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ABSTRACT

We present D����, a novel entity matching system based on pre-

trained Transformer-based language models. We �ne-tune and cast

EM as a sequence-pair classi�cation problem to leverage such mod-

els with a simple architecture. Our experiments show that a straight-

forward application of language models such as BERT, DistilBERT,

or RoBERTa pre-trained on large text corpora already signi�cantly

improves the matching quality and outperforms previous state-of-

the-art (SOTA), by up to 29% of F1 score on benchmark datasets. We

also developed three optimization techniques to further improve

D����’s matching capability. D���� allows domain knowledge to

be injected by highlighting important pieces of input information

that may be of interest when making matching decisions. D����

also summarizes strings that are too long so that only the essential

information is retained and used for EM. Finally, D���� adapts

a SOTA technique on data augmentation for text to EM to aug-

ment the training data with (di�cult) examples. This way, D���� is

forced to learn “harder” to improve the model’s matching capability.

The optimizations we developed further boost the performance

of D���� by up to 9.8%. Perhaps more surprisingly, we establish

that D���� can achieve the previous SOTA results with at most

half the number of labeled data. Finally, we demonstrate D����’s

e�ectiveness on a real-world large-scale EM task. On matching

two company datasets consisting of 789K and 412K records, D����

achieves a high F1 score of 96.5%.

PVLDB Reference Format:

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew

Tan. Deep Entity Matching with Pre-Trained Language Models. PVLDB,

14(1): 50 - 60, 2021.

doi:10.14778/3421424.3421431

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/megagonlabs/ditto.

1 INTRODUCTION

Entity Matching (EM) refers to the problem of determining whether

two data entries refer to the same real-world entity. Consider the

two datasets about products in Figure 1. The goal is to determine

the set of pairs of data entries, one entry from each table so that

each pair of entries refer to the same product.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:10.14778/3421424.3421431

If the datasets are large, it can be expensive to determine the pairs

of matching entries. For this reason, EM is typically accompanied

by a pre-processing step, called blocking, to prune pairs of entries

that are unlikely matches to reduce the number of candidate pairs

to consider. As we will illustrate, correctly matching the candidate

pairs requires substantial language understanding and domain-

speci�c knowledge. Hence, entity matching remains a challenging

task even for the most advanced EM solutions.

We present D����, a novel EM solution based on pre-trained

Transformer-based language models (or pre-trained language mod-

els in short). We cast EM as a sequence-pair classi�cation problem to

leverage such models, which have been shown to generate highly

contextualized embeddings that capture better language under-

standing compared to traditional word embeddings. D���� further

improves its matching capability through three optimizations: (1)

It allows domain knowledge to be added by highlighting important

pieces of the input that may be useful for matching decisions. (2) It

summarizes long strings so that only the most essential informa-

tion is retained and used for EM. (3) It augments training data with

(di�cult) examples, which challenges D���� to learn “harder” and

also reduces the amount of training data required. Figure 2 depicts

D���� in the overall architecture of a complete EM work�ow.

There are 9 candidate pairs of entries to consider for matching in

total in Figure 1. The blocking heuristic that matching entries must

have one word in common in the title will reduce the number of

pairs to only 3: the �rst entry on the left with the �rst entry on the

right and so on. Perhaps more surprisingly, even though the 3 pairs

are highly similar and look like matches, only the �rst and last pair

of entries are true matches. Our system, D����, is able to discern

the nuances in the 3 pairs to make the correct conclusion for every

pair while some state-of-the-art systems are unable to do so.

The example illustrates the power of language understanding

given by D����’s pre-trained language model. It understands that

instant immersion spanish deluxe 2.0 is the same as instant immers

spanish dlux 2 in the context of software products even though

they are syntactically di�erent. Furthermore, one can explicitly

emphasize that certain parts of a value are more useful for deciding

matching decisions. For books, the domain knowledge that the

grade level or edition is important for matching books can be made

explicit to D����, simply by placing tags around the grade/edition

values. Hence, for the second candidate pair, even though the titles

are highly similar (i.e., they overlap in many words), D���� is

able to focus on the grade/edition information when making the

matching decision. The third candidate pair shows the power of

language understanding for the opposite situation. Even though

the entries look dissimilar D���� is able to attend to the right parts

of a value (i.e., the manf./modelno under di�erent attributes) and

also understand the semantics of the model number to make the

right decision.
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A speci�c strength of pre-trained LMs is that it learns the seman-

tics of words better than conventional word embedding techniques

such as word2vec, GloVe, or FastText. This is largely because the

Transformer architecture calculates token embeddings from all the

tokens in the input sequence and thus, the embeddings it generates

are highly-contextualized and captures the semantic and contex-

tual understanding of the words. Consequently, such embeddings

can capture polysemy, i.e., discern that the same word may have

di�erent meanings in di�erent phrases. For example, the word

Sharp has di�erent meanings in “Sharp resolution” versus “Sharp

TV”. Pre-trained LMs will embed “Sharp” di�erently depending

on the context while traditional word embedding techniques such

as FastText always produce the same vector independent of the

context. Such models can also understand the opposite, i.e., that dif-

ferent words may have the same meaning. For example, the words

immersion and immers (respectively, (deluxe, dlux) and (2.0, 2)) are

likely the same given their respective contexts. Thus, such language

understanding capability of pre-trained LMs can improve the EM

performance.

2.2 Fine-tuning pre-trained language models

A pre-trained LM can be �ne-tuned with task-speci�c training

data so that it becomes better at performing that task. Here, we

�ne-tune a pre-trained LM for the EM task with a labeled training

dataset consisting of positive and negative pairs of matching and

non-matching entries as follows:
(1) Add task-speci�c layers after the �nal layer of the LM. For EM,

we add a simple fully connected layer and a softmax output

layer for binary classi�cation.

(2) Initialize the modi�ed network with parameters from the pre-

trained LM.

(3) Train the modi�ed network on the training set until it con-

verges.
The result is a model �ne-tuned for the EM task. See Appendix

A of the full version [27] for the model architecture. In D����, we

�ne-tune the popular 12-layer BERT model [13], RoBERTa [28], and

a 6-layer smaller but faster variant DistilBERT [43]. However, our

proposed techniques are independent of the choice of pre-trained

LMs and D���� can potentially perform even better with larger

pre-trained LMs. The pair of data entries is serialized (see next

section) as input to the LM and the output is a match or no-match

decision. D����’s architecture is much simpler when compared to

many state-of-the-art EM solutions today [14, 32]. Even though the

bulk of the “work” is simply o�-loaded to pre-trained LMs, we show

that this simple scheme works surprisingly well in our experiments.

2.3 Serializing the data entries for Ditto

Since LMs take token sequences (i.e., text) as input, a key challenge

is to convert the candidate pairs into token sequences so that they

can be meaningfully ingested by D����.

D���� serializes data entries as follows: for each data entry

e = {(a�ri , vali )}1ik , we let

serialize(e) ::= [COL] a�r1 [VAL] val1 . . . [COL] a�rk [VAL] valk ,

where [COL] and [VAL] are special tokens for indicating the start

of attribute names and values respectively. For example,the �rst

entry of the second table is serialized as:

[COL] title [VAL] instant immers spanish dlux 2 [COL] manf./modelno

[VAL] NULL [COL] price [VAL] 36.11

To serialize a candidate pair (e, e 0), we let

serialize(e, e 0) ::= [CLS] serialize(e) [SEP] serialize(e 0) [SEP],

where [SEP] is the special token separating the two sequences

and [CLS] is the special token necessary for BERT to encode the

sequence pair into a 768-dimensional vector which will be fed into

the fully connected layers for classi�cation.

Other serialization schemes There are di�erent ways to seri-

alize data entries so that LMs can treat the input as a sequence

classi�cation problem. For example, one can also omit the special

tokens “[COL]” and/or “[VAL]”, or exclude attribute names a�ri
during serialization. We found that including the special tokens to

retain the structure of the input does not hurt the performance in

general and excluding the attribute names tend to help only when

the attribute names do not contain useful information (e.g., names

such as attr1, attr2, ...) or when the entries contain only one column.

A more rigorous study on this matter is left for future work.

Heterogeneous schemas As shown, the serialization method of

D���� does not require data entries to adhere to the same schema. It

also does not require that the attributes of data entries to bematched

prior to executing thematcher, which is a sharp contrast to other EM

systems such as DeepER [14] or DeepMatcher2 [32]. Furthermore,

D���� can also ingest and match hierarchically structured data

entries by serializing nested attribute-value pairs with special start

and end tokens (much like Lisp or XML-style parentheses structure).

3 OPTIMIZATIONS IN DITTO

As we will describe in Section 4, the basic version of D����, which

leverages only the pre-trained LM, is already outperforming the

SOTA on average. Here, we describe three further optimization

techniques that will facilitate and challengeD���� to learn “harder”,

and consequently make better matching decisions.

3.1 Leveraging Domain Knowledge

Our �rst optimization allows domain knowledge to be injected

into D���� through pre-processing the input sequences (i.e., seri-

alized data entries) to emphasize what pieces of information are

potentially important. This follows the intuition that when hu-

man workers make a matching/non-matching decision on two data

entries, they typically look for spans of text that contain key infor-

mation before making the �nal decision. Even though we can also

train deep learning EM solutions to learn such knowledge, we will

require a signi�cant amount of training data to do so. As we will

describe, this pre-processing step on the input sequences is light-

weight and yet can yield signi�cant improvements. Our experiment

results show that with less than 5% of additional training time, we

can improve the model’s performance by up to 8%.

There are two main types of domain knowledge that we can

provide D����.

2In DeepMatcher, the requirement that both entries have the same schema

can be removed by treating the values in all columns as one value under

one attribute.
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Span Typing The type of a span of tokens is one kind of domain

knowledge that can be provided toD����. Product id, street number,

publisher are examples of span types. Span types help D���� avoid

mismatches. With span types, for example,D���� is likelier to avoid

matching a street number with a year or a product id.

Table 1 summarizes the main span types that human workers

would focus on when matching three types of entities in our bench-

mark datasets.

Table 1: Main span types for matching entities in our benchmark

datasets.

Entity Type Types of Important Spans

Publications, Movies, Music Persons (e.g., Authors), Year, Publisher

Organizations, Employers Last 4-digit of phone, Street number

Products Product ID, Brand, Con�gurations (num.)

The developer speci�es a recognizer to type spans of tokens

from attribute values. The recognizer takes a text string � as input

and returns a list recognizer(�) = {(si , ti , typei )}i�1 of start/end

positions of the span in � and the corresponding type of the span.

D����’s current implementation leverages an open-source Named-

Entity Recognition (NER) model [46] to identify known types such

as persons, dates, or organizations and use regular expressions to

identify speci�c types such as product IDs, last 4 digits of phone

numbers, etc.

After the types are recognized, the original text � is replaced

by a new text where special tokens are inserted to re�ect the

types of the spans. For example, a phone number “(866) 246-6453”

may be replaced with “( 866 ) 246 - [LAST] 6453 [/LAST]” where

[LAST]/[/LAST] indicates the start/end of the last 4 digits and addi-

tional spaces are also added because of tokenization. In our imple-

mentation, when we are sure that the span type has only one token

or the NER model is inaccurate in determining the end position, we

drop the end indicator and keep only the start indicator token.

Intuitively, these newly added special tokens are additional sig-

nals to the self-attention mechanism that already exists in pre-

trained LMs, such as BERT. If two spans have the same type, then

D���� picks up the signal that they are likelier to be the same

and hence, they are aligned together for matching. In the above

example,

“..246- [LAST] 6453 [/LAST] .. [SEP] .. [LAST] 0000 [/LAST]..”

when the model sees two encoded sequences with the [LAST]

special tokens, it is likely to take the hint to align “6453” with “0000”

without relying on other patterns elsewhere in the sequence that

may be harder to learn.

Span Normalization The second kind of domain knowledge that

can be passed to D���� rewrites syntactically di�erent but equiva-

lent spans into the same string. This way, they will have identical

embeddings and it becomes easier for D���� to detect that the two

spans are identical. For example, we can enforce that “VLDB jour-

nal” and “VLDBJ” are the same by writing them as VLDBJ. Similarly,

we can enforce the general knowledge that “5 %” vs. “5.00 %” are

equal by writing them as “5.0%”.

The developer speci�es a set of rewriting rules to rewrite spans.

The speci�cation consists of a function that �rst identi�es the

spans of interest before it replaces them with the rewritten spans.

D���� contains a number of rewriting rules for numbers, including

rules that round all �oating point numbers to 2 decimal places and

dropping all commas from integers (e.g., “2,020” ! “2020”). For

abbreviations, we allow the developers to specify a dictionary of

synonym pairs to normalize all synonym spans to be the same.

3.2 Summarizing long entries

When the value is an extremely long string, it becomes harder for

the LM to understand what to pay attention to when matching.

In addition, one limiting factor of Transformer-based pre-trained

LMs is that there is a limit on the sequence length of the input. For

example, the input to BERT can have at most 512 sub-word tokens.

It is thus important to summarize the serialized entries down to

the maximum allowed length while retaining the key information.

A common practice is to truncate the sequences so that they �t

within the maximum length. However, the truncation strategy does

not work well for EM in general because the important information

for matching is usually not at the beginning of the sequences.

There are many ways to perform summarization [31, 40, 42]. In

D����’s current implementation, we use a TF-IDF-based summa-

rization technique that retains non-stopword tokens with the high

TF-IDF scores. We ignore the start and end tags generated by span

typing in this process and use the list of stop words from scikit-learn

library [35]. By doing so, D���� feeds only the most informative

tokens to the LM. We found that this technique works well in prac-

tice. Our experiment results show that it improves the F1 score of

D���� on a text-heavy dataset from 41% to over 93% and we plan

to add more summarization techniques to D����’s library in the

future.

3.3 Augmenting training data

We describe how we apply data augmentation to augment the

training data for entity matching.

Data augmentation (DA) is a commonly used technique in com-

puter vision for generating additional training data from existing

examples by simple transformation such as cropping, �ipping, ro-

tation, padding, etc. The DA operators not only add more training

data, but the augmented data also allows to model to learn to make

predictions invariant of these transformations.

Similarly, DA can add training data that will help EM models

learn “harder”. Although labeled examples for EM are arguably

not hard to obtain, invariance properties are very important to

help make the solution more robust to dirty data, such as missing

values (NULLs), values that are placed under the wrong attributes

or missing some tokens.

Next, we introduce a set of DA operators for EM that will help

train more robust models.

Augmentation operators for EM The proposed DA operators

are summarized in Table 2. If s is a serialized pair of data entries

with a match or no-match label l , then an augmented example is a

pair (s 0, l), where s 0 is obtained by applying an operator o on s and

s
0 has the same label l as before.

The operators are divided into 3 categories. The �rst category

consists of span-level operators, such as span_del and span_shu�e.

These two operators are used in NLP tasks [30, 55] and shown to be

e�ective for text classi�cation. For span_del, we randomly delete

from s a span of tokens of length at most 4 without special tokens
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Table 3: The 13 datasets divided into 4 categories of domains. The

datasets marked with † are text-heavy (Textual). Each dataset with

⇤ has an additional dirty version to test the models’ robustness

against noisy data.

Datasets Domains

Amazon-Google, Walmart-Amazon⇤ software / electronics

Abt-Buy†, Beer product

DBLP-ACM*, DBLP-Scholar*, iTunes-Amazon* citation / music

Company†, Fodors-Zagats company / restaurant

Among the datasets, the Abt-Buy and Company datasets are

text-heavy meaning that at least one attributes contain long text.

Also, following [32], we use the dirty version of the DBLP-ACM,

DBLP-Scholar, iTunes-Amazon, and Walmart-Amazon datasets to

measure the robustness of the models against noise. These datasets

are generated from the clean version by randomly emptying at-

tributes and appending their values to another randomly selected

attribute.

Each dataset is split into the training, validation, and test sets

using the ratio of 3:1:1. The same split of the datasets is also used

in the evaluation of other EM solutions [17, 23, 32]. We list the size

of each dataset in Table 5.

The WDC product data corpus [37] contains 26 million product

o�ers and descriptions collected from e-commerce websites [54].

The goal is to �nd product o�er pairs that refer to the same product.

To evaluate the accuracy of product matchers, the dataset provides

4,400 manually created golden labels of o�er pairs from 4 categories:

computers, cameras, watches, and shoes. Each category has a �xed

number of 300 positive and 800 negative pairs. For training, the

dataset provides for each category pairs that share the same product

ID such as GTINs or MPNs mined from the product’s webpage. The

negative examples are created by selecting pairs that have high

textual similarity but di�erent IDs. These labels are further reduced

to di�erent sizes to test the models’ label e�ciency. We summarize

the di�erent subsets in Table 4. We refer to these subsets as the

WDC datasets.

Table 4: Di�erent subsets of the WDC product data corpus. Each

subset (except Test) is split into a training set and a validation set

with a ratio of 4:1 according to the dataset provider [37]. The last col-

umn shows the positive rate (%POS) of each category in the xLarge

set. The positive rate on the test set is 27.27% for all the categories.

Categories Test Small Medium Large xLarge %POS

Computers 1,100 2,834 8,094 33,359 68,461 14.15%

Cameras 1,100 1,886 5,255 20,036 42,277 16.98%

Watches 1,100 2,255 6,413 27,027 61,569 15.05%

Shoes 1,100 2,063 5,805 22,989 42,429 9.76%

All 4,400 9,038 25,567 103,411 214,736 14.10%

Each entry in this dataset has 4 attributes: title, description,

brand, and specTable. Following the setting in [37] for DeepMatcher,

we allowD���� to use any subsets of attributes to determine the best

combination. We found in our experiments that D���� achieves the

best performance when it uses only the title attribute. We provide

further justi�cation of this choice in Appendix F of the full version.

4.2 Implementation and experimental setup

We implemented D���� in PyTorch [34] and the Transformers

library [56]. We currently support 4 pre-trained models: Distil-

BERT [43], BERT [13], RoBERTa [28], and XLNet [59]. We use the

base uncased variant of each model in all our experiments. We fur-

ther apply the half-precision �oating-point (fp16) optimization to

accelerate the training and prediction speed. In all the experiments,

we �x the max sequence length to be 256 and the learning rate

to be 3e-5 with a linearly decreasing learning rate schedule. The

batch size is 32 if MixDA is used and 64 otherwise. The training

process runs a �xed number of epochs (10, 15, or 40 depending

on the dataset size) and returns the checkpoint with the highest

F1 score on the validation set. We conducted all experiments on a

p3.8xlarge AWS EC2 machine with 4 V100 GPUs (1 GPU per run).

Compared methods. We compare D���� with the SOTA EM

solution DeepMatcher. We also consider other baseline methods

including Magellan [24], DeepER [14], and follow-up works of

DeepMatcher [17, 23]. We also compare with variants of D����

without the data augmentation (DA) and/or domain knowledge

(DK) optimization to evaluate the e�ectiveness of each component.

We summarize these methods below. We report the average F1 of 5

repeated runs in all the settings.

• DeepMatcher: DeepMatcher [32] is the SOTA matching solu-

tion. Compared to D����, DeepMatcher customizes the RNN ar-

chitecture to aggregate the attribute values, then compares/aligns

the aggregated representations of the attributes. DeepMatcher

leverages FastText [5] to train the word embeddings. When re-

porting DeepMatcher’s F1 scores, we use the numbers in [32]

for the ER-Magellan datasets and numbers in [37] for the WDC

datasets.We also reproduced those results using the open-sourced

implementation.

• DeepMatcher+: Follow-upwork [23] slightly outperformsDeep-

Matcher in the DBLP-ACM dataset and [17] achieves better F1 in

the Walmart-Amazon and Amazon-Google datasets. According

to [32], the Magellan system ([24], based on classical ML mod-

els) outperforms DeepMatcher in the Beer and iTunes-Amazon

datasets. We also implemented and ran DeepER [14], which is

another RNN-based EM solution. We denote by DeepMatcher+

(or simply DM+) the best F1 scores among DeepMatcher and

these works aforementioned. We summarize in Appendix C of

[27] the implementation details and performance of each method.

• D����: This is the full version of our system with all 3 optimiza-

tions, domain knowledge (DK), TF-IDF summarization (SU), and

data augmentation (DA) turned on. See the details below.

• D����(DA): This version only turns on the DA (withMixDA) and

SU but does not have the DK optimization. We apply one of the

span-level or attribute-level DA operators listed in Table 2 with

the entry_swap operator. We compare the di�erent combinations

and report the best one. Following [30], we apply MixDA with

the interpolation parameter � sampled from a Beta distribution

Beta(0.8, 0.8).

• D����(DK): With only the DK and SU optimizations on, this

version of D���� is expected to have lower F1 scores but train

much faster. We apply the span-typing to datasets of each domain

according to Table 1 and apply the span-normalization on the

number spans.
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• Baseline: This base form of D���� corresponds simply to �ne-

tuning a pre-trained LM on the EM task. We did not apply any

optimizations on the baseline. For each ER-Magellan dataset, we

tune the LM for the baseline and found that RoBERTa generally

achieves the best performance. Thus, we use RoBERTa in the

other 3 D���� variants (D����, D����(DA), and D����(DK)) by

default across all datasets. The Company dataset is the only

exception, where we found that the BERT model performs the

best. For the WDC benchmark, since the training sets are large,

we use DistilBERT across all settings for faster training.

There is a concurrent work [6], which also applies pre-trained LM to

the entity matching problem. The proposed method is similar to the

baseline method above, but due to the di�erence in the evaluation

methods ([6] reports the best epoch on the test set, instead of the

validation set), the reported results in [6] is not directly comparable.

We summarize in Appendix E of [27] the di�erence between D����

and [6] and explain why the reported results are di�erent.

4.3 Main results

Table 5 shows the results of the ER-Magellan datasets. Overall,

D���� (with optimizations) achieves signi�cantly higher F1 scores

than the SOTA results (DM+). D���� without optimizations (i.e.,

the baseline) achieves comparable results with DM+. D���� out-

performs DM+ in all 13 cases and by up to 31% (Dirty, Walmart-

Amazon) while the baseline outperforms DM+ in 12/13 cases except

for the Company dataset with long text.

In addition, we found that D���� is better at datasets with small

training sets. Particularly, the average improvement on the 7 small-

est datasets is 15.6% vs. 1.48% on average on the rest of datasets.

D���� is also more robust against data noise than DM+. In the 4

dirty datasets, the performance degradation of D���� is only 0.57

on average while the performance of DM+ degrades by 8.21. These

two properties makeD����more attractive in practical EM settings.

Moreover, in Appendix D of [27], we show an evaluation of

D����’s label e�ciency on 5 of the ER-Magellan medium-size

datasets. In 4/5 cases, when trained on less than 20% of the orig-

inal training data, D���� is able to achieve close or even better

performance than DM+ when the full training sets are in use.

D���� also achieves promising results on the WDC datasets

(Table 6). D���� achieves the highest F1 score of 94.08 when using

all the 215k training data, outperforming the previous best result

by 3.92. Similar to what we found in the ER-Magellan datasets, the

improvements are higher on settings with fewer training examples

(to the right of Table 6). The results also show that D���� is more

label e�cient than DeepMatcher. For example, when using only

1/2 of the data (Large), D���� already outperforms DeepMatcher

with all the training data (xLarge) by 2.89 in All. When using only

1/8 of the data (Medium), the performance is within 1% close to

DeepMatcher’s F1 when 1/2 of the data (Large) is in use. The only

exception is the shoes category. This may be caused by the large

gap of the positive label ratios between the training set and the test

set (9.76% vs. 27.27% according to Table 4).

4.4 Ablation study

Next, we analyze the e�ectiveness of each component (i.e., LM, SU,

DK, and DA) by comparing D���� with its variants without these

optimizations. The results are shown in Table 5 and Figure 4.

Table 5: F1 scores on the ER-Magellan EMdatasets. The numbers of

DeepMatcher+ (DM+) are the highest available found in [17, 23, 32]

or re-produced by us.

Datasets DM+ D����
D����

(DA)

D����

(DK)
Baseline Size

Structured

Amazon-Google 70.7 75.58 (+4.88) 75.08 74.67 74.10 11,460

Beer 78.8 94.37 (+15.57) 87.21 90.46 84.59 450

DBLP-ACM 98.45 98.99 (+0.54) 99.17 99.10 98.96 12,363

DBLP-Google 94.7 95.6 (+0.9) 95.73 95.80 95.84 28,707

Fodors-Zagats 100 100.00 (+0.0) 100.00 100.00 98.14 946

iTunes-Amazon 91.2 97.06 (+5.86) 97.40 97.80 92.28 539

Walmart-Amazon 73.6 86.76 (+13.16) 85.50 83.73 85.81 10,242

Dirty

DBLP-ACM 98.1 99.03 (+0.93) 98.94 99.08 98.92 12,363

DBLP-Google 93.8 95.75 (+1.95) 95.47 95.57 95.44 28,707

iTunes-Amazon 79.4 95.65 (+16.25) 95.29 94.48 92.92 539

Walmart-Amazon 53.8 85.69 (+31.89) 85.49 80.67 82.56 10,242

Textual

Abt-Buy 62.8 89.33 (+26.53) 89.79 81.69 88.85 9,575

Company 92.7 93.85 (+1.15) 93.69 93.15 41.00 112,632

Table 6: F1 scores on the WDC product matching datasets. The

numbers for DeepMatcher (DM) are taken from [37].

Size xLarge (1/1) Large (1/2) Medium (1/8) Small (1/20)

Methods DM Ditto DM Ditto DM Ditto DM Ditto

Computers
90.80 95.45 89.55 91.70 77.82 88.62 70.55 80.76

+4.65 +2.15 +10.80 +10.21

Cameras
89.21 93.78 87.19 91.23 76.53 88.09 68.59 80.89

+4.57 +4.04 +11.56 +12.30

Watches
93.45 96.53 91.28 95.69 79.31 91.12 66.32 85.12

+3.08 +4.41 +11.81 +18.80

Shoes
92.61 90.11 90.39 88.07 79.48 82.66 73.86 75.89

-2.50 -2.32 +3.18 +2.03

All
90.16 94.08 89.24 93.05 79.94 88.61 76.34 84.36

+3.92 +3.81 +8.67 +8.02

The use of a pre-trained LM contributes to a large portion of the

performance gain. In the ER-Magellan datasets (excluding Com-

pany), the average improvement of the baseline compared to Deep-

Matcher+ is 7.75, which accounts for 78.5% of the improvement of

the full D���� (9.87). While DeepMatcher+ and the baseline D����

(essentially �ne-tuning a LM) are comparable on the Structured

datasets, the baseline performs much better on all the Dirty datasets

and the Abt-Buy dataset. This con�rms our intuition that the lan-

guage understanding capability is a key advantage of D���� over

existing EM solutions. The Company dataset is a special case be-

cause the length of the company articles (3,123 words on average)

is much greater than the max sequence length of 256. The SU opti-

mization increases the F1 score of this dataset from 41% to over 93%.

In the WDC datasets, across the 20 settings, LM contributes to 3.41

F1 improvement on average, which explains 55.3% of improvement

of the full D���� (6.16).

TheDK optimization ismore e�ective on the ER-Magellan datasets.

Compared to the baseline, the improvement of D����(DK) is 1.08

on average and is up to 5.88 on the Beer dataset while the improve-

ment is only 0.22 on average on the WDC datasets. We inspected
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Table 9: Running time for blocking and matching with D����. Ad-

vanced blocking consists of two steps: computing the representa-

tion of each record with Sentence-BERT [41] (Encoding) and sim-

ilarity search by blocked matrix multiplication [1] (Search). With

advanced blocking, we onlymatch each recordwith the top-10most

similar records according to the model.

Basic Encoding Search Matching

Blocking (GPU) (CPU) (top-10) (ALL)

Time (s) 537.26 2,229.26 1,981.97 1,339.36 22,823.43

6 RELATED WORK AND DISCUSSION

EM solutions have tackled the blocking problem [2, 8, 16, 33, 52] and

the matching problem with rules [11, 15, 45, 51], crowdsourcing [18,

22, 50], or machine learning [4, 10, 18, 24, 44].

Recently, EM solutions used deep learning and achieved promis-

ing results [14, 17, 23, 32, 62]. DeepER [14] trains EM models based

on the LSTM [21] neural network architecture with word embed-

dings such as GloVe [36]. DeepER also proposed a blocking tech-

nique to represent each entry by the LSTM’s output. Our advanced

blocking technique based on Sentence-BERT [41], described in

Section 5, is inspired by this. Auto-EM [62] improves deep learning-

based EM models by pre-training the EM model on an auxiliary

task of entity type detection. D���� also leverages transfer learning

by �ne-tuning pre-trained LMs, which are more powerful in lan-

guage understanding. We did not compare D���� with Auto-EM in

experiments because the entity types required by Auto-EM are not

available in our benchmarks. However, we expect that pre-training

D���� with EM-speci�c data/tasks can improve the performance of

D���� further and is part of our future work. DeepMatcher intro-

duced a design space for applying deep learning to EM. Following

their template architecture, one can think of D���� as replacing

both the attribute embedding and similarity representation com-

ponents in the architecture with a single pre-trained LM such as

BERT, thus providing a much simpler overall architecture.

All systems, Auto-EM, DeepER, DeepMatcher, and D���� for-

mulate matching as a binary classi�cation problem. The �rst three

take a pair of data entries of the same arity as input and aligns the

attributes before passing them to the system for matching. On the

other hand, D���� serializes both data entries as one input with

structural tags intact. This way, data entries of di�erent schemas

can be uniformly ingested, including hierarchically formatted data

such as those in JSON. Our serialization scheme is not only appli-

cable to D����, but also to other systems such as DeepMatcher. In

fact, we serialized data entries to DeepMatcher under one attribute

using our scheme and observed that DeepMatcher improved by as

much as 5.2% on some datasets.

A concurrent work [6] also applies pre-trained LMs to the en-

tity matching problem and achieves good performance. While the

proposed method in [6] is similar to the baseline version of D����,

D���� can be further optimized using domain knowledge, data

augmentation, and summarization. We also present a comprehen-

sive experiment analysis on more EM benchmarks using a more

standard evaluation method. We provide a detailed comparison

between D���� and [6] in Appendix E of our full version [27].

External knowledge is known to be e�ective in improving neu-

ral network models in NLP tasks [7, 47, 53, 58]. To incorporate

domain knowledge, D���� modularizes the way domain knowl-

edge is incorporated by allowing users to specify and customize

rules for preprocessing input entries. Data augmentation (DA) has

been extensively studied in computer vision and has recently re-

ceived more attention in NLP [30, 55, 57]. We designed a set of

DA operators suitable for EM and apply them with MixDA [30], a

recently proposed DA strategy based on convex interpolation. To

our knowledge, this is the �rst time data augmentation has been

applied to EM.

Active learning is a recent trend in EM to train high-quality

matching models with limited labeling resources [19, 23, 29, 38].

Under the active learning framework, the developer interactively

labels a small set of examples to improve the model while the up-

dated model is used to sample new examples for the next labeling

step. Although active learning’s goal of improving label e�ciency

aligns with data augmentation in D����, they are di�erent solu-

tions, which can be used together; active learning requires human

interaction in each iteration, whereas data augmentation does not.

According to [29], one needs to adjust the model size and/or the

training process such that the response time becomes acceptable

for user interaction in active learning. Thus, we consider apply-

ing it to D���� is not straightforward because of the relatively

long �ne-tuning time of the D����. We leave this aspect to future

development of D����.

Discussion. Like other deep learning-based EM solutions, D����

requires a non-trivial amount of labeled training examples (e.g., the

case study requires 6k examples to achieve 95% F1) and D����’s

DA and DK optimizations help reduce the labeling requirement

to some extent. Currently, the LMs that we have tested in D����

are pre-trained on general English text corpora and thus might not

capture well EM tasks with a lot of numeric data and/or speci�c

domains such as the scienti�c domain. For domain-speci�c tasks,

a potential solution is to leverage specialized LMs such as SciB-

ERT [3] or BioBERT [26] trained on scienti�c and biology corpus

respectively. For numeric data, a good candidate solution would

be a hybrid neural network similar to [20, 60] that combines the

numeric features with the textual features.

7 CONCLUSION

We present D����, an EM system based on �ne-tuning pre-trained

Transformer-based language models. D���� uses a simple archi-

tecture to leverage pre-trained LMs and is further optimized by

injecting domain knowledge, text summarization, and data augmen-

tation. Our results show that it outperforms existing EM solutions

on all three benchmark datasets with signi�cantly less training data.

D����’s good performance can be attributed to the improved lan-

guage understanding capability mainly through pre-trained LMs,

the more accurate text alignment guided by the injected knowledge,

and the data invariance properties learned from the augmented

data. We plan to further explore our design choices for injecting

domain knowledge, text summarization, and data augmentation. In

addition, we plan to extend D���� to other data integration tasks

beyond EM, such as entity type detection and schema matching

with the ultimate goal of building a BERT-like model for tables.
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