
Rumble: Data Independence for Large Messy Data Sets

Ingo Müller
ETH Zurich

ingo.mueller@inf.ethz.ch

Ghislain Fourny
ETH Zurich

ghislain.fourny@inf.ethz.ch

Stefan Irimescu∗

Beekeeper AG
stefan.irimescu@beekeeper.io

Can Berker Cikis∗

(unaffiliated)
canberkerwork@gmail.com

Gustavo Alonso
ETH Zurich

alonso@inf.ethz.ch

ABSTRACT

This paper introduces Rumble, a query execution engine for large,

heterogeneous, and nested collections of JSON objects built on top

of Apache Spark. While data sets of this type are more and more

wide-spread, most existing tools are built around a tabular data

model, creating an impedance mismatch for both the engine and

the query interface. In contrast, Rumble uses JSONiq, a standard-

ized language specifically designed for querying JSON documents.

The key challenge in the design and implementation of Rumble is

mapping the recursive structure of JSON documents and JSONiq

queries onto Spark’s execution primitives based on tabular data

frames. Our solution is to translate a JSONiq expression into a tree

of iterators that dynamically switch between local and distributed

execution modes depending on the nesting level. By overcoming

the impedance mismatch in the engine, Rumble frees the user from

solving the same problem for every single query, thus increasing

their productivity considerably. As we show in extensive experi-

ments, Rumble is able to scale to large and complex data sets in

the terabyte range with a similar or better performance than other

engines. The results also illustrate that Codd’s concept of data in-

dependence makes as much sense for heterogeneous, nested data

sets as it does on highly structured tables.

PVLDB Reference Format:

Ingo Müller, Ghislain Fourny, Stefan Irimescu, Can Berker Cikis,

and Gustavo Alonso. Rumble: Data Independence for Large Messy Data

Sets. PVLDB, 14(4): 498 - 506, 2021.

doi:10.14778/3436905.3436910

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/RumbleDB/experiments-vldb21/.

1 INTRODUCTION

JSON is a wide-spread format for large data sets. Its popularity

can be explained by its concise syntax, its ability to be read and

written easily by both humans and machines, and its simple, yet

flexible data model. Thanks to its wide support by programming

languages and tools, JSON is often used to share data sets between

∗The contributions of these authors were made during their studies at ETH Zurich.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 4 ISSN 2150-8097.
doi:10.14778/3436905.3436910

users or systems. Furthermore, data is often first produced in JSON,

for example, as messages between system components or as trace

events, where its simplicity and flexibility require a very low initial

development effort.

However, the simplicity of creating JSON data on the fly often

leads to a certain heterogeneity of the produced data sets, which

creates problems on its own. As a running example, consider the

GitHub Archive, a public data set of about 1.1 TB of compressed

JSON objects representing about 2.9 billion events recorded by

the GitHub API between early 2011 and today. The data set com-

bines events of different types and different versions of the APIÐ

presumably, because each event is simply archived as-is. Each indi-

vidual event in the data set is already complex, consisting of nested

arrays and objects with typically several dozen attributes in total.

However, the variety of events makes the collection as a whole

even more complex: all events combined have more than 1.3 k dif-

ferent attributes. Furthermore, about 10 % of these attributes have

mixed JSON types. Analyzing this kind of data sets thus requires

dealing with łmessyž data, i.e., with absent values, nested objects

and arrays, and heterogeneous types.

We argue that today’s data analytic systems have unsatisfactory

support for large, messy data sets. While many systems allow read-

ing JSON-based data sets, they usually represent them in some flavor

of data frames, which often do not work with nested arrays (for

example, pandas) and almost always only work with homogeneous

collections. Attributes with a mix of types are either dropped or

kept as stringsÐincluding all nested attributesÐand must be parsed

manually before further analysis. For example, because there is a

tiny number of integers among the objects in the .payload.issue

path, all values at this path are stored as strings. Overall, this is the

case for about a quarter of the data set, which is hence inaccessi-

ble for immediate analysis. Additionally, data-frame-based systems

usually map non-existing values and null values1 to their own

representation of NULL, making it impossible to distinguish the two

in the (admittedly rare) cases where this might be necessary. In

short, the conversion to a data frame seems to be an inadequate

first step for analyzing messy JSON data sets.

Furthermore, SQL is arguably not the most intuitive language

when it comes to nested data, and the same is true for other lan-

guages originally designed for flat data frames or relations. While

the SQL standard does define an array data type and even sub-

queries on individual arrays, this is donewith pairs of ARRAY(.) and

UNNEST(.), which is more verbose and less readable than necessary.

1These are different concepts in JSON: The attribute foo is non-existent in
{"bar": 42}, but has the value null in {"foo": null}.

498

https://doi.org/10.14778/3436905.3436910
https://github.com/RumbleDB/experiments-vldb21/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3436905.3436910

For example,2 the following query selects the elements x within an

array attribute arr that are less than 5 and multiplies them by 2:

SELECT arr, ARRAY(

SELECT x*2 FROM UNNEST(arr) AS x WHERE x < 5)

FROM table_with_nested_attributes;

What is worse is that few systems implement the array function-

ality of the standard even partially, let alone all of it. Instead, if

they support arrays at all, they do so through (often non-standard)

functions such as array_contains, which are less expressive. For

example, SQL can express łargmin-stylež queries only with a self-

join and none of the SQL dialects we are aware of has an equivalent

of GROUP BY for arrays. Consequently, queries on messy data sets

might consist of three different sub-languages: (1) SQL for the data

frame holding the data set, (2) array_* functions for nested data,

and (3) user-defined functions for otherwise unsupported tasks

including parsing and cleansing the heterogeneous attributes. Cur-

rent tools are thus not only based on an inadequate data model but

also on a language with sub-optimal support for nested data.

In this paper, we present the design and implementation of Rum-

ble, a system for analyzing large, messy data sets. It is based on

the query language JSONiq [13, 30], which was designed to query

collections of JSON documents, is largely based on W3C standards,

and has several mature implementations. JSONiq’s data model ac-

curately represents any well-formed JSON document (in fact, any

JSON document is automatically a valid JSONiq expression) and

the language uses the same, simple and declarative constructs for

all nesting levels. This makes it natural to deal with all aspects

of messy data sets: absent data, nested values, and heterogeneous

types. Furthermore, the fact that JSONiq is declarative opens the

door for a wide range of query optimization techniques. Thanks to

JSONiq, Rumble does hence not suffer from the short-comings of

data-frame-based systems mentioned above but instead promises

higher productivity for users working with JSON data.

The key difference of Rumble compared to previous implemen-

tations of JSONiq such as Zorba [32] and IBM WebSphere [20] is

the scale of data sets it targets. To that aim, we implement Rum-

ble on top of Apache Spark [31], such that it inherits the big data

capabilities of that system, including fault tolerance, integration

with several cluster managers and file systems (including HDFS,

S3, Azure Blob Storage, etc) and even fully managed environments

in the cloud. As a side effect, Rumble also inherits Spark’s support

for a large number of data formats (including Parquet, CSV, Avro,

and even libSVM and ROOT, whose data models are subsets of

that of JSON). In contrast, Zorba and WebSphere are designed for

processing small documents and only execute queries on a single

core. Rumble thus combines a high-level language that has native

support for the full JSON data model with virtually unlimited scale-

out capabilities, enabling users to analyze messy data sets of any

scale. This also shows that the proven design principle of data in-

dependence makes just as much sense for semi-structured data as

it makes for the relational domain.

2 BACKGROUND

JSON. JSON [22] (JavaScript Object Notation) is a syntax describing

possibly nested values. Figure 1 shows an example. A JSON value

2Alternative syntax include LATERAL JOIN, for which the same arguments applies.

{ "type": "PushEvent",

"commits": [{"author": "john", "sha": "e230e81"},

{"author": "tom", "sha": "6d4f151"}],

"repository":

{"name": "hello-world", "fork": false},

"created_at": "2013-08-19" }

Figure 1: A (simplified) example JSON object from the

Github Archive data set.

is either a number, a string, one of the literals true, false, or

null, an array of values, or an object, i.e., a mapping of (unique)

strings to values. The syntax is extremely concise and simple, but

the nestedness of the data model makes it extremely powerful.

Related are the JSON Lines [23] and ndjson [19] formats, which

essentially specify a collection of JSON values to be represented

with one value per line.

JSONiq. JSONiq [13, 24] is a declarative, functional, and Turing-

complete query language that is largely based on W3C standards.

Since it was specifically designed for querying large quantities of

JSON data, many language constructs make dealing with this kind

of data easy.

All JSONiq expressions manipulate ordered and potentially het-

erogeneous łsequencesž of łitemsž (which are instances of the

JSONiq Data Model, JDM). Items can be either (i) atomic values

including all atomic JSON types as well as dates, binaries, etc., (ii)

structured items, i.e., objects and arrays, or (iii) function items. Se-

quences are always flat, unnested automatically, and may be empty.

Many expressions work on sequences of arbitrary length, in

particular, the expressions navigating documents: For example,

in $payload.commits[].author, the object look-up operator . is

applied to any item in $payload to extract their commits member

and the [] operator is applied to any item in the result thereof to

unnest their array elements as a sequence of items. Both operators

return an empty sequence if the left-hand side is not an object or

array, respectively. The result, all array elements of all commits

members, is a single flat sequence, which is consumed by the next

expression. This makes accessing nested data extremely concise.

Some expressions require a sequence to be of at most or exactly one

element such as the usual expressions for arithmetic, comparison,

two-valued logic, string manipulation, etc.

Where it makes sense, expressions can deal with absent data:

For example, the object look-up simply returns only the members

of those objects that do have that member, which is the empty

sequence if none of them has it, and arithmetic expressions, etc.

evaluate to the empty sequence if one of the sides is the empty

sequence.

For more complex queries, the FLWOR expression allows pro-

cessing each item of a sequence individually. It consists of an arbi-

trary number of for, let, where, order by, group by, and return

clauses in (almost) arbitrary order. The fact that FLWOR expres-

sions (like any other expression) can be nested arbitrarily allows

users to use the same language constructs for any nesting level of

the data. For example, the following query extracts the commits

from every push event that were authored by the committer who

authored most of them:

499

for $e in $events (: iterate over input :)

let $top-committer := (

for $c in $e.commits[] (: iterate over array :)

group by $c.author

stable order by count($c) descending

return $c.author)[1]

return [$e.commits[][$$.author eq $top-committer]]

In the extended version of this paper [21], we present our attempt

to formulate the above query in SQL, which is about five times

longer than that in JSONiq.

Other expressions include literals, function calls, sequence pred-

icates, sequence concatenation, range construction, and various

łdata-flow-likež expressions such as if-then-else, switch, and

try-catch expressions. Of particular interest for JSON data sets

are the expressions for object and array creation, array access,

and merging of objects, as well as expressions dealing with types

such as instance-of, castable and cast, and typeswitch. Fi-

nally, JSONiq comes with a rich function library including the large

function library standardized by W3C.

While the ideal query language heavily depends on the taste

and experience of the programmer, we believe that the language

constructs summarized above for dealing with absent, nested, and

heterogeneous data make JSONiq very well suited for querying

large, messy data sets. In the experimental evaluation, we also

show that the higher programming comfort of that language does

not need to come with a large performance penalty.

3 DESIGN AND IMPLEMENTATION

3.1 Challenges and Overview

The high-level goal of Rumble is to execute arbitrary JSONiq queries

on data sets of any scale that technology permits. We thus design

Rumble as an application on top of Spark in order to inherit its

big-data capabilities.

On a high level, Rumble follows a traditional database architec-

ture: Queries are submitted either individually via the command

line or in a shell. When a query is submitted, Rumble parses the

query into an AST, which it then translates into a physical execution

plan. The execution plan consists of runtime iterators, which each,

roughly speaking, correspond to a particular JSONiq expression or

FLWOR clause. Finally, the result is either shown on the screen of

the user, saved to a local file, or, if the root iterator is executed in a

Spark job, written to a file by Spark.

The key challenge in this design is mapping the nested and

heterogeneous data model as well as the fully recursive structure

of JSONiq onto the data-frame-based data model of Spark and the

(mostly flat) execution primitives defined on it. In particular, since

JSONiq uses the same language constructs for any nesting level,

we must decide which of the nesting levels we map to Spark’s

distributed execution primitives.

The main novelty in the design of Rumble is the runtime iterators

that can switch dynamically between different execution modes,

and which encode the decision of which nesting level is distributed.

In particular, iterators have one of the following execution modes:

(i) local execution, which is done using single-threaded Java imple-

mentations (i.e., the iterator is executed independently of Spark),

(ii) RDD-based execution, which uses Spark’s RDD interface, and (iii)

DataFrame-based execution, which uses the DataFrame interface.

Typically, iterators of the outer-most expressions use the last two

modes, i.e., they are implemented with higher-order Spark primi-

tives. Their child expressions are represented as a tree of iterators

using the local execution mode, which is passed as argument into

these higher-order primitives.

In the remainder of this section, we first describe the runtime

iterators in more detail and then present how to map JSONiq ex-

pressions onto these iterators.

3.2 Runtime Iterators

We first go into the details of the three execution modes. Local

execution consists of Volcano-style iterators and is used for pre- or

post-processing of the Spark jobs as well as for nested expressions

passed as an argument to one of Spark’s higher-order primitives.

Simple queries may entirely run in this mode. In all of these cases,

local execution usually deals with small amounts of data at the time.

In addition to the usual open(), hasNext(), next(), and close()

functions, our iterator interface also includes reset() to allow for

repeated execution of nested plans. Apart from the usual semantics,

the open() and reset() functions also set the dynamic context of

each expression, which essentially provides access to the in-scope

variables.

The other two execution modes are based on Spark. The Data-

Frame-based execution is used whenever the internal structure (or

at least part of it) is known statically. This is the case for the tuple-

based iterators of FLWOR clauses, where the variables bound in

the tuples can be derived statically from the query and, hence,

represented as columns in a DataFrame. Some expression iterators,

whose output structure can be determined statically, also support

this execution mode. Using the DataFrame interface in Spark is

generally preferable as it results in faster execution. The RDD-

based execution is used whenever no structure is known, which

is typically the case for sequences of items. Since we represent

items as instances of a polymorphic class hierarchy, which is not

supported by DataFrames, we use RDDs instead.

Each execution mode uses a different interface: local execution

uses the open()/next()/close() interface described above, while

the interfaces of the other two modes mainly consist of a getRDD()

and a getDataFrame() function, respectively. This allows chaining

Spark primitives as long as possible and, hence to run large parts

of the execution plan in a single Spark job. Each runtime iterator

has a łhighestž potential execution mode (where DataFrame-based

execution is considered higher than RDD-based execution, which,

in turn, is considered higher than local execution) and implements

all interfaces up to that interface. Default implementations make

it easy to support lower execution modes: by default, getRDD()

converts a DataFrame (if it exists) into an RDD and the default

implementations of the (local) open()/next()/close() interface

materialize an RDD (if it exists) and return its items one by one.

Iterator classes may override these functions with more optimal

implementations. The execution modes available for a particular

iterator may depend on the execution modes available for its chil-

dren. Furthermore, which interface and hence execution mode is

finally used also depends on the consumer, who generally chooses

the highest available mode.

For example, consider the following query:

500

count(for $n in json-file("numbers.json") return $n)

The iterator holding the string literal "numbers.json" only supports

local execution, so the iterator of the built-in function json-file()

uses that mode to consume its input. Independently of the execu-

tion mode of its child, the json-file() iterator always returns an

RDD. This ensures that reading data from files always happens in

parallel. The iterator of the for clause detects that its child, the

json-file() iterator, can produce an RDD, so it uses that inter-

face to continue parallel processing. As explained in more detail in

Section 3.5 below, it produces a DataFrame with a single column

holding $n. The subsequent return clause consumes that output

through the RDD interface. The return clause, in turn, only im-

plements the RDD interface (since it returns a sequence of items).

The $n expression nested inside the return clause is applied to

every tuple in the input DataFrame using the local execution mode

for all involved iterators. Next, the iterator of the built-in func-

tion count() detects that its child iterator (the return clause) can

produce an RDD, so it uses Spark’s count() function of RDDs to

compute the result. Since count() always returns a single item, its

iterator only implements the local execution mode, which is finally

used by the execution driver to retrieve the query result.

In contrast, consider the following query:

count(for $p in 1 to 10 return $p.name)

Since the range iterator executing the to expression only supports

local execution, its parent can also only offer local execution, which

repeats recursively until the root iterator such that the whole query

is executed locally. In particular and in contrast to the previous

query, the count() iterator now uses local execution, which con-

sumes its input one by one through next() calls incrementing a

counter every time.

To summarize, Rumble can switch seamlessly between local and

Spark-based execution. No iterator needs to know how its input is

produced, whether in parallel or locally, but can exploit this infor-

mation for higher efficiency. This allows to nest iterators arbitrarily

while maintaining parallel and even the distributed DataFrame-

based execution wherever possible.

The remainder of this section presents how we map JSONiq

expressions to Rumble’s runtime iterators. For the purpose of this

presentation, we categorize the iterators as shown in Table 1 based

on the implementation techniques we use. We omit the discussion

of the local-only iterators as well as the local execution mode of the

remaining ones as their implementations are basically translations

of the pseudo-code of their specification to Java.

3.3 Sequence-transforming Expressions

A number of expressions in JSONiq transform sequences of items

of any length, i.e., they work on item*. Consider again the example:

$payload.commits[].author

The object member look-up operator . and the array unbox operator

[] transform their respective input sequence by extracting the

commits member and all array elements, respectively.

Rumble implements this type of expressions using Spark’s map(),

flatMap(), and filter() transformations. The function parame-

ter given to these transformations, which is called on each item of

the input RDD, consists a potentially parameterized closure that

Category Expression/Clause

local-only (), {$k:$v}, [$seq], $$, +, -, mod, div, idiv,

eq, ne, gt, lt, ge, le, and, or, not, $a||$b,

$f($x), $m to $n, try catch, cast, castable,

instance of, some $x in $y satisfies...

sequence-

producing

json-file, parquet-file, libsvm-file,

text-file, csv-file, avro-file, root- file,

structured-json-file, parallelize

sequence-

transforming

$seq[...], $a[$i], $a[], $a[[]], $o.$s,

$seq!..., annotate, treat

sequence-

combining

$seq1,$seq2, if ($c) then... else...,

switch ($x) case... default...,

typeswitch ($x) case... default...

FLWOR for, let, where, group by, order by, count

Table 1: Runtime iterator categorization for JSONiq expres-

sions and clauses.

is specific to this iterator. For example, the object look-up iterator

uses flatMap() and its closure is parameterized with the member

name to look up ("commits" and "author" in the example above).

Similarly, the unbox iterator uses flatMap() with an unparam-

eterized closure. Note that both need to use flatMap() and not

map() as they may return fewer or more than one item per input

tuple. The predicate iterator used in $seq[...] is implemented

with filter() and its closure is parameterized with a nested plan

of runtime iterators, which is called on each item of the input RDD.

Another noteworthy example in this category is the JSONiq

function annotate(), which łliftsž an RDD to a DataFrame given

a schema definition by the user. It is implemented using map() and

its closure attempts to convert each instance of Item to an object

with the members and their types from the given schema, thus

allowing for more efficient execution.

3.4 Sequence-producing Expressions

Rumble has several built-in functions that trigger distributed exe-

cution from local input: the functions reading from files of various

formats as well as parallelize(). All of them take a local input

(the file name and potentially some parameters or an arbitrary

sequence) and produce a DataFrame or RDD.

parallelize() takes any local sequence and returns an RDD-

based iterator with the same content. Semantically, it is thus the

identity function; however, it allowsmanually triggering distributed

execution from local input. An optional second argument to the

function allows setting the number of Spark partitions explicitly.

The implementation of this iterator is essentially a wrapper around

Spark’s function with the same name.

The two functions json-file() and text-file() read the con-

tent of the files matched by the given pattern either parsing each

line as JSON object (i.e., reading JSON lines documents) or returning

each line as string, respectively. They are RDD-based as no internal

structure is known. Both are essentially wrappers around Spark’s

textFile(), but the iterator of json-file() additionally parses

each line into instances of Rumble’s polymorphic Item class.

501

Finally, a number of structured file formats are exposed through

built-in functions that are based on DataFrames: Avro, CSV, libSVM,

JSON (using Spark’s schema discovery), Parquet, and ROOT. All

of them have readers for Spark that produce DataFrames, which

expose their łcolumnsž or łattributes.ž Their implementations are

again mostly wrappers around existing functionality and support

for more formats can be added easily based on the same principle.

We omit the details of the sequence-combining expressions here

due to space constraints. They are available in the extended version

of the paper [21]. The techniques we use are very similar to the

ones used for the previous two expression categories.

3.5 FLWOR Expressions

FLWOR expressions are probably the most powerful expressions in

JSONiq and roughly correspond to SQL’s SELECT statements. They

consist of sequences of clauses, where each clause except return

can occur any number of times, with the restrictions that the first

clause must be either let or for and the last clause must be return.

The specification describes the semantics of the FLWOR expres-

sion using streams of tuples. A tuple is a binding of sequences of

items to variable names and each clause passes a stream of these

tuples to the next. The initial clause takes a stream of a single

empty tuple as input. Finally, as explained in more detail below, the

return clause converts its tuple stream to a sequence of items. In

Rumble, we represent tuple streams as DataFrames, whose columns

correspond to the variable names in the tuples.

3.5.1 For Clauses. The for clause is used for iteration through a

sequence. It returns a tuple in the input stream for each item in

the sequence where that item is bound to a new variable. If the

for clause does not use any variable from a previous clause, it

behaves like the FROM clause in SQL, which, if repeated, produces

the Cartesian product. However, it may also recurse into local

sequences such as in the example seen above:

for $c in $e.commits[] (: iterate over array in $e :)

In the case of the first for clause (i.e., there were either no pre-

ceding clauses at all or only let clauses), the resulting tuple stream

simply consists of one tuple per item of the sequence bound to the

variable name introduced in the clause. In this case, the runtime

iterator of the clause simply forwards the RDD or DataFrame of

the sequence, lifting it from RDD to DataFrame if necessary and

renaming the columns as required.

Subsequent for clauses are handled differently: First, the ex-

pression of the for clause is evaluated for each row in the input

DataFrame (i.e., for each tuple in the input stream) using a Spark

SQL user-defined function (UDF). The UDF is a closure parameter-

ized with the tree of runtime iterators of the expression, takes all

existing variables as input, and returns the resulting sequence of

items as a List<Item>. In order to obtain one tuple per input tuple

and item of those sequences, we use Spark’s EXPLODE functionality,

which is roughly equivalent to flatMap() on RDDs.

For example, if the current variables are x, y, and z, and the new

variable introduced by the for clause is i, then the for clause is

mapped to the following:

SELECT x, y, z, EXPLODE(UDF(x, y, z)) AS i

FROM input_stream

where input_stream refers to the input DataFrame and UDF is the

UDF described above.

3.5.2 Let Clauses. The let clause is used to bind a new variable

to a sequence of items. Thus, the let clause simply extends each

incoming tuple to include the new variable alongside the previously

existing ones. Similarly to the for clause, we implement the let

clause with a UDF that executes the iterator tree of the bound

expression on each input tuple:

SELECT x, y, z, UDF(x, y, z) AS i FROM input_stream

The let and for clauses allow overriding existing variables.

Formally, they introduce a new variable with the same name, but

since this makes the old variable inaccessible, we can drop the

column corresponding to the latter from the outgoing DataFrame.

3.5.3 Where Clauses. The where clause filters the tuples in the

input stream, passing on only those where the given expression

evaluates to true. Similarly to the clauses discussed above, we

wrap that expression into a UDF and convert the resulting value to

Boolean3 and use that UDF in a WHERE clause:

SELECT x, y, z WHERE UDF(x, y, z) FROM input_stream

3.5.4 Group-by Clauses. The group by clause groups the tuples

in the input stream by a (possibly compound) key and concatenates

the sequences of items of all other variables of the tuples in the same

group. This is similar to SQL’s GROUP BY clause but with the major

difference that it also works without aggregation. Furthermore, the

order of the groups is defined by the specification and the items

in the grouping variables may be of different (atomic) types, each

type producing its own group. For example, consider the following:

for $x in (1, 2, 2, "1", "1", "2", true, null)

group by $y := $x

return {"key": $y, "content": [$x]}

The result is six objects with the values 1, 2, "1", "2", true, and

null in "key" and an array with the repeated items in "content".

In short, we map this clause to a GROUP BY clause in Spark SQL

and use COLLECT_LIST to combine all items of each group into one

array.4 However, this has several challenges.

First, Spark can only group by atomic, statically typed columns

but the grouping variables in JSONiq are polymorphic items. We

solve this problem by shredding the items in the grouping variables

into three new columns. Since the grouping variables must be

atomic types, there are only a few cases to consider: any number,

Boolean, and null can be stored in a DOUBLE column while strings,

the only remaining atomic type, can be stored in a VARCHAR column.

Finally, we add a third column with an enum indicating the original

type. This way, we can use the three new columns of each grouping

variable as grouping variables in the GROUP BY clause. The three

columns are computed by a dedicated UDF similar to what we do

in the other clauses. We also add an ORDER BY clause on the same

attributes to sort the groups as mandated by the specification.

Second, we need to recover the original items in the grouping

variables. Since they cannot be grouping columns in SQL, we must

use them in an aggregate function. All values of columns of the

original grouping variables in one group must be the same by

3More precisely, we take the effective Boolean value.
4Interestingly, similar approaches are used for provenance tracking [16, 26, 29].

502

definition, so we can just pick the first one using the aggregate

function FIRST. Finally, to keep the interface to the subsequent

DataFrame simpler, we also store these as SQL arrays (which always

contain one element).

Putting everything together, consider the following example

query, where x and y are the grouping variables, z is the only

non-grouping variable, and UDF the UDF used for shredding items:

SELECT ARRAY(FIRST(x)), ARRAY(FIRST(y)),

COLLECT_LIST(z)

GROUP BY UDF(x), UDF(y)

ORDER BY UDF(x), UDF(y)

FROM input_stream

As an optimization, Rumble detects if a non-grouping variable

is used in an aggregate function such as count() by one of the

subsequent clauses and maps it to the corresponding aggregate

function in SQL. Similarly, non-grouping variables that are not

used at all are dropped.

3.5.5 Order-by Clauses. The order by clause returns the input

tuple stream sorted by a specific variable or variables. We use a sim-

ilar technique as for the sorting in the group by clause; however,

care must be taken to fully respect the semantics of the language.

The specification mandates that the sequences in the sorting vari-

ables must all be comparable; otherwise, an error must be thrown.

Sequences are only comparable if (i) they contain at most one item

and (ii) those items are of the same atomic type or null. The empty

sequence is always comparable and the user can choose if it is

greater or smaller than any other atomic item.

To implement this semantic, we do a first pass over the input to

discover the types and throw an error if required. Then we shred the

sorting attributes as described above, omitting either the column

for strings or that for numbers as only one of them is used.

3.5.6 Count Clauses. The count clause introduces a new variable

enumerating each tuple with consecutive numbers starting with 1.

There is currently no functionality in Spark SQL that enumerates

rows of an entire DataFrame with consecutive numbers, but practi-

tioners have devised an algorithm [17] based on MONOTONICALLY_

INCREASING_ID(). This function enumerates the rows within each

partition leaving gaps in between them. The algorithm consists in

enumerating the rows within each partitions using this function,

then computing the partition sizes and their prefix sum, and finally

broadcasting that prefix sum back into the partitions to correct for

the gaps. This approach is purely based on DataFrames, runs all

phases in parallel, and does not repartition the bulk of the data.

3.5.7 Return Clauses. The return clause ends a FLWOR expres-

sion by converting the tuple stream into the one flat sequence of

items given by an expression evaluated for each tuple. We eval-

uate that expression with a UDF as described above, convert the

DataFrame to an RDD, and unnest the sequences using flatMap().

3.6 Current Limitations

With the above techniques, Rumble is able to cover the majority

of JSONiq. The only two major missing features are windows in

for clauses, which we plan to integrate soon using similar features

as described above, and updates and scripting, which are on the

longer-term agenda.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

We conduct all experiments on m5 and m5d instances in AWS EC2.

Unless otherwise mentioned, we process the data directly off of S3.

We use two data sets: the Github Archive [15] mentioned before

as well as theWeather data set used by Pavlopoulou et al. [28] for

evaluating VXQuery. While the latter data set is fully homogeneous

and does, hence, not exercise the strengths of JSONiq, it allows for

comparing our numbers with those from the original authors.

We use eight different queries: (Weather|Github)Count com-

pute the number of records; the queriesWeatherQx are taken from

the original paper on VXQuery [28]; andGithub(Filter|Grouping|

Sorting) are simple queries that mainly consists of the correspond-

ing operation.

We give more details of the experimental setup in the extended

version of the paper [21] and a dedicated source code repository.5

4.2 Comparison of Distributed Engines

We first compare Rumble with four other query processing engines

for large, messy data sets, i.e., cluster-based systems that can pro-

cess JSON data in-situ: We use Apache AsterixDB, a system for

managing and querying heterogeneous data sets; a commercial

cloud-native database system that we refer to as łCloudDB;ž Spark

SQL running on Spark 3; and VXQuery, a former Apache project

built for analyzing XML and JSON data sets that is now abandoned.

For a fair comparison, we use clusters that cost about 2.5 $/h.

Usability. We express the queries for AsterixDB, CloudDB, and

Spark SQL in their respective non-standard SQL dialect. The (lim-

ited) support of these dialects for nested data is enough to express

the queries used in this section. However, Spark SQL does not load

the objects in the .actor path due to a few string values at that

path, so we need to use FROM_JSON(.) for inline JSON parsing.

VXQuery uses the JSONiq extension for XQuery, which should

make it easy to deal with messy data sets. However, we had to

try many different reformulations of the queries to work around

bugs in the query engine leading to wrong results (even for the

queries proposed by the original authors), and were not able to find

a correct formulation for the queries on the Github data set (includ-

ing GithubCount). The SQL-based systems require the definition

of external tables before any query can be run. Except for Spark,

where this takes about twice as long as most of the queries, this is

just a metadata operation that returns immediately. For VXQuery,

the files must be copied manually into the local file system of the

machines in the cluster (which we place on the local SSDs). Rumble

can use the full expressiveness of JSONiq and query files on cloud

storage without prior loading or setup.

Performance. Figure 2 shows the running time of the different

systems on the eight queries for different subsets of the data sets.

We stop all executions after 10min. Most systems are in a similar

ballpark for most queries, in particular for the Weather data set.

They all incur a certain setup overhead for small data sets, which is

expected for distributed query processing engines, and converge to

a stable throughput for larger data sets. CloudDB is generally among

the slower systems; we assume that this is because their XSMALL

5https://github.com/RumbleDB/experiments-vldb21

503

https://github.com/RumbleDB/experiments-vldb21

.1s

1s

10s

1m

10m

Ru
nn

in
g

tim
e

(a)WeatherCount (b) WeatherQ0 (c) WeatherQ1

AsterixDB
CloudDB
Rumble
SparkSQL
VXQuery

(d) WeatherQ2

.02 .16 1.28 10.2
Input size [GB]

.1s

1s

10s

1m

10m

Ru
nn

in
g

tim
e

(e) GithubCount

.02 .16 1.28 10.2
Input size [GB]

(f) GithubFilter

.02 .16 1.28 10.2
Input size [GB]

(g) GithubGrouping

.02 .16 1.28 10.2
Input size [GB]

(h) GithubSorting

Figure 2: Performance comparison of distributed JSON processing engines.

0 20 40 60

Running time [m]

GithubSorting

GithubGrouping

GithubFilter

GithubCount

AsterixDB

CloudDB

Rumble

SparkSQL

Figure 3: Distributed engines on the full Github data set.

cluster size (which is undisclosed) is smaller than the clusters of

the other systems. The per-core throughput of VXQuery is in the

order of 5MB/s to 10MB/s, which corresponds to the numbers in

the original paper [28]. Note that all systems detect the self-join

in WeatherQ2 and execute it with a sub-quadratic algorithm. On

the Github data set, some systems show weaknesses: Curiously,

VXQuery has a quadratic running time on all queries and is, hence,

not able to complete queries on more than 160MB within the time

limit. (It also crashes for some configurations on the Weather data

set.) Similarly, AsterixDB has a quadratic running time for the

sorting query.

Rumble inherits the robustness of Spark and completes all queries

without problems. Its performance is somewhat lower than that

of Spark due to the interpretation overhead of its polymorphic

operators and data representation. We believe that we can further

tighten this gap in the future by pushing more operations and data

representations down to Spark, where they would benefit from code

generation and statically-typed columnar storage. Furthermore, the

productivity benefits of using JSONiq, as well as its native support

for heterogeneous, nested data sets make the slightly increased

performance cost worthwhile.

Scalability. We also run the Github* queries on the full data set,

which is about 7.6 TB large when uncompressed, and present the

results in Figure 3. For this experiment, we use clusters that cost

about 20 $/h, i.e., that are eight times larger than in the previous

experiment. In order to avoid excessive costs, we run every query

only once and stop the execution after 2 h. CloudDB and AsterixDB

are not able to query the data set at this scale because a tiny number

of JSON objects exceeds the maximum object size of 16MiB and

32MB, respectively. For CloudDB, we thus report the running time

obtained after removing the problematic objects manually. This

work-around also helps for AsterixDB but the system then fails

with a time-out error. For reference, we plot extrapolated numbers

from Figure 2 instead.6 We do not include VXQuery here since it is

not able to handle more than 160MB in the previous experiment.

We observe that the relative performance among the systems

remains as before: Rumble has a moderate performance overhead

compared to Spark SQL but is significantly faster than CloudDB

and AsterixDB. The experiment thus shows that Rumble can handle

the full scale of the data set in terms of both size and heterogeneity

while providing a high-level language tailored to messy data sets.

4.3 Comparison of JSONiq Engines

In addition to VXQuery, we now compare Rumble with two other

JSONiq engines: Xidel and Zorba. Both engines are designed for

small documents and hence single-threaded. In order to be able to

compare the per-core performance of the engines, we configure

VXQuery and Rumble to use a single thread as well. Note, however,

that is not representative for typical usage on workstations and

laptops, where the two engines would enjoy a speed-up roughly

proportional to the number of cores. We run all experiments on

m5d.large instances with the data loaded to the local SSD and

stopped all query executions after 10min.

Usability. All systems can read files from the local file system,

though with small variations. Xidel and Zorba use the standard-

ized file module; VXQuery uses the standardized JSONiq function

6This results in much more than 2 h for GithubSorting, which we, hence, omit from
the plot.

504

.1s

1s

10s

1m

10m

Ru
nn

in
g

tim
e

(a)WeatherCount (b) WeatherQ0 (c) WeatherQ1

Rumble
VXQuery
Xidel
Zorba

(d) WeatherQ2

1 8 64 512
Input size [MB]

.1s

1s

10s

1m

10m

Ru
nn

in
g

tim
e

(e) GithubCount

1 8 64 512
Input size [MB]

(f) GithubFilter

1 8 64 512
Input size [MB]

(g) GithubGrouping

1 8 64 512
Input size [MB]

(h) GithubSorting

Figure 4: Performance comparison of JSONiq engines using a single thread.

fn:collection, and Rumble uses the Rumble-specific function

json-files. Except for those of VXQuery, the remainder of the

query implementations are character-by-character identical be-

tween the different systems. VXQuery has the same limitations in

terms of correctness as above; the other systems behave as expected.

Performance. Figure 4 shows the results. As expected, Xidel and

Zorba are considerably faster than the other two systems on small

data sets, which they are designed and optimized for. In contrast,

Rumble and VXQuery have a constant startup overhead for their

distributed execution environment. However, the single-threaded

engines struggle with larger data sets and complex queries: Xidel

cannot run any query on the Weather data set of 512MB as it runs

out of main memory. Note that the data should fit comfortably into

the 8GiB of main memory. It also has a super-linear running time

for the queries using sorting, grouping, or join. Zorba can handle

more queries, but, like Xidel, does not seem to have implemented an

equi-join as they have both quadratic running time forWeatherQ2.

VXQuery handles the queries on theWeather data set well; however,

it has the same quadratic running time on the Github data set as

before and is hence not able to process more than 8MB before the

timeout.

Rumble can handle all queries well and, after some start-up

overhead for small data sets, runs as fast as or considerably faster

than the other systems. This confirms that Rumble competes with

the per-core performance of state-of-the-art JSONiq engines, while

at the same time being able to handle more complex queries on

larger data sets. In the future, we plan to make it possible to execute

queries in the local execution mode entirely in order to remove the

start-up overhead for small inputs.

5 RELATED WORK

Query languages for JSON. Several languages have been pro-

posed for querying collections of JSON documents, a substantial

number of them by vendors of document stores. For example, As-

terixDB [2, 3] supports the AQL language, which is maybe the most

similar to JSONiq in the JSON querying landscape. Other proposals

include Couchbase’s N1QL [10, 11], UNQL [8], Arango’s AQL [6]

(homonymous to AsterixDB’s), SQL++ [27], and JAQL [7]. Most of

these and other proposed JSON query languages address nestedness,

missing values, and null, but have only limited support for mixed

types in the same path. We refer to the survey of Ong et al. [27]

for an in-depth comparison of these languages. To the best of our

knowledge, JSONiq is the only language in the survey and among

those we mention that has several independent implementations.

Document stores.Document stores are related in that they pro-

vide native support for documents in JSON and similar formats [5,

9, 18]. Many of them are now mature and popular commercial prod-

ucts. However, document stores usually target a different use case,

in which retrieving and modifying parts of individual documents

are the most important operations rather than the analysis of large

read-only collections.

In-situ data analysis. The paradigm employed by Rumble of

query data in-situ has received a lot of attention in the past years.

It considerably reduces the time that a scientist needs in order to

start querying freshly received data sets. Notable systems include

NoDB [1], VXQuery [12], and Amazon Athena [4].

Usage of Rumble. We have used Rumble for course work [25]

and research on game theory [14].

6 CONCLUSION

We built Rumble, a stable and efficient JSONiq engine on top of

Spark that provides data independence for heterogeneous, nested

JSON data sets with no pre-loading time. Our work demonstrates

that data independence for JSON processing is achievable with

reasonable performance on top of large clusters. The decoupling

between a logical layer with a functional, declarative language,

on the one hand, and an arbitrary physical layer with a low-level

query plan language, on the other hand, enables boosting data

analysis productivity while riding on the coat-tails of the latest

breakthroughs in terms of performance.

505

REFERENCES

[1] Ioannis Alagiannis, Renata Borovica-Gajic, Miguel Branco,

Stratos Idreos, and Anastasia Ailamaki. 2012. NoDB: efficient

query execution on raw data files. In SIGMOD. doi: 10.1145/

2213836.2213864.

[2] Wail Y. Alkowaileet, Sattam Alsubaiee, Michael J. Carey,

Till Westmann, and Yingyi Bu. 2016. Large-scale complex

analytics on semi-structured datasets using AsterixDB and

Spark. PVLDB, 9, 13. doi: 10.14778/3007263.3007315.

[3] Sattam Alsubaiee et al. 2014. AsterixDB: a scalable, open

source BDMS. PVLDB, 7, 14. doi: 10.14778/2733085.2733096.

[4] Amazon. 2020. Athena. (2020). https://aws.amazon.com/

athena/.

[5] J. Chris Anderson, Jan Lehnardt, and Noah Slater. 2010.

CouchDB: The Definitive Guide. O’Reilly Media, Inc. isbn:

978-0596155896.

[6] ArangoDB, Inc. 2020. ArangoDB. (2020). https : / / www.

arangodb.com/.

[7] Kevin S Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey

Balmin, Mohamed Eltabakh, Carl-Christian Kanne, Fatma

Ozcan, and Eugene J Shekita. 2011. Jaql: a scripting language

for large scale semistructured data analysis. PVLDB, 4, 12.

doi: 10.14778/3402755.3402761.

[8] Peter Buneman,Mary Fernandez, andDan Suciu. 2000. UnQL:

a query language and algebra for semistructured data based

on structural recursion.VLDBJ, 9. doi: 10.1007/s007780050084.

[9] Kristina Chodorow. 2013. MongoDB: The Definitive Guide:

Powerful and Scalable Data Storage. (2nd ed.). O’Reilly Media,

Inc. isbn: 9781449344795.

[10] Couchbase. 2018. Couchbase: NoSQL engagement database.

(2018). Retrieved 10/08/2018 from http://www.couchbase.

com/.

[11] Couchbase. 2018. N1QL (SQL for JSON). (2018). Retrieved

10/08/2018 from https://www.couchbase.com/products/

n1ql/.

[12] Jr. E. Preston Carman, Till Westmann, Vinayak R. Borkar,

Michael J. Carey, and Vassilis J. Tsotras. 2015. Apache VX-

Query: a scalable XQuery implementation. In IEEE Big Data.

doi: 10.1109/BigData.2015.7363753.

[13] D. Florescu and G. Fourny. 2013. JSONiq: the history of a

query language. IEEE Internet Computing, 17, 5. doi: 10.1109/

MIC.2013.97.

[14] Ghislain Fourny and Felipe Sulser. 2020. Data on the exis-

tence ratio and social utility of nash equilibria and of the

perfectly transparent equilibrium. Data in Brief, 33. doi: 10.

1016/j.dib.2020.106623.

[15] 2020. GH archive. Retrieved 09/21/2020 from http://www.

gharchive.org/.

[16] Boris Glavic and Gustavo Alonso. 2009. Perm: processing

provenance and data on the same data model through query

rewriting. In ICDE, 174ś185. isbn: 9780769535456. doi: 10.

1109/ICDE.2009.15.

[17] Evgeny Glotov. 2018. DataFrame-ified zipWithIndex. (2018).

https://stackoverflow.com/a/48454000/651937.

[18] Clinton Gormley and Zachary Tong. 2015. Elasticsearch: The

Definitive Guide. O’Reilly Media, Inc. isbn: 978-1449358549.

[19] Thorsten Hoeger, Chris Dew, Finn Pauls, and Jim Wilson.

2016. ndjson: newline delimited JSON. (2016). Retrieved 05/01/2020

from http://www.ndjson.org/.

[20] 2017. IBM WebSphere DataPower Gateways release notes.

IBM Corp. Retrieved 03/26/2020 from https://www.ibm.com/

support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/

releasenotes.html.

[21] Stefan Irimescu, Can Berker Cikis, Ingo Müller, Ghislain

Fourny, and Gustavo Alonso. 2019. Rumble: data indepen-

dence for large messy data sets. (2019). arXiv: 1910.11582

[cs.DB].

[22] JSON. 2018. Introducing JSON. (2018). Retrieved 10/08/2018

from http://json.org/.

[23] JSON-Lines. 2018. JSON Lines. (2018). Retrieved 10/16/2018

from http://www.jsonlines.org/.

[24] JSONiq. 2018. JSONiq. (2018). Retrieved 10/08/2018 from

http://jsoniq.org/.

[25] Ingo Müller, Catalina Alvarez, Mario Arduini, David Dao,

Dan Graur, Susie Rao, Shuai Zhang, and Ghislain Fourny.

2020. Exercises for the Big Data course at ETH Zurich. (2020).

Retrieved 12/08/2020 from https://github.com/RumbleDB/

bigdata-exercises/.

[26] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick,

Zhen Hua Liu, Vasudha Krishnaswamy, and Venkatesh Rad-

hakrishnan. 2017. Provenance-aware query optimization. In

ICDE. IEEE Computer Society, (May 2017), 473ś484. isbn:

9781509065431. doi: 10.1109/ICDE.2017.104.

[27] KianWinOng, Yannis Papakonstantinou, and Romain Vernoux.

2014. The SQL++ unifying semi-structured query language,

and an expressiveness benchmark of SQL-on-Hadoop, NoSQL

andNewSQL databases. (September 2014). arXiv: 1405.3631v4.

[28] Christina Pavlopoulou, E. Preston Carman, Till Westmann,

Michael J. Carey, and Vassilis J. Tsotras. 2018. A parallel and

scalable processor for json data. In EDBT. doi: 10.5441/002/

edbt.2018.68.

[29] Fotis Psallidas and Eugene Wu. 2018. SMOKE: fine-grained

lineage at interactive speed. PVLDB, 11, 6, (February 2018),

719ś732. issn: 2150-8097. doi: 10.14778/3199517.3199522.

[30] Jonathan Robie, Ghislain Fourny, Matthias Brantner, Daniela

Florescu, Till Westmann, and Markos Zaharioudakis. 2015.

JSONiq: the complete reference. (2015). http://www.jsoniq.

org/docs/JSONiq/html-single/index.html.

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2010. Spark: cluster computing

with working sets. In HotCloud.

[32] Zorba. 2018. ZorbaNoSQL engine. (2018). Retrieved 10/08/2018

from http://www.zorba.io/.

506

https://doi.org/10.1145/2213836.2213864
https://doi.org/10.1145/2213836.2213864
https://doi.org/10.14778/3007263.3007315
https://doi.org/10.14778/2733085.2733096
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/
https://www.arangodb.com/
https://www.arangodb.com/
https://doi.org/10.14778/3402755.3402761
https://doi.org/10.1007/s007780050084
http://www.couchbase.com/
http://www.couchbase.com/
https://www.couchbase.com/products/n1ql/
https://www.couchbase.com/products/n1ql/
https://doi.org/10.1109/BigData.2015.7363753
https://doi.org/10.1109/MIC.2013.97
https://doi.org/10.1109/MIC.2013.97
https://doi.org/10.1016/j.dib.2020.106623
https://doi.org/10.1016/j.dib.2020.106623
http://www.gharchive.org/
http://www.gharchive.org/
https://doi.org/10.1109/ICDE.2009.15
https://doi.org/10.1109/ICDE.2009.15
https://stackoverflow.com/a/48454000/651937
http://www.ndjson.org/
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/releasenotes.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/releasenotes.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.7.0/com.ibm.dp.doc/releasenotes.html
https://arxiv.org/abs/1910.11582
https://arxiv.org/abs/1910.11582
http://json.org/
http://www.jsonlines.org/
http://jsoniq.org/
https://github.com/RumbleDB/bigdata-exercises/
https://github.com/RumbleDB/bigdata-exercises/
https://doi.org/10.1109/ICDE.2017.104
https://arxiv.org/abs/1405.3631v4
https://doi.org/10.5441/002/edbt.2018.68
https://doi.org/10.5441/002/edbt.2018.68
https://doi.org/10.14778/3199517.3199522
http://www.jsoniq.org/docs/JSONiq/html-single/index.html
http://www.jsoniq.org/docs/JSONiq/html-single/index.html
http://www.zorba.io/

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	3.1 Challenges and Overview
	3.2 Runtime Iterators
	3.3 Sequence-transforming Expressions
	3.4 Sequence-producing Expressions
	3.5 FLWOR Expressions
	3.6 Current Limitations

	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Comparison of Distributed Engines
	4.3 Comparison of JSONiq Engines

	5 Related Work
	6 Conclusion

