema (up to possible changes to
the domain of the involved features of 𝑆).

In the rest of this subsection, we will introduce a number of basic
operators of data manipulation over a dataset 𝐷 with schema 𝑆 that
can be used to implement one of the above tasks, as indicated in
the right hand side of Table 1. This approach is in line with the
observation that most of the operations of current data exploration
packages rely on a rather small subset of operators [32].
Data reductions. Two basic data reduction operators are defined
over datasets. They are simple extensions of two well known rela-
tional operators.

𝜋𝐶 : the (conditional) projection of 𝐷 on a set of features of 𝑆
that satisfy a boolean condition𝐶 over 𝑆 , denoted by 𝜋𝐶 (𝐷),
is the dataset obtained from𝐷 by including only the columns
𝐷∗a of 𝐷 such that a is a feature of 𝑆 that satisfy 𝐶;

𝜎𝐶 : the selection of 𝐷 with respect to a boolean condition 𝐶
over 𝑆 , denoted by 𝜎𝐶 (𝐷), is the dataset obtained from 𝐷 by
including the rows 𝐷𝑖∗ of 𝐷 satisfying 𝐶 .

The condition of both the projection and the selection operators
can refer to the values in 𝐷 , as shown in the following example
that use an intuitive syntax for the condition.

Example 3.2. Consider the dataset𝐷 in Example 3.1. The result of
the expression 𝜋{features without nulls} (𝜎Age<30 (𝐷)) is the following
dataset:

CId Gender Age
1 113 𝐹 24
2 241 𝑀 28

Data augmentations. Two basic data augmentation operators are
defined over datasets. They allow the addition of columns and rows
to a dataset, respectively.

𝛼→
𝑓 (𝑋 ) :𝑌 : the vertical augmentation of 𝐷 to 𝑌 using a function 𝑓
over a subset of features 𝑋 = [a1 . . . a𝑘 ] of 𝑆 is obtained by
adding to 𝐷 a new set of features 𝑌 = [a′1 . . . a

′
𝑙
] whose new

values 𝑑𝑖a′1 . . . 𝑑𝑖a′𝑙 for the 𝑖-th row are obtained by applying
𝑓 to 𝑑𝑖a1 . . . 𝑑𝑖a𝑘 ;

𝛼
↓
𝑋 :𝑓 (𝑌 ) : the horizontal augmentation of𝐷 using an aggregative
function 𝑓 is obtained by adding one or more new rows to 𝐷
obtained by first grouping over the features in 𝑋 and then,
for each group, by applying 𝑓 to 𝜋𝑌 (𝐷) (extending the result
to 𝑆 with nulls if needed).

Example 3.3. Consider again the dataset 𝐷 in Example 3.1 and
the following functions: (i) 𝑓1, which associates the string young to
an age less than 25 and the string adult otherwise, and (ii) 𝑓2, which
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Table 1: Typical operations in ML pipelines of data preparation from Orange [7] and Scikit-Learn [31].

Orange3 Ex. ScikitLearn Ex. Category Operator Implementation
Feature Statistics Feature_selection

Data reduction

Feature Selection 𝜋𝐶

Select Data by Index Dataframe op. Instance Selection 𝜎𝐶

Select Columns Feature_selection Drop Columns 𝜋𝐶

Select Rows Dataframe op. Drop Rows 𝜎𝐶

Data Sampler Imbalanced-learn Undersampling 𝜎𝐶

Impute SimpleImputer

Data
transformation

Imputation 𝜏𝑓 (𝑋 )
Apply Domain FunctionTransformer Value Transformation 𝜏𝑓 (𝑋 )
Edit Domain Binarizer Binarization 𝜏𝑓 (𝑋 )
Preprocess Normalizer Normalization 𝜏𝑓 (𝑋 )
Discretize KBinDiscretizer Discretization 𝜏𝑓 (𝑋 )

Feature Constructor FunctionTransformer

Data augmentation

Space Transformation 𝜋𝑍 ◦ 𝛼→𝑓 (𝑋 ) :𝑌
Create Class FunctionTransformer Instance Generation 𝛼

↓
𝑋 :𝑓 (𝑌 )

Data Sampler Imbalanced-learn Oversampling 𝛼
↓
𝑋 :𝑓 (𝑋 )

Corpus Label Encoder String Indexer 𝛼→
𝑓 (𝑋 ) :𝑌

Preprocess OneHotEncoder One-Hot Encoder 𝛼→
𝑓 (𝑋 ) :𝑌

computes the average of a set of numbers. Then, the expression
𝛼→
𝑓1 (Age) :ageRange (𝐷) produces the following dataset:

CId Gender Age Zip ageRange
1 113 𝐹 24 98567 𝑦𝑜𝑢𝑛𝑔

2 241 𝑀 28 ⊥ 𝑎𝑑𝑢𝑙𝑡

3 375 𝐶 ⊥ 32768 ⊥
4 578 𝐹 44 32768 𝑎𝑑𝑢𝑙𝑡

whereas 𝐸2 = 𝛼
↓
Gender:𝑓2 (Age) (𝐷) the dataset:

CId Gender Age Zip
1 113 𝐹 24 98567
2 241 𝑀 28 ⊥
3 375 𝐶 ⊥ 32768
4 578 𝐹 44 32768
5 ⊥ 𝐹 34 ⊥
6 ⊥ 𝑀 28 ⊥

Note that brand-new data can be added to a dataset using an
horizontal augmentation in which 𝑋 = ∅, 𝑌 = 𝑆 , and 𝑓 denotes
the procedure for adding records (e.g., by asking them to the user).
Note also that the horizontal augmentation allows us to combine, in
the same dataset, entities at different levels of granularity, a feature
that can be very useful to a data scientist (e.g., to compute, in the
example above, the mean deviation).
Data transformation One basic data transformation operator is
defined over datasets:

𝜏𝑓 (𝑋 ) : the transformation of a set of features 𝑋 of 𝐷 using a
function 𝑓 is obtained by substituting each value 𝑑𝑖a with
𝑓 (𝑑∗a), for each feature a occurring in 𝑋 .

Example 3.4. Let 𝐷 be the dataset in Example 3.1 and 𝑓 be an
imputation function that associates to the⊥’s occurring in a feature
a the most frequent value occurring in 𝐷∗a. Then, the result of the
expression 𝜏𝑓 (Zip) (𝐷) is the following dataset:

CId Gender Age Zip
1 113 𝐹 24 98567
2 241 𝑀 28 32768
3 375 𝐶 ⊥ 32768
4 578 𝐹 44 32768

We note that the data manipulation model presented here has
some similarity with the Dataframe algebra [32]. The main differ-
ence is that we have focused on a restricted set of core operators
(with some of those in [32] missing and others combined in one)
with the specific goal of providing a solid basis to an effective
technique for capturing data provenance of classical preprocessing
operators. We point out that our algebra can be easily extended
to include operators implementing other ETL/ELT-like transfor-
mations, such as join, intersection, and union, whose fine-grained
provenance capture have been described elsewhere [50].

3.3 Data provenance model
The purpose of data provenance is to extract relatively simple expla-
nations for the existence (or the absence) of some piece of data in
the result of complex data manipulations. Along this line, we adopt
as the provenance model a subset of the PROV model [25] from
the W3C, a widely adopted ontology that formalises the notion of
provenance document and which admits RDF and other serialisation
formats to facilitate interoperability. This model can be graphically
described as shown in Figure 1.

Figure 1: The core W3C PROV model.

In PROV an entity represents an element 𝑑 of a dataset 𝐷 and
is uniquely identified by 𝐷 and the coordinates of 𝑑 in 𝐷 (i.e., the
corresponding row index and feature). An activity represents any
pre-processing data manipulation that operates over datasets. For
each element 𝑑 in a dataset 𝐷 ′ generated by an operation o over a
dataset𝐷 we represent the facts that: (i)𝑑 wasGeneratedBy o, and (ii)
𝑑 wasDerivedFrom a set of elements in 𝐷 . In addition, we represent:
(iii) all the elements 𝑑 of 𝐷 such that 𝑑 was used by o and (iv) all the
elements 𝑑 of 𝐷 such that 𝑑 wasInvalidatedBy (i.e., deleted by) o (if
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any). Note that in PROV derivation implies usage, but the inverse
is not true and this is why this notation is not redundant.

Example 3.5. Let 𝐸 be the first expression in Example 3.3 and
𝐷 ′ = 𝐸 (𝐷). A fragment of the data provenance generated by this
operation is reported in Figure 2.

Figure 2: A fragment of provenance data for the operation
in Example 3.5.

3.4 Problem Statement
We consider compositions of the operators introduced in Section 3.2
into pipelines that take input𝐷 and produce𝐷 ′, denoted𝐷 ′ = 𝐸 (𝐷).
Note that although in principle any combination is possible, in
practice there are limitations, because some operators may alter
the dataset schema.

The outcome, accuracy and performance of the final model are
dependent upon the final dataset produced by 𝐸 (𝐷). As the data
scientist attempts to create a performant model, she may wish
to inspect and understand exactly what happened within each
transformation of the dataset within the pipeline. Unfortunately,
as these pipelines become complex, they become more difficult to
understand and debug. Table 2 contains a set of use cases from
the Data Science Stack Exchange (DSSE) of users attempting to
understand what is happening within the processes and data in
a machine learning pipeline. These use cases were gathered via
the following methodology: DSSE was searched for all questions
using the Orange framework; DSSE questions were included if they
were about pipeline construction; exclusions included questions on
specific operators, how to use the Orange GUI, etc. In Table 3, we
describe the provenance required for a developer to identify the
problems in their machine learning pipeline.

Thus, the problem within this work is to: a) define the set of
operations for data manipulation available within a pipeline; b)
establish a set of provenance patterns that can be used to reason
over and capture the provenance of these operations over the data;
c) show that our approach can support typical provenance queries
in an effective and scalable way.

4 PRE-PROCESSING OPERATORS
In this section we illustrate a number of common pre-processing
operators that are often used in data preparation workflows show-
ing how they can be suitably expressed as composition of the basic
operators introduced in Section 3.2

4.1 Data Reductions
Feature Selection. This operation consists of selecting a set of
relevant features from a given dataset and dropping the others,
which are either redundant or irrelevant for the goal of the learning
process.

Feature selection over a dataset 𝐷 with a schema 𝑆 can be ex-
pressed by means of a simple pipeline involving only the projection
operator with a condition that selects the set of features 𝐼 ⊂ 𝑆 of
interest:

FS(D) = 𝜋C (D)

where 𝐶 = {a ∈ I }.
A special case of feature selection is an operation that drops

columns with a value rate of missing values higher than a threshold
𝑡 . In this case, the condition of the projection operator is more
involved as it requires introspection of the dataset:

𝐶 = {a ∈ S | count(Dia = ⊥, 1 ≤ i ≤ n) < t}.

Instance Selection. The aim of this operation is to reduce the
original dataset to a manageable volume by removing noisy in-
stances with the goal of improving the accuracy (and efficiency) of
classification problems.

Also in this case, instance selection over a dataset 𝐷 with a
schema 𝑆 can be expressed by means of a simple pipeline involving
only the selection operator with a condition that identifies the set
of relevant rows of 𝐷 by means of a predicate 𝑝: IS(D) = 𝜎C (D)
where 𝐶 = {Di∗ ∈ S | p(Di∗)}.

Similar to feature selection, a relevant case of instance selec-
tion drops rows with a value rate of missing values higher than a
threshold 𝑡 . In this case,

𝐶 = {Di∗ ∈ D | count(Dij = ⊥, 1 ≤ j ≤ m) < t}

4.2 Data Transformations
By data transformation we mean any operation on a given dataset
that modifies its values with the goal of improving the quality of
𝐷 and/or making more effective the process of information extrac-
tion from 𝐷 . In general, any kind of data transformation can be
expressed by means of a pipeline involving the data transformation
operator: DT (D) = 𝜏f (X ) (D), where 𝑓 can be any scalar function
that associates with one or more values from the domain of the
features 𝑋 of 𝑆 a value. Several cases are common in preprocessing
pipelines, as illustrated in the following.
Data repair. It is the process of replacing inconsistent data items
with new values. In this case, 𝑓 is a simple function that converts
values and the data transformation possibly operates on the whole
dataset.
Binarization. It is the process of converting numerical features to
binary features. For instance, if a value for a given feature is greater
than a threshold it is changed a 1, if not to 0.
Normalization. It is a scaling technique that transforms all the
values of a feature so that they fall in a smaller range, such as
from 0 to 1. There are many normalization techniques, such as Min-
Max normalization, Z-score normalization and Decimal scaling
normalization. This operation operates on a single feature at a time
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Table 2: Issues identified in Data Science Stack Exchange (DSSE) for Machine Learning pipelines.

Id Data Science Stack Exchange Use Cases
UC1 When applying the ’Predictions’ widget on the same training dataset, the results (i.e. probability scores) are different:

https://datascience.stackexchange.com/questions/32382/orange-predictions-widget-on-same-data-gives-different-results
UC2 Differences in the predictions and corresponding goodness-of-fit R2 metric for the linear regression model on Orange and scikit-learn:

https://datascience.stackexchange.com/questions/32678/orange-linear-regression-and-scikit-learn-linear-regression-gives-different-resu
UC3 After performing image classification using an ML model, prediction probabilities are constant on test images

https://datascience.stackexchange.com/questions/38320/orange3-image-classification
UC4 From a constructed workflow using image classification (add on widgets), ascertain whether the workflow performs ’transfer learning’:

https://datascience.stackexchange.com/questions/19240/using-orange3-to-predict-image-class
UC5 Application of the ’Test and Score’ and ’Predictions’ widget on the same data utilising the same ML model; produces differing results:

https://datascience.stackexchange.com/questions/20572/why-orange-predictions-and-test-score-produce-different-results-on-the-sam
UC6 When applying the ’Impute’ widget during preprocessing on train/test dataset, the same values are predicted for all rows:

https://datascience.stackexchange.com//questions/15264/orange-3-same-prediction-for-all-of-my-data-when-using-impute-widget
UC7 Inaccuracy in the prediction of target variable using k-NN and linear regression ML models in an Orange workflow:

https://datascience.stackexchange.com/questions/36537/how-to-properly-predict-date-using-orange-3
UC8 Disproportionate allocation of labels after performing data analysis and modelling (inaccurate classification accuracy):

https://datascience.stackexchange.com/questions/37471/dataset-with-disproportionately-more-of-a-single-label-than-any-other

Table 3: Provenance queries of interest to a data scientist designing a pipeline of preprocessing operations.

Id Provenance Query Input Output Use Case
1 All Transformations 𝐷 Set of operations applied to 𝐷 and the features they affect. UC1
2 Why-provenance 𝑑𝑖a The input data that influenced 𝑑𝑖a. UC2
3 How-provenance 𝑑𝑖a The input data and the operations that created 𝑑𝑖a. UC3, UC4, UC5
4 Dataset-level Feature Operation 𝐷∗a Set of operations that were applied to feature a.

UC65 Record Operation 𝐷𝑖∗ Set of operations that were applied to record 𝐷𝑖∗.
6 Item-level Feature Operation 𝑑𝑖a Set of operations that were applied to 𝑑𝑖a.
7 Set of Invalidations 𝐷 Set of all 𝐷𝑖∗, 𝐷∗a, 𝑑𝑖a that were deleted.

UC78 Feature Invalidation 𝐷, a The operation that deleted the feature 𝐷∗a.
9 Record Invalidation 𝐷, 𝑖 The operation that deleted the record 𝐷𝑖∗.
10 Item Invalidation 𝐷, 𝑖, a The operation that deleted the item 𝑑𝑖a.
11 Impact on Feature Spread 𝐷 The change in feature spread of all operations applied to a feature of 𝐷 . UC6, UC812 Impact on Dataset Spread 𝐷 The change in dataset spread of all operations applied to 𝐷 .

Discretization. It consists of converting or partitioning continu-
ous features into discrete or nominal features. It performs a value
transformation from categorical to numerical data.
Imputation. It is the process of replacing missing data (nulls in our
data model) with valid data using a variety of statistical approaches
that aim at identifying the values with the maximum likelihood.

4.3 Data augmentations
Space Transformation. This operation takes a set of features of
an existing dataset and generates from them a new set of features
by combining the corresponding values. Usually, the goal is to
represent (a subset of) the original set of features in terms of others
in order to increase the quality of learning.

The application of this operation to a dataset 𝐷 over a schema 𝑆
can be expressed by means of a expression involving a vertical
augmentation that operates on a subset 𝑋 of the features in 𝑆
and produce a new set of features 𝑌 , followed by a projection
operator that eliminates the features in 𝑋 , thus maintaining those
in 𝑍 = (𝑆 ∪ 𝑌 ) − 𝑋 :

ST (D) = 𝜋{features in Z } (𝛼→f (X ) :Y (D))

Instance Generation: This process allows us to fill regions in the
domain of the problem, which do not have representative examples

in original data, or to summarize large amounts of instances in fewer
examples. Instance generation methods are often called prototype
generation methods, as the artificial examples created tend to act as
a representative of a region or of a subset of the original instances.

The application of this operation to a dataset 𝐷 over a schema 𝑆
can be expressed by means of a expression involving a horizontal
augmentation that, if needed, groups over on a subset 𝑋 of the
features in 𝑆 and then apply a summary function 𝑓 over another
subset of 𝑆 :

IG(D) = 𝛼↓X :f (Y ) (D) .

This operation can be preceded by a data reduction operator
(a projection or a selection) to isolate the portion of the original
dataset on which we intend to operate.
String Indexer. This operators encodes a feature involving strings
into a feature of string indices. The indices are in [0, numLabels). It
is a special case of Space transformation.
One-Hot Encoder. This operationmaps a feature involving strings
to a set of boolean features. Specifically, it creates one column for
each possible value occurring in the feature. Each new feature gets
a 1 if the row contained that value and a 0 if not. It is a special case
of space transformation.
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5 CAPTURING PROVENANCE
In order to capture the provenance of a pipeline 𝑝 of a sequence
of preprocessing operations o1, . . . , o𝑛 , we associate a provenance-
generating function (p-gen) with each operation o𝑘 occurring in
𝑝 . Each such function generates a collection of provenance data
whenever a dataset is processed using o𝑘 , which describes the effect
of o𝑘 on the data at the appropriate level of detail.

In concordance with the provenance model presented in Section
3.3, for each element 𝑑𝑖 𝑗 (an entity in the PROV model) of a dataset
𝐷 produced during the execution of 𝑝 , we represent its coordinates
(i.e., the row index 𝑖 and feature 𝑗 in 𝐷) and a progressive number
𝑘 denoting the fact that 𝑑𝑖 𝑗 is in the result of the 𝑘-th operation in
𝑝 . For each operation o𝑘 (an activity in the PROV model) in 𝑝 , we
represent the operator(s) illustrated in Section 3.2 that implement(s)
o𝑘 and the list of the features on which o𝑘 operates.

5.1 Provenance templates
We now present the provenance-generating (p-gen) functions that
are invoked alongside the execution of one of the operators o on
𝐷 to obtain 𝐷 ′. As all specific operators in Section 4 are defined in
terms of our five core pipeline operators, it is enough to define a
p-gen function for each of these operators. To recall, these are: (i)
data reduction: 𝐷 ′ = 𝜋𝐶 (𝐷), 𝐷 ′ = 𝜎𝐶 (𝐷); (ii) Data augmentations:
𝛼→
𝑓 (𝑋 ) :𝑌 , 𝛼

↓
𝑋 :𝑓 (𝑌 ) ; and (iii) Data transformations: 𝜏𝑓 (𝑋 ) .

Each p-gen function takes inputs 𝐷,𝐷 ′ (the inputs and outputs
of their associated operator) along with a description of the op-
erator itself, and produces a PROV document that describes the
transformation produced by the operator on each element of𝐷 . The
output PROV document is obtained by instantiating an appropriate
provenance template [24], which is designed to capture the trans-
formation at the most granular level, i.e., at the level of individual
elements of 𝐷 , or its rows or columns, as appropriate.

In general, the template will have a used set of entities, which
refer to the subset of data items in𝐷 which are effectively used by o,
and a generated set of new entities, corresponding to new elements
in 𝐷 ′. For projection and selection, it will have an invalidated set
of entities instead, as these operators remove data from 𝐷 .

Take for example the case of Vertical Augmentation (VA):
𝛼→
𝑓1 (Age) :ageRange (𝐷) which we used in Example 3.3, where at-

tribute Age is binarised into {young, adult} based on a pre-defined
cutoff, defined as part of 𝑓 (). The p-gen function for VAwill produce
a collection of small PROV documents, one for each input-output
pair ⟨𝐷𝑖,Age, 𝐷

′
𝑖,AgeRange⟩ as shown in the example. As these doc-

uments all share the same structure, we specify p-gen by giving
two elements. First, a single PROV template for (VA) as shown in
Figure 3, where we use the generic attribute names 𝑋,𝑌 to indicate
the old and new feature names, as per the operator’s general defini-
tion in Section 3.2. Notice that, since we want to express that new
data elements after transformation are indeed derived from cor-
responding old elements, we also add an explicit wasDerivedFrom
relationship in addition to used and wasGeneratedBy.

A template is simply a PROV document where: (i) variables,
indicated by the namespace var:, are used as placeholders for values
and (ii) a set of rules is used to specify how the “used” and the
“generated” sides of the template are repeatedly instantiated, by

binding the variables to each of the data items involved in the
transformation. We refer to each instantiated template produced
by a p-gen function as a provlet.

The VA example is particularly simple, as the transformation
between𝐷 and𝐷 ′ is 1:1 and thus a new PROV document instance is
created for each value of column𝐷∗,Age. Using a list comprehension
notation, the bindings for the variables used in the template in
Figure 3 are defined as:

[⟨𝐹 = Age, 𝐼 = 𝑖,𝑉 = 𝐷𝑖,Age,

𝐹 ′ = AgeRange, 𝐽 = 𝑖,𝑉 ′ = 𝑓 (𝐷𝑖,Age)⟩|𝑖 : 1 . . . 𝑛]
These are the new entities for the newly created data elements in
the new column 𝐷∗,AgeRange ∈ {young, adult}. One of the 𝑛 PROV
documents for this specific example is shown in Figure 3.

Figure 3: Example of PROV template for Vertical Augmen-
tation and corresponding instances.

5.2 Template binding rules
Generalising, we define templates for each of the five core operators,
shown in Figure 4 and the corresponding binding generators for
used, generated, and invalidated sets of entities.

Note that we do not need to create a new provenance record for
all entities in any given output dataset. If 𝑓 (𝐷) does not change 𝑑𝑖 𝑗 ,
then no provenance record needs to be generated. If 𝑓 (𝐷) throws
away elements only invalidation records are required. Only in the
case where a new entity is generated, i.e. when 𝑓 (𝐷) creates a new
or updated value in 𝑑𝑖 𝑗 , is a provenance record required. In other
words, we only require provenance statements that capture the
delta for elements in the dataframe.
Data reduction, selection: Data reduction invalidates existing
entities. For selection: 𝐷 ′ = 𝜎𝐶 (𝐷), the bindings specify that an
entire row 𝑖 is invalidated whenever condition 𝐶 is False when
evaluated on that row. This affects all features 𝑋 ∈ 𝑆 :

[⟨𝐹 = 𝑋, 𝐼 = 𝑖⟩|𝑋 ∈ 𝑆, 𝑖 : 1 . . . 𝑛,𝐶 (𝐷𝑖,∗ = False)]
A wasInvalidatedBy relationship is established between each of
these entities and a single Activity, representing the selection.
Data reduction, projection: Conditional projection 𝐷 ′ = 𝜋𝐶 (𝐷)
invalidates all elements in column 𝑋 ∈ 𝑆 whenever 𝐶 returns True
when evaluated on elements of 𝑋 :

[⟨𝐹 = 𝑋, 𝐼 = 𝑖⟩|𝑋 ∈ 𝑆, 𝑖 : 1 . . . 𝑛,𝐶 (𝐷∗,𝑋 = 𝑇𝑟𝑢𝑒)]
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Figure 4: PROV templates used by the p-gen functions.

Similar to selection, here too a wasInvalidatedBy relationship is
established between each of these entities and a single Activity,
representing the projection.
Vertical augmentation: 𝛼→

𝑓 (𝑋 ) :𝑌 ) takes a set 𝑋 ⊂ 𝑆 of features
and adds a new set𝑌 of features,𝑌 ∩𝑆 = ∅ to𝐷 ′ as shown in Ex. 3.3.
The provenance consists of 𝑛 PROV documents, one for each row
𝑖 of 𝐷 , and in each such document entities for 𝐷𝑖,𝑋𝑚

, 𝑋𝑚 ∈ 𝑋 are
used to generate entities for the new features 𝑌ℎ ∈ 𝑌 . Thus, the
bindings are defined as follows:

For 𝑖 : 1 . . . 𝑛 :
used entities:[⟨𝐹 = 𝑋𝑚, 𝐼 = 𝑖,𝑉 = 𝐷𝑖,𝑋𝑚

⟩|𝑋𝑚 ∈ 𝑋 ]
generated entities:[⟨𝐹 ′ = 𝑌ℎ, 𝐽 = 𝑖, 𝑣 = 𝑓 (𝐷𝑖,𝑋 )⟩|𝑌ℎ ∈ 𝑌 ]

These entities are then connected to a single Activity, as shown in
Figure 4 and in the examples (Figg. 3, 6), using Used and wasGener-
atedBy relationship. For each pair of used, generated entities having
the same index on each side (i.e., where var:I = var:J after template
instantiation), awasDerivedFrom relationship is also added, to assert
a stronger relationship (derivation occurs through the Activity that
connects the entities).
Horizontal augmentation: The 𝛼↓

𝑋 :𝑓 (𝐴) operator groups records
according to columns 𝑋 ⊂ 𝑆 , producing a list 𝐺 = [𝑔1 . . . 𝑔ℎ] of ℎ
groups. Then for each 𝑔𝑖 ∈ 𝐺 it computes 𝑓 (𝐴) from the records
in the group, producing a new record containing the aggregated
value in column 𝐴, the values that define the group in each column
𝑋𝑚 ∈ 𝑋 , which we denote val(Xm, gi), and null in all other columns
(see Ex. 3.3 in Section 3.2). Thus, the operator produces ℎ records,
and let rows(𝐺) = [𝑛+1, 𝑛+2, ...𝑛+ℎ] denote their new row indexes
in the dataframe.

The corresponding provenance template is the same as for Verti-
cal Augmentation (Figure 4), however the bindings differ, and they
are defined as follows.

Used entities. For each 𝑔𝑖 ∈ 𝐺 , let rows(𝑔𝑖 ) denote the set of row
indexes for records in 𝑔𝑖 . The bindings associated with 𝑔𝑖 are:

[⟨𝐹 = 𝐴, 𝐼 = 𝑖,𝑉 = 𝐷𝑖,𝐴⟩|𝑖 ∈ rows(𝑔𝑖 )] .

Generated entities. For each 𝑔𝑖 , the new record with index 𝑛 + 𝑖
is represented by a set of generated entities, with bindings:

[⟨𝐹 ′ = 𝐴, 𝐼 = 𝑖,𝑉 = 𝑓 (𝐷𝑟𝑜𝑤𝑠 (𝑔),𝐴)⟩]
[⟨𝐹 ′ = 𝑌, 𝐼 = 𝑖,𝑉 = null⟩|𝑌 ∈ 𝑆 \ 𝑋,𝑌 ≠ 𝐴]
[⟨𝐹 ′ = 𝑋𝑚, 𝐼 = 𝑖,𝑉 = val(Xm, gi)⟩|𝑋𝑚 ∈ 𝑋 ]

Like for Vertical Augmentation, a single Activity is also cre-
ated, which connects Used and Generated entities through Used
and wasGeneratedBy relationships between each pairs of entities
representing data in the same column, that is, where var:F = var:F’,
and an additional wasDerivedFrom relationship is also added.
Data transformation: 𝜏𝑓 (𝑋 ) takes features 𝑋 ⊂ 𝑆 and computes
derived values, which are used to update elements of𝐷 , but without
generating new elements. The bindings reflect such in-place update,
but as the new value for each element is defined by 𝑓 (), we assume
for simplicity that all values are updated, although in reality some
will stay the same, as shown for instance in Ex. 3.4 (imputation).
The resulting bindings reflect this many-many relationship, where
(potentially) all values in a column 𝑋𝑚 ∈ 𝑋 are used to update
(potentially) all values in that same column (and this applies to each
column). Thus, the provenance document consists of |𝑋 | provlets,
one for each 𝐾𝑘 , with bindings defined as follows. Used entities:

[⟨𝐹 = 𝑋𝑚,𝑉 = 𝐷𝑖,𝑋𝑚
, 𝐼 = 𝑖⟩|𝑖 : 1 . . . 𝑛]

Generated entities:

[⟨𝐹 ′ = 𝑋𝑚,𝑉 ′ = 𝑓 (𝐷∗,𝑋𝑚
), 𝐽 = 𝑖⟩|𝑖 : 1 . . . 𝑛]

Used and wasGeneratedBy relationships, mediated by an Activity,
are created between each Generated entity and all of the Used enti-
ties having the same𝑋𝑚 , along with the corresponding wasDerived-
From relationships.

5.3 Code instrumentation
Approaches for automated provenance capture, such as by using
the python call stack as in NoWorkflow [36], or capturing model
intermediates as in Mistique [46], have been mentioned in Section 2.
These, however, fail to capture data provenance at the level of the
individual element within a dataframe. To accomplish this, in this
initial prototype, we opted for explicit and analyst-controlled instru-
mentation at the script level. We have packaged the implementation
of the p-gen functions described in the previous section as a python
library that analysts can add to their code where provenace cap-
ture is desired. Figure 5 shows an example. Note also that it may
be possible to automate function call injection, at least in part, by
leveraging mature code annotation tools like YesWorkflow [22],
where formally written code comments are interpreted to gener-
ate derived representations of the scripts (ie as a workflow). This
mechanism can be used to declaratively specify directives into the
code where provenance functions need to appear.

While this does not completely eliminate the need for manual in-
tervention, this is now a simple comment/ annotation effort (which
can be driven by a smart UI) rather than requiring additional pro-
gramming.
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Figure 5: Capture calls embedded in pipeline code.

Figure 6: Provlet composition.

5.4 Generating provenance documents
A complete provenance document is produced by combining the
collection of provlets that results from calling p-gen functions.
Specifically, one provlet is generated for every transformation and
every element in the dataframe that are affected by that transfor-
mation. The document is represented by such collection of provlets,
where entity identifiers match across provlets, and never needs to
be fully materialised, as explained shortly.

To illustrate how provlets are generated, consider
the following pipeline: 𝜎𝐶 (𝛼→𝑓1 (Age) :ageRange (𝐷)) where
𝐶 = {AgeRange ≠ ‘Young’} and 𝐷 is the dataset of Ex. 3.3.
The corresponding provenance document is represented in
Figure 6.

Applying vertical augmentation produces one provlet for each
record in the input dataframe, showing the derivation from Age
to AgeRange. The second step, selecting records for ‘not young’
people, produces the new set of provlets on the right, to indicate
invalidation of the first record, as per the template at the bottom
of Figure 4. Note that the “used” side on the left refers to existing
entities, which are created either into the pipeline from the input
dataset, or by an upstream data generation operator.

Provlet composition requires looking up the set of entities al-
ready produced, whenever a new provlet is added to the document.
One simple way to accomplish this is by eagerly keeping the entire
document in memory, along with an index for all entities, as well as
a mapping between each entity and the corresponding data element

Figure 7: Pipeline and provenance architecture.

it represents. While this can be accomplished using readily avail-
able Python PROV libraries [15], this approach does not scale well
to the volume of entities required to represent large dataframes,
when more than a handful of transformation operators are involved.
Instead, we have built a bespoke architecture as shown in Figure
7 that allows lazy provenance composition. Each p-gen function
generates a set of provlets, one for each element in the dataframe
(in the worst case), constructs a partial document, and stores it to
a persistent MongoDB back end. This allows the provenance to
be collected quickly at execution of each script, and be assembled
later, minimizing execution dependencies and possible bottlenecks
during the actual execution of the pipeline.

MongoDB was specifically chosen, instead of other pre-existing
provenance storage systems, because it is a tool actively used by the
data science community when building machine learning pipelines;
i.e. the community for which we are providing provenance is con-
versant in the tool, and comfortable issuing provenance queries
in it. Moreover, MongoDB provides a flexible data model, which
allows us to store complex provenance data in a natural way, and is
scalable, facilitating distributed provenance capture in the future.

Concretely, each p-gen function creates a provenance object con-
taining all provlets, and an input json file representing the input
dataframe. The MongoDB back end is strucured into folders, one
for each p-gen function (i.e., one for each operator). Each folder
contains three json data structures, containing for an array of enti-
ties, an array of activities, and an array of relations. These objects
are only composed into a complete provenance document at query
time, to provide a complete trace of the data and processes used
within the pipeline. By capturing provlets from each p-gen function,
it is possible to compose these provlets into a complete graph. This
graph can be traversed as a bipartite graph for any 𝑑𝑖 𝑗 . The process
for composing provlets, and tracing the influence (either direct of
indirect) of data and operations on𝑑𝑖 𝑗 is summarized in Algorithm 1
for returning “why provenance" [4]. Note that this tracing function
is similar to functions for provenance analytics in [14].

6 EVALUATION
All experiments were performed on a server with 32 Intel(R)
Xeon(R) CPU E5-2620 v4 (2.10GHz).

6.1 Analysis with Real World Pipelines
Datasets. In Table 3 we show classic provenance queries in terms
of data input and output. In order to evaluate if we can answer
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Algorithm 1:Why-provenance obtaining the inputs that
directly or indirectly influenced a single element

Input: An element 𝑑𝑖 𝑗
Output: Print out all the inputs that influenced 𝑑𝑖 𝑗
1: activities← findActivities(𝑑𝑖 𝑗 )
2: while activities ≠ ∅ do
3: entities← findUsedEntities(activities)
4: activities← findActivities(entities)
5: return entities

these queries, we have captured data provenance in three real
world pipelines involving different types of preprocessing steps.
The datasets are described in Table 4.

Table 4: Datasets used for evaluation.

German Compas Census
Credit Score

Records 1000 7214 32561
Features 21 53 15
# Operations 4 7 5
Output Records 1000 6907 32561
Output Features 60 8 104
Provenance Entities 85000 349970 3874264
Provenance Activities 26 7 20
Provenance Relations 255000 451412 9703396

The goal of the German Credit pipeline is to predict whether
an individual is a good lending candidate. The goal of the Compas
Score pipeline is to predict the recidivism risk of an individual. The
goal of the Census pipeline is to predict whether annual income for
an individual exceeds $50K. Table 5 shows the preprocessing steps
for each of these machine learning pipelines.
Basic provenance instrumentation (BP). In order to compare
our work against the manner typically used by data scientists out-
side of a workflow management system, we also instrument coarse-
grained provenance capture within scripts. This method requires
the script owner to embed provenance capture calls within her
scripts. We place basic calls within the scripts by hand, using the
standard PROV libraries [15]. This mechanism is similar to that
used in YesWorkflow [22, 33, 49]. This approach will give fairly
coarse-grained provenance; we refer to this method as Basic Prove-
nance (BP).
Fine-grained provenance instrumentation (FP). We explored
two distinct approaches for capturing FP provenance: (i) using
classic, eager, capture libraries [15] that create a single monolithic
provenance document during execution of the entire pipeline, and
(ii) using the lazy, provlet, provenance composition strategy de-
scribed in Section 5.

During initial experimentation, it became apparent that the
monolithic approach is not performant in even the most basic ma-
chine learning pipelines because of the size of provenance generated
via each operator.
Capturing provenance. How provenance is captured changes
how much information about the underlying processes and data

Table 5: The processing operations for themachine learning
pipelines used in the evaluation.

German Credit Pipeline
Id Description

Op A0 Value transformation of 13 distinct columns from codes
to interpretable words.

Op A1 Generation of two new columns from the column per-
sonal_status.

Op A2 The column personal_status was deleted.
Op A3 11 categorical column were OneHot encoded.

Compas Score Pipeline
Id Description

Op B0 Selection of 9 relevant columns.
Op B1 Missing values were deleted.
Op B2 The column race was binarized.
Op B3 Value transformation of the label column for consistency.
Op B4 Conversion of c_jail_in and c_jail_out columns to days.
Op B5 Drop jail_in and jail_out dates.
Op B6 Value transformation of column c_charge_degree.

Census Pipeline
Id Description

Op C0 Remove whitespace from 9 columns.
Op C1 Replace ’?’ charater for NaN value.
Op C2 7 categorical columns were OneHot encoded.
Op C3 Two columns were binarized.
Op C4 fnlwgt column was deleted.

Table 6: Analysis of which provenance queries from Table 3
are answerable via each capture method.

Id Provenance Query BP FP
1 All Transformations ✓ ✓
2 Why-provenance - ✓
3 How-provenance - ✓
4 Dataset-level Feature Operation ✓ ✓
5 Record Operation - ✓
6 Item-level Feature Operation - ✓
7 Set of Invalidations ✓ ✓
8 Feature Invalidation ✓ ✓
9 Record Invalidation - ✓
10 Item Invalidation - ✓
11 Impact on Feature Spread - ✓
12 Impact on Dataset Spread - ✓

items can be gathered. Because of this, some provenance queries
become unanswerable.

Table 6 contains the analysis of which provenance queries, as
defined in Table 3 can be answered with each method described in
this work. For each of the general provenance queries expressed
in Table 3 that wish for the provenance of a single data item, that
data item was randomly selected from the output dataset, and the
queries run for that instance. Each query was performed three times,
as discussed further below. As expected, the basic provenance
captured by embedding provenance capture calls at the script level
(BP) does not lead to useful provenance in many cases.
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Figure 8: Comparison of cumulative provenance capture
times, broken down by individual operator.

Because the BP approach is too coarse-grained to capture useful
provenance that can answer a wide range of possible provenance
queries, as shown in Table 6 and derived from the provenance
queries expressed in Table 3, it is imperative that the fine-grained
approach is performant, and does not impact overall system runtime
significantly. On average, each pipeline takes the following amount
of time to run without any provenance capture: German Credit
is 648,56 ms; COMPAS is 5045 ms; Census is 8289,12 ms. Figure 8
show the impact of adding provenance capture to a pipeline. As
expected, provenance capture adds time to any pipeline execution.
However, there are some operations that add an inordinate amount
of time. In the Census pipeline there is 1 operation (C2) that adds
386s. This is the One Hot encoding of 7 different columns, which
generates 90 new features (from 15 to 105 columns). The number of
records remains unchanged (32,561), so there will be 32561*90 new
provenance entities. Other operations that take time include B0,
which selects 9 columns of data, removes 44 features, and generates
7214*44 provenance records and A3, another One Hot encoding of
11 different columns, generating 38 new features, and thus 1000x38
new provenance records. For operations such as A2, B2, B5, C3, C4,
in which the number of provenance records are small, and “cover"
entire column manipulations, the capture times are very small. The
total size of the provenance captured for each pipeline is: German
Credit 75 MB; Compas Score 199 MB; Census 3.8 GB.
Querying Provenance. Provenance would be useless without the
ability to query over it. We instantiate queries representative of all
of queries expressed in Table 3. Each query was run three times
and the resulting time is the average of the three runs. Queries 2
through 6 are related to a single item 𝑑𝑖 𝑗 , record 𝐷𝑖∗ or feature 𝐷∗𝑗 ,
while the others are related to the entire dataset. For these queries,
a data item, record or feature is chosen randomly from the output
dataset each time the query is run.

As shown in Figure 9, when the dataset is as small as German
pipeline, the query execution time is low. As the dataset increases,
query execution times increase proportionally. Notice that Prove-
nance queries that look for invalidations (Queries 7 and 10) and
Feature Spread (Queries 11 and 12) are very time consuming. These
provenance queries require processing of information over the en-
tire dataset. On average, across all query types, the processing of a
single provenance entry costs 3.07𝐸−06.

Figure 9: The provenance query times for each type of prove-
nance query shown in Table 3

Table 7: Datasets created with the DIGen generator

Dataset1 Dataset2 Dataset3
Scale Factor 3 5 9
Records 390978 650412 1171107
Features 45 45 45

Size 5,2 GB 8,6 GB 16 GB

6.2 Scalability with TPC-DI
The previous experiments look at the utility of the provenance
gathered and the performance of the capture method across realistic
machine learning pipelines. However, they do not test performance.
To accomplish this, we turn to TPC-DI [37]. Using DIGen, the data
generator program provided by the TPC for creating Source Data
and audit information, three initial datasets were created using the
fact trade table and the dim account table, as described in Table 7.

In order to test the provenance capture times, preprocessing
operations have been applied to each of these datasets outside of
a pipeline. Each operation is described in Table 8. Because the ar-
chitecture used within FP creates provenance fragments after each
pipeline operator, the experimental setup that tests each operation
outside of a pipeline is valid.

Figure 10 shows how long it takes to capture and record prove-
nance for each provenance pattern in a large dataset. Table 9 shows
the initial requirements for FP in storage space for each operation.
The capture mechanism scales with the size of the dataset. Process-
ing operations that only affect a small number of data values, such
as Instance Generation (IG), are fast. In addition, Feature Selection
(FS), which touches every data item, only creates "wasInvalidat-
edBy" entries. Value Transform (VT) and Imputation (I), in this
particular evaluation setup, only function on a small number of
instances.

Obviously, in datasets with more missing or dirty values, these
readings would change. On the other hand, the activities that create
more provenance, Feature Transformation (FT) and Space Transfor-
mation (ST), take more time. Like DR, ST touches every data item.
However, unlike DR, ST creates entities for every new attribute
in the new column, in addition to the "wasInvalidatedBy" entries.
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Table 8: The operations performed on the TCI-DI datasets to test each provenance pattern.

Operation ID Provenance Pattern Tested Description of Operation performed on TPC-DI generated data
FS Feature Selection A column (𝐷∗𝑗 ) is removed from the initial dataset.
FT Feature Transformation Transformation on C_GNDR column. Values of gender column are corrected.
I Imputation Imputation on T_COMM column. Null values of trade price column are filled

with the average value of the column.
ST Space Transformation A new column with boolean values is added. 0 if commission value is null, 1

otherwise.
IG Instance Generation Generation of one new record.
VT Value Transformation Value transformation on C_DOB column. Invalid date of birth are replaced with

NaN values.

Figure 10: FP in capture time for each operation

Table 9: FP in storage space for each operation

Operation ID Dataset 1 Dataset 2 Dataset 3
FS 77 MB 128 MB 231 MB
FT 418 MB 696 MB 1,3 GB
I 214 MB 357 MB 644 MB
ST 342 MB 568 MB 1023 MB
IG 73 MB 121 MB 217 MB
VT 576 KB 2,2 MB 2,9 MB

Furthermore, in the best case of ST, only one column is added start-
ing from a previously existing column. In FT, a substitution of the
values is performed, therefore the old entities are invalidated. Thus,
in the best case ST ≤ FT.

6.3 DSSE Use Case Analysis
In Table 2, we identify a selection of real questions from data sci-
entists in the Data Science Stack Exchange (DSSE) that analysis
of provenance could help answer. We will use UC6 as an example
to highlight how the fine-grained provenance available via these
methods can be used to answer real-world problems.

In this example, the user separates their data into Test and Train
datasets, applies an impute preprocessing step onto the Test and
Train data respectively, uses Train to create a regression model, and
then the Test data is used to generate predictions. Ultimately, this is
an incorrect pipeline. The impute step, which creates data around
a mean value parameter, should only be applied to the Training

dataset. This value is then matched in the Predictions step, and
imputed values automatically created in the Training dataset. By
creating a second Impute step, a different mean value parameter is
used for the Test data, and no values are imputed with the correct
parameter later. Using the Provenance Query Impact on Feature
Spread from Table 3 on the Test and Train datasets, it is possible to
see the divergence of the values in the features of the two datasets
as imputing with different mean values changes that spread.

7 CONCLUSIONS AND FUTUREWORK
In this work, we focus on fine-grained data provenance for machine
learning pipelines irrespective of the pipeline tool used. Because
a substantial effort goes into selecting and preparing data for use
in modelling, and because changes made during preparation can
affect the ultimate model, it is important to be able to trace what is
happening to the data at a fine-grain level.

We highlight several real use cases to motivate the need for
fine-grained provenance from the Data Science Stack Exchange
(DSSE)1. We identify the classic provenance queries that are needed
to provide information to answer these use cases. We then identify
a set of provenance patterns that can be deployed across a set of
machine learning pipeline operators and implement them.

Using our implementation of this system, we have tested it over
real-world ML benchmark pipelines for utility and basic perfor-
mance. In order to investigate scalability issues with our design, we
also use the TCP-DI generator and apply several operators over that
data at scale. Our results indicate that we can collect fine-grained
provenance that is both useful and performant.

Future investigation into optimization techniques that aim at
reducing the provenance data to the minimum that is needed to
support given provenance queries, as well as methods for taking
advantage of collected provenance data to support the design of new
pipelines is required to continue making provenance more efficient
and useful. Also, other natural extensions of our approach are
under investigation, including new operators supporting advanced
preprocessing data manipulations (such as join and set operations)
as well as features that allows the user to specify iterative processes
and to operate over multidimensional arrays of data.
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