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ABSTRACT
Multi-modal transportation recommendation aims to provide the
most appropriate travel route with various transportation modes ac-
cording to certain criteria. After analyzing large-scale navigation
data, we find that route representations exhibit two patterns: spatio-
temporal autocorrelations within transportation networks and the
semantic coherence of route sequences. However, there are few stud-
ies that consider both patterns when developing multi-modal trans-
portation systems. To this end, in this paper, we study multi-modal
transportation recommendation with unified route representation
learning by exploiting both spatio-temporal dependencies in trans-
portation networks and the semantic coherence of historical routes.
Specifically, we propose to unify both dynamic graph representation
learning and hierarchical multi-task learning for multi-modal trans-
portation recommendations. Along this line, we first transform the
multi-modal transportation network into time-dependent multi-view
transportation graphs and propose a spatiotemporal graph neural
network module to capture the spatial and temporal autocorrelation.
Then, we introduce a coherent-aware attentive route representation
learning module to project arbitrary-length routes into fixed-length
representation vectors, with explicit modeling of route coherence
from historical routes. Moreover, we develop a hierarchical multi-
task learning module to differentiate route representations for differ-
ent transport modes, and this is guided by the final recommendation
feedback as well as multiple auxiliary tasks equipped in different
network layers. Extensive experimental results on two large-scale
real-world datasets demonstrate the performance of the proposed
system outperforms eight baselines.
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1 INTRODUCTION
The increasing prevalence of various transport modes (e.g., car, bus,
shared-bike, ride-sharing, etc.) and the rapidly expanding transporta-
tion networks (e.g., road network, bus network, pedestrian network,
etc.) have provided overwhelming alternatives for travelers to reach
a destination. In recent years, multi-modal transportation recommen-
dation has become an emerging routing service in many navigation
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and ride-hailing applications, such as Baidu Maps [31], Here [39],
and Didi Chuxing [11]. The target of multi-modal transportation rec-
ommendation is to help users find the most appropriate route from
one place to another, by jointly considering one or more transport
modes on a constrained transportation network. Therefore, accurate
and intelligent multi-modal transportation recommendations can
significantly help reduce the traveler’s decision cost and ultimately
improve the user experience.

Existing studies on multi-modal transportation recommendation
mainly fall into two categories. (1) Searching based multi-modal
route recommendation aims to retrieve the shortest path on the trans-
portation network, with a predefined distance metric (e.g., geograph-
ical distance, travel time, etc.). Most methods in this category [2, 10]
focus on extending graph search algorithms (e.g., Dijkstra, Bell-
man–Ford and contraction hierarchies [13]) to the multi-modal trans-
portation network [30]. Such approaches are highly dependent on
the pre-defined metric and overlook latent factors hidden in the
data (e.g., mode and route preferences under different situational
contexts [29]). (2) Learning based transport mode recommenda-
tion has partially addressed the problem by inferring coarse-grained
transport mode preferences based on supervised or unsupervised ma-
chine learning techniques. A common routine in such methods [29]
is to explicitly extract features (e.g., distance, estimated time of ar-
rival (ETA)) from user historical data, such as GPS trajectories [41]
and in-app clicks [1]. Such methods make recommendations based
on empirically defined features, thus highly rely on the comprehen-
siveness of feature engineering. More recent studies have applied
network embedding [26] and deep learning [46] for transport mode
recommendation. However, such methods focus on learning coarse-
grained vertex representations (e.g., user and origin-destination pair)
or forecasting future travel costs (e.g., ETA), and are not capable of
route-specific multi-modal transportation recommendation.

Indeed, the recent emergence of representation learning and multi-
task learning techniques provides great potentials to overcome the
above limitations. In this paper, we investigate the multi-modal trans-
portation recommendation problem via the unified multi-task route
representation learning, by exploiting both spatiotemporal depen-
dencies from transportation networks and the semantic coherence
from historical routes. However, three non-trivial challenges arise
in achieving this goal. (1) Spatiotemporal autocorrelation.The
multi-modal transportation network of various transport modes can
be abstracted as a dynamic graph (e.g., bus line maybe created or
removed, traffic condition is time varying). The dynamic graph con-
tains rich structural and contextual information in both vertices (e.g.,
the degree, if it has a traffic light) and edges (e.g., distance, ETA,
average speed). The first challenge is how to capture the spatial
and temporal autocorrelation in the dynamic transportation network.
(2) Route coherence representation. After studying many routes
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traveled by users, we identify another important dependency in route
representation learning, which we call route coherence. We analo-
gize a route with a sentence, where each hub (e.g., road intersections,
bus stations, etc.) and link (e.g., road segments, bus lines, etc.) corre-
spond to a word. In this way, the representation of each hub and link
in the route should not only depend on the transportation network but
also semantically consistent with the whole route. Besides, the route
sequence is of arbitrary length, and the importance of each vertex
may vary. How to learn fix-length route representations by incorpo-
rating semantic information in historical routes is another challenge.
(3) Transport mode differentiation. A route in the multi-modal
transportation network may be shared or partially shared by various
transport modes. For example, given a bicycle route planned by nav-
igation apps, it is with a high probability we can also travel by walk,
and vice versa. The last challenge is how to differentiate the unified
representation for various transport modes for recommendations.

To tackle the above challenges, we develop a Hierarchical Multi-
Task Route representation Learning (HMTRL) framework for multi-
modal transportation recommendations. Specifically, we first dis-
cretize the multi-modal transportation network into a set of graph
snapshots over time and construct multi-view graphs, including (1)
the hub-centric graph which regards transportation hubs as vertices,
and (2) the link-centric graph which regards transportation links as
vertices. After that, we propose the spatiotemporal graph neural
network module which includes a graph convolution network layer
that captures the non-linear spatial autocorrelation from multi-view
graphs and a recurrent neural network (RNN) layer that captures
the temporal autocorrelation across multiple graph snapshots. Fur-
ther more, a coherent-aware attentive route representation learning
module is introduced, including (1) a bi-directional RNN layer that
integrates the relatedness of historical routes into the representation
of hubs and links, and (2) a self-attentive layer that projects the
route sequence into a fixed-length representation with explicit quan-
tifying the contribution of each hub and link. Finally, we propose
the hierarchical multi-task learning module to learn mode-specific
representations, and equip multiple correlated auxiliary tasks in dif-
ferent network layers to guide the optimization of representations for
final recommendations. By incorporating structural dependencies in
multi-view transportation graphs and route coherence in historical
routes under various supervision signals, the mode-specific route
representation enables more accurate route-level multi-modal trans-
portation comparison and recommendation.

Our contributions are summarized as follows. (1) We transform
the multi-modal transportation network into time-dependent multi-
view transportation graphs to characterize the time-evolving struc-
tural and contextual information. (2) We propose a spatiotemporal
graph neural network to collaboratively capture spatial and temporal
autocorrelation for both hubs and links. (3) We introduce a coherent-
aware attentive representation learning module to project arbitrary
length routes into a fixed-length representation, with explicit route
coherence modeling. (4) We propose a hierarchical multi-task learn-
ing module to obtain mode-specific route representations and boost
the recommendation performance by integrating various auxiliary
supervision signals in different network levels. (5) We conduct ex-
tensive experiments on two large-scale real-world datasets from one
of the world’s largest navigation apps. The results demonstrate our
model achieves the best performance compared with eight baselines.

2 PRELIMINARIES
2.1 Definitions and Problem Statement
Consider a set of transport modesM = {𝑚1,𝑚2, . . . ,𝑚𝑘 }, where
each mode corresponds to a transportation network (e.g., road net-
work, bus line network) that supports vehicle or pedestrian move-
ment. Generally, the transportation network of each transport mode
is composed of a set of hubs (e.g., road intersection, bus or metro
station) and a set of links (e.g., road segment, bus line). We formally
define the multi-modal transportation network based on transporta-
tion networks of each transport mode.

DEFINITION 1. Multi-Modal Transportation Network (MMTN).
The multi-modal transportation network integrates multiple mode-
specific transportation networks into a unified attributed directed
graph G = (𝑉 , 𝐸,𝐴𝑉 , 𝐴𝐸 , 𝑀), where 𝑉 is the set of hubs, 𝐸 is the set
of links, 𝑀𝑛 is a mapping function indicates the supported transport
modes of each hub and link, 𝐴𝑉 and 𝐴𝐸 are respectively hub and
link features, such as number of bus lines across the hub, spherical
distance of the road segment, and ETA of the bus line.

We use𝑀 (𝑣𝑖 ) and𝑀 (𝑒𝑖 𝑗 ) to denote the supported transport modes
of each hub 𝑣𝑖 ∈ 𝑉 and 𝑒𝑖 𝑗 ∈ 𝐸. Note each hub and link may support
more than one transport modes (e.g., walk and bicycle). We say
two hubs are adjacent to each other if and only if there is a link
connecting them, two links are adjacent if and only if a user can
transfer from one to another by one hub. Without loss of generality,
we constraint a user can only transfer to other links or transport
modes in a hub, and a link is the smallest movement unit in the
transportation network, e.g., a road segment between two adjacent
road intersections, a bus line between two adjacent bus stations.

DEFINITION 2. Route. A route is a triplet 𝑟𝑖 = 〈𝐻, 𝐿, 𝜙〉, where𝐻
is a sequence of adjacent hubs, 𝐿 is a sequence of adjacent links, and
𝜙 is a mapping function that indicates the corresponding transport
mode of each hub and link in the route.

Different from the mapping function 𝑀 in G, 𝜙 (𝑣𝑖 ) and 𝜙 (𝑒𝑖 𝑗 )
identify the unique transport mode in the corresponding route. In
this work, we restrict a route start and terminate at a hub, and a route
may consist of one or more transport modes.

DEFINITION 3. Routing Query. A routing query is defined as
a triplet 𝑞 = 〈𝑜, 𝑑, 𝑡〉, where 𝑜 and 𝑑 are origin and destination
locations represented by a pair of longitude and latitude, and 𝑡 is
the departure time.

Since the origin 𝑜 and the destination 𝑑 are arbitrary locations, we
project them to nearby hubs for recommendation. We say a route 𝑟𝑖
is feasible for 𝑞 if the route start from 𝑜 and terminate at 𝑑 .

PROBLEM 1. Multi-Modal Transportation Recommendation.
Given a MMTN G, a routing query 𝑞 and a set of feasible routes
Γ for 𝑞, our problem is to recommend the most appropriate route
𝑟𝑖 ∈ Γ based on the the conditional probability 𝑦𝑖 ← F (𝑟𝑖 |𝑞, Γ,G),
where F is the unified mapping function we aim to learn.

To reduce the computational complexity, we derive the route can-
didate set Γ (typically less than 20 candidates) based on existing
routing engines [27, 29]. To guarantee the utility of recommenda-
tions, we restrict the maximum number of mode transfer in each
route candidate to three.
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Figure 1: An overview of unified route representation learning for multi-modal transportation recommendation.

2.2 Framework Overview
Figure 1 shows an overview of our approach, where the inputs are the
multi-modal transportation network, historical routes, and context
features such as weather condition; the output is the recommended
route. Overall, there are three tasks in our approach, (1) the con-
struction of time-dependent multi-view transportation graphs, (2)
the unified route representation learning, and (3) the hierarchical
multi-task learning for mode-specific representation generation and
route recommendation. To be specific, in the first task, we transform
the multi-modal transportation network to a set of time-dependent
multi-view graphs from both the hub-centric perspective and the
link-centric perspective. In the second task, the unified route repre-
sentation is obtained via (1) the joint spatiotemporal autocorrelation
modeling of the hub-centric graph and the link-centric graph, and
(2) the coherent-aware attentive route representation learning by
exploiting historical routes. In the third task, we differentiate repre-
sentations for various transport modes via multiple implicit tasks and
boost the recommendation performance by incorporating multiple
related auxiliary tasks in different neural network layers.

3 CONSTRUCTING TIME-DEPENDENT
MULTI-VIEW TRANSPORTATION GRAPHS

We construct time-dependent multi-view transportation graphs to
characterize dynamic structural and contextual information in MMTN.

The hub-centric view. The hub-centric graph is a direct map-
ping of MMTN, where vertices and edges are respectively trans-
portation hubs and links. Specifically, we first discretize the time-
evolving graph into a sequence of snapshots, denoted by 𝒢ℎ =

[Gℎ,𝑡1 ,Gℎ,𝑡2 , . . . ,Gℎ,𝑡𝑛 ], where Gℎ,𝑡𝑖 is the hub-centric graph at
time 𝑡𝑖 . Figure 2(a) gives an illustrative example snapshot of time-
dependent hub-centric graph. For each vertex in the graph, we at-
tach corresponding hub features, including both time-invariant fea-
tures (e.g., degree, if have a traffic light) and dynamic features (e.g.,
traffic volume). For two adjacent hubs 𝑣𝑖 and 𝑣 𝑗 , we construct the
corresponding adjacency weight based on a Gaussian kernel [25],

𝑐ℎ𝑖 𝑗 = 𝑒𝑥𝑝 (−
𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 )2

𝛿2
), (1)

where 𝑑𝑖𝑠𝑡 (𝑣𝑖 , 𝑣 𝑗 ) denote the spherical distance [37] between 𝑣𝑖
and 𝑣 𝑗 , and 𝛿 is the standard deviation of spherical distances. In
consequence, 𝑐ℎ

𝑖 𝑗
demonstrates the geographical distance distribution

among adjacent hubs.
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Figure 2: An example of multi-view transportation graphs.

The link-centric view. The link-centric graph flips vertices and
edges in MMTN to preserve structural and contextual information in
transportation links. Similar to the hub-centric graph, we discretize
the time-evolving link-centric graph into a sequence of snapshots,
denoted by 𝒢𝑙 = [G𝑙,𝑡1 ,G𝑙,𝑡2 , . . . ,G𝑙,𝑡𝑛 ], where G𝑙,𝑡𝑖 indicates the
link-centric graph at time 𝑡𝑖 . Figure 2(b) shows an illustrative ex-
ample of the time-dependent link-centric graph at a specific time
slice. For each vertex (i.e., link) in the graph, we attach correspond-
ing time-invariant features (e.g., distance, road level) and dynamic
features (e.g., average speed, ETA). Consider two links 𝑒𝑖 = (𝑣1, 𝑣2)
and 𝑒 𝑗 = (𝑣3, 𝑣4), we set the adjacency constraint as

𝑐𝑙𝑖 𝑗 =

{1, 𝑣2 = 𝑣3 𝑎𝑛𝑑 𝑖 ≠ 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (2)

There is a directed edge from 𝑒𝑖 to 𝑒 𝑗 if and only if 𝑣2 = 𝑣3 in the
corresponding MMTN. In other word, an edge in the link-centric
graph forms a 2-hop route in the MMTN. Different with the hub-
centric graph, 𝑐𝑙

𝑖 𝑗
∈ {0, 1} preserves the connectivity information.

Mathematically, the link-centric graph is an edge-to-vertex dual
of the hub-centric graph at the same time slice. We can re-construct
the MMTN from either the hub-centric graph or the link-centric
graph [9]. The time-dependent multi-view graphs therefore preserves
the temporal dynamics and the structural integrity of MMTN for
subsequent graph representation learning.

4 HIERARCHICAL MULTI-TASK ROUTE
REPRESENTATION LEARNING

Based on time-dependent multi-view transportation graphs, we ob-
tain mode-specific route representation and make multi-modal trans-
portation recommendations with the following intuitions.

Intuition 1: Graph autocorrelation preservation. The time-
dependent multi-view transportation graphs contain rich structural
and contextual information that varies over time. The vertex (i.e.,
hub and link) in each graph at different time slices is both spatially
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and temporally autocorrelated with other vertices, and can contribute
to the overall route representation. Therefore, the model should be
able to collaboratively learn the spatial and temporal autocorrelation
for both hubs and links.

Intuition 2: Coherent-aware route representation learning.
The routes are arbitrary-length sequences and different hubs and
links are playing different important roles in different routes. The
fixed-length route representation should pay different attention to
hubs and links in the sequence to distill salient features of each route.
Besides, each hub and link is semantically coherent with its histor-
ical routes. Therefore, the representation of hubs and links should
reflect a higher relevance with historical routes it involved in.

Intuition 3: Multi-modal route representation differentiation.
A transportation hub or link may be shared by various transport
modes. Correlating tasks such as link ETA prediction and route pref-
erence inference offer potential auxiliary signals to help differentiate
mode-specific representations. In consequence, the proposed method
should be capable of integrating various auxiliary tasks in different
granularity (e.g., vertex level and route level) for route representation
differentiation and recommendation.

4.1 Spatiotemporal Autocorrelation Modeling
We first introduce the spatiotemporal graph neural network module
to capture spatiotemporal autocorrelations based on time-dependent
multi-view transportation graphs.

Modeling spatial autocorrelation. We employ Graph Neural
Network (GNN) [20] to capture spatial autocorrelation at each time
step. By iteratively aggregating and transforming neighbor represen-
tations [15], GNN obtains locally smoothed representations where
spatially adjacent hubs and links tend to be close in the latent space.

Formally, consider a transportation graph G𝑡 at time 𝑡 , let x𝑖
denotes the 𝑑-dimensional representation of vertex 𝑣𝑖 ∈ G𝑡 , we
define the graph convolution operation (GConv) as

x′𝑖 = 𝐺𝐶𝑜𝑛𝑣 (x𝑖 ) = 𝜎 ((
∑
𝑗 ∈N𝑖

𝑐𝑖 𝑗W𝑠x𝑗 ) ‖ x𝑖 ), (3)

where x′
𝑖

is the updated vertex representation, 𝜎 is a non-linear
activation function, 𝑐𝑖 𝑗 is the adjacency weight, W𝑠 ∈ R𝑑×𝑑 is
learnable weighted matrix shared by all vertices in G𝑡 , ‖ is the
concatenation operation, and N𝑖 is the set of neighbor vertices of 𝑣𝑖
in G𝑡 . Note that we can repeat 𝑙 times graph convolution operations
to capture 𝑙-hop spatial dependencies. We update representations
of 𝑣𝑝,𝑡

𝑖
∈ G𝑝,𝑡 and 𝑣𝑙,𝑡

𝑗
∈ G𝑙,𝑡 by x′𝑝,𝑡

𝑖
= 𝐺𝐶𝑜𝑛𝑣 (x𝑝,𝑡

𝑖
) and x′𝑙,𝑡

𝑗
=

𝐺𝐶𝑜𝑛𝑣 (x𝑙,𝑡
𝑗
), respectively.

Modeling temporal autocorrelation. The representations of hubs
and links are not only correlated with neighboring vertices in G𝑝
and G𝑙 , but also influenced by their status in previous time peri-
ods. We extend GNN by Gated Recurrent Unit (GRU) [8], a simple
yet effective variant of RNN, for temporal autocorrelation model-
ing. Consider a vertex 𝑣𝑖 and its previous 𝑇 step representations
(x𝑡−𝑇
𝑖

, x𝑡−𝑇+1
𝑖

, . . . , x𝑡
𝑖
), where x𝑡

𝑖
is the output of the graph convo-

lution operation at time 𝑡 . We denote the status of 𝑣𝑖 at time step
𝑡 − 1 and 𝑡 as h𝑡−1

𝑖
and h𝑡

𝑖
, respectively. The hidden state h𝑡

𝑖
re-

flects both the spatial and temporal autocorrelation of vertex 𝑣𝑖 in
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Figure 3: An illustrative example of route coherence modeling.

corresponding time-dependent graphs. For each hub and link in cor-
responding views, we respectively derive hℎ,𝑡

𝑖
= 𝐺𝑅𝑈 (hℎ,𝑡−1

𝑖
, xℎ,𝑡
𝑖
)

and h𝑙,𝑡
𝑖

= 𝐺𝑅𝑈 (h𝑙,𝑡−1
𝑖

, x𝑙,𝑡
𝑖
) for route representation learning.

4.2 Route Representation Learning
Then we present the coherent-aware attentive route representation
learning module, where (1) the Bi-directional RNN based route
coherence modeling block first incorporates route coherence con-
straints in historical routes to hub and link representations, and (2)
the self-attentive route representation learning block further projects
arbitrary-length routes into fixed-length representation vectors by
automatically learning the importance of each hub and link in the
corresponding route.

Bi-directional RNN based route coherence modeling. The in-
sight of route coherence modeling is to incorporate the relatedness
of prefix and suffix sub-routes into the current hub and link repre-
sentations. Figure 3(a) shows an illustrative example of the prefix
sub-route coherence on a road network, where the orange arrows
form a historical route traveled by a user, the yellow arrow is the
current link, and the green arrows are candidate links. Given a his-
torical route [𝑒1, 𝑒4, 𝑒9, 𝑒12], consider 𝑒9 as the current link, there is
another candidate link 𝑒7 for prefix sub-route [𝑒1, 𝑒4] and a candi-
date link 𝑒11 for suffix sub-route [𝑒12]. Based on the historical route,
𝑒9 is more relevant with the prefix sub-route [𝑒1, 𝑒4] and the suffix
sub-route [𝑒12]. Therefore, the representation of 𝑒9 should reflect
not only graph dynamics in the MMTN, but also the historical route
dependency. We adopt the Bi-directional GRU (BiGRU) operation
to integrate the route coherence dependency into both hub and link
representations from both forward direction and backward direction.

Specifically, we reuse the GRU operation in Equation (??) for hub
and link representation update. Formally, for vertex 𝑣𝑖 , consider its
prefix sub-route [· · · , 𝑣𝑖−2, 𝑣𝑖−1] and suffix sub-route [𝑣𝑖+1, 𝑣𝑖+2, · · · ],
we obtain the forward coherent dependency and backward coherent
dependency of 𝑣𝑖 by

−→
h 𝑐
𝑖
= 𝐺𝑅𝑈 (−→h 𝑖−1, x𝑖 ) and

←−
h 𝑐
𝑖
= 𝐺𝑅𝑈 (←−h 𝑖+1, x𝑖 ),

and define the BiGRU operation as

h𝑐𝑖 = 𝐵𝑖𝐺𝑅𝑈 (
−→
h 𝑐𝑖 ,
←−
h 𝑐𝑖 ) = W𝑐 [

−→
h 𝑐𝑖 ‖

←−
h 𝑐𝑖 ], (4)

where W𝑐 ∈ R2𝑑×𝑑 is the learnable parameter projecting the con-
catenated representation to 𝑑-dimensional vector. Take Figure 3(b)
for example, denote the representation of the historical route as h𝑐

𝑖
,

and the representations of 𝑒7 and 𝑒9 as h7, h9, the route coherence
modeling forces 𝑑𝑖𝑠𝑡 (h𝑐

𝑖
, h9) < 𝑑𝑖𝑠𝑡 (h𝑐𝑖 , h7), where 𝑑𝑖𝑠𝑡 (·, ·) is a dis-

tance function in the latent vector space, e.g., the Euclidean Distance.
The updated vertex representation incorporates both prefix and suf-
fix sub-route information and is more informative for multi-modal
transportation recommendations.
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Self-attentive route representation learning. There are still two
problems to obtain unified route representation learning: (1) the
length of each route may vary, and (2) the importance of each hub and
link in the route may be different. Simply averaging representations
of hubs and links can not capture the diversified importance of
each hub and link, while the RNN in Equation (4) suffers from the
gradient vanishing problem [23]. Inspired by the recent success of
the attention mechanism [35] on modeling weighted dependencies
of long sentences. We analogize multi-modal routes as sentences
and employ a self-attention mechanism to transform arbitrary-length
routes to fixed-length route representation vectors, with explicit
quantifying the importance of both hubs and links in each route.

Given a hub or route sequence of 𝑛 vertices, we devise 𝐾 inde-
pendent self-attentive operations to stabilize the learning process.
Specifically, we define the 𝑘-th attentive score of 𝑣𝑖 as

𝛼𝑖,𝑘 =
𝑒𝑥𝑝 (W𝑎,𝑘𝑡𝑎𝑛ℎ(W𝑏,𝑘h𝑖 ), )∑𝑛
𝑗=1 𝑒𝑥𝑝 (W𝑎,𝑘𝑡𝑎𝑛ℎ(W𝑏,𝑘h𝑗 ), )

, (5)

where h𝑖 and h𝑖 are representations of 𝑣𝑖 and 𝑣 𝑗 , W𝑎,𝑘 and W𝑏,𝑘 are
learnable weights in the 𝑘-th attentive operation. Then, we derive
the sequence representation by

h′ =‖𝐾
𝑘=1 (

𝑛∑
𝑖=1

𝛼𝑖,𝑘W𝑟,𝑘h𝑖 ), (6)

where ‖ is the vector concatenation operation and W𝑟,𝑘 ∈ R𝑑×𝑑
is the learnable parameter corresponding to 𝑘-th self-attentive op-
eration. Based on Equation (6), we derive the corresponding hub
sequence representation h𝑟,ℎ and link sequence representation h𝑟,𝑙 ,
and derive the unified route representation as

h𝑟 = h𝑟,ℎ ‖ h𝑟,𝑙 . (7)

4.3 Hierarchical Multi-Task Learning
Finally we introduce the hierarchical multi-task learning module for
multi-modal route representation differentiation and recommenda-
tion optimization. By jointly learning multiple related tasks, multi-
task learning shares common knowledge in each task and, therefore,
improves the generality of the model [44]. Incorporating auxiliary
tasks in different granularity has been proved beneficial in many
tasks such as document parsing and synonym prediction [12, 16].
In HMTRL, we introduce various auxiliary tasks as complement
supervision signals, where different tasks are equipped at different
neural network layers.

Specifically, we employ the hard parameter sharing [4] in HMTRL,
where different tasks are sharing part of the model but have individ-
ual output layers. In HMTRL, the learning tasks can be categorized
into two classes, (1) the Vertex-level MTL that corresponds to repre-
sentation learning of vertices (i.e., hubs and links) in time-dependent
multi-view graphs, (2) the Route-level MTL that corresponds to route
representation optimization and recommendation.

Vertex-level MTL. Let {T 𝑣,𝑖 }𝜏1
𝑖=1 denote a set of auxiliary vertex

tasks, where each task T 𝑣,𝑖 corresponds to a set of labels {𝑦𝑖
𝑗
}𝑛𝑖
𝑗=1 if

any, where 𝑦𝑖
𝑗
∈ R. We first introduce transport mode differentiation

tasks to generate mode-specific representations for hubs and links.
Specifically, for each transport mode 𝑚𝑖 ∈ M, we define a corre-
sponding task T𝑚𝑖 to obtain the mode-specific representation after

the spatiotemporal graph neural network, h𝑚𝑖

𝑗
← F𝑚𝑖 (h𝑗 ), where

F𝑚𝑖 is a mode-specific mapping function implemented by a fully
connected multi-layer neural network. Note that because not all hubs
and links are feasible for all transport modes (e.g., a bus link does not
support walk), we mask infeasible transport modes in optimization.
Different from other auxiliary tasks, transport mode differentiation
tasks do not have direct supervision signals. Instead, all such tasks
are optimized based on higher-level task feedbacks (e.g., the link
type classification, the route distance prediction and multi-modal
transportation recommendation) via back-propagation.

Thereafter, we extract various vertex attributes as supervision sig-
nals and facilitate multiple auxiliary task specific layers. Concretely,
we integrate regression tasks including the distance prediction and
forecasting ETA of the next time step, and integrate classification
tasks including hub type (road intersection, bus station, etc.) and link
type (road segment, bus line, etc.) inference.

Route-level MTL. Similarly, we define a set of auxiliary route
tasks {T 𝑟,𝑖 }𝜏2

𝑖=1. Specifically, we first integrate the route coherence
modeling task, by leveraging the intermediate prefix sub-route and
suffix-route representation derived by Equation (4). Rather than set
explicit labels, we optimize the representation in a self-supervised
manner, to allow the vertex representation h𝑖 in the latent space to
approximate the corresponding sub-route representation h𝑐

𝑖
more

closely. After that, we incorporate various route related regression
tasks, including route distance prediction and future ETA prediction.
Besides, for each route 𝑟 𝑗 , we facilitate the transport mode prediction
task by applying a multi-class classifier.

Finally, we define the main recommendation task. Consider the
route representation h𝑟

𝑖
, we define the output layer as

𝑦𝑖 = 𝜎 (w𝑚𝑎𝑖𝑛 [h𝑟𝑖 ‖ x
𝑐𝑜𝑛𝑡𝑒𝑥𝑡
𝑖 ] + 𝑏𝑚𝑎𝑖𝑛), (8)

where 𝑦𝑖 is the estimated travel likelihood of route 𝑟𝑖 , 𝜎 is a non-
linear activation function, w𝑚𝑎𝑖𝑛 are the learnable parameters of the
main task, and 𝑏𝑚𝑎𝑖𝑛 is the bias. Similar to [29], we also concate-
nate a context vector x𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑖
to incorporate the situational context,

including features such as weather condition and time periods. To
facilitate the readability and reproducibility, we provide detailed
settings of auxiliary tasks in the supplementary material.

4.4 Optimization
In HMTRL, we optimize both the main task as well as auxiliary
tasks in different layers jointly. For the main task and auxiliary clas-
sification tasks, we employ the cross-entropy loss for optimization.
For regression tasks such as distance and ETA prediction, the ob-
jective is to minimize the mean square error loss. Please refer to
supplementary material for detailed auxiliary losses. Additionally,
we introduce the triplet loss for the optimization of route coherence,

L𝑐 = −
1
𝑛𝑘

𝑛∑
𝑖=1

𝑘∑
𝑗=1

𝑚𝑎𝑥{(‖h𝑐𝑖 − h𝑖 ‖2 − ‖h
𝑐
𝑖 − h𝑗 ‖2 + 𝛾), 0}, (9)

where h𝑗 is the representation of the negative sample, 𝛾 is a margin
constant between positive pair (h𝑐

𝑖
, h𝑖 ) and negative pair (h𝑐

𝑖
, h𝑗 ).

We draw adjacent vertices 𝑣 𝑗 ∈ N (𝑣𝑖 ) in the corresponding time-
dependent transportation graph as negative samples, and force the
representation of the vertex in the route h𝑖 is closer to the coherent
state h𝑐

𝑖
than negative samples h𝑗 .
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Table 1: Statistics of datasets.
Data description BEIJING SHANGHAI

# of routing queries & trajectories 2,804,274 2,101,028
# of road intersections 334,421 333,163

# of road segments 420,889 426,247
# of bus lines 22,364 25,652

# of bus stations 9,651 11,587

Overall, we aim to optimize the following objective,

L = L𝑚𝑎𝑖𝑛 + 𝛽1
𝜏1∑
𝑖=1
L𝑣𝑖 + 𝛽2

𝜏2∑
𝑖=1
L𝑟𝑖 , (10)

where L𝑣
𝑖

and L𝑟
𝑖

are auxiliary vertex and route tasks, 𝛽1 and 𝛽2
are hyper-parameters control the importance of auxiliary tasks. We
employ Adam optimizer [19] for training with an exponential decay.

5 EXPERIMENTS
5.1 Data Description
We conduct experiments on two real-world datasets, BEIJING and
SHANGHAI. Both datasets are provided by one of the world’s largest
navigation applications in the world. The datasets include: (1) trans-
portation networks of car, bus, cycle and walk, (2) routing query
data extracted from user in-app logs, (3) historical trajectory data
collected from user navigation events, (4) context data including user
demographic attributes and weather conditions. The raw data of BEI-
JING and SHANGHAI are 4.13 TB and 4.36 TB, respectively. Both
datasets are ranged from August 1, 2019 to October 30, 2019. The
Minimum Boundary Rectangle (MBR) of BEIJING and SHANGHAI

are (116.21, 39.76), (116.56, 40.03) and (121.35, 31.12), (121.65,
31.38). The statistics of each dataset are summarized in Table 1. We
chronologically order each data set, take the first 80% as training set,
the following 10% for validation and the rest 10% for testing.

5.2 Implementation Details
We initialize all trainable parameters randomly with the uniform
distribution. We apply an embedding operation to project each cate-
gorical features to 16-dimensional embedding vectors and concate-
nate them with continuous features. The dimension of hidden state 𝑑
is fixed to 64. We stack two layers of graph convolution to capture
spatial autocorrelation, and choose LeakyReLU (𝛼 = 0.2) as the
activation function in graph convolution operation. We employ a
sigmoid function in the final output layer. The hyper-parameters
𝐾 , 𝛽1, 𝛽2, 𝑇 , 𝛾 are set to 8, 0.3, 0.1, 3, 0.5, respectively. We set the
learning rate 𝑙𝑟 = 0.0001 and the batch size 256. We fix the length of
the sub-route to 6 for coherence modeling. We evaluate our model as
well as all baselines on a powerful Linux server with 26 Intel Xeon
Gold 5117 CPUs, 8 NVIDIA Tesla P40 GPUs, 256GB memory
and 10TB disk. For a fair comparison, we carefully fine-tuned the
hyper-parameters for all baselines on our datasets via grid search
based on settings in their original paper. Please refer to source code1

for more details.

1https://github.com/hanjindong/HMTRL-Pytorch

5.3 Metrics
We employ Hit@𝑘 and Normalized Discounted Cumulative Gain
(NDCG@𝑘) [17], two widely used metrics in recommenders, to
evaluate the recommendation effectiveness. Specifically, we evaluate
Hit@1, Hit@3, Hit@5, and NDCG@3, NDCG@5, NDCG@10.

5.4 Baselines
We compare HMTRL with two rule-based methods and six learning
methods. RBT is a rule-based method that recommends the fastest
route, in which we rank route candidates by ETA. RBD is another
rule-based method that recommends the shortest route, in which we
rank route candidates by road network distance. LR uses logistic
regression [21] for recommendation. The inputs are same as raw
features used in HMTRL. GBDT adopts the Gradient Boosting
Decision Tree for recommendation, which is widely used in both
academia and industry. We implement the baseline based on XG-
boost [7]. The input features are the same as LR. DeepWalk [32]
is a unsupervised network embedding method that learns vertex
representations of a graph. We apply random walks on the MMTN
to generate vertex representations, and apply average pooling on
route sequences to obtain route representation. We further apply a
LR layer for recommendation. DeepFM [14] is the state-of-the-art
recommendation model that combines the factorization machine
and deep neural network to model both first-order and higher-order
feature interactions. The input is the same as HMTRL. Hydra [29]
is a state-of-the-art multi-modal transport mode recommendation
method based on multi-sourced urban data. It is fed both handcrafted
features as well as pre-trained latent embedding features to a gradi-
ent boosting tree-based model. We extend it by adding a regression
layer to enable multi-modal route recommendation. MURAT [24]
is a novel multi-task graph representation learning framework for
travel time estimation. We also use our multi-view graphs as the
input and devise the the output layer to fit our recommendation task.

5.5 Overall Performance
Table 2 shows the overall performance of our method and all the
compared baselines on two datasets with respect to six evaluation
metrics. Overall, HMTRL outperforms all the baselines on both
datasets using all metrics, which demonstrate the advance of our
model. Specifically, HMTRL achieves (8.3%, 3.4%, 2.1%) Hit@𝑘 and
(4.7%, 4.6%, 4.2%) NDCG@𝑘 improvement compared with the state-
of-the-art approach (MURAT) on BEIJING. Similarly, the improve-
ment of Hit@𝑘 and NDCG@𝑘 on SHANGHAI are (8.1%, 4.8%, 2.5%)
and (6.5%, 4.3%, 5.1%). Moreover, we can make the following ob-
servations. (1) The performance of RBT is much worse than RBD.
This observation indicates that travel distance is a more significant
indicator than ETA for user trip decision. (2) DeepWalk achieves
a better performance than rule-based methods, but performs worse
than other learning-based methods. The main reason is that Deep-
Walk can leverage the structural information but it fails to consider
contextual features. Besides, due to its unsupervised property, Deep-
Walk neglects the user preference signal in historical data. (3) Hydra
outperforms all other non-deep learning models by incorporating
fine-grained handcrafted features and high-order embedding features.
However, compared with deep learning-based methods, including
DeepFM and MURAT, the manually extracted features limit the

347



Table 2: Overall performance comparison using six metrics on BEIJING and SHANGHAI.

Method
BEIJING SHANGHAI

Hit@1 Hit@3 Hit@5 NDCG@3 NDCG@5 NDCG@10 Hit@1 Hit@3 Hit@5 NDCG@3 NDCG@5 NDCG@10

RBT 0.1337 0.3874 0.5794 0.3515 0.4278 0.4713 0.1596 0.4121 0.5609 0.3119 0.3730 0.4569
RBD 0.3647 0.6212 0.7339 0.4801 0.5583 0.6116 0.3178 0.4437 0.6096 0.4068 0.4337 0.5051
LR 0.7188 0.8329 0.8705 0.7864 0.8018 0.8203 0.6687 0.8010 0.8423 0.7468 0.7638 0.7827

GBDT 0.7370 0.8474 0.8851 0.8021 0.8176 0.8341 0.6814 0.8083 0.8524 0.7563 0.7745 0.7950
DeepWalk 0.5213 0.6642 0.7587 0.5955 0.6344 0.6731 0.4916 0.6591 0.7591 0.5886 0.6297 0.6687
DeepFM 0.7658 0.8538 0.8853 0.8166 0.8295 0.8452 0.7068 0.8209 0.8592 0.7743 0.7901 0.8096

Hydra 0.7604 0.8508 0.8827 0.8139 0.8270 0.8434 0.7292 0.8324 0.8713 0.7854 0.8177 0.8251
MURAT 0.7892 0.8654 0.8993 0.8345 0.8467 0.8631 0.7508 0.8415 0.8889 0.8009 0.8297 0.8334

HMTRL 0.8545 0.8946 0.9184 0.8735 0.8856 0.8990 0.8115 0.8823 0.9111 0.8533 0.8652 0.8761

Hit@1 Hit@3 Hit@5
Metric

0.7

0.8

0.9

1.0

M
e
tr

ic
 s

co
re

hc-view
lc-view

hl-view

(a) Effect of multi-
view graphs.

Hit@1 Hit@3 Hit@5
Metric

0.7

0.8

0.9

1.0

M
e
tr

ic
 s

co
re

AP
SAR

SAF
SARNN

(b) Effect of route rep-
resentation learning.

Hit@1 Hit@3 Hit@5
Metric

0.7

0.8

0.9

1.0

M
e
tr

ic
 s

co
re

RAW
HMTL

VMTL
VRMTL

(c) Effect of hierarchi-
cal multi-task learn-
ing.

Figure 4: Ablation study of HMTRL on BEIJING.

recommendation capability of the model. (4) MURAT consistently
outperforms all other baselines, which demonstrate the effectiveness
of multi-task graph representation learning. However, MURAT ne-
glects the information in link-centric graphs as well as the low level
supervision signals, therefore performs worse than our approach.

5.6 Ablation Study
Then we conduct ablation study on HMTRL.

Effect of multi-view graphs. We first examine the effectiveness
of multi-view graphs by evaluating three variants of HMTRL, (1) hc-
view only uses the hub-centric graph, (2) lc-view uses the link-centric
graph only, and (3) hl-view uses both graphs for recommendation.
As shown in Figure 4(a), the performance of hl-view outperforms
hc-view and lc-view by (9.6%, 3.4%, 2.5%) and (4.4%, 1.2%, 0.9%) on
(Hit@1, Hit@3 and Hit@5), respectively. Moreover, the lc-view
performs better than hc-view, which demonstrate the structural and
contextual information in transportation links plays a more important
role for multi-modal transportation recommendation.

Effect of coherent-aware attentive route representation learn-
ing. We further construct and evaluate the following variants, (1) AP
uses average pooling to aggregate hub and link representations, (2)
SAR derives route representation by self-attention only, (3) SAF re-
moves backward GRU in BiGRU, and (4) SARNN includes both self-
attentive operation and the BiGRU to integrate route coherence. As
shown in Figure 4(b), self-attentive based route aggregation achieves
a better performance than AP. Moreover, by integrating the route
coherence, SARNN achieves significant improvement compared with
SAR. Additionally, compared with SAF, we observe SARNN achieves
consistent improvement by incorporating backward sub-route coher-
ence, demonstrate the effectiveness of bi-directional RNN.

Effect of hierarchical multi-task learning. We compare the fol-
lowing variants, (1) RAW directly learns route representation without
auxiliary tasks, (2) HMTL only incorporates vertex-level hub-related

tasks, (3)VMTL incorporates both vertex-level hub-related and link-
related tasks, and (4) VRMTL integrates both vertex-level tasks and
route-level tasks. As reported in Figure 4(c), we observe consistent
improvement by respectively adding vertex level and route level
auxiliary tasks, validate the effectiveness of different supervision
signals for multi-modal transportation recommendation. In particu-
lar, VMTL achieves more significant improvement over HMTL than
HMTL over RAW, indicating link related auxiliary tasks plays a more
important role in multi-modal transportation recommendations.

5.7 Parameter Sensitivity
We further study the parameter sensitivity of HMTRL. Each time
we vary a parameter, we set others to their default values.

First, we vary the dimension 𝑑 from 32 to 512. The results are
reported in Figure 5(a). As the dimension increases, the performance
first increases and then remains stable. However, too large 𝑑 will
induce a higher training cost. Therefore, set the dimension to 64 is
enough to capture representation information.

Then, we vary the number of self-attentive operations 𝐾 from 1
to 32. The results are reported in Figure 5(b). We observe a perfor-
mance improvement when increasing 𝐾 from 1 to 8, but a slight
performance degradation by further increasing 𝐾 from 8 to 32. Us-
ing 8 self-attentive operations is good enough to capture diversified
vertex importance for route representation learning.

After that, we vary vertex-level multi-task weight 𝛽1 from 0 to
3. The results are reported in Figure 5(c). We observe a significant
performance gain when increasing 𝛽 from 0 to 0.3, and then the
performance degrades when we further increase 𝛽 from 0.3 to 3.
Above results prove incorporating low-level supervision signals is
beneficial to the main recommendation task, but may introduce more
noises with too large task weight.

Finally, to test the impact of route-level auxiliary tasks weight, we
vary 𝛽2 from 0 to 3. The results are reported in Figure 5(d). HMTRL
achieves the best performance when 𝛽2 = 0.1, and we observe a
performance degradation when we increase or decrease 𝛽2. This is
possibly because too small 𝛽2 cannot fully take advantage of the
common information in route level auxiliary tasks, whereas too large
𝛽2 makes the auxiliary tasks dominate the optimization and weakens
the importance of the main recommendation task.

5.8 Robustness Check
A robust transportation recommendation model should perform
evenly well in different routing query subgroups. We evaluate the
robustness of HMTRL from the following three perspectives. First,
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Figure 5: Parameter sensitivities on BEIJING.
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Figure 6: Robustness check on BEIJING.

we group queries by OD pair distance, i.e., less than 1Km, 1Km to
3Km, 3Km to 10Km, and more than 10Km. Second, we split rout-
ing queries by day using four time intervals, i.e., the morning peak
hour (7,9], the evening peak hour (17,19], and two off-peak inter-
vals (19,7], (9,17]. Third, we group queries based on the selected
transport mode, including bus, cycle, walk, car and mixed (i.e., route
with more than one transport modes). Figure 6 shows the results
of HMTRL on different subgroups on BEIJING. For different OD
distance intervals, we observe the performance difference is smaller
than 10.9%. Besides, our model performs better on longer distance
transportation recommendations, which is perhaps because routes
of walk and cycle are no longer attractive for long distance trip,
therefore ease the recommendation. For different time periods, we
observe the difference is smaller than 10.2%. Besides, we observe a
more accurate recommendation result at night, and a worse result
in morning rush hour. This is possibly because the traffic condition
during the morning rush hour is more complex and hard to pre-
dict. For different transport modes, we observe the performance of
mixed group is notably lower than others. This may be induced by
the scarcity of mixed historical routes, and the route representation
with combined transport mode is more sophisticated to learn. Note
that the performance of HMTRL on mixed routes still significantly
higher than all baselines, please refer to supplementary material for
details. The above results suggests us to pay more attention on mixed
routes in the further work to obtain a better overall performance.

6 RELATED WORK
Route Recommendation has become a core component in map
services (e.g., Google Maps, Baidu Maps) and has gradually re-
ceived more research attention [18, 40]. With the ubiquity of mobile
devices and location-based services, massive historical data (e.g.,
GPS trajectory data [41] and mobile check-in data [5, 33]) has been
leveraged to improve the quality of route recommendation. For
example, Chen et al. [6] and Wang et al. [36] leverage historical
trajectories for better routing, but cannot be directly generalized to
multi-modal recommendations. Recently, a few machine learning
based multi-modal transportation recommendation techniques has

been introduced. To name a few, FAVOUR [3] proposed a probabilis-
tic model for multi-modal route recommendation based on a series of
user-provided profile and survey data. Trans2vec [26] learns network
embedding of users, OD pairs for transport mode recommendation.
Hydra [28, 29] constructed various context features and MTRecS-
DLT [1] developed a convolutional neural network based model for
personalized transport mode recommendation. However, the above
studies ignore rich semantic information in the transportation net-
work and historical routes, which lead to unsatisfactory multi-modal
route recommendations.

Graph Representation Learning extends the well-known con-
volutional neural network for capturing spatial dependencies on
non-Euclidean graph structures [15, 20]. Recently, graph representa-
tion learning has been widely used in many spatiotemporal mining
tasks, such as flow prediction [25, 38], region representation [43],
and parking availability prediction [42]. Beyond vertex classification,
a few studies investigate the classification problem of sequences on
dynamic graphs [22]. However, none of the above works are dedi-
cated to multi-modal transportation recommendations.

Multi-Task Learning is a learning paradigm that aims to im-
prove the performance of multiple correlated tasks by sharing com-
mon information. Based on information sharing strategy, multi-task
learning can be categorized into hard parameter sharing based and
soft parameter sharing based [45]. Recent studies [12, 16, 34] have
successfully facilitated multiple tasks in lower neural network lay-
ers to guide the overall optimization. In this paper, we employ the
hierarchical multi-task learning framework by using hard parameter
sharing to integrate auxiliary tasks in different network layers.

7 CONCLUSION
In this paper, we proposed HMTRL, a unified route representation
learning framework for multi-modal transportation recommenda-
tion. We first constructed time-dependent multi-view transportation
graphs to characterize the structural and contextual information of
both hubs and links. Then, we proposed a spatiotemporal graph
neural network for collaborative learning of spatial and temporal
autocorrelation. After that, a coherent-aware self-attentive route rep-
resentation learning module is introduced to project arbitrary-length
routes into unified fixed-length route representation vectors, with
explicit modeling of route coherence from historical routes. More-
over, a hierarchical multi-task learning module is proposed to derive
mode-specific route representations for recommendation by integrat-
ing various supervision signals in different network layers. Finally,
extensive experimental results on two real-world datasets demon-
strated the performance of our approach consistently outperforms
eight state-of-the-art baselines.
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