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ABSTRACT
Set reconciliation is a fundamental algorithmic problem that arises
in many networking, system, and database applications. In this
problem, two large sets 𝐴 and 𝐵 of objects (bitcoins, files, records,
etc.) are stored respectively at two different network-connected
hosts, which we name Alice and Bob respectively. Alice and Bob
communicate with each other to learn𝐴△𝐵, the difference between
𝐴 and 𝐵, and as a result the reconciled set 𝐴

⋃
𝐵.

Current set reconciliation schemes are based on either invertible
Bloom filters (IBF) or error-correction codes (ECC). The former has
a low computational complexity of𝑂 (𝑑), where 𝑑 is the cardinality
of 𝐴△𝐵, but has a high communication overhead that is several
times larger than the theoretical minimum. The latter has a low
communication overhead close to the theoretical minimum, but
has a much higher computational complexity of 𝑂 (𝑑2). In this
work, we propose Parity Bitmap Sketch (PBS), an ECC-based set
reconciliation scheme that gets the better of both worlds: PBS has
both a low computational complexity of 𝑂 (𝑑) just like IBF-based
solutions and a low communication overhead of roughly twice
the theoretical minimum. A separate contribution of this work is a
novel rigorous analytical framework that can be used for the precise
calculation of various performance metrics and for the near-optimal
parameter tuning of PBS.
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1 INTRODUCTION
Set reconciliation is a fundamental algorithmic problem that
has received considerable research attention over the past two
decades [10, 11, 14, 19, 22]. In the simplest form of this problem,
two large sets 𝐴 and 𝐵 of objects (bitcoins, files, records, etc.) are
stored respectively at two different network-connected hosts, which
we name Alice and Bob respectively. Alice and Bob communicate
with each other to find out the difference between 𝐴 and 𝐵, defined
as 𝐴△𝐵 ≜ (𝐴\𝐵)⋃(𝐵\𝐴), so that both Alice and Bob obtain the
set union 𝐴

⋃
𝐵 (= 𝐴

⋃(𝐴△𝐵) = 𝐵
⋃(𝐴△𝐵)).
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Set reconciliation arises in many networking, system, and data-
base applications. In cloud storage systems (e.g.,Dropbox, Microsoft
OneDrive, Google Drive, and Apple iCloud), sets of files and di-
rectories need to be synchronized across the copies stored locally
on different devices and in the cloud. In distributed database sys-
tems (e.g., Spanner [9] and Cassandra [16]), an update at a single
node has to get replicated across all other nodes eventually. In
blockchains [24, 25], transactions need to be synchronized with
some peers.

1.1 Problem Formulation
As is standard in the literature, in the rest of the paper we describe
only unidirectional set reconciliation, in which Alice learns 𝐴△𝐵
and then infers 𝐴

⋃
𝐵; for bidirectional set reconciliation, Alice

can simply infer 𝐴\𝐵 (from 𝐴△𝐵) and send it to Bob, from which
Bob can infer 𝐴

⋃
𝐵 as well. A simple but naive set reconciliation

scheme is for Bob to send 𝐵, in its entirety, to Alice. This scheme,
however, is grossly inefficient when 𝐴△𝐵 is small (in cardinality)
relative to their union 𝐴

⋃
𝐵, which is indeed a usual situation in

most applications. In this situation, it would be ideal if only the
elements (objects) in 𝐴△𝐵 need to be transmitted. In other words,
Bob sends only 𝐵\𝐴 to Alice.

In the set reconciliation problem, we usually assume each ele-
ment is “indexed” by a fixed-length (hash) signature, so the universe
U contains all binary strings of this length. Let 𝑑 ≜ |𝐴△𝐵 | denote
the cardinality of the set difference. It is not hard to prove (us-
ing information theory) that the theoretical minimum amount of
communication between Alice and Bob for the bidirectional set
reconciliation is the size of the set difference 𝑑 log |U| [22]. It is
reasonable to use this minimum as a comparison benchmark for
communication overheads in the unidirectional case (wherein Al-
ice learns 𝐴△𝐵), because it is provably also the minimum for this
unidirectional case in certain worst-case scenarios such as 𝐴 ⊂ 𝐵.
Hence we will do so throughout this paper.

1.2 Existing Approaches
Although many techniques have been proposed for this problem,
they all fall victim to a seemingly fundamental tradeoff between the
communication overhead, of transmitting the codewords (in the
general sense rather than in the narrow context of error-correction
codes) needed for set reconciliation, and the computational complex-
ity of decoding such codewords. The majority of such techniques
are based on either invertible Bloom filters (IBF) or error-correction
codes (ECC). On one hand, IBF-based techniques incur a commu-
nication overhead that is several times (e.g., 6 times in [11]) the
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theoretical minimum 𝑑 log |U|, but have a linear (i.e., 𝑂 (𝑑)) de-
coding computational complexity. On the other hand, ECC-based
techniques have a low communication overhead close to the theo-
retical minimum, but have a decoding computational complexity
of 𝑂 (𝑑2) finite field operations, which can be very high when 𝑑 is
large (say 𝑑 =10,000).

1.3 Our Solution
In this work, we propose a solution, called Parity Bitmap Sketch
(PBS), that mostly avoids this unfortunate tradeoff and gets the
better of both worlds. More specifically, PBS has both a low com-
putational complexity of 𝑂 (𝑑) just like IBF-based solutions and a
low communication overhead of roughly twice the theoretical min-
imum. PBS also has another advantage over all existing solutions
in that it is “piecewise reconciliable” in the following sense. In all
existing solutions, decoding of the codewords to obtain 𝐴△𝐵 is an
all-or-nothing process in the sense that when the decoding failed
(albeit usually with a small probability when the codewords are
appropriately parameterized), little knowledge has been learned
(so most of the communication, encoding, and decoding efforts
are wasted) and the process starts from square one. In contrast, in
PBS, the decoding of each codeword (also in the general sense) is
independent of those of others, and the successful decoding of each
codeword leads to a subset of distinct elements being reconciled;
here and in the sequel, we refer to each element in 𝐴△𝐵 a distinct
element. This way, additional efforts are incurred only for the small
percentage of codewords whose decodings failed earlier.

Here we sketch the main ideas of PBS, by assuming that the set
difference cardinality 𝑑 is small (say no more than 5 elements), and
the value of𝑑 is precisely known; both assumptions will be removed
later in the paper. The first step of PBS is to partition 𝐴 and 𝐵 each
into subsets in a consistent manner. We partition the set 𝐴 into 𝑛
disjoint subsets 𝐴1, 𝐴2, ..., 𝐴𝑛 using a hash function ℎ as follows:
Each 𝐴𝑖 , 𝑖 = 1, 2, · · · , 𝑛, contains all elements in 𝐴 that are hashed
to value 𝑖 (by ℎ). We similarly partition 𝐵 into 𝐵1, 𝐵2, · · · , 𝐵𝑛 using
the same ℎ. The use of a common ℎ induces a hash-partitioning
(also by ℎ) of the set-pair-difference𝐴△𝐵 into 𝑛 disjoint subset-pair-
differences 𝐴1△𝐵1, 𝐴2△𝐵2, ..., 𝐴𝑛△𝐵𝑛 . We set this constant 𝑛 to be
roughly an order of magnitude larger than 𝑑2, so that with high
probability, the following ideal situation happens: The 𝑑 distinct
elements between 𝐴 and 𝐵 are hashed (by ℎ) into 𝑑 distinct subset-
pair-differences, so that each such subset-pair-difference contains
exactly one distinct element. This situation is ideal, because each
such subset pair can be easily reconciled as will be shown in §2.1.

The second step of PBS is to encode partitions {𝐴𝑖 }𝑛𝑖=1 and
{𝐵𝑖 }𝑛𝑖=1 each into an 𝑛-bit-long parity bitmap. The 𝑛-bit-long par-
ity bitmap encoding of {𝐴𝑖 }𝑛𝑖=1, denoted as 𝐴[1..𝑛], is defined as
follows. For 𝑖 = 1, 2, ..., 𝑛, 𝐴[𝑖], the 𝑖𝑡ℎ bit of 𝐴[1..𝑛], is equal to 1
if 𝐴𝑖 contains an odd number of elements, and is equal to 0 other-
wise. The 𝑛-bit-long parity bitmap of {𝐵𝑖 }𝑛𝑖=1, denoted as 𝐵 [1..𝑛],
is similarly defined. In the aforementioned ideal situation of the 𝑑
elements in 𝐴△𝐵 landing in 𝑑 distinct subset-pair-differences, the
two bitmaps differ in exactly 𝑑 bit positions. In this situation, if Bob
knows these 𝑑 bit positions then the 𝑑 corresponding subset pairs,
and hence the set pair 𝐴 and 𝐵, can be easily reconciled as we will
describe in §2.2.

While Alice can certainly send the 𝑛-bit-long parity bitmap
𝐴[1..𝑛] to Bob, this is quite wasteful since 𝑛 ≫ 𝑑 . A more
communication-efficient way, introduced first in PinSkech [10],
is to view 𝐵 [1..𝑛] as a “corrupted” copy of 𝐴[1..𝑛] that contains 𝑑
“bit errors” at the 𝑑 bit positions where 𝐴[1..𝑛] and 𝐵 [1..𝑛] differ,
and to let Alice send Bob instead a BCH [5] codeword of much
shorter length to “correct” these “bit errors”. Referring to this BCH
coding as sketching (as was done in [10]), we call our scheme Parity
Bitmap Sketch (PBS).

Another significant contribution of this work is a rigorous and
accurate Markov-chain modeling of the multi-round set reconcil-
iation process of PBS. This model enables not only the accurate
analysis of various performancemetrics, such as the probability that
all distinct elements are successfully reconciled in 𝑟 rounds, but also
the tuning of the parameters of PBS for near-optimal performances.

1.4 Possible Applications of PBS
As explained earlier, elements in set difference 𝐴△𝐵 are the hash
signatures of actual objects that need to be exchanged. When the
size of an object is much larger than that of a hash signature, the
communication overhead of reconciling 𝐴 and 𝐵, using any exist-
ing set conciliation scheme except the naive scheme, is anyway
negligible compared to that of exchanging the actual objects. How-
ever, in many real-life applications, either the actual object size
is not significantly larger (e.g., in the transaction relay operation
of a blockchain scheme), or the actual objects need to be synchro-
nized much less often than their hash signatures (e.g., in Dropbox
under the smart sync mode [1]). In such applications, it makes a
performance difference to reduce the communication overhead of
reconciling 𝐴 and 𝐵.

For example, as measured in a blockchain work called Erlay [24],
this communication overhead accounts for around 5% of the total
network bandwidth consumption of its transaction relay opera-
tion. In this case, PinSkech [10], the most communication-efficient
set reconciliation scheme, is used and the size of the hash signa-
ture (called transaction ID in blockchain schemes) is compressed
from 256 bits to 64 bits (at cost of possible hash collisions among
different transactions during the set reconciliation process). This
communication overhead would increase to around 55% of the total
bandwidth consumption if IBF-based schemes were used instead
and transaction ID’s were not compressed.

PBS is better suited, than any existing set reconciliation scheme,
for such applications in general and blockchain schemes in particu-
lar, for two reasons. First, although PinSketch, the state-of-the-art
ECC-based solution, has a slightly smaller communication over-
head than PBS, its computational complexity is too high to scale to
scenarios where |𝐴△𝐵 | is large. Second, the communication over-
head of IBF-based solutions, including the state-of-the-art solution
Graphene [25], are generally much larger than that of PBS.

Therefore, in the following we will use the transaction relay
operation in blockchain schemes as an example application for
PBS. Transaction relay (operation) refers to the synchronization
(reconciliation) of the transaction databases (sets) across the peer-
to-peer network of a blockchain scheme. In this application, Alice
and Bob are two peers engaging in a transaction relay, and 𝐴 and 𝐵
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are the sets of hash signatures of the transactions recorded at Alice
and Bob respectively.

The rest of the paper is organized as follows. First, we describe
the PBS scheme for a small 𝑑 value and that for a large 𝑑 value in
§2 and §3, respectively. Then, we describe our analytical framework
in §4 and apply it to the performance analysis and the near-optimal
parameter tuning of PBS in §5. After that, we present a new esti-
mator for estimating the set difference cardinality in §6. Finally,
we survey existing set reconciliation schemes in §7, compare the
performance of PBS with that of some of them in §8, and conclude
the paper in §9.

2 PBS FOR SMALL 𝑑

In this section, we describe how the PBS scheme allows Alice and
Bob to reconcile their respective sets 𝐴 and 𝐵, where 𝑑 = |𝐴△𝐵 | is
assumed to be small and precisely known. We start with the trivial
case where 𝑑 ≤ 1 in §2.1 and then generalize the scheme for the
case where 𝑑 is a small number in §2.2. As will be explained later
in §2.2.2, the latter will use the former as a building block.

2.1 The Trivial Case of 𝒅 ⩽ 1

1 Bob: 𝑠𝐵 ← ⊕
𝑏∈𝐵

𝑏; Send 𝑠𝐵 to Alice;

2 Alice: 𝑠𝐴 ← ⊕
𝑎∈𝐴

𝑎; 𝑠 ← 𝑠𝐴 ⊕ 𝑠𝐵 ;

Procedure 1: Set reconciliation when 𝑑 ≤ 1

Procedure 1 shows the set reconciliation scheme for the trivial
case, in which 𝐴 and 𝐵 differ by at most one (distinct) element.
It consists of two steps. First, Bob calculates the XOR sum 𝑠𝐵 , the
bitwise-XOR of all elements in 𝐵, and sends it to Alice. Second, Alice
calculates 𝑠𝐴 , the XOR sum of all elements in 𝐴. Upon receiving 𝑠𝐵
from Bob, Alice computes 𝑠 ≜ 𝑠𝐴 ⊕ 𝑠𝐵 . The value of 𝑠 tells Alice
which of the following two cases happens.
• Case (I): If 𝑠 = 0, which implies 𝑠𝐴 = 𝑠𝐵 , Alice concludes that
𝐴 and 𝐵 have no distinct element or 𝐴 = 𝐵. Here 0 denotes the
log |U|-bit-long all-0 string;
• Case (II): If 𝑠 ≠ 0, which implies 𝑠𝐴 ≠ 𝑠𝐵 , Alice concludes that 𝐴
and𝐵 have exactly one distinct elementwhich is 𝑠 , i.e.,𝐴△𝐵 = {𝑠}.
This is because XORing 𝑠𝐴 and 𝑠𝐵 (to obtain 𝑠) cancels out all
(common) elements in 𝐴

⋂
𝐵.

Like in most of the literature on set reconciliation, we assume
that the all-0 element 0 is excluded from the universe U, since
otherwise Procedure 1 does not work for the following reason.
When the computed 𝑠 is 0, Alice cannot tell whether 𝐴 and 𝐵 are
identical, or they have 0 as their distinct element. Procedure 1 also
does not work when there are more than one distinct elements in
𝐴△𝐵 (i.e., 𝑑 > 1), since the computed 𝑠 in this case is the XOR sum
of all these distinct elements.

2.2 The General Case
In this section, we describe the scheme for the more general case
where 𝑑 is a small number (say 5), but is not necessarily 0 or 1.

2.2.1 Hash-partitioning and parity bitmap encoding. Here we for-
malize the aforementioned process of partitioning𝐴 into {𝐴𝑖 }𝑛𝑖=1, 𝐵
into {𝐵𝑖 }𝑛𝑖=1, and𝐴△𝐵 into {𝐴𝑖△𝐵𝑖 }𝑛𝑖=1 using a hash function ℎ. De-
fine sub-universeU𝑖 as the set of elements in the universeU that are
hashed into value 𝑖 . More precisely,U𝑖 ≜ {𝑠 | 𝑠 ∈ U and ℎ(𝑠) = 𝑖}
for 𝑖 = 1, 2, ..., 𝑛. Then defining 𝐴𝑖 ≜ 𝐴

⋂U𝑖 and 𝐵𝑖 ≜ 𝐵
⋂U𝑖 for

𝑖 = 1, 2, ..., 𝑛 induces the partitioning of 𝐴, 𝐵, and 𝐴△𝐵.
How the 𝑑 distinct elements (balls) in 𝐴△𝐵 are “scattered” into

the 𝑛 subset-pair-differences (bins) {𝐴𝑖△𝐵𝑖 }𝑛𝑖=1 can be precisely
modeled as throwing 𝑑 balls each uniformly and randomly into one
of the 𝑛 bins. For the moment, we assume the following ideal case
happens: Every subset-pair-difference 𝐴𝑖△𝐵𝑖 contains at most one
distinct element. This ideal case corresponds to the 𝑑 balls ending
up in 𝑑 distinct bins. It happens with probability

∏𝑑−1
𝑘=1 (1 −

𝑘
𝑛 ),

which is on the order of 1−𝑂 (𝑑2/𝑛) when 𝑛≫𝑑 . Hence, 𝑛 must be
Ω(𝑑2) to ensure the ideal case happens with a nontrivial probability,
as mentioned earlier in §1.3.

1 Alice: Send 𝜉𝐴 , the BCH codeword of 𝐴[1..𝑛], to Bob;
2 Bob: Decode 𝐵 [1..𝑛] ∥𝜉𝐴 to obtain 𝑖1, 𝑖2, ..., 𝑖𝑑 ;
3 Bob: Send XOR sums of sets 𝐵𝑖1 , 𝐵𝑖2 , ..., 𝐵𝑖𝑑 (Line 1 in
Procedure 1), indices 𝑖1, 𝑖2, ..., 𝑖𝑑 , and checksum 𝑐 (𝐵) to
Alice;

4 Alice: Obtain 𝐴𝑖1△𝐵𝑖1 , 𝐴𝑖2△𝐵𝑖2 , ..., and 𝐴𝑖𝑑△𝐵𝑖𝑑 (Line 2 in
Procedure 1); �̂� ← ⋃𝑑

𝑘=1 (𝐴𝑖𝑘△𝐵𝑖𝑘 );
5 Alice: Check whether 𝑐 (𝐴△�̂�) ?

= 𝑐 (𝐵);
Procedure 2: PBS-for-small-𝑑 (first round)

2.2.2 Find and reconcile the 𝑑 subset pairs. The remaining steps
of the PBS scheme are summarized in Procedure 2. Recall that the
partitions {𝐴𝑖 }𝑛𝑖=1 and {𝐵𝑖 }

𝑛
𝑖=1 can be encoded as parity bitmaps

𝐴[1..𝑛] and 𝐵 [1..𝑛] respectively, in which each 𝐴[𝑖] or 𝐵 [𝑖] cor-
responds to the parity (oddness or evenness) of the cardinality of
the subset 𝐴𝑖 or 𝐵𝑖 . In the ideal case, 𝐴[1..𝑛] and 𝐵 [1..𝑛] differ
in exactly 𝑑 distinct bit positions. Suppose these 𝑑 bit positions
are 𝑖1, 𝑖2, ..., 𝑖𝑑 . Then subset pairs (𝐴𝑖1 , 𝐵𝑖1 ), (𝐴𝑖2 , 𝐵𝑖2 ), ..., (𝐴𝑖𝑑 , 𝐵𝑖𝑑 )
each differs by exactly 1 (distinct) element. Hence each subset pair
can be reconciled using Procedure 1.

For this to happen, however, both Alice and Bob need to first
know the values of 𝑖1, 𝑖2, ..., 𝑖𝑑 , or the bit positions where 𝐴[1..𝑛]
and 𝐵 [1..𝑛] differ. To this end, a naive solution is for Alice to send
𝐴[1..𝑛] to Bob and for Bob to compare it with 𝐵 [1..𝑛]. However,
as mentioned earlier in §1.3, Alice can achieve the same goal by
sending an ECC codeword 𝜉𝐴 that is much shorter than𝐴[1..𝑛]. The
idea is that since 𝐵 [1..𝑛] (which Bob already knows) can be viewed
as a “corrupted” (with 𝑑 bit errors in the positions 𝑖1, 𝑖2, ..., 𝑖𝑑 ) copy
of 𝐴[1..𝑛], as long as the codeword 𝜉𝐴 is parameterized to correct
at least 𝑑 bit errors, Bob can decode 𝐵 [1..𝑛] ∥𝜉𝐴 (the “corrupted”
message concatenated with the ECC codeword of the “uncorrupted”
message) to find out the positions of these 𝑑 bit errors.

Although several ECC schemes are suitable for this purpose, we
choose the BCH scheme for PBS because it results in near-optimal
codeword length in the following sense: In the context of PBS, to
“correct up to 𝑡 bit errors”, 𝜉𝐴 only needs to be 𝑡 ⌈log(𝑛 + 1)⌉ bits
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long; even if Alice knew these 𝑡 bit positions precisely, specifying
each bit position (to Bob) would require ⌈log𝑛⌉ bits. BCH is also
the choice of PinSkech [10] for the same reason.

Once Bob decodes 𝐵 [1..𝑛] ∥𝜉𝐴 (Line 2 in Procedure 2) to obtain
𝑖1, 𝑖2, ..., 𝑖𝑑 , Bob sends the XOR sums of the corresponding subsets
𝐵𝑖1 , 𝐵𝑖2 ,...,𝐵𝑖𝑑 to Alice (Line 1 in Procedure 1). Bob also needs to
send the decoded “bit error positions” 𝑖1, 𝑖2, ..., 𝑖𝑑 to Alice (Line 3 in
Procedure 2), since Alice cannot obtain this information by herself
without knowing anything about 𝐵 [1..𝑛]. In addition, for Alice to
verify whether the set reconciliation is successfully completed (to
be described next), Bob sends 𝑐 (𝐵), a checksum of its set 𝐵, to Alice.

2.2.3 Verify the estimated set difference. Once Alice receives the
“bit error positions” and the corresponding XOR sums, she can re-
cover the distinct elements each using Procedure 1 to arrive at the
estimated set difference (Line 4 in Procedure 2), which we denote as
�̂� . It is not hard to verify that in the ideal case this �̂� is necessarily
the same as the actual set difference 𝐴△𝐵, so the unidirectional set
reconciliation process is successfully completed.

However, the nonideal case can happen and when that happens
�̂� is in general not the same as 𝐴△𝐵. Hence, Alice in general needs
to verify whether �̂� ?

= 𝐴△𝐵 after a round of set reconciliation pro-
cess. Alice does so by checking an equivalent condition 𝐴△�̂� ?

= 𝐵

as follows. She applies a checksum function 𝑐 (·) to 𝐴△�̂� and com-
paring (Line 5 in Procedure 2) the resulting checksum 𝑐 (𝐴△�̂�) with
𝑐 (𝐵) that Alice received earlier from Bob. We use as 𝑐 (·) here the
plain-vanilla summation function, with which the checksum of a
set 𝑆 is the sum of all elements (viewed as integers) modulo |U|.
The length of such a checksum is (log |U|) bits, the same as that
of an element. We use this checksum function for two reasons.
First, because it uses the ‘+’ operation whereas the set reconcil-
iation process (Procedure 1) involves a very different operation
(XOR), a false verification event is intuitively almost statistically
uncorrelated1 with any reconciliation error (called an exception
and to be described shortly) event, which makes the verification
step meaningful and effective to the maximum extent. Second, this
checksum function can be incrementally computed.

Using a 32-bit-long checksum (assuming log |U| = 32), the prob-
ability for Alice to mistakenly believe 𝐴△�̂� =𝐵 when the opposite
(i.e., {𝐴△�̂�≠𝐵}) is true is only 𝑂 (10−12) for the following reason.
The false verification event {𝐴△�̂� ≠ 𝐵} can happen only in the
nonideal case, which happens with a probability of 𝑂 (10−2) (as we
will show in §2.3). Then, conditioned upon the event {𝐴△�̂� ≠𝐵}
happening, the probability for their 32-bit-long checksums happen
to be equal (i.e., 𝑐 (𝐴△�̂�) = 𝑐 (𝐵)) is only 2−32 ≈ 2.3×10−10. This
𝑂 (10−12) probability of incorrect verification should be acceptable
in most applications.

In applications in which correct verification absolutely has to
be guaranteed (e.g., bitcoin), additional built-in verification mecha-
nisms, such as Merkle tree, are usually used, which can reduce the
probability of false verification to practically zero at no extra cost
(to PBS). For example, blockchain platforms Ethereum [2] and Bit-
coin [23] both have Merkle tree [20] based mechanisms for verifing

1If we absolutely have to ensure any two such events to be provably strictly statistically
uncorrelated, we can apply a one-way hash function to each element first and adding
their hash values (viewed as integers) up instead, at a bit extra computation cost.

the integrity and the consistency of transactions. A Merkle tree is
a binary tree in which a parent node digitally certifies (verifies) its
two children. In the cases of Ethereum and Bitcoin, each transaction
corresponds to a leaf node of the Merkle tree that records the cryp-
tographic hash value of the transaction, and each non-leaf node
records the cryptographic hash value of its two children. This way,
the root node digitally certifies the integrity and the consistency
of all transactions. For mission-critical applications that do not
have such an additional built-in verification mechanism, we can
add one at a small cost. For example, we can compute and check
𝐻 (𝐴△�̂�) ?=𝐻 (𝐵), where𝐻 is a one-way multiset hash function such
asMSet-XOR-Hash [7], at the additional cost of𝑂 (max{|𝐴|+𝑑, |𝐵 |})
computation overhead and constant communication overhead.

In the case of PBS-for-small-𝑑 , the set reconciliation process will
run as many rounds as it takes (to be explained in §2.4) for the
checksums of two sets being reconciled to eventually match each
other; in the case of PBS-for-large-𝑑 , the same can be said about
the set reconciliation process for each group pair (to be explained
in §3). Hence, barring the false verification event, which as just
explained happens with 𝑂 (10−12) probability when using only a
32-bit checksum or with practically zero probability when using
additional cryptographic verification techniques, the set reconcili-
ation process (for both large and small 𝑑) guarantees to correctly
reconcile 𝐴 and 𝐵 (and the respective referenced objects) when it
halts. The formal proof can be found in Appendix D in [12]. With
this understanding, for ease of presentation, we assume in the se-
quel that a false verification will never happen in the checksum
verification step.

In Sections 2.3 and 3.2, we describe three types of exceptions
may result in a �̂� that is incorrect (not the same as 𝐴△𝐵). When
that happens, the checksum verification step will not accept �̂� as
is, as just explained. Hence, these exceptions will never result in
an incorrect set reconciliation. They can only delay the inevitable
(eventual correct reconciliation of𝐴 and 𝐵) by triggering additional
rounds of set reconciliation process. We note there is no need for
PBS to determine which bin or bins cause the checksum verification
step to fail in the current round, because as we will show in §2.4
such information is not used anywhere in the next round of set
reconciliation operation.

2.3 Exception Handling
When the ideal case does not happen, some subset pairs may con-
tain more than one distinct elements and cannot be successfully
reconciled by Procedure 1. In this case, the checksum verification
step will detect this event and trigger another round of PBS to
reconcile the “remaining” distinct elements, as will be elaborated in
§2.4. Two types of exceptions can possibly happen in such a subset
pair, say (𝐴𝑖 , 𝐵𝑖 ).
Type (I) exception: 𝐴𝑖△𝐵𝑖 contains a nonzero even number of
distinct elements. In this case 𝐴[𝑖] = 𝐵 [𝑖] since the cardinalities of
𝐴𝑖 and 𝐵𝑖 are either both even or both odd. The BCH codeword 𝜉𝐴
cannot detect this exception. This exception happens with a small
but nontrivial probability. For example, when 𝑑 = 5 and 𝑛 = 255
(i.e., throwing 5 balls each uniformly and randomly into 255 bins),
the probability that some bin has a nonzero even number of (in this
case either 2 or 4) balls is roughly 0.04.
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Type (II) exception: 𝐴𝑖△𝐵𝑖 contains an odd number (at least 3)
of distinct elements. In this case, 𝐴[𝑖] ≠ 𝐵 [𝑖]. Bob will mistakenly
believe that (𝐴𝑖 , 𝐵𝑖 ) contains exactly one distinct element and try to
recover it using Procedure 1. The “recovered” element 𝑠 is however
the XOR sum of all distinct elements in𝐴𝑖△𝐵𝑖 as explained at the end
of §2.1. We call this 𝑠 a fake distinct element. This event happens
with a tiny probability. In the same example above (𝑑 = 5 and
𝑛 = 255), the probability that some bin has an odd number of balls
(in this case either 3 or 5) is only 1.52 × 10−4. This probability
can be further reduced, thanks to the consistent nature of hash-
partitioning, which provides us with a no-cost mechanism that can
detect fake distinct elements (so that they will not be included in
�̂�) with high probability. We describe this detection mechanism in
Appendix C in [12].

2.4 Running PBS for Multiple Rounds
As mentioned earlier, when the ideal case does not happen, Alice
and Bob cannot successfully reconcile their respective sets 𝐴 and 𝐵
in a single round, and Alice can tell this situation from the check-
sum verification step. In this situation, Alice and Bob need to run
additional rounds of Procedure 2, but with a different input set pair
(than (𝐴, 𝐵)) as follows. Let �̂�1 be the estimated set difference Alice
obtained in the first round. In the second round, Alice and Bob try
to reconcile their respective sets 𝐴△�̂�1 and 𝐵, from which Alice
obtains another estimated difference (between 𝐴△�̂�1 and 𝐵) that
we denote as �̂�2. If the set reconciliation is still not successfully
completed, Alice and Bob run a third round to try to reconcile sets
(𝐴△�̂�1)△�̂�2 and 𝐵. This process continues until the set reconcili-
ation is successfully completed as verified by the checksum. The
final output of the process, which is what Alice believes to be 𝐴△𝐵,
is �̂�1△�̂�2△ · · · △�̂�𝑟 , where 𝑟 is the number of rounds this process
runs and �̂�𝑖 for 𝑖 = 1, 2, · · · , 𝑟 is the estimated set difference in the
𝑖𝑡ℎ round.

In each subsequent round, a different and (mutually) independent
hash function is used to perform the consistent hash partitioning
of the two sets to be reconciled (e.g., 𝐴△�̂�1 and 𝐵 in the second
round), so that the same type (I) and/or (II) exceptions encoun-
tered in the previous round, which have so far prevented the set
reconciliation from being successfully completed, can be avoided
with overwhelming probability. The use of independent hash func-
tions in different rounds offers another significant benefit: How
the number of unreconciled distinct elements decreases one round
after another (and eventually goes down to 0) can now be precisely
modeled as a Markov chain, as will be elaborated in §4.

2.5 BCH Encoding and Decoding
In this section, we describe the specific BCH encoding and decoding
in PBS; how this encoding differs from that for its usual application
of communication over a noisy channel can be found in Appendix
H in [12]. Recall that in Line 1 of Procedure 2, Alice sends, instead of
the “message” 𝐴[1..𝑛] itself, its much shorter BCH codeword 𝜉𝐴 to
Bob. We define the error-correction capacity of an ECC codeword as
the maximum number of bit errors it can correct. In the case of PBS-
for-small-𝑑 , where 𝑑 is assumed to be known precisely beforehand,
the error-correction capacity of 𝜉𝐴 is set to 𝑑 so the BCH decoding
is always successful. However, as will be explained in §3.1, when 𝑑

is large and the sets 𝐴 and 𝐵 each has to be partitioned into groups,
the number of “bit errors” that occur to a group pair can exceed
the error-correction capacity of the corresponding BCH codeword.
In this case, a BCH decoding failure will happen and how to deal
with its fallout will be explained in §3.2.

We now briefly explain what is involved for Bob to decode the
BCH codeword 𝜉𝐴 against its local bitmap 𝐵 [1..𝑛]. Here the only
task is to figure out the “bit error positions” (in which 𝐴[1..𝑛] and
𝐵 [1..𝑛] differ). To do so, Bob needs to invert a 𝑑 ×𝑑 matrix in which
eachmatrix entry is an element of the finite field𝐺𝐹 (2𝑚) where𝑚=

⌈log(𝑛+1)⌉. In PBS, 𝑛 is always set to 2𝑚−1 for some positive integer
𝑚 in BCH codes for achieving the maximum coding efficiency.
Hence, we drop “floor” and “ceiling” and consider𝑚= log𝑛 in the
sequel. Normally such a matrix inversion would take 𝑂 (𝑡3) finite
field operations over 𝐺𝐹 (2𝑚). However, since this matrix takes a
special form called Toeplitz, it can be inverted in 𝑂 (𝑑2) operations
over 𝐺𝐹 (2𝑚) using the Levinson algorithm [17].

3 PBS FOR LARGE 𝑑

In this section, we continue to assume that the number of distinct
elements 𝑑 is precisely known in advance. The PBS-for-small-𝑑
scheme just described is no longer suitable when 𝑑 is very large,
since its BCH decoding computational complexity is 𝑂 (𝑑2) finite
field operations. Instead, in this case we partition, consistently using
a different hash function ℎ′ (than the ℎ above), sets 𝐴 and 𝐵 each
into 𝑑/𝛿 smaller sets, where 𝛿 is a small number (just like what we
earlier assumed 𝑑 to be). We refer to these smaller sets as groups
to distinguish them from the subsets 𝐴𝑖 ’s and 𝐵𝑖 ’s above. We then
apply PBS-for-small-𝑑 to each of the 𝑔 group pairs.

Here 𝛿 is the average number of distinct elements per group pair.
It is a tunable parameter, by which we can control the tradeoff be-
tween the communication and the computational overheads of PBS.
In general, the larger 𝛿 is, the lower the communication overhead
and the higher the computational overhead are. We have elabo-
rated in Appendix I.1 in [12] how 𝛿 controls this tradeoff. Since
𝛿=5 appears to be a nice tradeoff point, we fix the value of 𝛿 at
5 in this paper. Since each group pair contains on average 𝛿 = 5
distinct elements, the BCH decoding computational complexity per
group pair can be considered 𝑂 (1). As a result, the overall BCH
decoding computational complexity is 𝑂 (𝑑) for all 𝑔 = 𝑑/𝛿 group
pairs. We refer to this PBS-for-large-𝑑 scheme as PBS in the sequel
except in places where this abbreviation would result in ambiguity
or confusion.

3.1 How to Set Parameters 𝒕 and 𝒏
In PBS (i.e., PBS-for-large-𝑑), we have to make some design deci-
sions that we don’t have to in PBS-for-small-𝑑 . One of them is how
to set the error-correction capacities of the BCH codes used for
each of the 𝑔 group pairs. Let 𝛿𝑖 , 𝑖 = 1, 2, ..., 𝑔, be the number of
distinct elements that group pair 𝑖 have. If we knew the precise val-
ues of 𝛿1, 𝛿2, ..., 𝛿𝑔 , we would simply set the BCH error-correction
capacity for each group pair 𝑖 , which we denote as 𝑡𝑖 , to 𝛿𝑖 . This
way, each BCH codeword is the shortest possible for the respective
task, which minimizes the communication overhead of transmitting
these codewords. In reality, we do not know the exact value of any
𝛿𝑖 , since it is a random variable with distribution 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑑, 1/𝑔)
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thanks to the hash-partitioning (of 𝐴 and 𝐵 each into 𝑔 groups);
we only know that 𝐸 [𝛿𝑖 ] = 𝑑/𝑔 = 𝛿 but that does not help much.
In theory, we can measure 𝛿𝑖 using a (set difference) cardinality
estimation protocol. However, as will be shown in §6, to obtain
such an estimate using the best protocol would incur hundreds of
bytes of communication overhead. In comparison, the “savings” on
the communication overhead that such an estimate would bring
(for the corresponding group pair) is only tens of bytes, as we will
elaborate next.

In PBS, we set an identical BCH error-correction capability 𝑡 for
all 𝑔 group pairs. It intuitively makes sense since random variables
𝛿1, 𝛿2, ..., and 𝛿𝑔 are identically distributed. Now the next question
is “How should we set this 𝑡?”. This is a tricky question because,
on one hand, if 𝑡 is too large (say several times larger than 𝛿),
then the total size of the BCH codewords is unnecessarily large,
resulting in “wastes” in communication overhead; but on the other
hand, if 𝑡 is too small (say equal to 𝛿), then a large proportion
of the BCH codewords cannot decode, resulting in considerable
additional efforts and costs (i.e., “penalties”) for reconciling the large
proportion of affected group pairs. In §4, we propose an analytical
framework that can be used to identify the 𝑡 value that minimizes
“wastes + penalties” (in §5.1). This optimal 𝑡 value can range from
1.5𝛿 to 3.5𝛿 depending on how large this 𝑑 is.

Based on a similar rationale, we set another parameter for each
group pair 𝑖 to the same value 𝑛: Each group pair 𝑖 is to be parti-
tioned into𝑛 subsets, so that the parity bitmaps (𝐴[1..𝑛] and 𝐵 [1..𝑛]
in PBS-for-small-𝑑) for all groups have the same length of 𝑛 bits.
This 𝑛 is also a tunable parameter (for optimal PBS performance),
since the probability for the ideal case (of all distinct elements be-
tween a group pair being hashed to distinct subsets) to happen is a
function of 𝑛 and 𝛿 = 5. As will be elaborated in §5.1, our analytical
framework can also be used for the optimal tuning of 𝑛.
Communication Overhead Per Group Pair. Here we analyze
the total communication overhead of the first round of PBS. Since
the vast majority of distinct elements are discovered and reconciled
in the first round, as will be shown in §5.3, it represents the vast
majority (over 95%) of that over all rounds. For each group pair 𝑖 ,
the communication overhead (of running PBS-for-small-𝑑 on this
pair) in the first round contains the following four components:
(1) the BCH codeword that is 𝑡 log𝑛 bits long; (2) the 𝛿𝑖 “bit error
locations” whose total length is 𝛿𝑖 log𝑛 bits; (3) the 𝛿𝑖 XOR sums
whose total length is 𝛿𝑖 log |U| bits; and (4) the checksum that is
log |U| bits long. Hence the average communication overhead of
PBS per group pair in the first round is

𝑡 log𝑛 + 𝛿 log𝑛 + 𝛿 log |U| + log |U| (1)

3.2 Exception Handling on BCH Decoding
Recall that in PBS-for-small-𝑑 we need to handle two types of ex-
ceptions: type (I) and type (II). In PBS-for-large-𝑑 , we have another
exception to worry about. This exception arises when the number
of bit positions where bitmaps 𝐴 and 𝐵 in Procedure 2 differ is
larger than 𝑡 , the universal BCH error-correction capability (for
every group pair). When this exception happens, the BCH decod-
ing would fail (when executing Line 2 in Procedure 2) and the
decoder would report a failure. With 𝑡 appropriately parameterized

as explained earlier, this exception should happen with a small
probability to any group pair. For example, when 𝑑 = 1,000, 𝛿 = 5
(so that 𝑔 = 𝑑/𝛿 = 200), and 𝑡 is set to the optimal value of 13
(= 2.6𝛿), the probability for this exception to happen to any group
pair is only 6.7 × 10−4.

To handle this exception, we further hash-partition each trouble-
causing group pair (whose BCH decoding has failed) into 3 sub-
group-pairs and reconcile each of them using PBS-for-small-𝑑 . With
this three-way split, with an overwhelming probability, each sub-
group-pair should contain no more than 𝑡 distinct elements and its
BCH decoding operation should be successful in the next round. For
example, when 𝛿 = 5 and 𝑡 = 13 (same as in the example above), the
conditional (upon the occurrence of this exception) probability for
any sub-group-pair to contain more than 𝑡 distinct elements is only
9.5 × 10−10. We use a three-way split here because a two-way split
would result in a much higher conditional probability (0.0012 in
this example) for this event. All said, if necessary, a trouble-causing
sub-group-pair will be further split three-way.

As explained earlier, the ultimate gatekeeper for ensuring the
correctness of set reconciliation is the checksum verification step,
which in this case (of large 𝑑) is applied to each group pair. BCH
decoding exceptions alone, or in combination with type (I) or (II)
exceptions, may only delay the inevitable eventual correct recon-
ciliation of 𝐴 and 𝐵, as long as a false checksum verification event
does not happen.

3.3 Multi-round Operations
In PBS, the set reconciliation processes of the 𝑔 group pairs are
independent of each other. Each group pair runs as many rounds
of PBS-for-small-𝑑 as needed to reconcile all distinct elements be-
tween them. Almost every set reconciliation scheme is designed
and parameterized to provide the performance guarantee that the
reconciliation process is successfully completed, in the sense all
distinct elements are correctly reconciled, with at least a target
probability 𝑝0. In PBS, this guarantee will involve an additional
parameter 𝑟 that is the target number of rounds the scheme is al-
lowed to run to reach this target success probability. More precisely,
the multi-group-pair multi-round operation of PBS must, with a
probability that is at least 𝑝0, be successfully completed in 𝑟 rounds.

Let 𝑅 be the number of rounds it takes for all 𝑔 group pairs, and
hence the set pair, to be successfully reconciled. This guarantee
can then be succinctly written as 𝑃𝑟 [𝑅 ≤ 𝑟 ] ≥ 𝑝0. Intuitively, we
can always provide this guarantee by making the values of the two
key parameters 𝑛 (the size of the parity bitmap) and 𝑡 (the BCH
error-correction capacity) very large, but doing so would result in
a high communication overhead. This apparent tradeoff leads us to
study the following parameter optimization problem: Among all
parameter settings of 𝑛 and 𝑡 that can guarantee 𝑃𝑟 [𝑅 ≤ 𝑟 ] ≥ 𝑝0,
which one results in the smallest communication overhead?

To tackle this optimization problem, we need to first analyze the
multi-group-pair success probability 𝑃𝑟 [𝑅 ≤ 𝑟 ]. The latter boils
down roughly (but not exactly as we have explained in Appendix G
in [12]) to analyzing the following single-group-pair success proba-
bility. Consider a single group pair that have 𝑥 distinct elements
between them before the first round starts. For the moment, we
assume 𝑥 ≤ 𝑡 so that we do not have to worry about the BCH
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decoding failure. Our problem is to derive the formula for the prob-
ability of the following event that we denote as {𝑥 𝑟 0}: All the 𝑥
distinct elements, and hence the pair, are successfully reconciled in
no more than 𝑟 rounds. Solving this problem is the sole topic of §4.

4 ANALYTICAL FRAMEWORK
In this section, we derive a Markov-chain model for analyzing the
aforementioned single-group-pair success probability 𝑃𝑟 [𝑥 𝑟 0].
We will show next that, under this model, the initial state of the
Markov chain is state 𝑥 (distinct elements), and each (set reconcili-
ation) round triggers a state transition. Hence, the event {𝑥 𝑟 0}
corresponds to the Markov chain reaching the “good” state 0 (dis-
tinct elements left) within 𝑟 transitions. Suppose the transition
probability matrix of this Markov chain is𝑀 . The formula for com-
puting the probability of this event is simply

𝑃𝑟 [𝑥 𝑟 0] =
(
𝑀𝑟 ) (𝑥, 0) (2)

wherein
(
𝑀𝑟

)
(𝑥, 0) is the element at the intersection of the 𝑥𝑡ℎ row

and the 0𝑡ℎ column in the matrix𝑀𝑟 (𝑀 to the power 𝑟 ).
How the number, starting at 𝑥 before the first round, of yet

unreconciled distinct elements between the group pair decreases
one round after another, and eventually goes down to 0, can be
precisely modeled as a Markov chain as follows. As described in
§2.4, in the first round, each of the 𝑥 balls (distinct elements) is
thrown uniformly and randomly (by the hash function ℎ) into one
of the 𝑛 bins (subset pairs). If a ball ends up in a bin that contains no
other balls, the corresponding distinct element can be successfully
reconciled using Procedure 1. We call this ball a “good” ball, since
it does not have to be thrown again in later rounds, and for the
modeling purpose call this bin a “good” bin (just for this round).
If a ball ends up in a bin that has other balls, which corresponds
to a type (I) or type (II) exception discussed earlier in §2.3, the
corresponding distinct element cannot be reconciled in this round.
We call this ball a “bad” ball, since it has to be thrown again in the
second round, and for the modeling purpose call this bin a “bad”
bin (again just for this round).

As described in §2.4, the “bad” balls (if any) that remain after
the first round will be thrown again in the second round, the “bad”
balls (if any) that remain in the second round will be thrown again
in the third round, and so on. Let 𝐷𝑘 , 𝑘 = 1, 2, · · · , be the number
of balls that remain “bad” (yet unreconciled distinct elements) after
the 𝑘𝑡ℎ round. Let 𝐷0 = 𝑥 be the number of balls to be thrown
at the beginning (i.e., right before the first round). Then {𝐷𝑘 }∞𝑘=0
is a Markov chain for the following reason. Since a different and
mutually independent hash function is used in each round, the
random variable 𝐷𝑘 , which is the number of balls that remain
“bad” after the 𝑘𝑡ℎ round, depends only on 𝐷𝑘−1, the number of
balls thrown in the 𝑘𝑡ℎ round, and is conditionally (upon 𝐷𝑘−1)
independent of the history 𝐷0, 𝐷1, 𝐷2, · · · , 𝐷𝑘−2.

For all practical purposes (e.g., for computing 𝑃𝑟 [𝑥 𝑟 0]),𝑀 can
be considered a (𝑡 + 1) × (𝑡 + 1) matrix, where 𝑡 is the BCH error-
correction capacity. To compute𝑀 (𝑖, 𝑗) is not straightforward for
the following reason. Each state 𝑗 with 𝑗 > 3 in the Markov chain
is a composite state consisting of a large number of atom states.
Only the transition probability from state 𝑖 to any atom state (of
state 𝑗 ) can be stated as a closed-form expression (more precisely, a

multinomial formula) and computed straightforwardly. The value
of𝑀 (𝑖, 𝑗) is the total of all the transition probabilities from state 𝑖 to
each of the atom states of state 𝑗 . Since the number of atom states
grows exponentially with 𝑗 , it is complicated (as it is necessary
to enumerate all atom states), error-prone, and computationally
expensive to compute𝑀 (𝑖, 𝑗) this way when 𝑗 is large (say 𝑗 > 12),
as we will elaborate next.

Each atom state of state 𝑗 is, in combinatorics terms, a permu-
tation of a combination of 𝑗 , which here corresponds to how these
𝑗 balls are distributed in the 𝑛 bins (by the hash function). For a
simple example, when 𝑗 = 4 and 𝑛 = 7, the vector (2, 0, 0, 0, 0, 2, 0)
is such an atom state, which corresponds to these 7 bins (in a pre-
defined order such as the natural order) having 2, 0, 0, 0, 0, 2, and 0
“bad” balls in them respectively. Clearly, the number of such atom
states (vectors) grows exponentially with 𝑗 . For instance, when
𝑗 = 13, 14, 15, 16, 17, the number of distinct atom state vectors is
2.47×1012, 2.10×1013, 1.11×1014, 8.03×1014, 4.34×1015 respectively.

Our solution is to decompose each composite state 𝑗 into a much
small number of coarse-grained sub-states, each of which may still
contain a large number of atom states. Although the transition
probability from a state 𝑖 to any sub-state of 𝑗 is still a summa-
tion formula and hence hard to compute in the “mundane” way as
explained above, we discover a recurrence relation among these
transition probabilities that makes them easily computable using
dynamic programming. In the interest of space, we leave out here
our discussions on the preciseness of this Markov-chain model and
on the detail of the dynamic programming procedure. They can be
found in Appendices E and F in [12].

5 APPLYING THE FRAMEWORK
Knowing the Markov-chain model and how to compute its tran-
sition matrix 𝑀 , we are now ready to tackle the aforementioned
parameter optimization problem in §5.1 and study two other related
parameterization and design questions in §5.2 and §5.3 respectively.

5.1 Parameter Optimization
Recall that our optimization problem is to find the optimal parame-
ter settings of 𝑛 and 𝑡 that guarantee 𝑃𝑟 [𝑅 ≤ 𝑟 ] ≥ 𝑝0 yet result in
the smallest communication overhead. Recall that our original goal
is to analyze the overall (for all 𝑔 group pairs) success probability
𝑃𝑟 [𝑅 ≤ 𝑟 ]. In Appendix G in [12], we have shown that 𝑃𝑟 [𝑅 ≤ 𝑟 ]
is hard to calculate exactly, but can be tightly lower-bounded by
1−2(1−𝛼𝑔), where 𝛼 ≜ ∑𝑡

𝑥=0 𝑃𝑟 [𝑋 = 𝑥] · 𝑃𝑟 [𝑥 𝑟 0] is a slightly
underestimated success probability for any group pair, 𝑔 is the num-
ber of group pairs, and 𝑡 is the error-correction capacity. Here the
random variable 𝑋 is distributed as 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑑, 1/𝑔).
MinimizeCommunicationOverhead.Armedwith this rigorous
lower bound on the overall success probability 𝑃𝑟 [𝑅 ≤ 𝑟 ], we
can now formulate our optimization problem of parameterizing
PBS to guarantee 𝑃𝑟 [𝑅 ≤ 𝑟 ] ≥ 𝑝0 while minimizing the average
communication overhead as follows.

minimize 𝑡 log𝑛 + 𝛿 log𝑛
subject to 1 − 2(1 − 𝛼𝑔 (𝑛, 𝑡)) ≥ 𝑝0, 𝑛, 𝑡 ∈ N+
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The objective function 𝑡 log𝑛 + 𝛿 log𝑛 (as a function of 𝑛 and
𝑡 ) here is the non-constant part of the average communication
overhead per group pair in the first round as shown in Formula (1).
It is an appropriate objective function because it is exactly 1/𝑔 of
the average communication overhead for all 𝑔 group pairs in the
first round, and as explained earlier and will be confirmed later, the
first round incurs over 95% of the total communication overhead. In
the constraint, we replace 𝑃𝑟 [𝑅 ≤ 𝑟 ] by its lower bound 1−2(1−𝛼𝑔)
and write 𝛼 as 𝛼 (𝑛, 𝑡) to emphasize it is a function of 𝑛 and 𝑡 , when
𝑟 is considered a constant. In this optimization problem, 𝑔 (in the
constraint) is a constant, since Alice and Bob both know 𝑑 (by our
assumption thus far), and 𝑔 = 𝑑/𝛿 . Here 𝛿 is the average number of
distinct elements per group, which we set to 5 in PBS. Hence only
two variables are involved in this optimization problem: 𝑛 and 𝑡 .

This optimization problem is not as daunting as it might appear,
since there are only a few meaningful value combinations of 𝑛 and
𝑡 for two reasons. First, as mentioned earlier in §2.5, 𝑛 is always
set to 2𝑚−1 for some integer𝑚 in PBS. In addition, 𝑛 cannot be
too small, since otherwise the ideal case (of 𝑥 “balls” landing in 𝑥

distinct “bins”) cannot happen with high probability. The possible
𝑛 values are hence narrowed down to {63, 127, 255, 511, 1023, 2047}
in practice. Second, the BCH error-correction capacity 𝑡 needs to
be set to between 1.5𝛿 and 3.5𝛿 , as explained in §3.

Our optimization procedure is simply to compute, for each of
the 100 or so value combinations of 𝑛 and 𝑡 , the corresponding
values of the lower bound 1 − 2(1 − 𝛼𝑔 (𝑛, 𝑡)) (of 𝑃𝑟 [𝑅 ≤ 𝑟 ]) and
the objective function 𝑡 log𝑛 + 𝛿 log𝑛. Then among all such value
combinations that can guarantee 𝑃𝑟 [𝑅 ≤ 𝑟 ] ≥ 𝑝0, we pick the one
that results in the smallest objective function value.

Here we use an example to illustrate this procedure. Suppose we
have 𝑑 =1,000 distinct elements, 𝛿 =5 (so that 𝑔=200 groups), 𝑟 =3
rounds, and target success probability 𝑝0=99%. For each (𝑛, 𝑡) value
combination in {63, 127, 255, 511, 1023, 2047} × {8, 9, · · · , 16, 17} we
compute the corresponding lower bound (1− 2(1− 𝛼𝑔 (𝑛, 𝑡))) value.
The lower bound values corresponding to these (𝑛, 𝑡) value com-
binations are shown Table 1. In Table 1, each cell in which the
corresponding lower bound value is no smaller than the target
success probability 𝑝0=99% is highlighted. Among the highlighted
cells, the cell that is further darkened results in the smallest objec-
tive function value and hence its “coordinates” 𝑛 = 127, 𝑡 = 13 are
the optimal parameter setting in this instance. Since the matrix 𝑀
can be pre-computed, the success probability value in each cell can
be computed in 𝑂 (1) time. Hence this optimization procedure is
very efficient computationally.

5.2 What If The Target 𝒓 Changes?
Intuitively, when the target number of rounds 𝑟 becomes smaller, it
becomes more costly, in terms of both the communication and the
computational (for BCH decoding) overheads, to provide the success
probability guarantee 𝑃𝑟 [𝑅≤𝑟 ] ≥𝑝0. Intuitively, this is because 𝑛
and 𝑡 have to be larger so that in each group pair the ideal case
happens and the BCH decoding succeeds with higher probabilities
respectively. In this section, we perform a quantitative study of
this tradeoff, using the same example above with 𝑝0 = 99%, 𝑑 =

1,000 as that used in §5.1. For each 𝑟 ∈ {1, 2, 3, 4}, we compute the
optimal (𝑛, 𝑡) value combination using the optimization procedure

Table 1: Success probability lower bound values.

𝑡

𝑛 63 127 255 511 1023 2047

8 0 25.5% 32.7% 34.3% 34.9% 35.0%
9 52.1% 78.0% 84.2% 85.7% 86.1% 86.2%
10 75.1% 92.7% 96.5% 97.4% 97.6% 97.7%
11 85.9% 96.9% 99.1% 99.5% 99.6% 99.6%
12 91.3% 98.5% 99.7% 99.9% >99.9% >99.9%
13 93.9% 99.1% 99.8% >99.9% >99.9% >99.9%
14 95.1% 99.4% >99.9% >99.9% >99.9% >99.9%
15 95.6% 99.5% >99.9% >99.9% >99.9% >99.9%
16 95.7% 99.6% >99.9% >99.9% >99.9% >99.9%
17 95.8% 99.6% >99.9% >99.9% >99.9% >99.9%

described above, and the corresponding optimal (minimum) average
communication overhead per group pair.

The optimal communication overheads per group pair are 591,
402, 318 and 288 bits when 𝑟 =1, 2, 3 and 4 respectively, which
confirms our earlier intuition that the larger the 𝑟 is, the smaller
the optimal communication overhead is. It also shows that 𝑟 = 3 is
a sweet spot: The communication overhead per group pair drops
sharply from when 𝑟 = 1 (591 bits) to when 𝑟 = 2 (402 bits) and
from when 𝑟 = 2 to when 𝑟 = 3 (318 bits), but drops only slightly
from when 𝑟 = 3 to when 𝑟 = 4 (288 bits). We have found that 𝑟 = 3
is in general a sweet spot whenever the target success probability
𝑝0 is relatively high, such as 𝑝0 = 99% and 𝑝0 = 99.58% (239/240)
that will be used in our evaluation. Hence we set 𝑟 to 3 in this paper.
For smaller 𝑝0 values, however, 𝑟 = 2 or even 𝑟 = 1 can become a
sweet spot, as long as 𝑑 is no more than tens of millions.

5.3 Analysis on “Piecewise Reconciliability”
In this section, we perform an analysis of what portion of the
distinct elements are expected to be reconciled by PBS in the
first round, in the second round, and so on. Again we focus
our attention on the first group pair that have 𝛿1 (distributed as
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑑, 1/𝑔) as explained earlier) distinct elements between
them. Let 𝑍𝑘 , 𝑘 = 1, 2, ..., be the number of distinct elements among
those 𝛿1 that are reconciled in the 𝑘𝑡ℎ round. Our goal is to compute
E[𝑍1], E[𝑍2], E[𝑍3], ..., and so on. To do so, it suffices to compute
the unconditional expectations E[𝑍1+𝑍2+· · ·+𝑍𝑘 ] for 𝑘 = 1, 2, · · · .
They in turn can be derived from the following conditional expec-
tations on the LHS of Equation (3). Equation (3) holds because both
sides calculate the expected number of distinct elements that are
reconciled within 𝑘 rounds, conditioned upon the event {𝛿1 = 𝑥}.

E[𝑍1 + 𝑍2 + · · · + 𝑍𝑘 |𝛿1 = 𝑥] =
𝑥∑
𝑦=0
(𝑥 − 𝑦) · 𝑃𝑟 [𝑥 𝑘

𝑦] (3)

Using the above analysis, we obtain that the expected proportions
of the 𝑑 distinct elements that are reconciled in the first, second,
third, and fourth round are 0.962, 0.0380, 3.61×10−4, and 2.86×10−6
respectively under the optimal parameter settings (𝑛=127, 𝑡 =13)
for the instance used twice above (with 𝑑 = 1,000, 𝑟 = 3, 𝛿 = 5 and
𝑝0 = 0.99). This confirms our earlier claim that the vast majority
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(> 95%) of the distinct elements are reconciled, and hence most of
the communication overhead is incurred, in the first round.

6 ESTIMATE 𝑑

We have so far assumed that 𝑑 is precisely known. In reality, 𝑑 is
not known a priori in most applications. In this case, Alice and Bob
need to first obtain a relatively accurate estimate of 𝑑 . To this end,
we propose a new set difference cardinality estimator that is based
on the celebrated Tug-of-War (ToW) sketch [3].

6.1 The ToW Estimator
The ToW sketch was originally proposed in [3] for a subtly related
but very different application: to estimate 𝐹2, the second frequency
moment of a data stream. We discover that ToW can also be used
for estimating the set difference cardinality 𝑑 as follows. Given
a universe U, let F be a family of four-wise independent hash
functions, each of which maps elements in U to +1 or −1 each
with probability 0.5. The ToW sketch of a set 𝑆 ⊂ U, generated
using a hash function 𝑓 ∈ F , is defined as 𝑌𝑓 (𝑆) ≜

∑
𝑠∈𝑆 𝑓 (𝑠),

the sum of the hash values of all elements in 𝑆 . Using the same
analysis derived in [3], we can prove that 𝑑 =

(
𝑌𝑓 (𝐴)−𝑌𝑓 (𝐵)

)2 is an
unbiased estimator for 𝑑 = |𝐴△𝐵 |, as long as 𝑓 is drawn uniformly
at random from F . The variance of this estimate is (2𝑑2−2𝑑). The
proof for the unbiasedness of this estimator and the calculation
for its variance can be found in Appendix A in [12]. For notational
convenience, we drop the subscript 𝑓 from 𝑌𝑓 and add a different
subscript to 𝑌 in the sequel.

The estimate obtained from a single sketch is usually not very
accurate. To achieve high estimation accuracy, multiple sketches,
generated using independent hash functions, can be used. Suppose
ℓ such sketches, which we name 𝑌1, 𝑌2, ..., 𝑌ℓ , are used. The ToW
estimator using these ℓ sketches is given by 𝑑 =

( ∑ℓ
𝑖=1 (𝑌𝑖 (𝐴) −

𝑌𝑖 (𝐵))2
)
/ℓ . The variance of𝑑 is (2𝑑2−2𝑑)/ℓ , which is ℓ times smaller

than if only a single ToW sketch is used.

Space Complexity. Each ToW sketch for any set 𝑆 is an integer
within the range [−|𝑆 |, |𝑆 |], and is hence at most log(2|𝑆 | + 1) bits
long. Therefore, the space complexity of the ToW estimator using ℓ
sketches is ℓ · log(2|𝑆 | + 1) bits. We use ℓ=128 totaling 336 bytes in
PBS to achieve an appropriate level of estimation accuracy that we
will elaborate next.

6.2 Use The ToW Estimator in PBS
The ToW estimator is to be used by PBS, or by any other set rec-
onciliation algorithm that needs this step, at the very beginning
(before the reconciliation process starts), as follows. Alice sends the
ℓ =128 ToW sketches of set 𝐴 to Bob. Upon receiving these ℓ ToW
sketches, Bob computes 𝑑 as shown above and sends 𝑑 to Alice.
Both Alice and Bob then conservatively assume that the actual 𝑑
is 1.38𝑑 and compute the optimal 𝑛 and 𝑡 values (described in §5.1)
accordingly. We use 𝛾 = 1.38 here, because it is found (through
Monte-Carlo simulations) to be the smallest 𝛾 value to guarantee
that 𝑃𝑟 [𝑑 ≤ 𝛾𝑑] ≥ 99% for the ToW estimator using 128 sketches.
Using more (than 128) sketches allows 𝛾 to be smaller, but (128,
1.38) appears to strike a nice tradeoff according to our simulations.

In our evaluation to be described in §8, we assume that 𝑑 is not
known a priori. Like in PBS, we use the ToW estimator with 128
sketches with a total cost of 336 bytes also for two of our “competi-
tors” PinSketch and D.Digest, because, as have been explained in
Appendix B in [12], the ToW estimator is the most space-efficient
among all existing estimators. In calculating the communication
overheads of all three of them (PBS, PinSketch, D.Digest), this over-
head of 336 bytes is excluded. For a fair comparison, we subtract this
amount (336 bytes) from the communication overhead of another
competitor Graphene, as Graphene does not require an estimator.

7 RELATEDWORK
In this section, we provide a brief survey of existing set reconcilia-
tion algorithms. As mentioned in §1.1, in describing and comparing
them with PBS, we only consider the unidirectional set reconcilia-
tion in which Alice learns 𝐴△𝐵.

Bloom filters (BF) [4] can be used to construct a crude set rec-
onciliation scheme as follows. First, Alice and Bob exchange BFs
for sets 𝐴 and 𝐵. Upon receiving the BF (for 𝐵) from Bob, Alice can
obtain an estimate, denoted as 𝐴\𝐵, of the set 𝐴\𝐵 by checking
each element in 𝐴 against this BF. Note that 𝐴\𝐵 is in general an
underestimate: 𝐴\𝐵 may not contain all elements in 𝐴\𝐵, because
this BF may produce false positives that each suggests an element
is in 𝐵 when it is not. Similarly, Bob can obtain 𝐵\𝐴 and sends it
to Alice, from which Alice can infer an underestimate (of 𝐴△𝐵)�𝐴△𝐵 =𝐴\𝐵⋃

𝐵\𝐴. Set reconciliation solutions that build on and
extend this BF-based technique, including [6, 14, 19], all suffer from
this underestimation problem, and hence are only suitable for few
applications that do not require perfect data synchronization.

Asmentioned earlier, most exact set reconciliation algorithms are
based on either invertible Bloomfilters (IBF) [13] or error-correction
codes (ECC).

IBF-Based Algorithms. In an IBF, each element (from a set) is
inserted into 𝑘 cells indexed by 𝑘 independent hash functions.
Whereas each cell is a single bit in a BF, it has three fields in an
IBF, each of which requires a single word of length log |U|. There-
fore, IBFs are much more powerful than BFs: The set difference
𝐴△𝐵 of sets 𝐴 and 𝐵 can be recovered from the “difference” of
their IBFs using a “peeling process” similar to that used in the
decoding algorithms for some erasure-correcting codes, such as
Tornado codes [18]. For this decoding process to succeed with a
high enough probability, IBF-based solutions, such as Difference
Digest (D.Digest) [11], have to use roughly 2𝑑 cells. This translates
into a communication overhead of roughly 6𝑑 log |U|, or 6 times
the theoretical minimum.

A recent solution called Graphene [25] reduces the high com-
munication overhead of IBF-based solutions by augmenting it with
BFs. Here, we only describe its simplest version (Protocol I in [25])
that works only for the special case of 𝐵 ⊂𝐴. Its basic idea is for
Alice to first obtain 𝐴\𝐵, an underestimate of of 𝐴\𝐵, by query-
ing the BF for the set 𝐵 as described above, and then recover only
the “missing” part (𝐴\𝐵) \ (𝐴\𝐵) using an IBF. When the BF is
configured to have a reasonably low false positive rate say 𝜖 , the
IBF needs only to “encode” the roughly 𝜖𝑑 “missing” distinct ele-
ments rather than all the 𝑑 elements in 𝐴\𝐵, resulting in savings
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of “𝑂 ((1 − 𝜖)𝑑)” in the size of IBF. In general, for this 𝜖 to be rea-
sonably low (say meaningfully away from 1), the size of the BF
has to be 𝑂 ( |𝐵 |) with a nontrivial constant factor [4]. However,
when |𝐵 |≫𝑑 , which as explained earlier is often the case in most
applications, the savings of “𝑂 ((1−𝜖)𝑑)” in the IBF size is no longer
worth the𝑂 ( |𝐵 |) cost of the BF; in this case Graphene drops the BF
and degenerates to an IBF-only solution. For this reason, Graphene
is more communication-efficient than other IBF-based solutions
only when 𝑑 is sufficiently large with respect to |𝐵 |. Furthermore,
this efficiency grows with 𝑑 , as we will show in §8.2.

ECC-Based Algorithms. The basic ideas of ECC-based algo-
rithms [10, 15, 22, 24] are similar to that of PinSketch [10]. Given a
universeU in which each element is assigned an index between
1 and |U|, PinSketch encodes each set 𝑆 ⊂ U as a |U|-bit-long
bitmap 𝑆 [1..|U|]: 𝑆 [𝑖] (the 𝑖𝑡ℎ bit of 𝑆 [1..|U|]) is equal to 1 if the
element, whose index is 𝑖 , is contained in 𝑆 ; otherwise, 𝑆 [𝑖] = 0.
In contrast, in PBS the size 𝑛 of a bitmap depends only on 𝑑 (in
PBS-for-small-𝑑) or 𝛿 (in PBS-for-large-𝑑), and not on the size of
the universe or the cardinality of the group the bitmap encodes,
and is hence much shorter.

In PinSketch the 𝑑 distinct elements in𝐴△𝐵 are “indexed” by the
𝑑 bit positions in which the two |U|-bit-long bitmaps encoding 𝐴
and 𝐵 respectively differ. Like in PBS, these 𝑑 bit locations can be
learned by letting Alice send BoB a BCH codeword encoding 𝐴’s
bitmap. However, whereas the length of BCH codeword in PBS is
𝑑 log𝑛 or log𝑛 per distinct element, that in PinSketch is𝑑 log |U|, or
log |U| per distinct element. Hence, the BCH codeword is typically
3 to 4 times longer (log |U| = 32 bits in the example above) in
PinSketch than in PBS (log𝑛=8 bits in the example above), a fact
we will use in §8.3.

As mentioned earlier, ECC-based algorithms suffer from a much
higher decoding computational complexity of at least𝑂 (𝑑2). In [21],
a partition-based solution was proposed to reduce this computa-
tional complexity to 𝑂 (𝑑), but in a different manner than the parti-
tioning in PBS. This solution requires 𝑂 (log𝑑) rounds of message
exchanges, which is generally much larger than that in PBS.

8 PERFORMANCE EVALUATION
In this section, we evaluate the performance of PBS, and compare
it against three state-of-the-art algorithms that we have described
in detail in §7: PinSketch [10], Difference Digest (D.Digest) [11],
and Graphene [25]. In §8.3, we apply the partitioning technique
used in PBS to PinSketch to reduce its decoding computational
complexity and compare PBS against it. Our evaluation is mainly
focused on two performance metrics: communication overhead and
computational overhead. The former ismeasured by the total amount
of data transmitted between Alice and Bob to allow Alice to learn
𝐴△𝐵. The latter includes both encoding and decoding times.

The evaluation shows conclusively that PBS strikes a much bet-
ter tradeoff between communication and computational overheads
than all three algorithms. It has a communication overhead much
lower than IBF-based techniques such as D.Digest and Graphene,
and only slightly higher than PinSketch, whose computational over-
head is much larger. In addition, PBS has the lowest computational
overhead among all four algorithms.

Experiment Setup. Our evaluation uses a key space (universe)
U of all 32-bit binary strings. In other words, the (hash) signature
length is log |U|=32. Like in [11], all set pairs are created as follows.
First, elements in𝐴 are drawn fromU uniformly at randomwithout
replacement. Then, precisely |𝐴|−𝑑 elements in 𝐴 are sampled also
uniformly at random without replacement to make up set 𝐵, so that
the set difference 𝐴△𝐵 contains exactly 𝑑 elements.

In all experiments, we fix the cardinality of 𝐴 at 106 and let the
value of 𝑑 vary from 10 to 105. For each value of 𝑑 , we create a set of
1,000 mutually independent instances of (𝐴, 𝐵). Each point in each
plot is the average of 1,000 experimental results on such a set of
1,000 instances. All experiments were performed on a workstation
with an Intel Core i7-9800X processor running Ubuntu 18.0.4.
Implementations.We implement PBS in C++. We use the xxHash
library [8] for generating all hash functions in PBS, including those
in the ToW estimator. The Minisketch library [26], released by
the authors of [24], is used for the BCH encoding and decoding
in both PBS and PinSketch [10]. As the authors of D.Digest [11]
have not released their source code, we implement it using the
open-source code of IBFs in C++ released by the authors of [25].
For evaluating Graphene [25] fairly, we have made the following
revision to the source code provided by the authors of [25] to make
it as computationally efficient as possible. The original source code
was written in Python, with the most computationally expensive
part implemented in C++with a Pythonwrapper.We have rewritten
all Python code of it in C++.

8.1 PBS vs. PinSketch and D.Digest
In this section, we compare PBS with PinSketch and D.Digest. We
keep the comparison of PBS with Graphene separate in §8.2, because
a fair comparison there calls for slightly different experimental
settings and parameters.

8.1.1 Parameter configurations. As explained earlier, in virtually
all applications, a set reconciliation algorithm should guarantee
a high enough success rate (probability) of reconciling all distinct
elements in 𝐴Δ𝐵, and guaranteeing a higher success rate gener-
ally requires higher communication and computational overheads.
Hence, to fairly compare these set reconciliation algorithms, we
should properly configure their parameters so that they roughly
have the same success rate. In [11], the authors have provided
configuration guidelines for tuning D.Digest to achieve a success
rate of 0.99. To tune the parameters of D.Digest to achieve other
success rates, however, requires a large number of Monte-Carlo
experiments. Instead, we tune the parameters of PinSketch and PBS
to match this success rate of D.Digest, because it is much easier to
do so for PinSketch (to be shown next) and PBS (shown in §5.1).
PinSketch. As explained earlier in §6, 𝑃𝑟 [𝑑 ≤ 1.38𝑑] ≥ 0.99, when
𝑑 is obtained from the ToW estimator with 128 sketches. We set
the BCH error-correction capacity 𝑡 to 1.38𝑑 so that the event
{𝑑 ≤ 𝑡} which corresponds to successful BCH decoding and hence
set reconciliation, has a probability of at least 0.99.

D.Digest. As suggested in [11], we use 2𝑑 cells (to both account
for the randomness of 𝑑 and allow accurate IBF decoding) in the
IBF of D.Digest, and use 3 hash functions if 𝑑 is greater than 200
and 4 hash functions otherwise.
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Figure 1: Comparisons against PinSketch and D.Digest, with a target success rate of 0.99.
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Figure 2: Comparisons against Graphene, with a target success rate of 239/240.
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Figure 3: Comparisons against PinSketch/WP, with a target success rate of 0.99.

PBS. We choose 𝑟 =3 rounds since it is a sweet spot as explained
in §5.2. We set the target success probability 𝑝0 to 0.99 and opti-
mally parameterize PBS using the procedure described in §5.1. In
each experiment, we allow PBS to run at most 3 rounds and its
communication and computational overheads are measured as the
total during all rounds executed.

8.1.2 Experimental results. We report the experimental results in
this section. Note that we were not able obtain the results for PinS-
ketch for 𝑑 > 30,000 in a reasonable amount of time, as it is pro-
hibitively expensive computationally to do so. We first present the
success rates of all three algorithms in Figure 1a, which shows that
all these algorithms have achieved success rates at least as high as
the target success rate (0.99) under all different values of 𝑑 except
for D.Digest whose success rates are slightly lower than 0.99 when
𝑑 ≤ 30.

Communication Overhead. Figure 1b compares the communi-
cation overhead of PBS against those of PinSketch and D.Digest.
Results show that the communication overheads scale approxi-
mately linearly with respect to 𝑑 for all three algorithms. More

precisely, for any 𝑑 , the amount of communication per distinct ele-
ment is roughly a constant. D.Digest is the worst. It requires around
6×32 bits per distinct element, 6 times the theoretical minimum (32
bits per distinct element). PBS is much better, the communication
overhead of which is between 2.13 to 2.87 times the theoretical min-
imum. PinSketch has the lowest communication overhead, which
is 1.38 times the theoretical minimum.

Encoding Time. Figure 1c compares the encoding time of PBS
against those of PinSketch and D.Digest. Figure 1c clearly shows
that the former is much lower than the latter under all different
values of 𝑑 .

Decoding Time. Figure 1d compares the decoding time of PBS
against those of PinSketch and D.Digest. As shown in Figure 1d, the
decoding time of PinSketch is much higher than those of D.Digest
and PBS when 𝑑 is large (say ≥ 1,000). Figure 1d also shows clearly
that D.Digest is the best, whose decoding time is 1.53 to 2.35 times
shorter than that of PBS.

However, as discussed earlier, the encoding time of D.Digest is
much (up to one order of magnitude) longer than that of PBS, and
encoding time (of PBS and D.Digest) is usually much longer than

468



the corresponding decoding time. Thus, PBS has the lowest overall
computational overhead.

8.2 PBS vs. Graphene
In this section, we compare PBS against Graphene. Recall that in
our experimental setting, we have 𝐵 ⊂ 𝐴 and need to let Alice
learn 𝐴Δ𝐵, which was shown in [25] to be the best-case scenario
for Graphene in terms of communication overhead and decoding
time. Hence we have treated Graphene more than fairly here. Since
the parameters in the source code provided by the authors of [25]
are already optimized for achieving a target success rate of 239/240,
we tune PBS to match this success rate: The success rates of both
PBS and Graphene are higher than 239/240, as shown in Figure 2a.
Communication Overhead. Figure 2b compares the communica-
tion overhead of PBS against that of Graphene. It shows that, even in
this best-case scenario for Graphene, PBS has much lower (roughly
1.2 to 7.4 times less) communication overhead than Graphene under
all different values of 𝑑 except when 𝑑 gets very close to 100,000.
The reason behind this exception was explained earlier (in §7):
When 𝑑 is sufficiently large with respect to |𝐴| (=106 in this case),
it becomes more communication-efficient overall for Graphene to
start using a BF to reduce the size of its IBF. It can be calculated
using an optimization formula in [25] that the breakeven point (for
using a BF) in this case is some number between 𝑑 = 10,000 and
𝑑 = 16,000. We can actually see in Figure 2b that the slope of the
Graphene curve, which corresponds to the average communication
overhead per distinct element, starts to decrease after the breakeven
point, resulting in it eventually going under the PBS curve roughly
after 𝑑 ≥ 50,000.
Encoding Time. Figure 2c clearly shows that the encoding time
of PBS is 1.34 to 11.38 times lower than that of Graphene under all
values of 𝑑 .
Decoding Time. Figure 2d compares the decoding time of PBS
against those of Graphene and clearly shows that the former is
slightly (1.20 to 2.28 times) longer than the latter except when 𝑑 is
close to 100,000 where the former is up to 4.87 times longer.

8.3 PBS vs. PinSketch with Partition
Arguably, the same algorithmic trick (i.e., hash-partition 𝐴 and 𝐵

each into groups) can be applied also to PinSketch [10] for reducing
its BCH decoding time from 𝑂 (𝑑2) to 𝑂 (𝑑). Doing so however
makes the communication overhead of PinSketch higher than that
of PBS for the following reason. As explained in §3.1, we need to
leave a safety margin in setting the BCH error-correction capacity
𝑡 , in the sense that 𝑡 needs to be “comfortably” larger than 𝛿 , the
average number of “bit errors” per group. Hence for each group
pair, the average additional communication overhead (incurred for
transmitting a longer BCH codeword) of leaving this safety margin
is (𝑡−𝛿) log𝑛 in PBS and is (𝑡−𝛿) log |U| in PinSketch. However, as
explained in §7, log𝑛 is typically 3 to 4 times smaller than log |U|.
Hence PinSketch pays 3 to 4 times more for leaving the safety
margin, resulting in a higher overall communication overhead, as
will be elaborated next.

Now we compare the performance of PBS against that of PinS-
ketch with hash partition, which we refer to as PinSketch/WP. For
PinSketch/WP, we use the same 𝛿 and 𝑡 values as in PBS (there

is no parameter 𝑛 in PinSketch/WP since it does not use a parity
bitmap), with a target success probability of 𝑝0=0.99 within 𝑟=3
rounds, in each experiment instance. The experimental results are
reported in Figure 3. It clearly shows that PBS outperforms PinS-
ketch/WP in both communication overhead and computational
overhead (the sum of the encoding and the decoding time). Note
this outperformance will increase when the hash signature length
log |U| increases (log |U|=32 bits in Figure 3). Hence, PBS would
outperform by awider margin in real-world blockchain applications
where log |U| is much larger (e.g., log |U|=256 bits in Bitcoin [23]),
as has been shown in Appendix I.2 in [12].

8.4 Number of Rounds Required by PBS

Table 2: Number of rounds 𝑟 needed for full reconciliation.

𝑑

𝑟 1 2 3

10 0.804 0.188 0.008
100 0.217 0.760 0.023

1,000 0 0.957 0.043
10,000 0 0.907 0.093
100,000 0 0.818 0.182

In this section, we investigate the empirical number of rounds 𝑟
required by PBS to correctly reconcile all 𝑑 distinct elements. The
parameter settings are exactly the same as those we used in §8.1.
The only difference is that here we let PBS run as many rounds as
needed instead of at most 3 rounds. Table 2 presents the empirical
distributions of the number of rounds required by PBS to correctly
reconcile all 𝑑 distinct elements, with 𝑑=10, 100, 1,000, 10,000 and
100,000. The average numbers of rounds needed are 1.20, 1.81, 2.04,
2.09 and 2.18 for 𝑑=10, 100, 1,000, 10,000 and 100,000 respectively.
Furthermore, in every experiment the reconciliation process took
no more than 3 rounds to complete. Hence the 3 probability values
in every row of Table 2 add up to (probability) 1.

9 CONCLUSION
In this paper, we propose Parity Bitmap Sketch (PBS), a space- and
computationally-efficient solution to the set reconciliation prob-
lem. We show, through experiments, that PBS strikes a much better
tradeoff between communication and computational overheads
than all the state-of-the-art solutions. In addition, we derive a novel
rigorous analytical framework for PBS, which most existing solu-
tions do not have. Through three applications of this framework,
we demonstrate that it enables both the accurate analysis of various
performance metrics and the tuning of the parameters of PBS for
near-optimal performances.
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