
Comprehensive and Efficient Workload Compression

Shaleen Deep
†
, Anja Gruenheid

‡
, Paraschos Koutris

†
, Jeffrey Naughton

‡
, Stratis Viglas

‡

†
University of Wisconsin - Madison,

‡
Google Inc.

{shaleen,paris}@cs.wisc.edu

{anjag,naughton,sviglas}@google.com

ABSTRACT

This work studies the problem of constructing a representative

workload from a given input analytical query workload where

the former serves as an approximation with guarantees of the lat-

ter. We discuss our work in the context of workload analysis and

monitoring. As an example, evolving system usage patterns in a

database system can cause load imbalance and performance regres-

sions which can be controlled by monitoring system usage patterns,

i.e., a representative workload, over time. To construct such a work-

load in a principled manner, we formalize the notions of workload

representativity and coverage. These metrics capture the intuition

that the distribution of features in a compressed workload should

match a target distribution, increasing representativity, and include

common queries as well as outliers, increasing coverage. We show

that solving this problem optimally is computationally hard and

present a novel greedy algorithm that provides approximation guar-

antees. We compare our techniques to established algorithms in this

problem space such as sampling and clustering, and demonstrate

advantages and key trade-offs.

PVLDB Reference Format:

Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey Naughton,

Stratis Viglas. Comprehensive and Efficient Workload Compression.

PVLDB, 14(3): 418 - 430, 2020.

doi:10.14778/3430915.3430931

1 INTRODUCTION

Performance tuning has been at the core of database system devel-

opment and deployment since its inception. To facilitate effective

system design and development, we need to understand how the

system is used over time. For example, if a system is developed

for transactional workloads but is increasingly used for analytical

workloads, its usage patterns significantly shift, potentially result-

ing in performance regression. The first step towards a holistic

understanding of system usage is to perform an in-depth analysis

of the query workloads it is serving. However, logs from produc-

tion database systems are far too large to examine manually. To be

able to identify key components of the workload, we propose to

create and monitor a subset of the input workload which closely
represents the original workload. To that end, our work presents a

semi-supervised framework to compress analytical workloads.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.

doi:10.14778/3430915.3430931

Problem Motivation. The need for our work stems from the com-

plexity of contemporary database deployments, which have scaled

with the number of customers and the workloads to serve. In or-

der to predict the performance of a RDBMS on a large workload,

it is common to evaluate it on a benchmark workload that resem-

bles the target workload. Historically, benchmarked workloads are

either standardized (such as TPC-H [2], SSB [30], YCSB [8], and

Wisconsin Benchmark [12]) or created by domain experts whoman-

ually curate queries. If we wish to construct a custom benchmark

for every use case of each customer, the second solution becomes

unsustainable. Thus, automatic workload characterization and sub-

sequently workload compression are a means to address this issue

in an efficient and scalable way.

Approach.With commercial deployments serving billions of queries

per day, the size of a system’s workload-to-analyze quickly esca-

lates. Instead of using every query of the workload, we propose to

use a smaller sample of the workload while qualitatively not de-

grading the result of the process. We call this workload compression
or summarization1. Constructing a compressed workload is chal-

lenging for several reasons. First, there is no universal set of goals

to consider as representative for the workload: the output changes

depending on the metric we optimize for. Second, the production

workload to compress often does not fit any well-known statistical

distribution, thereby making workload synthesis extremely chal-

lenging. Lastly, there are a variety of variables to take into account

in a real production deployment: different job sizes, a wide range of

query run times, observable skew due to temporal or spatial local-

ity, query complexity. It is, therefore, unclear what features are the

salient ones when it comes to characterizing a workload adequately.

The two following examples illustrate the diverse characteristics of

workload compression.

Example 1. Consider the developers of an application who use
a query engine in production. The developers would like to create
performance accountability of the query engine, i.e., they would like to
create compliance benchmarks to track the query engine performance.
Suppose that application generates a workload mainly consists of short
look-up queries but contains a handful of long-running queries, then
both of these query types must be present in the benchmark. Thus, the
benchmark workload must have high coverage by including queries
with differing run times to track the query engine performance on
both types of queries.

Example 2. System performance can be tuned by recommending
indexes to speed up query processing. However, the complexity of
index recommendation grows quadratically with the workload size.
Therefore, we would like to find a compressed workload that is highly
1
We will be using the terms workload compression and workload summarization inter-

changeably, as we will for the terms compressed workload and summary workload

418

https://doi.org/10.14778/3430915.3430931
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3430915.3430931

representative, i.e., it has the same performance characteristics as the
original input workload and use it for index recommendation instead.

Finding a workload with both high representativity and high

coverage is a challenging combinatorial problem for the following

reasons: (i) Defining metrics formally. It is unclear what it means

to have high coverage and representativity since these metrics are

dependent on the application context. (ii) High workload heterogene-
ity and variability. While manual queries are smaller and easier to

deal with, it is not uncommon that workload queries are machine-

generated with more than 50 joins in production workloads. A good

approximation of the input workload needs to contain all types

of queries. (iii) Increasing workload scale. Production database sys-

tems routinely serve billions of queries every day, which makes

any analysis challenging. Moreover, a significant fraction of these

workloads is over ad hoc queries and tables rather than carefully

designed schemas, making pattern mining over large, unstructured

data sources even more difficult.

Prior work. Previous work on workload compression has used a

variety of techniques ranging from random sampling and clustering

to sophisticated ML models. For instance, [6, 7] employ clustering

by defining a customized distance function for each application.

More recently, [15] explores machine learning for workload com-

pression. The insight here is to train a model specifically for SQL

queries (similar to Word2Vec). Most closely related to our setting

is the query log summarization framework, Ettu [18, 19]. Ettu

summarizes query logs by parsing the syntax tree of queries and

performing hierarchical clustering where the distance metric be-

tween queries is based on the number of common subexpressions.

All of the above proposals have certain limitations. The techniques

in [6, 7] are not scalable even for medium-sized workloads owing

to high time complexity of O (n2) where n is the input workload

size. While [15] does not suffer from quadratic complexity, it re-

quires expensive preprocessing to train the machine learning model.

The approach described in [19] ignores query execution statistics,

templated queries, and stored procedures. Additionally, input work-

loads are often skewed in some way, and it is critical to ensure

that the summary exhibits the same kind of characteristics as the

input workload; this is not possible without some notion of repre-

sentativity. Note that prior work, including our own, ignore any

query execution impact of concurrently executed queries. For in-

stance, they may compete for the same set of resources which in

turn affects the performance. Designing representative workloads

with provable guarantees that also take such effects into account

remains a challenging open problem.

Contributions and organization. In this work, we introduce a

novel, generic framework for workload compression of analyti-

cal queries that applies to a wide variety of performance tuning

tasks. We design, implement, and evaluate our workload compres-

sor with robust guarantees for representativity and coverage. More

specifically, we

• formally define representativity and coverage to formulate

workload compression as an optimization problem (Sec-

tion 2) and propose a set of error metrics.

• prove that maximizing representativity is a hard problem

even in restricted settings (Section 4).

• propose a novel objective that exploits submodularity to pro-

vide provable guarantees about the quality of a compressed

workload (Section 5). Our algorithm allows for a smooth

trade-off between representativity and coverage.

• apply optimizations to improve the performance of the algo-

rithm and describe how submodularity can be exploited for

efficient computation (Section 6).

• evaluate our approach by comparing to sampling and clustering-

based methods in Section 8. We experimentally demonstrate

that our framework and metrics are powerful enough by ap-

plying them to three practical use cases of (i) schema index

tuning; (ii) materialized view recommendation; and (iii) in-
dex and view recommendation. We show that our techniques

require two orders of magnitude less time to create a com-

pressed workload with better representativity and coverage

as compared to clustering-based approaches.

2 PROBLEM SETTING

In this paper, we assume that a query log L contains a finite collec-

tion of queries. For each queryq ∈ L, we will create a representation
that featurizes the query, such as finding predicates in the WHERE
clause or table names present in the FROM clause. We assume that

the universe of features in both a log and a query is enumerable and

finite. This requirement is essential in order to define appropriate

metrics. We also assume that the log contains execution statistics

that can be looked over query-by-query. Such statistics are recorded

by all DBMS ([1] shows the statistics recorded by SQL Server).

2.1 Notation

We define the input workload as a multisetW = {q1, . . . ,qn } that
consists of n queries. A workload is a multiset, since the same query

may occur many times in the workload. Each qi is a log entry that

contains the SQL text of the query and its execution information.

Features.We summarize a workload with respect to its feature set.

We consider two types of features:

• Categorical features (F
categorical

): these features capture val-

ues derived from the syntax tree of a SQL query.

• Numeric features (Fnumeric): these features capture numeric

values that are derived from profiling statistics of the query.

The feature set is defined as F = Fnumeric ∪ F
categorical

. We use

dom(S, f) to denote the active domain of feature f for some work-

load S and use token to refer to feature values in the active domain.

Feature valuemultiplicity. To design a generic approach, we con-
sider not only single-valued features but also multi-valued features.

In other words, features of a query q can have multiple domain

values associated with it (that can also occur multiple times). For

example, consider the function calls present in the SELECT clause.
Since a function call such as SUM can be present multiple times in

the SQL statement, it is a multi-valued feature. To formally model

multi-valued features, we represent the value of a feature f of query
q as a multiset of tokens f (q). The size of a query q, denoted ∥q∥,
is the total number of tokens across all features, ∥q∥ =

P
f ∈F | f (q) |.

The size of a workload ∥S∥ is the sum of sizes of all queries in the

workload. For a workload S, we define f (S) =
U
q∈S f (q). Finally,

for a token t ∈ dom(S, f), its frequency, denoted mS (t , f) is the
number of times the token appears in the multiset f (S).

419

f c
1

f c
2

f c
3

f c
4

Q1 AVG, MAX, MAX T1 T1.a

Q2 COUNT T1, T2

Q3 T1, T2, T3 T1.a, T2.b, T3.c

Table 1: Categorical features.

2.2 Encoding Queries

For the purpose of this paper, we consider a limited set of fea-

tures that can be derived from a typical database system log entry,

i.e., the SQL query text and its execution statistics. The features

used throughout this paper are:

Categorical features. These are features derived from parsing the

query statement, we choose: (1) Function calls in the SELECT clause
(such as AVG,MAX or some stored procedure), (2) tables in the FROM
clause of the (sub-)query, (3) columns in the GROUP BY clause, and

(4) columns in the ORDER BY clause.

Numeric features. These are features that describe the perfor-

mance of a query, we choose: (1) The total execution time of the

query, (2) planning time of the query, (3) total size of the input to

the query, (4) total output rows of the query, (5) CPU time spent

executing the query, and (6) the number of joins as parsed from the

query. It is likely that for some numeric features such as execution

time, no two queries have identical values. To sparsify numeric

features, we normalize the values such that they are in [0, 1] by

leveraging the largest and smallest values in the active domain.

Using this methodology allows us to reason about their discrete dis-

tribution. We transform the scaled numeric values into a histogram

by assigning a bucket id bi ∈ {0, . . . ,H } to each numeric value

vi ∈ [0, 1] such that bi = ⌊vi · H⌋. Observe that this transforma-

tion also changes the active domain to {0, . . . ,H } for the respective
numeric features.

Example. Consider the workload W = {Q1,Q2,Q3}:

Q1 = SELECT a, AVG(b), MAX(c), MAX(d) FROM T1 GROUP BY a
Q2 = SELECT COUNT(*) FROM T1, T2 WHERE T1.a = T2.a
Q3 = SELECT * FROM T1, T2, T3 ORDER BY T1.a,T2.b,T3.c

The corresponding domains for the categorical features are:

dom(W, f c1 = function_call) = {AVG, MAX, COUNT}

dom(W, f c2 = table_reference) = {T1,T2,T3}

dom(W, f c3 = group_by) = {T1.a}

dom(W, f c4 = order_by) = {T1.a,T2.b,T3.c}

Table 1 shows the feature values per query. Note that for query

Q1, the token MAX appears twice, since it occurs two times in the

selection clause.

Additionally, we observe profile statistics as shown in Table 2. The

numeric features f n
1
, . . . f n

6
correspond to the total execution time,

planning time, size of the input, total output rows, total CPU time,

and the number of joins. For all numeric features, we normalize

the values into a histogram with H = 10, the resulting bucket

assignment is shown in the lower part of Table 2.

f n
1

f n
2

f n
3

f n
4

f n
5

f n
6

Q1 5ms 4ms 5MB 100 2ms 0

Q2 10ms 2ms 10MB 1000 3ms 1

Q3 8ms 5ms 20MB 500 4ms 2

Q1 0 6 0 0 0 0

Q2 10 0 6 10 5 5

Q3 6 10 10 4 10 10

Table 2: Extracted numeric feature values.

The sizes of the queries are as follows: ∥Q1∥ = 11, i.e., six numeric

feature tokens, three tokens in f c
1
, and one in f c

2
and f c

3
respectively,

∥Q2∥ = 9 and ∥Q3∥ = 12. The size of the workload is ∥W∥ = 32.

Extension to other features. Our techniques are not limited to

presented features, but we simply choose these for demonstration

purposes. Unlike the popular summarization scheme introduced by

Aligon et al. [4], we do not restrict the features to relation names and

columns in the WHERE, SELECT, or FROM clause. Thus, in principle,

any feature can be used in our framework. However, in practice, the

choice of features is limited by the hardware and available resources.

For example, if a GPU is used for some of the queries, it would be

useful to add features such as average_memory_bandwidth_used.
One could also create a higher-order feature derived from two

different features f = f1 × f2 that captures the co-occurrence of
⟨t1, t2⟩ where t1 and t2 are tokens of f1 and f2. Capturing cross-

feature information may lead to improved summaries, but defining

such features requires a principled approach to feature engineering

(see Section 9 for more details). It is also possible to encode features

such as query plan fragments, indexes used during query evaluation,

and physical execution operators using standard techniques of 1-

hot encoding and transforming a query plan into a tree of vectors

(see Sec 3.2 in [24]) for more details.

2.3 Metrics

We next formalize the definitions of the coverage and representa-

tivity metrics that are subsequently used throughout this paper.

Coverage. Given a feature f ∈ F, the coverage factor αf is defined

as the fraction of tokens covered by the compressed workload for

feature f . To generalize this to a metric across all features, we can

either compute the minimum or average αf . Formally:

Definition 1 (Coverage). Let S be a summary of the workload
W. The coverage factor for a feature f ∈ F is defined as αf =
|dom(S,f) |
|dom(W,f) | . The minimum coverage factor and average coverage

factor are respectively defined as:

αmin = min

f ∈F
αf , αavg =

X
f ∈F

αf /|F|

Observe that both the minimum and average coverage values

are always in [0, 1]. A score of 1 means that the coverage is perfect.

Representativity.A representative summary of the workload must

capture the structural properties of the original workload. Specif-

ically, workloadW induces a discrete distribution pW (·) over the

420

tokens present in the features of the queries in the workload. In

particular, for any token t ,

pW (t) =
mW (t , f)P

f
P
v ∈dom(W,f) mW (v, f)

In other words, pW (t) denotes the probability of selecting token t
if we choose a token fromW uniformly at random. The summary

S will induce a distribution pS (·); the representativity metric then

measures the distance between pS and pW. In general, we wish pS
to be as close to some target distribution d (·). Note that the target
distribution can be different from pW if wanted.

Definition 2 (Representativity). Given a target token distri-
bution d , the representativity w.r.t. d is defined using the following
two metrics:

ρ1 (d) = 1 −
1

2

X
f

X
t ∈dom(W,f)

|pS (t) − d (t) |

ρ∞ (d) = 1 −max

f
max

t ∈dom(W,f)
|pS (t) − d (t) |

The ρ1 metric essentially measures the total variation distance

between the two distributions and is a popular distance metric for

graph visualizations [22]. ρ∞ metric captures the largest deviation

in the distribution across all features. If the representativity score is

1, we say that the compressed workload is perfectly representative.

Note that there are other possible definitions of representativity.

We refer the reader to the full version [10] for more discussion.

User-specific modifications. If users have specific domain knowl-

edge, they may want to use a (i) weighted version of computing

these metrics and/or, (ii) target distribution for representativity.

Both of these modifications are supported in our framework. For

the former, we require that each feature is assigned a weight wf
such that

P
wf = 1. For the latter, we define a general version of

the metrics w.r.t. an arbitrary target distribution d ; the case where
d is the same as the input distribution becomes a special case. This

functionality is useful in applications such as test workload gen-

eration. Developers frequently use queries to test their code while

developing the functionality in RDBMS. However, instead of choos-

ing from a set of predefined queries, it is more desirable to choose

the test workload from a set of production queries, which increases

more confidence in the testing of the functionality. Due to lack of

space, we refer the reader to the full-report [10] for more details.

Example. Consider the setup from our running example and let

S = {Q1,Q3}. The normalizing factor forW and S is 14+18 = 32 (14

categorical tokens and 18 numeric feature tokens) and 11+ 12 = 23

respectively. Table 3a and Table 3b show thepW andpS distributions
(target d is set to be the input distribution) for the function call and

table reference features.

The reader can verify that ρ1 = 1 − 1

2

(
18(1

23
− 1

32
) + 14

32
− 5

23

)
≊

0.779 and ρ∞ = 1 − 1

32
≊ 0.96.

Similarly, Table 3c shows αf for each feature. For example, only

two tokens of the function call feature are covered by S and ⟨COUNT⟩
is missed sinceQ2 < S. All numeric features have αf =

2

3
. Thus, the

minimum coverage factor is αmin =
2

3
and the average coverage

factor is αavg =
23

30
.

token pW (t) pS (t)

AVG 0.031 0.043

MAX 0.062 0.086

COUNT 0.031 0

(a) Function call feature.

token pW (t) pS (t)

T1 0.093 0.086

T2 0.062 0.043

T3 0.031 0.043

(b) Table reference feature.

cov f c
1

f c
2

f c
3

f c
4

f n
1

f n
2

f n
3

f n
4

f n
5

f n
6

αf
2

3
1 1 1

2

3

2

3

2

3

2

3

2

3

2

3

(c) Feature coverage for workload S.

Table 3: Representativity and coverage computation.

2.4 Problem Statement

Given an input workload W = {q1, . . . ,qn } where each query q in

W is associated with a non-negative cost c (q) such as the size of

the summary workload.

Assuming a target distribution d (·) over these tokens, a budget
constraint B ≥ 0, and a parameter β ∈ [0, 1], our goal is to construct
a summary workload S ⊆ W such that:

• the cost of the summary workload is less than the budget,P
q∈S c (q) ≤ B; and

• the quantity β · α + (1 − β) · ρ (d) is maximized, where α ∈
{αmin ,αavд } and ρ ∈ {ρ1, ρ∞}.

Here, the user-specified parameter β controls the trade-off be-

tween the coverage and representativity metrics. If β = 0, we

optimize for representativity only, and if β = 1, we optimize for

coverage. The compression ratio, η = 1 − c (S)/c (W), is the fraction
of queries that have been pruned. Observe that the larger the value

of η, the smaller the compressed workload.

3 DESIGN CONSIDERATIONS

Several desiderata are important to consider when compressing a

workload, and these form a rich design space. We now describe

these desiderata and their corresponding trade-offs.

High Coverage. High coverage is desirable to ensure that long-

tail feature values are part of the compressed workload. Ideally,

we would like to maximize the coverage subject to certain budget

constraints. Maximizing coverage is an NP-hard problem [14, 29]

that can be efficiently approximated [29].

HighRepresentativity.High representativity implies that the com-

pressed workload must faithfully reproduce the target distribution,

which can be either derived from the input workload’s feature dis-

tribution or specified by the user. This is a key requirement for

successful workload compression when used, for example, in the

context of performance analysis in a database system.

Customizability. Representativity and coverage are competing

objectives, which makes the task of maximizing both metrics si-

multaneously hard. For instance, simple random sampling achieves

high representativity but may miss long-tail queries. On the other

hand, set cover algorithms maximize coverage but will not pick

queries whose features have already been covered. It is therefore

desirable that the user can control this trade-off smoothly, which

we realize through the parameter β .

421

User-Specific Constraints. Users may want to specify constraints

on some property of the compressed workload. For instance, the

user may want to limit the size, total execution time, or the rep-

resentativity target distribution of the compressed workload. The

framework should be flexible enough to allow users to specify these

constraints on-the-fly. For simplicity, we restrict ourselves to two

types of constraints: (i) specifying the desired feature distribution of
the summary workload; and (ii) non-negative modular constraints

(i.e., a knapsack constraint) of the form

P
q∈S c (q) ≤ B, where c (·)

can be any cost function.

Scalability. Efficient computation of the compressed workload is

a key requirement for any framework to be deployed in practice.

Ideally, the compression algorithm must compute the compressed

workload fast and scale effectively to large input workloads. This

will also allow the user to find the correct parameter settings for

fine-tuning the representativity and coverage trade-off dynamically.

Incremental Computation.Consider a user whowants to analyze
how the workload is changing over time with respect to a set of

features. For this case, we want to avoid computing the compressed

workload from scratch every day; instead, it would be better to cre-

ate a summary for each day, and then merge them. In other words,

we would like to construct mergeable compressed workloads.

4 HARDNESS RESULTS

In this section, we show that our problem is computationally hard

for any parameter β ∈ [0, 1], even for the simple case where the

cost function is the same constant for every query, i.e., c (q) = 1.

We note that [14] already shows that the problem is NP-complete

when β = 1 (i.e., we want to maximize only coverage) for both

coverage metrics αmin and αavд . The next theorem shows that the

NP-hardness result extends for any choice of the parameter β .

Theorem 1. Let α ∈ {αmin ,αavд }, ρ ∈ {ρ1, ρ∞}, β ∈ [0, 1], and
d (·) be a target distribution. Then, the problem of finding a summary
S ⊆ W such that |S| ≤ B and the quantity β · α + (1 − β) · ρ (d) is
maximized is NP-complete. In particular, the problem remains NP-
complete when d is the input distribution pW, and there exists only
one multi-valued feature.

Since the problem of maximizing the objective function with

respect to a cost constraint is NP-hard, an approximation algorithm

with theoretical guarantees is required to solve the problem. Indeed,

if we restrict to optimize only for coverage (so β = 1) and a single

feature, there exists a greedy algorithm (by [14]) that achieves an

(1 − 1/e)-approximation ratio. Next, we show that the problem is

APX-hard for any choice of parameter β .

Theorem 2. Let α ∈ {αmin ,αavд }, ρ ∈ {ρ1, ρ∞}, β ∈ [0, 1], and
d (·) a target distribution. Then, the problem of finding a summary
S ⊆ W such that |S| ≤ B and the quantity β · α + (1 − β) · ρ (d) is
maximized is APX-hard.

The problem gets even more complex if representativity is taken

into account. As the next lemma shows, neither ρ1 or ρ∞ metrics

satisfy desirable properties from an optimization perspective.

Lemma 1. The ρ1 and ρ∞ metrics are not monotone or submodular.

5 PROBLEM SOLUTION

There are two often-applied methods to solve the summarization

problem: clustering and random sampling. While clustering-based

methods (such as k-medoids
2
and hierarchical clustering

3
) identify

the patterns in the workload, they suffer from the following draw-

backs: (i) O (n2) time complexity, (ii) sensitivity to the distance

function and (iii) the number of clusters k is required as an input.

The best value for k is not known a priori. To address this prob-

lem, one commonly used idea is to run the clustering algorithm

several times, where the cluster size is doubled in every iteration.

However, this may be far from optimal because of the sensitivity

of the metrics to the size constraint. To address the drawbacks of

clustering and random sampling, we present a new approach to

summarization. We define a new objective function (Section 5.1)

that can be parametrized to control the trade-off between coverage

and representativity followed by efficient algorithm (Section 5.2).

5.1 A New Objective Function

Instead of using the initial objective of the summarization problem,

we replace it with the following objective, where γ ∈ (0, 1] is a
smoothing parameter that controls the trade-off between represen-

tativity and coverage:

G (S,γ) =
X
f

X
t ∈dom(W,f)

d (t) · log

mS (t , f) + γ

γ

!
(1)

Before we explain the intuition of choosing this objective, we

show that it satisfies several properties that make it amenable to

optimization. In particular,G (S,γ) is a non-negative, monotone and

submodular set function.

Proposition 1. For any value γ ∈ (0, 1], the set function G (S,γ)
is non-negative, monotone and submodular.

Analysis of the Objective. To understand the intuition behind

the choice of the objective function, we first discuss how G (S,γ)
behaves for very small values of γ .

Lemma 2. Let S1, S2 be two summaries of a workload W such
that

S
f dom(S1, f) ⊊

S
f dom(S2, f). Then, for γ → 0 we have

G (S1,γ) < G (S2,γ).

Lemma 2 tells us that when the parameter γ tends to zero, a

summary that covers strictly more tokens will always have a better

value for the objective G, independent of the representativity of

each summary. This implies that if there exists a summary S within
the budget B that covers all tokens of W, then an optimal solution

for G will always cover all tokens as well. Now, let us consider a

summary S that achieves perfect coverage. We can then write:

lim

γ→0

{G (S,γ) + logγ } =
X
f

X
t ∈dom(W,f)

d (t) · logmS (t , f)

= −
X
f

X
t ∈dom(W,f)

d (t) · log
d (t)

pS (t)
− H (d) + log ∥S∥

= −KL(d ∥pS) − H (d) + log ∥S∥

2
K-medoids is an iterative greedy algorithm that chooses k cluster centers, assigns all

points to the closest center and iteratively refines the points in each cluster.

3
Hierarchical clustering is a top-down approach where all points start in a single

cluster and the algorithm recursively splits the points into k disjoint clusters.

422

where KL(d ∥p) is the Kullback-Leibler (KL) divergence, a metric

that captures the difference of the two distributions:

KL(d ∥p) =
X
x ∈Ω

d (x) ln
d (x)

p (x)

Thus, when γ → 0, among all summaries with the same size

and perfect coverage, the objective prefers the one that minimizes

the KL divergence between the target distribution and the sum-

mary. We should note here that KL divergence is related to the

total variation distance by the well-known Pinkser’s inequality:

TV (d,p) ≤
q

1

2
KL(d ∥p). If the summaries do not have the same

size, then the summary size will also influence the objective.

As γ increases from 0 to 1, the penalty for not covering a token

decreases. Hence, an optimal solution will focus less on maximiz-

ing coverage and more on maximizing representativity. For larger

values of γ , the objective function will choose the summary that

minimizes the KL divergence between the target distribution d
and the ‘smoothed’ summary distribution where the probability

of a token is proportional to mS (t , f) + γ instead of the frequency

mS (t , f). Intuitively, one can think of the case of γ = 1 as if each

token already starts with a count of 1 as the summary is constructed.

5.2 A Greedy Algorithm

We now present an algorithm that solves our optimization problem

which can be formally stated as follows:

maximize G (S,γ)

subject to

X
q∈S

c (q) ≤ B, S ⊆ W

We solve the above optimization problem greedily in Algorithm 1.

The algorithm starts with an empty summary S0 = ∅. At the i-th
iteration of the main loop, it adds the query from the workload that

maximizes the normalized marginal gain ∆(q | Si−1) to the current

summary Si−1. The normalized marginal gain is defined as

∆(q | S) =
G (S ∪ {q},γ) −G (S,γ)

c (q)
.

In other words, the algorithm greedily chooses the query with

the best gain per unit of cost. To increase the efficiency of the

algorithm, we apply a common optimization [21] which skips the

computation of the normalized gain ∆(q | Si−1) of a query q at

round i−1 if we know that the gain can not be larger than the query

with highest gain so far (line 6). This optimization works because

submodularity tells us that the gain can only decrease as the size

of the summary grows (hence, values of ∆(q | Sk) for k < i − 1 are

an upper bound to the gain). Experiments in [10] show that this

lazy strategy can substantially speed up execution. Algorithm 1

considers additionally the best single element solution, and chooses

the best of the two (line 15). Since G is a monotone, non-negative

and submodular function, it can be shown that Algorithm 1 achieves

an 1/2(1 − 1/e) approximation guarantee [16, 21].

RuntimeAnalysis.The runtime cost of the algorithm is dominated

by the cost of the main loop. During each iteration, the algorithm

needs to compute the normalized marginal gain for each of the

n queries (in the worst case). Since the feature vector is sparse,

each iteration of the main loop can be performed inO (n) time. The

Algorithm 1: Greedy algorithm

input : input workloadW, cost function c , budget B,
parameter γ ∈ (0, 1]

output : summary workload S
1 S← ∅
2 ∀q ∈W : ∆(q) ← 0

3 whileW , ∅ do
4 ∆∗ ← −1

5 foreach q ∈W do

6 if ∆(q) > ∆∗ then

7 ∆(q) ← G (S∪{q},γ)−G (S,γ)
c (q)

8 if ∆(q) > ∆∗ then
9 ∆∗ ← ∆(q)

10 q∗ ← q
11 if c (S) + c (q∗) ≤ B then

12 S← S ∪ {q∗}
13 W←W \ {q∗}
14 S′ ← argmaxq∈W{G ({q},γ) | c (q) ≤ B}

15 return argmaxS,S′ {G (S,γ),G (S′,γ)}

number of iterations can be as large as n, resulting in a worst-case

runtime ofO (n2). However, we can obtain better bounds depending
on the budget constraint B and the cost function c (·). For example,

if c (·) is the unit cost function, then the number of iterations can be

at most B, and the runtime becomes (n ·B). In general, if cmin is the

smallest possible cost of the query, then the number of iterations is

upper bounded by B/cmin . If we want to optimize for our original

score function αβ + (1 − β)ρ (q), observe that the summary we

obtain at the end of the algorithm may not be the best one. We can

slightly modify Algorithm 1 by recording the best score and the

corresponding set that achieves it at every iteration without any

impact on the total running time.

6 PARALLELIZATION AND INCREMENTAL

COMPUTATION

Our algorithm is inherently parallelizable and well suited for incre-

mental computation.

Parallelization. Consider the problem where our cost function is

c (q) = 1, and the budget is B. In order to parallelize Algorithm 1,

we partition the input workload into B machines and run the algo-

rithm on each machine. Each run results in B different summary

workloads, one from each machine. We then merge each machine’s

summary workload, which will act as the new input workload

to generate the final summary. Observe that the first step of gen-

erating B different summary workloads takes O (nB · B) = O (n)
time in parallel, while the second step of merging requires time

O (B2 · B) = O (B3). Hence, we obtain a faster runtime if B3 ≤ n · B,
i.e B ≤

√
n. For values of B ≥

√
n, there exist algorithms that allow

for parallelization with slightly worse approximation guarantees.

We refer the reader to [5, 26–28] for a more detailed discussion on

parallelizing submodular maximization problems.

Incremental Computation. Supporting incremental computation

of a summary is critical in the case where the workload that needs

423

to be summarized is not provided at once, but instead constantly

grows. Since we want to perform summarization across multiple

workloads over time, we need to normalize for numeric features

in a consistent way, i.e., the maximum and minimum values used

to normalize need to be fixed a priori. In order to do so, we fix

the largest and smallest value for all numeric features explicitly.

Although this assumption may feel restrictive, in our experience,

setting the maximum and minimum values for a feature by looking

at historical workloads works very well. For instance, it is safe to

assume that the number of joins in a query will be smaller than

1000 in ad-hoc workloads. Suppose now that we have computed a

summary S ofW, and a new set of queriesW′ is added (with the

same feature set) to the current workload. Instead of computing

directly the summary ofW
U
W′, we can compute a summary S′ of

W′, and merge the two summaries to obtain S
U
S′. The next two

lemmas describe how the merged summary behaves:

Lemma 3. Let S be a summary forWwithαmin = α and ρ∞ (pW) =
ρ. Also, let S′ be a summary forW′ with αmin = α ′ and ρ∞ (pW′) =
ρ ′. Then, S

U
S′ is a summary ofW

U
W′ that hasαmin ≥ min{α ,α ′}/2,

ρ∞ ≥ min{ρ, ρ ′} and cost c (S) + c (S′).

Lemma 4. Consider two summaries S1 and S2 for W1,W2 respec-
tively) with identical budget B. Then, we can produce a summary S
that is a subset of S1

U
S2, such that its cost is at most B and its objec-

tive value is at most an 1/2(1 − 1/e) factor away from the optimal
solution of G forW1

U
W2.

As we will see in the experimental evaluation, the worst-case

bounds do not occur in practice and incremental merging of the

summaries works well.

7 END-TO-END FRAMEWORK

Benchmarking is an important problem to solve in a structured

manner as it allows developers and users to reason about the per-

formance of a system over time. DIAMetrics [11] is an end-to-

end benchmarking system developed at Google for query engine-

agnostic, repeatable benchmarking that is indicative of large-scale

production performance. In essence, it allows users to (a) anonymize

production data, (b) move data between different file storage sys-

tems, (c) execute preset workloads on specific systems automati-

cally, and (d) visualize the results of executed benchmarks. DIAMetrics
provides the context for which GSum was prototyped.

One of the biggest barriers of entry to benchmarking a system

is that teams are often unable to provide a concise benchmark that

represents their production workload. Although clustering and sim-

ple frequency-based analysis has been sufficient for some cases, in

a majority of the cases it is infeasible to manually create accurate

benchmarks. Workload compression provides a powerful means to

generate a subset of production queries with formal guarantees. In

addition to its usefulness for benchmarking, GSum can be deployed

daily to build workload summaries which are used to monitor work-

load patterns over time. A shift in these patterns can entail several

issues such as changing resource usage or execution regressions

which need to be addressed in a timely manner. A full detailed

description of DIAMetrics is beyond the scope of this paper and

we refer the interested reader to [11] for more details and use cases.

8 EVALUATION

In this section, we empirically evaluate the techniques discussed

throughout this paper. More specifically, we

• validate that the summarization framework is useful for

index tuning, materialized view recommendations, and test

workload generation.

• evaluate the runtime of all algorithms for varying workloads

and summary size constraints.

• compare the coverage and representativity metrics of our so-

lution with k-medoids, hierarchical clustering, and random

sampling both on real production workloads and standard-

ized workloads and its scalability.

• evaluate the trade-off between representativity and coverage.

For all workloads, we assume that the query log is available

through the DBMS. All running time related experiments report

the mean of the three observations that are closest to the median

over a total of five runs. To normalize the numeric features, we

set H = 1000. Unless specified otherwise, we choose γ → 0 and

β = 0.5. We refer to the compressed workload generated by our

technique as GSum (short for Google SUMmarized workload). We

perform our experiments over 3 datasets:

(1) DataViz: A dataset of 512796 ad-hoc data visualization queries

issued against F1. This workload contains references to 2729

relations in total. The largest join query contains 19 joins and

the workload has 106 unique function calls. Most expensive

query in the workload takes 6 hours to execute.

(2) TPC-H [2]: A benchmark for performance metrics over sys-

tems operating at scale. We use a workload of 2200 queries

with SF=1 and uniform data distribution.

(3) SSB [30] : A benchmark designed to measure performance

of database in support of data warehousing applications.

8.1 Use cases

As described earlier in this paper, there are several use cases for a

summarization framework.We now explore three of these use cases,

index tuning, materialized view recommendation and both of them

together, to show the validity of our framework and demonstrate

that coverage and representativity metrics are useful in practice.

Due to a lack of space, we defer the experiments for test workload

generation to the full version [10].

Experimental Setup. We use the SQL Server DTA utility as the

baseline, which is a state-of-the-art industrial-strength tool that

has been shipped in SQL Server for more than a decade [3]. All

experiments in this section are run on a m5a.8xlarдe AWS EC2
instance using a single core.

8.1.1 Index Tuning. Index tuning is the task of selecting appro-

priate indexes for a workload that improve its overall runtime.

Summarization can be used in this context to determine a subset

of relevant queries from the input workload and then generating

indexes from the subset rather than the whole workload.

Methodology. To evaluate summarization in the context of index

tuning, we leverage the same evaluation strategy as Chaudhuri et

al. [7] and subsequently used by Jain et al. [15]. That is, we first

measure the execution time of a workload without indexes (tor iд)

424

120 240 360 480 600 720 840
Time budget for index recommendation (secs)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Sc
al

ed
ex

ec
ut

io
n

ti
m

e GSUM

SQL Server
no indexes
optimal

(a) TPC-H workload

120 240 360 480 600 720 840
Time budget for view recommendation (secs)

1.00

1.05

1.10

Sc
al

ed
ex

ec
ut

io
n

ti
m

e GSUM

SQL Server
no indexes
optimal

(b) TPC-H workload

120 240 360 480 600 720 840 960
Time budget for index+view recommendation (secs)

1.0

1.2

1.4

1.6

Sc
al

ed
ex

ec
ut

io
n

ti
m

e

GSUM

SQL Server
no indexes
optimal

(c) TPC-H workload

50 170 290 410 530 650 770 890
Time budget for index recommendation (secs)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sc
al

ed
ex

ec
ut

io
n

ti
m

e

GSUM

SQL Server
no indexes
optimal

(d) SSB workload

50 170 290 410 530 650 770 890
Time budget for view recommendation (secs)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Sc
al

ed
ex

ec
ut

io
n

ti
m

e
GSUM

SQL Server
no indexes
optimal

(e) SSB workload

50 170 290 410 530 650 770 890
Time budget for index+view recommendation (secs)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sc
al

ed
ex

ec
ut

io
n

ti
m

e

GSUM

SQL Server
no indexes
optimal

(f) SSB workload

Figure 1: Experimental results for three use cases: index tuning (a,d), materialized views (b,e) and indexes and indexed views

(c,f). Execution time is scaled using the total running time when using optimal indexes to show the comparative slowdown.

and then apply an index recommendation engine, determine the

recommended indexes, create these indexes, and then measure the

runtime again (tsub). As a baseline, we use SQL Server 2016, which

comes with a built-in Database Engine Tuning Advisor. Our ex-

periments for SQL Server show our measurements for t
SQL
sub under

different temporal budget constraints for the tuning advisor, i.e., we

vary the time allotted to the advisor that determines the indexes to

create. For comparison, we run GSum to create a summary work-

load to generate S with constraint |S| ≤
√
|W| while maximizing

representativity and coverage, which we then use as input for the

SQL Server tuning advisor. Using these indexes, we can then mea-

sure tGSUM
sub , i.e., the time it takes to run the input workload while

using index suggestions based on the compressed workload gener-

ated by our algorithm. We use all categorical and numeric features

described in Section 2.

Results. Figure 1a to Figure 1d show the execution time of varying

benchmarks given different index recommendation budgets with

two baselines: no indexes and optimal, which uses indexes based on

the 22 TPC-H query templates. Diving deeper into Figure 1a, we

note that under tight index generation budget constraints (between

6 and 11 minutes), SQL Server may give recommendations that re-

sult in worse performance than using no indexes at all. The reason

is that the TPC-H workload is large, so the advisor is unable to

recommend appropriate indexes within these time constraints. We

further note that the tuning advisor’s behavior is non-monotonic,

which explains an increase in t
SQL
sub with a larger index recom-

mendation time budget. In contrast, using GSum results in a much

smaller workload for the advisor to interpret, reducing the time it

takes to find index suggestions significantly. With GSum, we can

obtain the first suggestion for indexes within 1 minute, while it

takes SQL Server 6 minutes to derive its first result. SQL Server

suggests same indexes as GSum at 11 minutes. However, due to

its non-monotonic behavior, an additional time budget worsens

t
SQL
sub marginally. For SSB (Figure 1d), we observe that that the

first index is recommended after 5 minutes which is subsequently

improved when the budget is 10 minutes. We also verified that

even after running the full workload with a budget of 60 minutes,

the recommended indexes were no better than the indexes recom-

mended under 1 minute. This demonstrates the benefit of using a

compressed workload as opposed to the full workload. For both

TPC-H and SSB workloads, the compression ratio is η > 0.95 since

the compressed workload is always between size 10 to 50.

8.1.2 Materialized view recommendation. We utilize GSum to sug-

gest materialized views using the inbuilt materialized view recom-

mendation tool of SQL Server.

Results. Figure 1e and 1b show the results for SSB and TPC-H. For
SSB, using GSum results in materialized views within 1 minute that

are better up to 2.5× faster than the no indexes baseline. For both the
workloads, even allowing up to 15 minutes of time does not improve

the recommended views. After 15 minutes, SQL Server recommends

the same views as GSum. In fact, for some time budgets, using

the recommended views is slower as evidenced by the increasing

execution time for SQL Server for both TPC-H and SSB.

8.1.3 Index and view recommendations. Finally, SQL Server allows

a third setting where both indexes and views can be recommended

together. This usually allows for more indexes over the recom-

mended views that further improve the workload performance.

Results. For SSB and TPC-H datasets, the performance is 2.5× and

1.5× better respectively when using compressed workloads from

GSum by using 5× lesser time for generating recommendations

425

Task ↓ Feature→ execution_time output_size #joins #joins+output_size execution_time+#joins execution_time+output_size all numeric

SSB index 1.1× 1.23× 1.23× 1.23× 1.1× 1× 1×

SSB views 1.08× 1.31× 1.58× 1.29× 1.08× 1.09× 1.09×

SSB indexes+views 1.13× 1.35× 1.85× 1.35× 1.13× 1.08× 1.08×

Table 4: Using Numeric Features: Slowdown compared to using all categorical and numeric features for compression

Task ↓ Feature→ function_call table_reference group_by order_by

SSB index 1.56× 1.23× 1.36× 1.36×

SSB views 1.88× 1.58× 1.17× 1.41×

SSB indexes+views 3.2× 1.85× 1.95× 1.5×

Table 5: Using Categorical Features: Slowdown compared to

using all categorical and numeric features for compression

as compared to when using the full workload. For TPC-H, we ob-
served that even after 30 minutes, the recommendations produced

using the full workload are no better than the recommendation

generated after 9 minutes. We also observed the non-monotonic

behavior of SQL Server tuning advisor when using the full work-

load. For some values of tuning time close to 30 mins, the indexes

and recommended views increases the workload execution time,

again highlighting that allowing more time does not necessarily

improve the quality of recommendations, further evidencing the

advantage of using GSum.

8.2 Impact of Features

Next, we perform an ablation study to see the impact of using a

subset of features for the purpose of compression and compare

the quality of the compressed workload using the same experi-

mental setup as in the previous section. The metric we will use

is slowdown in workload execution time using the indexes and

views recommended using the compressed workload obtained with

subset of features vs using all categorical and numeric features. Ta-

ble 4 and Table 5 show the impact of using a subset of features

for compression. The first observation is that all features (except

execution_time) when used in isolation fail to identify a good

compressed workload. function_call performs the worst because

all queries in the SSB workload contain exactly one function call

(SUM) which gives no useful information to the summarization

task. The table_reference feature is able to extract 4 templates

from the total 13 SSB templates, while the order_by and group_by
features extract the largest number of templates from the input

workload. We remark that even when using all categorical features

together, the average slowdown for all three tasks is 1.4×. On the

other hand, the numeric feature execution_time performs very

well and is able to identify almost all templates. This is because even

for queries with high syntactic similarity (ex. Q1.1,Q1.2,Q1.3), the

execution time varies enough for the algorithm to identify that they

originate from different templates. This demonstrates the impor-

tance of numeric features in the algorithm. Using execution_time
with output_size further improves the compressed workload qual-

ity slightly. However, using output_size with #joins does not

perform well. Our conclusions for TPC-H are similar and we defer

the experiments to the full tech-report [10].

8.3 Microbenchmarks

In this section, we study the impact of different algorithms on the

metrics, explore the effect of parameter γ on the objective function,

study the impact of algorithmic optimization, and provide empirical

evidence of GSum’s scalability.

Experimental Setup. For all experiments in this section, we have

implemented our summarization framework on top of the F1 data-

base [33] within Google. It consists of two distinct modules: the

featurization module that transforms and materializes the feature

vectors of all queries that have been executed on the DBMS, and the

summarization module that uses the materialized feature vectors

and the input from the user to generate the workload summary.

We use the DataViz dataset as the basis for our comparison, as it

is a representative production workload. All experiments in this

section are executed on a single machine running Ubuntu 16.04

with 60GB RAM and 12 cores.

8.3.1 Algorithm Comparison. In the previous sections, we have

compared against an industry system. However, there are several

other algorithms that can be used in the context of workload sum-

marization such as clustering techniques. To examine these, we

have implemented k-medoids and hierarchical clustering (average

linkage) in addition to random sampling and GSum.

Methodology. In this set of experiments, we use 5000 randomly

chosen DataViz queries4 and vary the summary workload between

50 and 1000. We compute the Euclidean distance over numeric fea-

tures and the Jaccard distance over categorical features as distance

function for clustering.

Results. Figure 2a shows the runtime of the different algorithms.

Our first observation is that using clustering algorithms with cate-

gorical features is the most expensive choice (time > 10, 000 sec-

onds). This is because even though the feature vectors are material-

ized, finding the Jaccard distance takes O (∥q∥) time, as compared

to O (1) for the distance computation for single-valued numerical

features. Further, in order to find the representative of each clus-

ter, the number of operations required is quadratic in the cluster

size, which amplifies the performance difference. Our second ob-

servation is that as the summary size increases, the execution time

decreases for k-medoids, it increases for GSum, and stays approxi-

mately the same for hierarchical clustering and random sampling.

Finally, we observe that compared to the two clustering algorithms

whose performance depends heavily on the type of features used,

the submodular algorithm is less sensitive to the chosen features

since the submodular gain computation depends on a single query.

8.3.2 Representativity and Coverage. We now compare the metrics

for the same workload and fix d (·) to be the input distribution.

4
A small sample is chosen to make sure that clustering algorithms can finish running.

426

50 100 200 500 1000
Summary workload size

10−1

100

101

102

103

104

T
im

e
in

s

k-medoids
(categorical)
hierarchical
(categorical)
k-medoids
(numeric)
hierarchical
(numeric)
random sampling
submodular
(categorical
+ numeric)

(a) Runtime

k-medoids
(cat.)

hierarchical
(cat.)

k-medoids
(num.)

hierarchical
(num.)

random
sampling

submodular

Summary size |S| = 100

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
c

sc
or

e

αmin

αavg

ρ1

ρ∞

(b) Coverage and representativity scores (|S | = 100).

Figure 2: Runtime and metric scores for varying algorithms with |W| = 5000 on DataViz.

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Representativity score ρ1

0.0

0.2

0.4

0.6

0.8

1.0

C
ov

er
ag

e
sc

or
e
α

a
v
g |S| = 50

|S| = 100

|S| = 200

|S| = 500

Figure 3: Trade-off between metrics; γ is the smoothing pa-

rameter that varies between 0 and 1 for each curve.

Results. Figure 2b shows the resulting coverage and representa-

tivity scores for all algorithms and summary size |S| = 100. As

expected, random sampling has the best representativity score and

the lowest coverage. All clustering algorithms have low represen-

tativity scores but achieve good coverage. This is not surprising

because the cluster initialization step identifies outlier queries as
cluster centers since they have the largest distance from most other

queries. In comparison, GSum has a slightly lower coverage score

than the best clustering algorithms, but performs significantly bet-

ter in terms of representativity. Note that since γ → 0, the submod-

ular algorithm focuses on maximizing coverage first and the chosen

input workload of 100 queries is not able to cover the active domain

(as are the clustering techniques). Once GSum has reached the best

possible coverage for a fixed γ , ρ improves even further. Given

the faster running time of random sampling, it is natural to ask

why GSum is better than random sampling. Note that random sam-

pling provides poor coverage, since in the presence of skew, outlier

queries are likely missed from the sample. These drawbacks were

also identified by [6, 7]. Secondly, it is not clear how to incorporate

user-specified constraints, e.g., the execution time of the summary

is at most 1 hour, or a custom target distribution. Finally, the right

sample size for random sampling is unknown a priori. Similar to

the clustering methods, random sampling needs the sample size as

the input. This means that we may need to run random sampling

for all possible sample sizes which makes it a less attractive choice.

processors→ 1 2 3 4 5 6

runtime (min) 95 53 36 26 21 18

speedup obtained 1x 1.8x 2.7x 3.6x 4.5x 5.5x

coverage 1.0 1.0 1.0 1.0 1.0 1.0

representativity 0.91 0.88 0.86 0.85 0.85 0.85

Table 6: Runtime (in minutes) and metrics obtained using

parallel processing.

8.3.3 Trade-off between Metrics. In the next experiment, we em-

pirically verify the impact of the γ parameter on DataViz workload
and study how it can be used to trade-off between the two metrics.

Results. Figure 3 shows the trade-off between coverage and repre-

sentativity (by controlling γ) for different summary sizes. Observe

that as γ decreases, representativity starts dropping and coverage

starts to increase. Note that the increase in coverage or decrease

in representativity is not necessarily monotone due to the com-

plex interaction between features. Since all features are uniformly

weighted, features with more tokens tend to dominate both α and

ρ. In order to balance that, we can set the weight for each feature

inversely proportional to its active domain. However, in almost

all our experiments, no feature dominated a different feature even

when each feature had the same weight. In other words, the rep-

resentativity score for each feature shows an empirical monotone

behavior as γ changes. Table 7 shows the impact of γ on the full

DataViz workload. With |W| = 512796 and |S| = 1000, we observe

that as the value of γ decreases, ρ1 increases at the expense of αavg .
Using the generated summary, we are able to identify recurring

patterns in the input workload. Finally, we observe that the ad-

justments to γ depend on the skew of the workload and should be

examined on a case-by-case basis.

8.3.4 Scalability and Parallel Computation. To benchmark scala-

bility, we execute GSum on a single thread on a single machine

and use all available categorical and numeric features. We use a

workload consisting of 2.4M TPC-H and SSB queries.

Results. Figure 4a shows the runtime in minutes when the input

workload size |W| varies and the summary size is fixed to |S| =
√
|W|. If |W| = 2.4 million queries, it takes GSum 53 minutes to

execute compression. Since the compression algorithm is executed

427

0.15 0.3 0.6 1.2 2.4
Input workload size (in M)

100

101

102

R
un

ni
ng

ti
m

e
(i

n
m

in
s)

(a) Runtime varying |W |, |S | =
√
|W |

1500 3000 6000 12000
Summary workload size (|W| =2.4M)

100

101

102

103

R
un

ni
ng

ti
m

e
(i

n
m

in
s)

(b) Runtime varying |S |, |W | = 2.4M

1 2 3 4 5 6 7
Batch i

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ri
cs

full αavg
full ρ1

incremental αavg
incremental ρ1

(c) Coverage and representativity scores

Figure 4: Scalability (a),(b), and incremental computation (c) experiments on DataViz.

γ f s
1

f p
1

f p
2

f p
4

f p
5

10
0

0.75 | 1.0 0.67 | 1.0 0.57 | 1.0 0.9 | 1.0 0.5 | 1.0

10
−3

0.76 | 1.0 0.74 | 0.81 0.66 | 0.88 0.90 | 1.0 0.6 | 0.84

10
−10

0.8 | 1.0 0.81 | 0.68 0.73 | 0.75 0.90 | 1.0 0.69 | 0.70

10
−15

0.84 | 1.0 0.87 | 0.57 0.80 | 0.61 0.95 | 0.56 0.74 | 0.64

10
−20

0.88 | 1.0 0.98 | 0.32 0.94 | 0.26 0.98 | 0.30 0.94 | 0.18

10
−25

0.91 | 1.0 0.99 | 0.07 0.94 | 0.07 0.98 | 0.07 0.99 | 0.02

Table 7: Tradeoff between metrics for production workload.

Each cell shows ρ1 | αavg

daily, this performance is acceptable in practice. As we will see

later, using multiple cores can further improve the runtime. We

generally observe a linear increase in runtime when increasing

the workload size. Figure 4b shows how the choice of summary

size impacts scalability. Here, we set |W| = 2.4 million queries and

observe that creating a summary with |S| = 12000 takes roughly 5.2

hours. Analogous to the results observed when increasing |W|, we
see a linear increase in runtime with an increase in summary size

|S|. Table 6 shows the runtime and the impact of parallelization on

the summary workload metrics. The first column shows the metrics

when a single processor calculates the summary. As the number

of processors increases, the speed-up obtained is near linear. We

further observe no impact on coverage and representativity only

drops marginally from 0.91 to 0.85.

8.3.5 Incremental Computation. Recall that incremental computa-

tion computes a local summary for each batch of input queries and

merges them, instead of recomputing the summary from scratch.

To test this behavior, we split DataViz into 7 different batches by

partitioning the query log sequentially and summarize the work-

load incrementally, adding one batch at a time. We compare our

incremental results to a from-scratch execution of GSum on the

same subset of queries. For this experiment, we set |S| =
√
|W|.

Results. Figure 4c shows our findings. With an increase in the

number of processed batches, we observe incremental computation

providing marginally worse results than creating a summary from

scratch. At the same time, we observe that the cumulative time spent

in creating a summary from scratch (≈ 480 minutes) is much larger

than the cumulative time of merging summaries across batches

(≈ 60 minutes). After receiving batch i , the total input workload
size has increased by a factor of i and the summary size by a factor

of

√
i , increasing the runtime by a factor of i3/2 as compared to

i − 1
th

batch. Using incremental computation, we can avoid this

runtime increase as each batch is treated independently.

8.4 Discussion

Choice of Features. So far, we have observed how different knobs

and configuration parameters impact various performance metrics

and the output of GSum but we have not discussed how to choose

them in practice. The answer to this question depends on (i) the
chosen application, and (ii) how the chosen features interact with

each other. While adding more features certainly provides more

signals, it is not necessarily the case that it will guarantee a better

result. For instance, the addition of more features will require a

larger summary size to obtain better coverage, which in turn can

possibly decrease representativity. For our experiments, the choice

of features was driven mainly by iterating over the available choices

and understanding their impact. Two heuristics that were useful

to us are: (i) We found multiple production workloads that con-

tained > 10
5
table references, most of which were temporary tables.

For such workloads, including table_reference and attributes in

WHERE clause as a feature is not a good idea; (ii) if two features f1
and f2 are highly correlated, then it suffices to include only one of

these features. We found it beneficial to perform multiple iterations

by generating multiple workloads with different features and then

look at the compressed workload to understand how the summary

has changed by using the visualization tools present in DIAMetrics.
We found it useful to change feature weights and introduce weights

for each token (initially uniform) and then change in each iteration

to boost metric scores. For features with large domain, setting γ
closer to 1 to dampen the effect of coverage also worked well. For

tasks such as choosing platform alternatives to execute a workload,

using categorical features is not necessary. Indeed, the execution

performance of a workload has little do with SQL syntax and more

to do with physical execution plans and operators available on

different systems.

Choice of β . The right choice of β is determined by the application

for which the compressed workload will be used. Applications that

require outliers in the compressed workload (such as test workload

generation and benchmarks for creating compliance benchmarks)

set β closer to 1 whereas applications such as index recommen-

dation require representative workloads. However, even within

a specific application the optimal choice of β can change. As an

example, consider two index recommendation algorithms A and B.

428

Amay choose to recommend indexes that optimize the execution

time of the most expensive queries first. In this case, the compressed

workload must contain the most expensive queries in the work-

load. On the other hand, B may choose to recommend indexes that

benefit the common-case queries in the workload but ignore the

uncommon long running queries. This example demonstrates the

need for a formal specification of the application context that can be

integrated into the compression algorithm. Currently, we choose β
by constructing multiple summaries and then test the performance

to find the right threshold.

9 LIMITATIONS AND FUTUREWORK

We now discuss limitations of our work and ideas that will drive

the agenda for this line of research.

Feature Engineering. One limitation of our framework is that

it only looks at features at query level but does not incorporate
workload level features such as contention between queries for

resources. Choosing the right set of features for each applications

is also a bottleneck. Currently, our features are hand-picked by do-

main experts such as application and database developers, database

administrators and support personnel. Finding the right set of fea-

tures requires an iterative analysis of the query logs to understand

the variability in feature values. Since GSum is much faster than

clustering algorithms, it allows us to build multiple benchmarks

with different sets of features and β . As a part of future work, we
plan to utilize machine learning techniques to identify the best

features for a given application.

Transactional Workloads. In this work, we focus only on ana-

lytical workloads, ignoring the impact of data. For transactional

workloads, the runtime of a query changes as the skew in the data

changes. Thus, we need more sophisticated techniques to construct

compressed workloads that take data updates into account.

Auto-tuning Knobs. Since the framework contains many knobs

such as the choice of β , budget constraint and different application

contexts, it is worth exploring how we can find the optimal con-

figuration of the knobs for each application. Deep reinforcement

learning has had considerable success in performing this task.

10 RELATEDWORK

Most prior work focuses on maximizing coverage of information

in summary workload as the primary optimization criteria while

incorporating notions such as quality, efficiency as additional con-

straints. The property of representativity is more nuanced in com-

parison to coverage since it is highly dependent on the application

context. In most cases, a representative summary minimizes the

average distance from all items in the input workload [17, 32, 34],

maximize mutual information between summary and input [31],

maximizes saturated coverage [25] or maximizes coverage and di-

versity [9, 13, 26, 35, 36, 38]. In all these cases, the representative

metric function is well behaved, i.e, it is monotonic and submodular

by definition. Our problem setting departs from these works in

our definition of representative where we would like the summary

workload to mimic a target feature distribution. This makes the

summarization problem more challenging. We note that our defi-

nition of representative has been proposed in previous work but

has only been studied empirically as a quality metric whereas our

algorithms are designed specifically to optimize for this metric.

CompressingWorkloads.Compressing or summarizing SQLwork-
loads has been studied by Chaudhuri et al. [6, 7]. In [7], the authors

propose multiple summarization techniques including K-Medoids

clustering, stratified/random sampling and all pairs query compar-

ison. As the authors themselves note, random sampling ignores

valuable information about statements in the workload and misses

queries that do not appear often enough in the workload. [6] pro-

poses a new SQL operator specifically for summarizing workloads

but also suffer from the quadratic complexity. More recently, [15, 20]

propose query structure based clustering methods for workload

summarization but both proposed approaches are not scalable and

rely only on the syntactic information in the text of the query.

In contrast, our framework is more general in the sense that we

also incorporate query execution statistics. Ettu [18, 19] presents a

promising approach that clusters workload queries based on query

syntax but it has restrictive assumptions with respect to defining

query similarity which is based only on the subtree similarities of

the query syntax. It is geared towards clustering queries written

by humans with the purpose of identifying queries that may con-

stitute a security attack. While the framework is scalable, it has

restrictive assumptions with respect to defining query similarity

which is based only on the subtree similarities of the query syntax.

This is not true in our setting where most queries are generated by

a pipeline of processes that increase the size of the query making it

difficult to find out if two queries have the same ’intent’.

CountingWorkload Patterns.An orthogonal but related problem
to our setting is creating a compressed representation that allows

for counting patterns in a query. The key idea explored in [23, 37]

is to develop a maximum entropy model over feature values that

then allows us to query pattern counts by simply computing the

product of probabilities that each feature value is present.

11 CONCLUSION

In this paper, we propose a novel and tunable algorithm that allows

us to summarize workloads for various application domains. We

show that the proposed solution provides provable guarantees and

solves the underlying problem efficiently by exploiting its submod-

ular structure. Our solution supports parallel execution as well as

incremental computation model and is thus highly scalable. We

show through extensive experimental evaluation that our solution

outperforms clustering algorithms and random sampling. We view

this work as the first in an exciting research direction to develop

automated solutions for workload monitoring at scale. We believe

our solution can be extended to tackle interesting problems such as

(but not limited to) resource prediction and production workload

analysis that can be applied for a variety of (database) systems.

ACKNOWLEDGMENTS

This research was supported in part by National Science Foundation

grants CRII-1850348 and III-1910014. We are also grateful to the

anonymous referees for their detailed and insightful comments that

have greatly aided in improving this work.

429

REFERENCES

[1] 2020. SQL Server execution statistics. Retrieved November 17, 2020 from

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-

management-views/sys-dm-exec-query-stats-transact-sql?view=sql-server-

ver15

[2] 2020. TPC-H Benchmark. Retrieved November 17, 2020 from http://www.tpc.

org/tpch

[3] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek

Narasayya, and Manoj Syamala. 2005. Database tuning advisor for microsoft sql

server 2005. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. 930–932.

[4] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and Elisa Turric-

chia. 2014. Similarity measures for OLAP sessions. Knowledge and information
systems 39, 2 (2014), 463–489.

[5] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-

dreas Krause. 2014. Streaming submodular maximization: Massive data summa-

rization on the fly. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 671–680.

[6] Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. 2002. Com-

pressing sql workloads. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data. ACM, 488–499.

[7] Surajit Chaudhuri, Vivek Narasayya, and Prasanna Ganesan. 2003. -Primitives

for Workload Summarization and Implications for SQL. In Proceedings 2003 VLDB
Conference. Elsevier, 730–741.

[8] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[9] Anirban Dasgupta, Ravi Kumar, and Sujith Ravi. 2013. Summarization through

submodularity and dispersion. In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1. 1014–
1022.

[10] Shaleen Deep, Anja Gruenheid, Paraschos Koutris, Jeffrey Naughton, and Stratis

Viglas. 2020. Comprehensive and Efficient Workload Compression. (2020).

Retrieved November 17, 2020 from https://arxiv.org/abs/2011.05549

[11] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton, and

Stratis Viglas. 2020. DIAMetrics: Benchmarking Query Engines at Scale. Proceed-
ings of the VLDB Endowment 13, 12, 3285–3298.

[12] David J DeWitt. 1993. The Wisconsin Benchmark: Past, Present, and Future.

[13] Christoph F Eick, Nidal Zeidat, and Ricardo Vilalta. 2004. Using representative-

based clustering for nearest neighbor dataset editing. In Data Mining, 2004.
ICDM’04. Fourth IEEE International Conference on. IEEE, 375–378.

[14] Uriel Feige. 1998. A threshold of ln n for approximating set cover. Journal of the
ACM (JACM) 45, 4 (1998), 634–652.

[15] Shrainik Jain and Bill Howe. 2019. Query2Vec: NLP Meets Databases for Gener-

alized Workload Analytics. CIDR (2019).

[16] Andreas Krause and Carlos Guestrin. 2005. A note on the budgeted maximization
of submodular functions. Carnegie Mellon University. Center for Automated

Learning and Discovery.

[17] Lun-Wei Ku, Yu-Ting Liang, and Hsin-Hsi Chen. 2006. Opinion extraction,

summarization and tracking in news and blog corpora. In Proceedings of AAAI.
100–107.

[18] Gokhan Kul, Duc Luong, Ting Xie, Patrick Coonan, Varun Chandola, Oliver

Kennedy, and Shambhu Upadhyaya. 2016. Ettu: Analyzing query intents in

corporate databases. In Proceedings of the 25th International Conference Compan-
ion on World Wide Web. International World Wide Web Conferences Steering

Committee, 463–466.

[19] Gokhan Kul, Duc Luong, Ting Xie, Patrick Coonan, Varun Chandola, Oliver

Kennedy, and Shambhu Upadhyaya. 2016. Summarizing Large Query Logs in

Ettu. arXiv preprint arXiv:1608.01013 (2016).
[20] G. Kul, D. T. A. Luong, T. Xie, V. Chandola, O. Kennedy, and S. Upadhyaya. 2018.

Similarity Measures for SQL Query Clustering. IEEE Transactions on Knowledge
and Data Engineering (2018), 1–1. https://doi.org/10.1109/TKDE.2018.2831214

[21] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-

Briesen, and Natalie Glance. 2007. Cost-effective outbreak detection in networks.

In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 420–429.

[22] Stephen Macke, Yiming Zhang, Silu Huang, and Aditya Parameswaran. 2018.

Adaptive sampling for rapidly matching histograms. Proceedings of the VLDB
Endowment 11, 10 (2018), 1262–1275.

[23] Michael Mampaey, Jilles Vreeken, and Nikolaj Tatti. 2012. Summarizing data

succinctly with the most informative itemsets. ACM Transactions on Knowledge
Discovery from Data (TKDD) 6, 4 (2012), 16.

[24] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,

Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned

query optimizer. Proceedings of the VLDB Endowment 12, 11 (2019), 1705–1718.
[25] Rishabh Mehrotra and Emine Yilmaz. 2015. Representative & informative query

selection for learning to rank using submodular functions. In Proceedings of the
38th international ACM sigir conference on research and development in information
retrieval. ACM, 545–554.

[26] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, and Amin Karbasi. 2016.

Fast Constrained Submodular Maximization: Personalized Data Summarization..

In ICML. 1358–1367.
[27] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Von-

drák, and Andreas Krause. 2015. Lazier Than Lazy Greedy.. In AAAI. 1812–1818.
[28] Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. 2013.

Distributed submodular maximization: Identifying representative elements in

massive data. In Advances in Neural Information Processing Systems. 2049–2057.
[29] George LNemhauser, Laurence AWolsey, andMarshall L Fisher. 1978. An analysis

of approximations for maximizing submodular set functionsâĂŤI. Mathematical
programming 14, 1 (1978), 265–294.

[30] Patrick E O’Neil, Elizabeth J O’Neil, and Xuedong Chen. 2007. The star schema

benchmark (SSB).

[31] Feng Pan, Wei Wang, Anthony KH Tung, and Jiong Yang. 2005. Finding represen-

tative set from massive data. In Data Mining, Fifth IEEE International Conference
on. IEEE, 8–pp.

[32] Sayan Ranu, Minh Hoang, and Ambuj Singh. 2014. Answering top-k repre-

sentative queries on graph databases. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 1163–1174.

[33] Bart Samwel, John Cieslewicz, Ben Handy, Jason Govig, Petros Venetis, Chanjun

Yang, Keith Peters, Jeff Shute, Daniel Tenedorio, Himani Apte, et al. 2018. F1

query: declarative querying at scale. Proceedings of the VLDB Endowment 11, 12,
1835–1848.

[34] Kamal Sarkar. 2009. Sentence clustering-based summarization of multiple text

documents. TECHNIA–International Journal of Computing Science and Communi-
cation Technologies 2, 1 (2009), 325–335.

[35] Balaji Vasan Srinivasan and Ramani Duraiswami. 2009. Efficient subset selection

via the kernelized Rényi distance. In Computer Vision, 2009 IEEE 12th International
Conference on. IEEE, 1081–1088.

[36] Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and Jeff A Bilmes. 2014.

Learning mixtures of submodular functions for image collection summarization.

In Advances in neural information processing systems. 1413–1421.
[37] Ting Xie, Varun Chandola, and Oliver Kennedy. 2018. Query log compression for

workload analytics. Proceedings of the VLDB Endowment 12, 3 (2018), 183–196.
[38] Jie Xu, Dmitri V Kalashnikov, and SharadMehrotra. 2014. Efficient summarization

framework for multi-attribute uncertain data. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, 421–432.

430

https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/system-dynamic-management-views/sys-dm-exec-query-stats-transact-sql?view=sql-server-ver15
http://www.tpc.org/tpch
http://www.tpc.org/tpch
https://arxiv.org/abs/2011.05549
https://doi.org/10.1109/TKDE.2018.2831214

	Abstract
	1 Introduction
	2 Problem Setting
	2.1 Notation
	2.2 Encoding Queries
	2.3 Metrics
	2.4 Problem Statement

	3 Design Considerations
	4 Hardness Results
	5 Problem Solution
	5.1 A New Objective Function
	5.2 A Greedy Algorithm

	6 Parallelization and Incremental Computation
	7 End-To-End Framework
	8 Evaluation
	8.1 Use cases
	8.2 Impact of Features
	8.3 Microbenchmarks
	8.4 Discussion

	9 Limitations and Future Work
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

