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ABSTRACT

Data stalls are a major overhead in main-memory database engines

due to the use of pointer-rich data structures. Lightweight corou-

tines ease the implementation of software prefetching to hide data

stalls by overlapping computation and asynchronous data prefetch-

ing. Prior solutions, however, mainly focused on (1) individual

components and operations and (2) intra-transaction batching that

requires interface changes, breaking backward compatibility. It was

not clear how they apply to a full database engine and how much

end-to-end benefit they bring under various workloads.

This paper presents CoroBase, a main-memory database engine

that tackles these challengeswith a new coroutine-to-transaction par-

adigm. Coroutine-to-transaction models transactions as coroutines

and thus enables inter-transaction batching, avoiding application

changes but retaining the benefits of prefetching. We show that

on a 48-core server, CoroBase can perform close to 2× better for

read-intensive workloads and remain competitive for workloads

that inherently do not benefit from software prefetching.
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1 INTRODUCTION

Modern main-memory database engines [11, 22, 24, 25, 30, 33, 56,

59] use memory-optimized data structures [2, 29, 31, 36] to offer

high performance on multicore CPUs. Many such data structures

rely on pointer chasing [34] which can stall the CPU upon cache

misses. For example, in Figure 1(a), to execute two SELECT (get)

queries, the engine may traverse a tree, and if a needed tree node

is not cache-resident, dereferencing a pointer to it stalls the CPU

(dotted box in the figure) to fetch the node from memory. Compu-

tation (solid box) would not resume until data is in the cache. With

the wide speed gap between CPU and memory, memory accesses

have become a major overhead [4, 35]. The emergence of capacious

but slower persistent memory [10] is further widening this gap.

Modern processors allow multiple outstanding cache misses

and provide prefetch instructions [18] for software to explicitly
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transaction:
v1 = get(k1)
v2 = get(k2)
if v1 == 0:

put(k3, 10)

(a) Sequential

transaction:
v1, v2 = 

multi_get(k1, k2)
if v1 == 0:

put(k3, 10)

(b) Multi-get

transaction:
v1 = get(k1)
v2 = get(k2)
if v1 == 0:

put(k3, 10)

(c) CoroBase

T1 T1 T1 . . .T2 T1 T1 T1 T1 T1 T1
T2 T2 T2

. . .
T1 T1 . . .

T2 T2
T2Time

Figure 1: Data access interfaces and execution under (a) se-

quential execution (no interleaving), (b) prior approaches

that require multi-key interfaces, (c) CoroBase which hides

data stalls and maintains backward compatibility.

bring data from memory to CPU caches. This gave rise to software

prefetching techniques [5, 21, 26, 34, 39, 44, 45] that hide memory

access latency by overlapping data fetching and computation, allevi-

ating pointer chasing overhead. Most of these techniques, however,

require hand-crafting asynchronous/pipelined algorithms or state

machines to be able to suspend/resume execution as needed. This is

a difficult and error-prone process; the resulted code often deviates

a lot from the original code, making it hard to maintain [21].

1.1 Software Prefetching via Coroutines

With the recent standardization in C++20 [19], coroutines greatly

ease the implementation of software prefetching. Coroutines [38]

are functions that can suspend voluntarily and be resumed later.

Functions that involve pointer chasing can be written as coroutines

which are executed (interleaved) in batches. Before dereferencing

a pointer in coroutine 𝑡1, the thread issues a prefetch followed

by a suspend to pause 𝑡1 and switches to another coroutine 𝑡2,
overlapping data fetching in 𝑡1 and computation in 𝑡2.

Compared to earlier approaches [5, 26], coroutines only require

prefetch/suspend be inserted into sequential code, greatly simpli-

fying implementation while delivering high performance, as the

switching overhead can be cheaper than a last-level cache miss [21].

However, adopting software prefetching remains challenging.

First, existing approaches typically use intra-transaction batch-

ing which mandates multi-key interfaces that can break backward

compatibility. For example, in Figure 1(b) an application1 uses

multi_get to retrieve a batch of records at once in a transac-

tion. Cache misses caused by probing k1 (k2) in a tree are hid-

den behind the computation part of probing k2 (k1). While intra-

transaction batching is a natural fit for some operators (e.g., IN-

predicate queries [44, 45]), it is not always directly applicable.

Changing the application is not always feasible andmay not achieve

the desired improvement as depending requests need to be issued in

1The “application” may be another database system component or an end-user appli-
cation that uses the record access interfaces provided by the database engine.
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separate batches, limiting interleaving opportunities. Short (or even

single-record) transactions also cannot benefit much due to the lack

of interleaving opportunity. It would be desirable to allow batching

operations across transactions, i.e., inter-transaction batching.

Second, prior work provided only piece-wise solutions, focusing

on optimizing individual database operations (e.g., index traver-

sal [21] and hash join [5, 44]). Despite the significant improvement

(e.g., up to 3× faster for tree probing [21]), it was not clear howmuch

overall improvement one can expect when these techniques are

applied in a full database engine that involves various components.

Overall, these issues lead to two key questions:

• How should a database engine adopt coroutine-based software

prefetching, preferably without requiring application changes?

• How much end-to-end benefit can software prefetching bring to

a database engine under realistic workloads?

1.2 CoroBase

To answer these questions, we propose and evaluate CoroBase, a

multi-version, main-memory database engine that uses coroutines

to hide data stalls. The crux of CoroBase is a simple but effec-

tive coroutine-to-transaction paradigm that models transactions as

coroutines, to enable inter-transaction batching and maintain back-

ward compatibility. Worker threads receive transaction requests

and switch among transactions (rather than requests within a trans-

action) without requiring intra-transaction batching or multi-key

interfaces. As Figure 1(c) shows, the application remains unchanged

as batching and interleaving happen at the transaction level.

Coroutine-to-transaction can be easily adopted to hide data stalls

in different database engine components and can even work to-

gether with multi-key based approaches. In particular, in multi-

version systems versions of data records are typically chained using

linked lists [62], traversing which constitutes another main source

of data stalls, in addition to index traversals. CoroBase transpar-

ently suspends and resumes transactions upon pointer dereferences

during version chain traversals. This way, CoroBase “coroutinizes”

the full data access paths to provide an end-to-end solution.

To explore how coroutine-to-transaction impacts common de-

sign principles of main-memory database systems, instead of build-

ing CoroBase from scratch, we base it on ERMIA [24], an open-

source, multi-version main-memory database engine. This allows

us to devise an end-to-end solution and explore how easy (or hard)

it is to adopt coroutine-to-transaction in an existing engine, which

we expect to be a common starting point for most practitioners. In

this context, we discuss solutions to issues brought by coroutine-to-

transaction, such as (nested) coroutine switching overhead, higher

latency and more complex resource management in later sections.

On a 48-core server, our evaluation results corroborate with

prior work and show that software prefetching is mainly (unsur-

prisingly) beneficial to read-dominant workloads, with close to 2×

improvement over highly-optimized baselines. For write-intensive

workloads, we find mixed results with up to 45% improvement

depending on access patterns. Importantly, CoroBase retains com-

petitive performance for workloads that inherently do not benefit

from prefetching, thanks to its low-overhead coroutine design.

Note that our goal is not to outperform prior work, but to (1)

effectively adopt software prefetching in a database engine without

necessitating new interfaces, and (2) understand its end-to-end

benefits. Hand-crafted techniques usually present the performance

upper bound; CoroBase strikes a balance between performance,

programmability and backward compatibility.

1.3 Contributions and Paper Organization

We make four contributions. 1 We highlight the challenges for

adopting software prefetching in main-memory database engines.

2 We propose a new execution model, coroutine-to-transaction,

to enable inter-transaction batching and avoid interface changes

while retaining the benefits of prefetching. 3 We build CoroBase, a

main-memorymulti-version database engine that uses coroutine-to-

transaction to hide data stalls during index and version chain traver-

sals. We explore the design tradeoffs by describing our experience

of transforming an existing engine to use coroutine-to-transaction.

4 We conduct a comprehensive evaluation of CoroBase to quan-

tify the end-to-end effect of prefetching under various workloads.

CoroBase is open-source at https://github.com/sfu-dis/corobase.

Next, we give the necessary background in Section 2. Sections 3–

4 then present the design principles and details of CoroBase. Sec-

tion 5 quantifies the end-to-end benefits of software prefetching.

We cover related work in Section 6 and conclude in Section 7.

2 BACKGROUND

This section gives the necessary background on software prefetch-

ing techniques and coroutines to motivate our work.

2.1 Software Prefetching

Although modern CPUs use sophisticated hardware prefetching

mechanisms, they are not effective on reducing pointer-chasing

overheads, due to the irregular access patterns in pointer-intensive

data structures. For instance, when traversing a tree, it is difficult

for hardware to predict and prefetch correctly the node which is

going to be accessed next, until the node is needed right away.

Basic Idea. Software prefetching techniques [5, 21, 26, 44] use

workload semantics to issue prefetch instructions [18] to explicitly

bring data into CPU caches. Worker threads handle requests (e.g.,

tree search) in batches. To access data (e.g., a tree node) in request

𝑡1 which may incur a cache miss, the thread issues a prefetch and

switches to another request 𝑡2, and repeats this process. While the

data needed by 𝑡1 is being fetched from memory to CPU cache,

the worker thread handles 𝑡2, which may further cause the thread

to issue prefetch and switch to another request. By the time the

worker thread switches back to 𝑡1, the hope is that the needed

data is (already and still) cache-resident. The thread then picks up

at where it left for 𝑡1, dereferences the pointer to the prefetched

data and continues executing 𝑡1 until the next possible cache miss

upon which a prefetch will be issued. It is important that the

switching mechanism and representation of requests are cheap and

lightweight enough to achieve a net gain.

Hand-Crafted Approaches. The mechanism we just described

fits naturally with many loop-based operations. Group prefetching

and software pipelined prefetching [5] overlap multiple hash table

lookups to accelerate hash joins. After a prefetch is issued, the

control flow switches to execute the computation stage of another

operation. Asynchronous memory access chaining (AMAC) [26] is
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a general approach that allows one to transform a heterogeneous

set of operations into state machines to facilitate switching be-

tween operations upon cache misses. A notable drawback of these

approaches is they require developers hand-craft algorithms. The

resulted code is typically not intuitive to understand and hard to

maintain. This limits their application to simple or individual data

structures and operations (e.g., tree traversal). Recent approaches

tackle this challenge using lightweight coroutines, described next.

2.2 Coroutines

Coroutines [8] are generalizations of functions with two special

characteristics: (1) During the execution between invoke and return,

a coroutine can suspend and be resumed at manually defined points.

(2) Each coroutine preserves local variables until it is destroyed.

Traditional stackful coroutines [38] use separate runtime stacks to

keep track of local variables and function calls. They have been

available as third-party libraries [37, 51] and are convenient to use,

but exhibit high overhead that is greater than the cost of a cache

miss [21], defeating the purpose of hiding memory stalls.

Stackless Coroutines. Recent stackless coroutines standard-

ized in C++20 [19] (which is our focus) exhibit low overhead in

construction and context switching2 (cheaper than a last-level cache

miss). They do not own stacks and run on the call stack of the under-

lying thread. Invoking a coroutine is similar to invoking a normal

function, but its states (e.g., local variables that live across suspen-

sion points) are kept in dynamically allocated memory (coroutine

frames) that survive suspend/resume cycles. Figure 2 shows an

example in C++20: any function that uses coroutine keywords

(e.g., co_await, co_return) is a coroutine. A coroutine returns a

promise_type structure that allows querying the coroutine’s states,

such as whether it is completed and its return value. The co_await

keyword operates on a promise_type and is translated by the com-

piler into a code block that can save the states in a coroutine frame

and pop the call stack frame. The suspend_always object is an

instance of promise_type that has no logic and suspends uncondi-

tionally. The co_return keyword matches the syntax of return,

but instead of returning an rvalue, it stores the returned value

into a coroutine frame. As Figure 2 shows, upon starting (step 1 )

or resuming (step 3 ) a coroutine, a frame is created and pushed

onto the stack. At unconditional suspension points (steps 2 and

4 ), the frame is popped and control is returned to the caller. Since

the coroutine frame lives on the heap, coroutine states are still

retained after the stack frame is popped. Coroutine frames need to

be explicitly destroyed after the coroutine finishes execution.
Scheduling. Each worker thread essentially runs a scheduler

that keeps switching between coroutines, such as the one below:

1. // construct coroutines

2. for i = 0 to batch_size - 1:

3. coroutine_promises[i] = foo(...);

4. // switch between active coroutines

5. while any(coroutine_promises, x: not x.done()):

6. for i = 0 to batch_size - 1:

7. if not coroutine_promises[i].done():

8. coroutine_promises[i].resume()

2Not to be confused with context switches at the OS level. In main-memory systems,
threads are typically pinned to mitigate the impact of OS scheduling. Throughout this
paper “contexts” refers to coroutines/transactions that are pure user-space constructs.

promise<void> foo() {

co_await suspend_always();

co_await suspend_always();
. . .
co_return;

}

code segment 1 Segment 1
Other frames

Call stack status:

code segment 2

Coroutine frame (heap):

Segment 2
Other frames

1
2
3
4

1 2

3 4

Free

Free

Pop

Pop

Other frames
Push

Other frames

Figure 2: Stackless coroutine that directly uses the under-

lying thread’s stack. States (e.g., local variables and return

value) are maintained in dynamically allocated memory.

After creating a batch of operations (coroutines) at lines 1–2, it in-

vokes and switches among coroutines (lines 4–8). The batch_size

parameter determines the number of inflight memory fetches and

how effectively memory stalls can be hidden: once a coroutine sus-

pends, it is not resumed before the other batch_size-1 coroutines

are examined. Prior work has shown that the optimal batch_size

is roughly the number of outstanding memory accesses that can be

supported by the CPU (10 in current Intel x86 processors) [44].

Nested Stackless Coroutines. Similar to “normal” functions,

a coroutine may invoke, suspend and resume another coroutine

using co_await, forming a chain of nested coroutines. By default,

when a stackless coroutine suspends, control is returned to its

caller. Real-world systems often employ deep function calls for high-

level operations to modularize their implementation. To support

interleaving at the operation level in database engines (e.g., search),

a mechanism that allows control to be returned to the top-level

(i.e., the scheduler) is necessary. This is typically done by returning

control level-by-level, from the lowest-level suspending coroutine

to the scheduler, through every stack frame. Note that the number

of frames preceding the suspending coroutine on the stack may not

be the same as its position in the call chain. For the first suspend in

the coroutine chain, the entire chain is on the stack. For subsequent

suspends, however, the stack frames start from the last suspended

coroutine instead of the top level one, since it is directly resumed by

the scheduler. When a coroutine 𝑐 finishes execution, the scheduler
resumes execution of 𝑐’s parent coroutine. As a result, a sequential
program with nested function calls can be easily transformed into

nested coroutine calls by adding prefetch and suspend statements.

Astute reader may have noticed that this approach can be easily

used to realize coroutine-to-transaction. However, doing so can

bring non-trivial overhead associated with scheduling and main-

taining coroutine states; we discuss details in later sections.

2.3 Coroutine-based Software Prefetching in
Main-Memory Database Engines

Modern main-memory database systems eliminate I/O operations

from the critical path. This allows worker threads to execute each

transaction without any interruptions.

Execution Model. Recent studies have shown that data stalls

are a major overhead in both OLTP and OLAP workloads [53, 54].

In this paper, we mainly focus on OLTP workloads. With I/O off

the critical path, thread-to-transaction has been the dominating
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(b) Interleaved execution with multi-key interfaces

Worker thread N

Worker thread 1

Transaction 1

Transaction 2

. . .

MultiGet (A, B, C)
. . .

Worker thread N

Worker thread 1

Transaction 1

Transaction 2
. . .

Read (A)
Read(key)

probe_index
get_record

(a) Sequential execution

Multi-key interfaces 
(insert/get/scan/update):

MultiGet(keys) {
for each key {

resume(probe_index)
resume(get_record)

}
}

Figure 3: Execution models under thread-to-transaction.

execution model in main-memory environments for transaction

execution. Each worker thread executes transactions one by one

without context switching to handle additional transactions unless

the current transaction concluded (i.e., committed or aborted). Fig-

ure 3(a) shows an example of worker threads executing transactions

under this model. To read a record, the worker thread sequentially

executes the corresponding functions that implement the needed

functionality, including (1) probing an index to learn about the

physical address of the target record, and (2) fetching the record

from the address. After all the operations of the current transac-

tion (Transaction 1 in the figure) are finished, the worker thread

continues to serve the next transaction.

Software Prefetching under Thread-to-Transaction. With

nested coroutines, it is straightforward to transform individual op-

erations to use software prefetching, by adding suspend points into

existing sequential code. However, under thread-to-transaction,

once a thread starts to work on a transaction, it cannot switch

to another. As a result, the caller of these operations now essen-

tially runs a scheduler that switches between individual operations,

i.e., using intra-transaction batching. In the case of a transaction

reading records, for example, in Figure 3(b), the transaction calls

a multi_get function that accepts a set of keys as its parameter

and runs a scheduler that switches between coroutines that do the

heavylifting of record access and may suspend upon cache misses.

All these actions happen in the context of a transaction; another

transaction can only be started after the current transaction being

handled concludes, limiting inter-transaction batching and necessi-

tating interface changes that may break backward compatibility.

3 DESIGN PRINCIPLES

We summarize four desirable properties and principles that should

be followed when designing coroutine-based database engines:

• Maintain Backward Compatibility. The engine should allow

applications to continue to use single-key interfaces. Interleaving

should be enabled within the engine without user intervention.

• Low Context Switching Overhead. It should be at least lower

than the cost of a last-level cache miss to warrant any end-to-end

performance improvement in most cases. For workloads that do

not have enough data stalls to benefit from prefetching, having

low switching overhead can help retain competitive performance.

• Maximize Batching Opportunities. The batching mechanism

should allow both intra- and inter-transaction interleaving. This

Worker thread N

Worker thread 1

Transaction 1 
(coroutine)

Scheduler

Transaction 2 
(coroutine)

12
Read (A)
. . .

Read(key) {
. . .

. . .
}

Probe index
Get version

4

Record access 
coroutines:

Indexes

Where?

V2 V1

Version chains

V2 V1

RID
0
1

Indirection array

RIDs

3

V0

V0

Figure 4: CoroBase overview. Indexes map keys to unique

record IDs (RIDs). Versions are maintained by version

chains. Each worker thread runs a scheduler that 1 start-

s/resumes transactions (coroutines). 2 A transactionmay in-

voke other coroutines that implement specific operations,

which may suspend but 3 return control directly to the

scheduler, which can 4 resume a different transaction.

would allow arbitrary query to benefit from prefetching, in addi-

tion to operators that naturally fits the batching paradigm.

• Easy Implementation. A salient feature of coroutine is it only

needs simple changes to sequential code base; a new design must

retain this property for maintainability and programmability.

4 COROBASE DESIGN

Now we describe the design of CoroBase, a multi-version main-

memory database engine based on the coroutine-to-transaction

execution model. We do so by taking an existing memory-optimized

database engine (ERMIA [24]) and transforming it to use coroutine-

to-transaction. As we mentioned in Section 1, this allows us to

contrast and highlight the feasibility and potential of coroutine-to-

transaction, and reason about the programming effort required to

adopt coroutine-to-transaction. However, CoroBase and coroutine-

to-transaction can be applied to other systems.

4.1 Overview

CoroBase organizes data and controls data version visibility in ways

similar to other main-memory multi-version systems [11, 24, 30,

33, 62] (in our specific case, ERMIA [24]). Figure 4 gives the overall

design of CoroBase. For each record, CoroBase maintains multiple

versions that are chained together in a linked list, with the latest

version (ordered by logical timestamps) as the list head. This is

a common design in multi-version systems [62]. Each record is

uniquely identified by a logical record ID (RID) that never changes

throughout the lifetime of the record, in contrast to physical RIDs

in traditional disk-based systems [47]. For each table, we maintain

an indirection array [24, 50] that maps RID to the virtual memory

pointer to the record’s latest version which further points to the

next older version, and so on. Indexes map keys to RIDs, instead of

pointers to record versions. A main benefit of this approach is that

record updates (i.e., creation of new versions) or movement (e.g.,

from memory to storage) will not always mandate secondary index

updates. Same as ERMIA, CoroBase uses Masstree [36] for indexing
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and all data accesses are done through indexes, however, the choice

of index types is orthogonal to the techniques being proposed here.

With the indirection and version chain design, accessing a record

is a two-step process: the worker thread first traverses an index of

the underlying table, and then consults the indirection array (using

the RID found in the leaf node as index) to find the actual record

and suitable version by traversing the version chain of that record.

We defer details on determining version visibility to later sections

when we discuss concurrency control. Under thread-to-transaction,

this two-step process is done synchronously by the worker thread,

with record access procedures implemented as multiple levels of

functions. Under coroutine-to-transaction, record access procedures

are implemented as coroutines, instead of “normal” functions. As

Figure 4 shows, each worker thread independently runs a scheduler

that switches between a batch of transactions (coroutines). The key

to realize this model is transforming nested functions on the data

access path into coroutines, which we elaborate next.

4.2 Fully-Nested Coroutine-to-Transaction

To support common data access operations (insert/read/update/s-

can/delete), a straightforward way is to transform function call

chains that may cause cache misses into nested stackless corou-

tines outlined in Section 2.2. Functions that will not incur cache

misses may be kept as “normal” functions. For index, we follow

prior work [21] to add suspend statements (suspend_always in

C++20) as needed after each prefetch, which can be identified

easily as Masstree already prefetches nodes.3 We use co_await to

invoke other coroutines and replace return with co_return. For

version chain traversal, we issue prefetch and suspend before

dereferencing a linked list node pointer. These changes are straight-

forward and only require inserting prefetch/suspend statements

and replacing keywords. Our implementation defines macros to au-

tomatically convert between function and coroutine versions of the

code, easing code maintainability.4 Thus, a call chain of N functions

is replaced by an (up to) N-level coroutine chain. Coroutines at any

level may voluntarily suspend, after which control goes back to the

scheduler which resumes the next transaction that is not done yet;

control then goes to the newly resumed transaction.

Figure 4 shows how control flows end-to-end. When a new trans-

action is created, CoroBase starts to execute it in a coroutine (step

1 in the figure). Subsequent operations (e.g., read/write/scan) are

further handled in the context of their corresponding transaction

coroutine (step 2 ). All the operations are also coroutines that may

suspend and get resumed. For example, in Figure 4, the Read corou-

tine may further use other coroutines to traverse a tree index struc-

ture to find the requested record’s RID, followed by invoking yet

another coroutine that traverses the version chain to retrieve the

desirable version. Upon a possible cache miss, the executing corou-

tine (e.g., index traversal as part of a Read call) issues a prefetch to

bring the needed memory to CPU caches asynchronously, followed

by a suspend which returns control directly to the scheduler (step

3 ). This allows the scheduler to further resume another transaction

(step 4 ), hoping to overlap computation and data fetching. After

3Based on https://github.com/kohler/masstree-beta.
4For example, the record read function/coroutine can be found at: https://github.com/
sfu-dis/corobase/blob/v1.0/ermia.cc#L145. The AWAIT and PROMISE macros transpar-
ently convert between coroutine and function versions.

Algorithm 1 Scheduler for coroutine-to-transaction.

1 def scheduler(batch_size):

while not shutdown:

3 [T] = get_transaction_requests()

enter_epoch()

5 while done < batch_size:

done = 0

7 for i = 0 to batch_size - 1:

if T[i].is_done:

9 ++done

else

11 T[i].resume()

exit_epoch()

a transaction commits or aborts, its coroutine structures are de-

stroyed and control is returned to the scheduler which may resume

another active transaction. Finally, after every transaction in the

batch is concluded, the scheduler starts a new batch of transactions.

Coroutine-to-transaction moves the responsibility of batching

from the user API level to the engine level, by grouping transactions.

Each worker thread runs a coroutine scheduler which accepts and

handles transaction requests. In CoroBase we use a round-robin

scheduler shown in Algorithm 1. The scheduler function keeps

batching and switching between incoming transactions (lines 7–11).

It loops over each batch to execute transactions. When a query in a

transaction suspends, control returns to the scheduler which then

resumes the next in-progress transaction (line 11). Note that each

time the scheduler takes a fixed number (denoted as batch_size)

of transactions, and when a transaction finishes, we do not start

a new one until the whole batch is processed. The rationale be-

hind is to preserve locality and avoid overheads associated with

initializing transaction contexts. Although it may reduce the pos-

sible window of overlapping, we observe the impact is negligible.

Avoiding irregular, ad hoc transaction context initialization helps

maintain competitive performance for workloads that inherently

do not benefit from prefetching where the scheduler activities and

switching are pure overheads that should be minimized. Processing

transactions in strict batches also eases the adoption of epoch-based

resource management in coroutine environments, as Section 4.4

describes. The downside is that individual transaction latency may

become higher. Our focus is OLTP where transactions are often

similar and short, so we anticipate the impact to be modest. For

workloads that may mix short transactions and long queries in a

batch, other approaches, e.g., a scheduler that takes transaction

priority into account when choosing the next transaction to resume

may be more attractive for reducing system response time.

While easy to implement, fully-nested coroutine-to-transaction

and coroutine-to-transaction in general bring threemain challenges,

which we elaborate next.

4.3 Two-Level Coroutine-to-Transaction

Since currently there is no way for software to tell whether derefer-

encing a pointer would cause a cache miss [21, 44], software has to

“guess” which memory accesses may cause a cache miss. CoroBase

issues prefetch and suspend upon dereferencing pointers to index
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nodes and record objects in version chains based on profiling results.

To reduce the cost of wrong guesses, it is crucial to reduce switching

overheads. Database engine code typically uses nested, deep call

chains of multiple functions to modularize implementation. As Sec-

tion 5 shows, blindly transforming deep function call chains into

coroutine chains using fully-nested coroutine-to-transaction in-

curs non-trivial overhead that overshadows the benefits brought by

prefetching. Yet completely flattening (inlining) the entire call chain

to become a single coroutine mixes application logic and database

engine code, defeating the purpose of coroutine-to-transaction.

CoroBase takes a middle ground to flatten only nested calls

within the database engine, forming a two-level structure that

balances performance and programmability. This allows the ap-

plication to still use the conventional interfaces; under the hood,

transaction coroutines may invoke other coroutines for individual

operations (e.g., get), which are single-level coroutines with all the

nested coroutines that may suspend inlined. Sequential functions

that do not suspend are not inlined unless the compiler does so

transparently. At a first glance, it may seem tedious or infeasible

to inline the whole read/write paths in a database engine manu-

ally. However, this is largely mechanical and straightforward. For

instance, it took us shorter than three hours to flatten the search

operation in Masstree [36], the index structure used by CoroBase.

The flattened code occupies <100 lines and still largely maintains

the original logic.5 This shows that flattening functions is in fact

feasible. Moreover, there is a rich body of work in compilers about

function inlining and flattening [1, 40, 43, 49, 63] that can help

automate this process. For example, developers can still write small,

modularized functions, but a source-to-source transformation pass

can be performed to flatten the code before compilation.

The downside of flattening is that it may cause more instruction

cache misses because the same code segment (previously short func-

tions) may appear repeatedly in different coroutines. For example,

the same tree traversal code is required by both update and read

operations. Individual coroutines may become larger, causing more

instruction cache misses. However, as Section 5 shows, the benefits

outweigh this drawback. Code reordering [3] can also be used as an

optimization in compilers to reduce the instruction fetch overhead.

Discussion of code transformation techniques is beyond the scope

of this paper; we leave it as promising future work.

4.4 Resource Management

Resource management in the physical layer is tightly coupled with

transaction execution model. Under thread-to-transaction, “transac-

tion” is almost a synonymy of thread, allowing transparent applica-

tion of parallel programming techniques, in particular epoch-based

memory reclamation and thread-local storage to improve perfor-

mance. Most of these techniques are implicitly thread-centric, se-

quential algorithms that do not consider the possibility of coroutine

switching. Although the OS scheduler may deschedule a thread

working on a task 𝑡 , the thread does not switch to another task.

When the thread resumes, it picks up from where it left to continue

executing 𝑡 . This implicit assumption brings extra challenges for

coroutine-based asynchronous programming, which we describe

5Details in our code repo at lines 375–469 at https://github.com/sfu-dis/corobase/blob/

v1.0/corobase.cc#L375.

and tackle next. Note that these issues are not unique to database

systems, and our solutions are generally applicable to other systems

employing coroutines and parallel programming techniques.

Epoch-based Reclamation. Many main-memory database en-

gines rely on lock-free data structures, e.g., lock-free lists [15] and

trees [31]. Threads may access memory that is simultaneously be-

ing removed from the data structure. Although no new accesses

are possible once the memory block is unlinked, existing accesses

must be allowed to finish before the memory can be recycled.

Epoch-based memory reclamation [16] is a popular approach

to implementing this. The basic idea is for each thread to register

(enter an epoch) upon accessing memory, and ensure the unlinked

memory block is not recycled until all threads in the epoch have

deregistered (exited). The epoch is advanced periodically depending

pre-defined conditions, e.g., when the amount of allocated memory

passes a threshold. An assumption is that data access are coordi-

nated by thread boundaries. Under thread-to-transaction, a trans-

action exclusively uses all the resources associated with a thread,

so thread boundaries are also transaction boundaries. Transactions

can transparently use the epoch enter/exit machinery. However, un-

der coroutine-to-transaction this may lead to memory corruption:

Suppose transactions 𝑇1 and 𝑇2 run on the same thread, and 𝑇1
has entered epoch 𝑒 before it suspends. Now the scheduler switches

to 𝑇2 which is already in epoch 𝑒 and issued epoch exit, allowing

the memory to be freed, although it is still needed by 𝑇 1 later.
CoroBase solves this problem by decoupling epoch enter/exit

from transactions for the scheduler to issue them. Upon starting/fin-

ishing the processing of a batch of transactions, the worker thread

enters/exits the epoch (lines 4 and 12 in Algorithm 1). This fits nicely

with our scheduling policy which only handles whole batches. It

also reduces the overhead associated with epoch-based reclama-

tion as each thread registers/deregisters itself much less frequently.

Another potential approach is to implement nested enter/exit ma-

chinery that allows a thread to register multiple times as needed.

Though flexible, this approach is error-prone to implement, and

brings much higher bookkeeping overhead.

Thread-Local Storage (TLS). TLS is widely used to reduce ini-

tialization and allocation overheads. In particular, ERMIA uses

thread-local read/write sets and log buffers, as well as thread-local

scratch areas for storing temporaries such as records that were read

and new data to be added to the database. Logically, these struc-

tures are transaction-local. Although making these structures TLS

greatly reduces memory allocation overheads, it conflicts with the

coroutine-to-transaction paradigm, which must decouple threads

and transactions. In other words, they need to be transaction-local

to provide proper isolation among transactions. To reduce the per-

formance impact, we expand each individual TLS variable to be-

come an array of variables, one per transaction in the batch, and

store them again as TLS variables. Upon system initialization, each

worker thread creates the TLS array before starting to handle re-

quests. When a transaction starts (e.g., the 𝑖-th in a batch), it takes

the corresponding TLS array entry for use. This way, we avoid

allocation/initialization overhead similar to how it was done under

thread-to-transaction, but provide proper isolation among transac-

tions. The tradeoff is that we consume (batch_size times) more

memory space. As we show in Section 5, our approach makes a

practical tradeoff as the optimal batch size does not exceed ten.
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4.5 Concurrency Control and Synchronization

CoroBase inherits the shared-everything architecture, synchroniza-

tion and concurrency control protocols from ERMIA (snapshot

isolation with the serial safety net [60] for serializability). A worker

thread is free to access any part of the database. Version visibility

is controlled using timestamps drawn from a global, monotonically

increasing counter maintained by the engine. Upon transaction

start, the worker thread reads the timestamp counter to obtain a

begin timestamp 𝑏. When reading a record, the version with the

latest timestamp that is smaller than 𝑏 is visible. To update a record,

the transaction must be able to see the latest version of the record.

To commit, the worker thread atomically increments the timestamp

counter (e.g., using atomic fetch-and-add [18]) to obtain a commit

timestamp which is written on the record versions created by it.

We observe that adopting coroutine-to-transaction in shared-

everything systems required no change for snapshot isolation to

work. Similar to ERMIA, CoroBase adopts the serial safety net

(SSN) [60], a certifier that can be applied on top of snapshot isolation

to achieve serializability. It tracks dependencies among transactions

and aborts transactions that may lead to non-serializable execution.

Adapting SSN to CoroBase mainly requires turning TLS bitmaps

used for tracking readers in tuple headers [60] into transaction-local.

This adds batch_size bits per thread (compared to one in ERMIA).

The impact is minimal because of the small (≤10) batch size, and

stalls caused by bitmap accesses can be easily hidden by prefetching.

Devising a potentially more efficient approach under very high core

count (e.g., 1000) is interesting future work. Since CoroBase allows

multiple open transactions per thread, the additional overhead

on supporting serializability may widen the conflict window and

increase abort rate. Our experiments show that the impact is very

small, again because the desirable batch sizes are not big (4–8).

For physical-level data structures such as indexes and version

chains, coroutines bring extra challenges if they use latches for

synchronization (e.g., higher chance to deadlock with multiple

transactions open on a thread). However, in main-memory data-

base engines these data structures mainly use optimistic concur-

rency without much (if not none of) locking. In CoroBase and

ERMIA, index (Masstree [36]) traversals proceed without acquiring

any latches and rely on versioning for correctness. This makes it

straightforward to coroutinize the index structure for read/scan

and part of update/insert/delete operations (they share the same

traversal code to reach the leaf level). Locks are only held when a

tree node is being updated. Hand-over-hand locking is used dur-

ing structural modification operations (SMOs) such as splits. Our

profiling results show that cache misses on code paths that use

hand-over-hand locking make up less than 6% of overall misses

under an insert-only workload. This is not high enough to benefit

much from prefetching. Atomic instructions such as compare-and-

swap used by most latch implementations also do not benefit much

from prefetching. Therefore, we do not issue suspend on SMO code

paths that use hand-over-hand locking.

More general, coroutine-centric synchronization primitives such

as asynchronous mutex6 are also being devised. How these primi-

tives would apply to database systems remains to be explored.

6Such as the async_mutex in CppCoro: https://github.com/lewissbaker/cppcoro/blob/

1140628b6e9e6048234d404cc393d855ae80d3e7/include/cppcoro/async_mutex.hpp.

Table 1: Changes needed to adopt coroutine-to-transaction

in systems based on thread-to-transaction. The key is to en-

sure isolation between transactions on the same thread.

Component Modifications

Concurrency

Control (CC)

Shared-everything: transparent, but need careful

deadlock handling if pessimistic locking used.

Shared-nothing: re-introduce CC.

Synchronization
1. Thread-local to transaction-local.

2. Avoid holding latches upon suspension.

Resource 1. Thread-local to transaction-local.

Management 2. Piggyback on batching to reduce overhead.

Durability Transparent, with transaction-local log buffers.

4.6 Discussions

Coroutine-to-transaction only dictates how queries and transac-

tions are interleaved. It does not require fundamental changes to

components in ERMIA. Table 1 summarizes the necessary changes

in ERMIA and engines that may make different assumptions than

ERMIA’s. Beyond concurrency control, synchronization and re-

source management, we find that the durability mechanism (log-

ging, recovery and checkpointing) is mostly orthogonal to the exe-

cution model. The only change is to transform the thread-local log

buffer to become transaction-local, which is straightforward.

Coroutine-to-transaction fits naturally with shared-everything,

multi-versioned systems that use optimistic flavored concurrency

control protocols. For pessimistic locking, coroutine-to-transaction

may increase deadlock rates if transactions suspend while holding

a lock. Optimistic and multi-version approaches alleviate this is-

sue as reads and writes do not block each other, although adding

serializability in general widens the conflict window.

Different from shared-everything systems, shared-nothing sys-

tems [56] partition data and restrict threads to only access its own

data partition. This allowed vastly simplified synchronization and

concurrency control protocols: in most cases if a transaction only

accesses data in one partition, no synchronization or concurrency

control is needed at all, as there is at most one active transaction at

any time working on a partition. To adopt coroutine-to-transaction

in shared-nothing systems, concurrency control and synchroniza-

tion needs to be (re-)introduced to provide proper isolation between

transactions running on the same thread.

Some systems [12, 13, 41, 52] explore intra-transaction paral-

lelism to improve performance: a transaction is decomposed into

pieces, each of which is executed by a thread dedicated to a partition

of data, allowing non-conflicting data accesses in the same trans-

action to proceed in parallel. Data stalls may still occur as threads

use pointer-intensive data structures (e.g., indexes) to access data.

Coroutine-to-transaction can be adapted to model the individual

pieces as coroutines to hide stalls. This would require changes such

as a scheduler described in Algorithm 1 in the transaction executors

in Bohm [12] and ReactDB [52]); we leave these for future work.

Finally, CoroBase removes the need for multi-key operations,

but still supports them. A transaction can call a multi-key operation

which interleaves operations within a transaction and does not
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return control to the scheduler until completion. A transaction

can also use operations in both interfaces to combine inter- and

intra-transaction interleaving. For example, it can invoke a get,

followed by an AMAC-based join to reduce latency and coroutine

switching overhead. This hybrid approach can be attractive when

the efforts for changing interfaces is not high. Section 5 quantifies

the potential of this approach.

5 EVALUATION

Now we evaluate CoroBase to understand the end-to-end effect

of software prefetching under various workloads. Through experi-

ments, we confirm the following:

• CoroBase enables inter-transaction batching to effectively batch

arbitrary queries to benefit from software prefetching.

• In addition to read-dominant workloads, CoroBase also improves

on read-write workloads while remaining competitive for work-

loads that inherently do not benefit from software prefetching.

• CoroBase can improve performance with and without hyper-

threading, on top of hardware prefetching.

5.1 Experimental Setup

We use a dual-socket server equipped with two 24-core Intel Xeon

Gold 6252 CPUs clocked at 2.1GHz (up to 3.7GHz with turbo boost).

The CPU has 35.75M last-level cache. In total the server has 48 cores

(96 hyperthreads) and 384GB main memory occupying all the six

channels per socket to maximize memory bandwidth. We compile

all the code using Clang 10 with coroutine support on Arch Linux

with Linux kernel 5.6.5. All the data is kept in memory using tmpfs.

We report the average throughput and latency numbers of three

30-second runs of each experiment.

SystemModel. Similar to prior work [24, 25, 59], we implement

benchmarks in C++ directly using APIs exposed by the database

engine, without SQL or networking layers. Using coroutines to

alleviate overheads in these layers is promising but orthogonal

work. The database engine is compiled as a shared library, which is

then linked with the benchmark code to perform tests.

Variants.We conduct experiments using the following variants

which are all implemented based on ERMIA [24].7

• Naïve: Baseline that uses thread-to-transaction and executes

transactions sequentially without interleaving or prefetching.

• ERMIA: Same as Naïve but with prefetch instructions carefully

added to index and version chain traversal code.

• AMAC-MK: Same as ERMIA but applications use hand-crafted multi-

key interfaces based on AMAC.

• CORO-MK: Same as ERMIA but applications usemulti-key interfaces

based on flattened coroutines.

• CORO-FN-MK: Same as CORO-MK but with fully-nested coroutines

described in Section 2.2.

• CoroBase-FN: CoroBase that uses the fully-nested coroutine-to-

transaction design. No changes in applications.

• CoroBase: Same as CoroBase-FN but uses the optimized 2-level

coroutine-to-transaction design described in Section 4.3.

• Hybrid: Same as CoroBase but selectively leverages multi-key

interfaces in TPC-C transactions (details in Section 5.8).

7ERMIA code downloaded from https://github.com/sfu-dis/ermia.

We use a customized allocator to avoid coroutine frame allo-

cation/deallocation bottlenecks. Hardware prefetching is enabled

for all runs. For interleaved executions, we experimented with

different batch sizes and use the optimal setting (eight) unless spec-

ified otherwise. We use snapshot isolation8 for all runs except for

pure index-probing workloads which do not involve transactions

(described later). We also perform experiments with and without

hyperthreading to explore its impact.

5.2 Benchmarks

We use both microbenchmarks and standard benchmarks to stress

test and understand the end-to-end potential of CoroBase.

Microbenchmarks.We use YCSB [9] to compare in detail the

impact of different design decisions. The workload models point

read, read-modify-write (RMW), update and scan transactions on a

single table with specified access patterns.We use a∼15GB database

of one billion records with 8-byte keys and 8-byte values.

Standard Benchmarks. We use TPC-C [57] to quantify the

end-to-end benefits of software prefetching under CoroBase. To

show comprehensively how CoroBase performs under a realistic

and varying set of workloads with different read/write ratios, we

run both the original TPC-C and two variants, TPC-CR [61] and

TPC-CH [24]. TPC-CR is a simplified read-only version of TPC-C

that comprises 50% of StockLevel and 50% OrderStatus transactions.

TPC-CH adds a modified version of the Query2 transaction (Q2*) in

TPC-H [58] to TPC-C’s transaction mix. This makes TPC-CH a het-

erogeneous workload that resembles hybrid transaction-analytical

processing (HTAP) scenarios.9 We use the same implementation

in ERMIA [24] where the transaction picks a random region and

updates records in the stock table whose quantity is lower than

a pre-defined threshold. The size of Q2* is determined mainly by

the portion of the suppliers table it needs to access. We modify the

transaction mix to be 10% of Q2*, 40% of NewOrder, 38% of Pay-

ment, plus 4% of StockLevel, Delivery and OrderStatus each. For all

TPC-C benchmarks, we set scale factor to 1000 (warehouses). Each

transaction uniform-randomly chooses and works on their home

warehouse, but 1% of New-Order and 15% of Payment transactions

respectively access remote warehouses.

5.3 Sequential vs. Interleaved Execution

As mentioned in earlier sections, our goal in this paper is to adopt

coroutine-based interleaving in a database engine and understand

its end-to-end benefits. Therefore, it is important to set the proper

expectation on the possible gain that could be achieved by CoroBase.

To do this, we run a simple non-transactional index probing work-

load where worker threads keep issuing multi_get requests. Each

multi_get issues 10 requests against the index but does not access

the actual database record. The workload is similar to what prior

work [21] used to evaluate index performance. As Figure 5 shows,

on average AMAC-MK outperforms Naïve/ERMIA by up to 2.3×/2.96×

8 We also ran experiments under the serializable isolation level (using SSN on top of
snapshot isolation). The results show that SSN adds a fixed amount of overhead (∼10–
15%, similar to the numbers reported earlier for thread-to-transaction systems [60]).
We therefore focus on experiments under SI for clarity.
9 Our focus is on OLTP (Section 2.3). We run TPC-CH to explore how CoroBase per-
forms under various read-intensive workloads. Hiding data stalls in OLAP workloads
requires further investigation that considers various access patterns and constraints.
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Figure 5: Index probing throughput with hyperthreading

disabled (left) and enabled (right). Fully-nested coroutines

are ∼30% slower than AMAC. Flattened coroutines (CORO-MK)
reduce the gap to 8–10% under high concurrency.

without hyperthreading. Since AMAC-MK does not incur much over-

head in managing additional metadata like coroutine frames, these

results set the upper bound of the potential gain of interleave ex-

ecution. However, AMAC-MK uses highly-optimized but complex,

hand-crafted code, making it much less practical. Using single-level

coroutines, CORO-MK achieves up to 2.56×/1.99× higher throughput

than Naïve/ERMIA, which is 17% faster than CORO-FN-MK because

of its lower switching overhead. With hyperthreading, the improve-

ment becomes smaller across all variants.

These results match what was reported earlier in the literature,

and set the upper bound for CoroBase to be up to ∼2× faster than

optimized sequential execution that already uses prefetching (i.e.,

the ERMIA variant), or ∼2.5× faster than Naïve under read-only

workloads. In the rest of this section, we mark the upper bound and

multi-key variants that require interface changes as dashed lines

in figures, and explore how closely CoroBase matches the upper

bound under various workloads.

5.4 Effect of Coroutine-to-Transaction

Our first end-to-end experiment evaluates the effectiveness of

coroutine-to-transaction. We use a read-only YCSB workload where

each transaction issues 10 record read operations that are uniform

randomly chosen from the database table; we expand on to other

operations (write and scan) later. Note that different from the previ-

ous probe-only experiment in Section 5.3, from now on we run fully

transactional experiments that both probe indexes and access data-

base records.We compare variants that use coroutine-to-transaction

(CoroBase and CoroBase-FN) with other variants that use highly-

optimized multi-key interfaces and thread-to-transaction. Figure 6

plots result using physical cores (left) and hyperthreads (right).

Compared to the baselines (ERMIA and Naïve), all variants show

significant improvement. Because of the use of highly-optimized,

hand-crafted state machines and multi-key interfaces, AMAC-MK out-

performs all the other variants. Without hyperthreading, CoroBase

exhibits an average of ∼15/∼18% slowdown from AMAC-MK, but

is still ∼1.3/1.8× faster than ERMIA when hyperthreading is en-

abled/disabled. This is mainly caused by the inherent overhead

of the coroutine machinery. CORO-FN-MK and CoroBase-FN are

only up ∼1.25× faster than ERMIA due to high switching overhead.

CORO-MK and CoroBase minimize switching overhead by flatten-

ing the entire record access call chain (index probing and version
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Figure 6: Throughput of a read-only YCSB workload (10

reads per transaction) without (left) and with (right) hyper-

threading. CoroBase matches the performance of multi-key

variants but without requiring application changes.

 1.2
 1.6

 2
 2.4
 2.8

1 2 3 4 5 6 7 8 9 10 20 50
N

or
m

. t
hr

ou
gh

pu
t

Opera ons per transac on

Naive
ERMIA
AMAC-MK
CORO-MK
CORO-FN-MK
CoroBase
CoroBase-FN

Figure 7: YCSB read-only performance normalized to Naïve
under 48 threads. CoroBase also benefits very short transac-

tions (1–4 operations) while multi-key based approaches in-

herently cannot under thread-to-transaction.

chain traversal). The only difference is CORO-MK uses multi_get,

while CoroBase allows the application to remain unchanged using

single-key interfaces. Therefore, it is necessary to flatten call chains

as much as possible to reduce context switching overhead. As the

coroutine infrastructure continues to improve, we expect the gap

between CoroBase, CoroBase-FN and AMAC-MK to become smaller.

Coroutine-to-transaction also makes it possible for short trans-

actions to benefit from prefetching. We perform the same YCSB

read-only workload but vary the number of reads per transaction.

As shown in Figure 7, CoroBase outperforms all multi_get ap-

proaches for very short transactions (1–4 record reads) and contin-

ues to outperform all approaches except AMAC-MK for larger trans-

actions, as batches are formed across transactions.

These results show that inter-transaction batching enabled by

coroutine-to-transaction can match closely the performance of

intra-transaction batching while retaining backward compatibility.

Hyperthreading helps to a limited extent and CoroBase can extract

more performance, partially due to the limited hardware contexts

(two per core) available in modern Intel processors. Compared to

prior approaches, CoroBase and coroutine-to-transaction further

enable short transactions (with little/no intra-transaction batching

opportunity) to also benefit from software prefetching.

5.5 Write and Scan Workloads

One of our goals is to use software prefetching to hide data stalls

as much as possible. While most prior work focused on read-only

or read-dominant operations, we extend our experiments to cover

write-intensive scenarios. Write operations also need to traverse
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Figure 8: Throughput of update-only YCSB with 10 blind

writes per transaction (a–b), and a mixed workload (c–d).

index and version chains to reach the target record where data

stalls constitute a significant portion of stalled cycles. Figure 8(a–b)

plots the throughput of update-only (blind write) workload, where

each transaction updates 10 uniform randomly-chosen records.

CoroBase achieves up to 1.77× and 1.45× higher throughput than

Naïve and ERMIA, respectively. We observe similar results but with

lower improvement for a mixed workload that does two RMWs

and eight reads per transaction, shown in Figure 8(c–d); a pure

RMWworkload showed similar trends (not shown here). The lower

improvement comes from the fact that the read operation before

each modify-write has already brought necessary data into CPU

caches, making subsequent transaction switches for modify-write

pure overhead. Moreover, compared to read operations, write oper-

ations need to concurrently update the version chain using atomic

instructions, which cannot benefit much from prefetching. Never-

theless, the results show that even for write-intensive workloads,

prefetching has the potential of improving overall performance as

data stalls still constitute a significant portion of total cycles.

Unlike point-read operations, we observe that scan operations

do not always benefit as much. Figure 9 shows the throughput of a

pure scan workload. As we enlarge the number of scanned records,

the performance of Naïve, ERMIA and CoroBase converges. This is

because Masstree builds on a structure similar to B-link-trees [28]

where border nodes are linked, minimizing the need to traverse

internal nodes. It becomes more possible for the border nodes to be

cached and with longer scan ranges, more records can be retrieved

directly at the leaf level, amortizing the cost of tree traversal.

5.6 Impact of Key Lengths and Data Sizes

Now we examine how key length, value size, and database size

affect runtime performance. Figure 10(left) shows the through-

put of the YCSB read-only workload under different key lengths.

CoroBase retains high performance across different key lengths, but

CoroBase-FN performs worse under longer keys which cause more

coroutine calls to drill down Masstree’s hybrid trie/B-tree structure,

causing high switching overhead. As shown in Figure 10(right),

value size does not impact the overall relative merits of different
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Figure 9: Throughput of a YCSB scan workload. The ben-

efits of prefetching diminish with larger scan sizes: more

records can be directly retrieved in leaf nodes using B-link-

tree structures.
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Figure 10: Throughput of read-only YCSB (10 reads per trans-

action) under varying key/value sizes and 96 hyperthreads.
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Figure 11: YCSB read-only (10 reads per transaction) perfor-

mance normalized to Naïve under 96 hyperthreads and vary-

ing table sizes.

variants. Figure 11 depicts the impact of data size by plotting the

throughput normalized to that of Naïve. As shown, with small ta-

ble sizes, interleaving does not improve performance. For example,

with 10K records, the total data size (including database records, in-

dex, etc.) is merely 1.23MB, whereas the CPU has 35MB of last level

cache, making all the anticipated cache misses cache hits. Context

switching becomes pure overhead and exhibits up to ∼12.64% lower

throughput (compared to Naïve). Approaches that use fully-nested

coroutines (CoroBase-FN and CORO-FN-MK) exhibit even up to 50%

slower performance, whereas other approaches including CoroBase

keep a very low overhead. In particular, CoroBase follows the trend

of AMAC-MK with a fixed amount of overhead.

These results again emphasize the importance of reducing switch-

ing overhead. CoroBase’s low switching overhead for longer keys

and small tables make it a practical approach for systems to adopt.

We also expect coroutine support in compilers and runtime libraries

to continue to improve and reduce switching overhead in the future.
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Figure 12: YCSB throughput with 96 hyperthreads and vary-

ing skewness (larger theta indicates more skewed access).

5.7 Impact of Skewed Accesses

Our last microbenchmark tests how different approaches perform

under varying skewness. Figure 12(a) calibrates the expectation us-

ing a multi-get based index probing workload that does not access

records. Each transaction here issues 10 operations. With higher

skewness, all schemes perform better because of the better locality.

The YCSB read-only workload in Figure 12(b) shows a similar trend.

For update and RMW operations shown in Figures 12(c–d), highly

skewed workloads lead to high contention and low performance

across all schemes, and memory stall is no longer the major bottle-

neck. CoroBase therefore shows lower performance compared to

ERMIA as switching becomes pure overhead.

5.8 End-to-End TPC-C Results

Nowwe turn to TPC-C benchmarks to see how prefetchingworks in

more complex workloads. We begin with the default TPC-C configu-

ration which is write-intensive. As shown in Table 2, CoroBase man-

ages to perform marginally better than Naïve and ERMIA without

hyperthreading but is 3.4% slower than ERMIA with hyperthreading.

One reason is that TPC-C is write-intensive and exhibits good data

locality, with fewer exposed cache misses as shown by the narrow

gap between Naïve and ERMIA. Our top-down microarchitecture

analysis [18] result shown in Figure 13(b) verifies this: TPC-C ex-

hibits less than 50% of memory stall cycles, which as previous

work [44] pointed out, do not provide enough room to benefit from

prefetching. The high memory stall percentage in Figure 13(a) con-

firms our YCSB results which showed more improvement. Under

TPC-CR which is read-only, CoroBase achieves up to 1.55×/1.3×

higher throughput with/without hyperthreading (Figure 14). No-

tably, with hyperthreading CoroBase performs similarly (4% better)

to ERMIA, showing that using two hyperthreads is enough to hide

the memory stalls that were exposed on physical cores for TPC-CR.

Interleaved execution is inherently not beneficial for such work-

loads, so the goal is for CoroBase is to match the performance of

sequential execution as close as possible.

Under TPC-CH which is read-intensive and exhibits high mem-

ory stall cycles, CoroBase achieves up to 34% higher throughput

than ERMIA when the number of suppliers is set to 100 under 48

Table 2: Throughput (TPS) of original TPC-C which is

not inherently memory-bound. With two-level coroutines,

CoroBase outperforms Naïve and matches ERMIA and Hybrid.

Number of Threads Naïve ERMIA CoroBase Hybrid

48 (no-HT) 1306197 1487147 1489567 1682290

96 (HT) 1985490 2195667 2120033 2197260
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Figure 13: Microarchitecture analysis for YCSB, TPC-C and

TPC-CH workloads. CoroBase reduces memory stall cycles

under all workloads, especially the read-dominant ones.
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threads normalized to Naïve (right). CoroBase reaps more

benefits from prefetching with more read operations.

threads in Figure 15(left). Figure 15(right) explores how through-

put changes as the size of the Q2* transaction changes. CoroBase

exhibits 25–39% higher throughput than ERMIA, and the numbers

over Naïve are 37–71%. Correspondingly, Figure 13(c) shows fewer

memory stall cycles under CoroBase.

We explore the potential of using selective multi-key opera-

tions in CoroBase (Section 4.6) with the Hybrid variant. We use

multi_get coroutines for long queries in NewOrder, StockLevel

and Query2 to retrieve items and supplying warehouses, recently

sold items and items from certain pairs of the Stock and Supplier

tables, respectively. Other queries use the same single-key oper-

ations as in CoroBase. As shown in Table 2 and Figures 14–15,
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sizes (BS=1–16) with asynchronous commit. The end-to-end

impact is expected to be smallwith group/pipelined commit.

Hybrid outperforms CoroBase by up to 1.29×/1.08×/1.36× under

TPC-C/TPC-CR/TPC-CH, taking advantage of data locality and

reduced switching overhead. The tradeoff is increased code com-

plexity. For operators that already exhibit or are easily amenable to

multi-key interfaces, Hybrid can be an attractive option.

5.9 Impact on Transaction Latency

We analyze the impact of interleaved execution on transaction la-

tency using a mixed YCSB workload (2 RMW +8 read operations

per transaction), TPC-C and TPC-CH. As shown in Figure 16, with

larger batch sizes, transaction latency increases. We find setting

batch size to four to be optimal for the tested YCSB and TPC-C

workloads: when batch size exceeds four, latency grows propor-

tionally since there is no room for interleaving. TPC-CH exhibits

smaller increase in latency, indicating there is much room for over-

lapping computation and data fetching. Hyperthreading also only

slightly increases average latency. Note that in this experiment we

use asynchronous commit which excludes I/O cost for persisting

log records. Many real systems use group/pipelined commit [20] to

hide I/O cost. The result is higher throughput but longer latency

for individual transactions (e.g., 1–5ms reported by recent litera-

ture [61]). Therefore, we expect the increased latency’s impact on

end-to-end latency in a real system to be very low.

5.10 Coroutine Frame Management

Flattening coroutines may increase code size and incur more in-

struction cache misses (Section 4.3). For two-level coroutine-to-

transaction, the size of a coroutine frame for the flattened read-

/update/insert functions are 232/200/312 bytes, respectively. With

fully-nested coroutine-to-transaction, five small functions are in-

volved, and their size range from 112–216 bytes, which are indeed

smaller than their flattened counterparts. When handling a request,

CoroBase allocates a single coroutine frame. CoroBase-FN main-

tains a chain of at least five coroutine frames (e.g., for reads it adds

up to 808 bytes per request) and switches between them. Perfor-

mance drops with both larger memory footprint (therefore higher

allocation/deallocation overhead) and switching. Overall, two-level

coroutines ease this problem and achieves better performance.

6 RELATEDWORK

Our work is closely related to prior work on coroutine-based sys-

tems, cache-aware optimizations and database engine architectures.

Interleaving and Coroutines.We have covered most related

work in this category [5, 21, 26, 44, 45] in Section 2, so we do not

repeat here. The gap between CPU and the memory subsystem con-

tinues to widen with the introduction of more spacious but slower

persistent memory [10]. Psaropoulos et al. [46] adapted interleaved

execution using coroutine to speed up index joins and tuple con-

struction on persistent memory. Data stalls are also becoming a

bottleneck for vectorized queries [23, 42]. IMV [14] interleaves

vectorized code to reduce cache misses in SIMD vectorization.

Cache-Aware Optimizations. Many proposals try to improve

locality. CSB+-tree [48] stores child nodes contiguously to better

utilize the cache but trades off update performance. ART [29] is a

trie that uses a set of techniques to improve space efficiency and

cache utilization. HOT [2] dynamically adjusts trie node span based

on data distributions to achieve a cache-friendly layout. Prefetch-

ing B+-trees [6] uses wider nodes to reduce B+-tree height and

cache misses during tree traversal. Fractal prefetching B+-trees [7]

embed cache-optimized trees within disk-optimized trees to opti-

mize both memory and I/O. Masstree [36] is a trie of B+-trees that

uses prefetching. Software prefetching was also studied in the con-

text of compilers [39]. At the hardware level, path prefetching [32]

adds a customized prefetcher to record and read-ahead index nodes.

Widx [27] is an on-chip accelerator that decouples hashing and list

traversal and processes multiple requests in parallel.

Database EngineArchitectures.Mostmain-memory database

engines [11, 22, 24, 25, 59] use the shared-everything architecture

that is easy to be adapted to coroutine-to-transaction. Some sys-

tems [12, 13, 41, 52] allow intra-transaction parallelism with del-

egation. Techniques in CoroBase are complementary to and can

be used to hide data stalls in these systems (Section 4.6). To adopt

coroutine-to-transaction in shared-nothing systems [56], concur-

rency control and synchronization need to be re-introduced to allow

context switching. Data stall issues were also identified in column

stores [4, 17, 55] and analytical workloads [53]. Exploring ways to

hide data stalls in these systems is interesting future work.

7 CONCLUSION

We highlighted the gap between software prefetching and its adop-

tion in database engines. Prior approaches often break backward

compatibility using multi-key interfaces and/or are piece-wise so-

lutions that optimize individual database operations. Leveraging

recently standardized lightweight coroutines, we propose a new

coroutine-to-transaction execution model to fill this gap. Coroutine-

to-transaction retains backward compatibility by allowing inter-

transaction batching which also enables more potential of software

prefetching. Based on coroutine-to-transaction, we build CoroBase,

a main-memory database engine that judiciously leverages corou-

tines to hide memory stalls. CoroBase achieves high performance

via a lightweight two-level coroutine design. Evaluation results

show that on a 48-core server CoroBase is up to ∼2× faster than

highly-optimized baselines and remains competitive for workloads

that inherently do not benefit from software prefetching.
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