
Time-Topology Analysis

Yunkai Lou1, Chaokun Wang1, Tiankai Gu1, Hao Feng1, Jun Chen2, Jeffrey Xu Yu3
1 School of Software, Tsinghua University, Beijing 100084, China

2 Baidu Inc., Beijing, China
3 The Chinese University of Hong Kong, Hong Kong, China

{louyk18,gtk18,fh20}@mails.tsinghua.edu.cn,chaokun@tsinghua.edu.cn,chenjun22@baidu.com,yu@se.cuhk.edu.hk

ABSTRACT

Many real-world networks have been evolving, and are finely mod-

eled as temporal graphs from the viewpoint of the graph theory.

A temporal graph is informative, and always contains two types

of information, i.e., the temporal information and topological in-

formation, where the temporal information reflects the time when

the relationships are established, and the topological information

focuses on the structure of the graph. In this paper, we perform

time-topology analysis on temporal graphs to extract useful infor-

mation. Firstly, a new metric named T-cohesiveness is proposed

to evaluate the cohesiveness of a temporal subgraph. It defines the

cohesiveness of a temporal subgraph from the time and topology di-

mensions jointly. Specifically, given a temporal graph G𝑠 = (𝑉𝑠 , E𝑠),

cohesiveness in the time dimension reflects whether the connec-

tions in G𝑠 happen in a short period of time, while cohesiveness

in the topology dimension indicates whether the vertices in 𝑉𝑠 are

densely connected and have few connections with vertices out of

G𝑠 . Then, T-cohesiveness is utilized to perform time-topology anal-

ysis on temporal graphs, and two time-topology analysis methods

are proposed. In detail, T-cohesiveness evolution tracking traces the

evolution of theT-cohesiveness of a subgraph, and combo searching

finds out all the subgraphs that contain the query vertex and have

T-cohesiveness larger than a given threshold. Moreover, a pruning

strategy is proposed to improve the efficiency of combo search-

ing. Experimental results confirm the efficiency of the proposed

time-topology analysis methods and the pruning strategy.

PVLDB Reference Format:

Yunkai Lou, Chaokun Wang, Tiankai Gu, Hao Feng, Jun Chen, Jeffrey Xu

Yu. Time-Topology Analysis. PVLDB, 14(13): 3322 - 3334, 2021.

doi:10.14778/3484224.3484230

1 INTRODUCTION

It is well known that real-world networks, from online social net-

works to protein-protein interaction networks, change with time

permanently. Usually, these evolving networks are finely modeled

as temporal graphs from the viewpoint of graph theory [17, 25].

A temporal graph consists of a set of vertices and temporal edges

among them, and always contains two types of information, i.e.,

the temporal information and topological information, where the

former reflects the time when the relationships are established

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.
doi:10.14778/3484224.3484230

A

B E

C D

Jan. 15

Jan. 16

Jan. 14

Jan. 14Jan. 15

Jan. 15

Jan. 15

Jan. 15 Jan. 15Jan. 13

Jan. 15

Jan. 10

Jan. 15

Jan. 10

…

Jan. 15

Jan. 15 Jan. 15

Jan. 15

F

K

L

H

I
J

Feb. 8

Feb. 8

Feb. 8

Feb. 9

Feb. 8

Feb. 8

Feb. 9

Feb. 9
Feb. 8 Feb. 8

Feb. 9

Feb. 9Feb. 8

Sept. 23

Aug. 4

Feb. 8

Jan. 15

Figure 1: A sample money transfer network.

[25], and the latter is the relationships among the vertices. Then,

it is of great significance to analyze the temporal graphs, so that

noteworthy information and substructures can be extracted.

There have been many methods for network/graph analysis, and

they can be mainly divided into three classes: For static graphs,

various community detection [2, 14, 23, 32, 40] and community

search [19, 21, 26, 28, 43] algorithms are proposed to find dense

subgraphs; For attributed graphs, algorithms are proposed to find

cohesive subgraphs according to the network structure and vertex

attributes [8, 20, 41, 44, 45]; For temporal graphs, existing methods

[11, 37, 46] always break down the graphs into snapshots first, and

then find dense subgraphs in the snapshots. However, these existing

methods never properly utilize the temporal information, and are

poor at discovering some interesting patterns in temporal graphs.

Example 1. Given a money transfer network shown in Figure 1,

the vertices and edges represent the accounts and the transactions

among them, respectively. There is a timestamp on each temporal edge

representing the start time of the corresponding transaction. A group

of accounts are cohesive, if they satisfy that (1) many transactions

occur among these accounts (density); (2) these accounts have few

relationships with the accounts out of the group (cohesion); (3) these

transactions occur in a short period of time (short-time). The obtained

cohesive accounts can help in many practical applications such as

money laundering detection [24] and risk management [31].

To find cohesive account groups with a given account (saying vertex

E), the existing methods usually have poor performances, since they

often utilize the temporal information improperly. For instance, based

on BZ [21], one of the state-of-the-art community search methods,

the induced subgraph of vertices A, B, C, D, E, F, H, I, J, K, and L is

returned (a kind of 𝑘-core structures). However, these accounts are

actually not cohesive, because the occurrence time of the transactions

among them differs greatly.

One intuitive idea is to partition the temporal network along the

time dimension by a sliding window with the step length 1 (i.e., one

minimum time unit), and then search for communities in each tempo-

ral graph within a time window (e.g., with a width of 30 time units).

3322

https://doi.org/10.14778/3484224.3484230
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3484224.3484230

0.7

0.8

0.9

1.0

Tc Tc-r1 Tc-r2 Tc-r3

D

Metric

(a) Average 𝐷s

0.1

0.3

0.5

0.7

0.9

Tc Tc-r1 Tc-r2 Tc-r3

R

Metric

(b) Average 𝑅s

1.5

2.5

3.5

4.5

5.5

Tc Tc-r1 Tc-r2 Tc-r3

T
(×

1
0
5
s)

Metric

(c) Average𝑇 s

Figure 2: The result of one ablation study on Col-7d. Given

a temporal graph G, for a cohesive subgraph G𝑠 = (𝑉𝑠 , E𝑠) of

G, 𝐷 is G𝑠 ’s density, 𝑅 is the ratio of |E𝑠 | to the number of

temporal edges (in G) adjacent to 𝑉𝑠 , and 𝑇 is G𝑠 ’s time span.

However, the number of time windows is so large that the overall time

cost of community search is prohibitive.

Furthermore, in a given time window, it is not easy to detect ideal

communities. With the time window of [Jan. 14, Jan. 16], the induced

subgraph of vertices A, B, C, D, and E is returned by BZ, and satisfies

Requirement 1 (density). Clearly, however, it violates Requirement 2

(cohesion), i.e. having more relationships with accounts outside the

community. In detail, plenty of transactions are related with Account

A (indeed, A is an account of a company that pays its employees on

Jan. 15), which indicates that A is not cohesive with B, C, D, and E.

In other words, BZ does not consider the density and the cohesion

together. Similar are the other existing methods.

The ideal result in Figure 1 is the induced subgraph of vertices

E, F, H, I, J, K, and L, i.e., G0. In order to find out such temporal

subgraphs (i.e. cohesive subgraphs) effectively, where vertices are

closely related in both the time and topology dimensions, we devise

a new technique named time-topology analysis.

In our time-topology analysis, the above three requirements are

all considered. The vertices in a qualified temporal subgraph should

be densely connected (Requirement 1) and have few connections

with vertices out of the subgraph (Requirement 2). Besides, the

edges in the subgraph should have close timestamps (Requirement

3). Clearly, as shown in Figure 1, the ideal subgraph cannot be found

just according to one of the requirements. For example, based on

Requirement 1 (saying 𝑘-core is used), the resultant subgraph is too

large and has a long time span if 𝑘 = 3, while there is no resultant

subgraph containing Vertex E if 𝑘 = 4. Then, Requirements 2 and 3

should also be considered to achieve the satisfactory result.

Next, given a temporal subgraph G𝑠 , three probabilities (i.e.,

𝜁intra, 𝜁inter, and 𝜁t) are defined to measure the cohesiveness of

G𝑠 from the viewpoints of these three requirements, separately.

Then, the overall probability of G𝑠 being cohesive (denoted as T-

cohesiveness, abbr. T𝑐) is proposed, which is the multiplication of

the three probabilities and measures the whole cohesiveness of G𝑠 .

As shown in Figure 2, the results of an ablation study demonstrate

that every requirement is important. Specifically, T𝑐 (the first bars

in Figure 2aś2c) represents the method we propose, and it considers

all the three requirements. T𝑐 -r1 (the second bars), T𝑐 -r2 (the third

bars), and T𝑐 -r3 (the fourth bars) are the methods ignoring 𝜁intra
(Requirement 1), 𝜁inter (Requirement 2), and 𝜁𝑡 (Requirement 3) ,

respectively. When T𝑐 -r1 is used to find cohesive subgraphs, the

obtained subgraphs have small values of 𝐷 as shown in Figure 2a,

and are sparse as well as not closely connected. When T𝑐 -r2 is used,

the obtained subgraphs have quite small values of 𝑅 (𝑅 ≈ 0.1) as

shown in Figure 2b, and they have much more connections with

Table 1: Notations used in this paper.
Notation Description

G = (𝑉 , E) a temporal graph with vertex set𝑉 and temporal edge set E
𝐼G (𝑉𝑠) the induced subgraph of vertex group𝑉𝑠 on G

𝐺𝑃
= (𝑉𝑃 , 𝐸𝑃) a projected graph

a combo
G𝑠 = (𝑉𝑠 , E𝑠)

an induced subgraph of𝑉𝑠 on G satisfying the constraints
of temporal cohesiveness and topological cohesiveness

G𝑙𝑠 = (𝑉 𝑙
𝑠 , E

𝑙
𝑠) the local structure of vertex group𝑉 𝑙

𝑠 w.r.t. G
𝑁 (𝑉𝑠) the neighbors of vertices in𝑉𝑠
𝑇 (G𝑠) the time span of G𝑠 , abbr. T

𝑅 (G𝑠)
𝑅 (G𝑠) = |E𝑠 |/ |E

𝑙
𝑠 |, the ratio of the number of temporal edges in

G𝑠 to that of temporal edges adjacent to vertices in𝑉𝑠 , abbr. R
𝐷 (G𝑠) the density of G𝑠 , abbr. D

𝜁𝑡 (G𝑠), 𝜁inter (G𝑠),
𝜁intra (G𝑠)

the TC score, InterTC score, and IntraTC score of G𝑠

T𝑐 (G𝑠) T𝑐 = 𝜁𝑡 (G𝑠) ∗ 𝜁inter (G𝑠) ∗ 𝜁intra (G𝑠) , the T-cohesiveness of G𝑠

ˆ︁𝜁𝑡 , ˆ︁𝜁inter, ˆ︁𝜁intra the upper bounds of 𝜁𝑡 , 𝜁inter and 𝜁intra

v2 v5

v3 v4

v8

v6

v7

June 8th
(95)

June 13th
(100)

June 11th
(98),

June 13th
(100)

June 12th
(99)

June 10th
(97)

June 9th
(96)

May 12th
(68)

June 12th
(99)

Mar. 5th
(0)

Mar. 6th
(1),

May 13th
(69),

May 15th
(71)

Mar. 6th
(1),

May 14th
(70)

May 12th
(68)

v1

June 11th
(98),

June 12th
(99)

June 8th
(95)

June 10th
(97) June 13th

(99)

Figure 3: An example of a temporal graph. The date on each

edge represents the day the interaction happens, and the

number in the parenthesis is the corresponding timestamp.

vertices out of the subgraphs. When T𝑐 -r3 is used, the obtained sub-

graphs have much larger 𝑇 s (shown in Figure 2c), which indicates

that they have much longer time spans and are not cohesive in the

time dimension. More details are given in Section 6.5 of the techni-

cal report w.r.t. this paper [27]. Then, T𝑐 is used in time-topology

analysis to evaluate the cohesiveness of temporal subgraphs.

The main contributions of this paper are summarized as follows:

(1) We are the first to perform time-topology analysis on tem-

poral graphs to the best of our knowledge. In the process of such

analysis, both temporal and topological information are considered.

(2) Some useful concepts are presented (in Section 2), and a new

evaluation metric named Temporal-and-Topological Cohesiveness

(abbr. T-cohesiveness) is proposed to evaluate the cohesiveness of

temporal subgraphs (in Section 3). T-cohesiveness takes both the

temporal and topological cohesiveness of a temporal subgraph into

account, and is utilized to perform time-topology analysis.

(3) Two time-topology analysis methods are proposed based on

T-cohesiveness, i.e., T-cohesiveness evolution tracking and combo

searching (in Section 4). Then, an optimization method is designed

to improve the efficiency of combo searching (in Section 5).

(4) Experimental results (in Section 6) confirm the efficiency and

good scalability of our proposed methods. The ablation study shows

the good performance of the proposed optimization method.

Because of the length limitation, some algorithms, proofs, and

experiments are omitted here, and detailed in [27].

2 PRELIMINARY

In this section, some necessary concepts are presented, and the

notations used in this paper are summarized in Table 1.

Definition 1 (Temporal Graph). A temporal graph is denoted

as G = (𝑉 , E), where 𝑉 is the set of vertices, and E is the set of

3323

temporal edges. Each temporal edge 𝑒 ∈ E is a triplet (𝑢, 𝑣, 𝑡), where

𝑢, 𝑣 ∈ 𝑉 , and 𝑡 is the timestamp that stores the interaction time of 𝑢

and 𝑣 . The minimal and maximal timestamps in G are denoted as

𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 respectively, and the time span of G is 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛 . A

subgraph of G is called a temporal subgraph.

Example 2. Figure 3 is a temporal graph. For instance, the temporal

edges between 𝑣2 and 𝑣3 are denoted as (𝑣2, 𝑣3, 98) and (𝑣2, 𝑣3, 100).

Besides, we have 𝑡𝑚𝑖𝑛 = 0 and 𝑡𝑚𝑎𝑥 = 100 for this graph.

Definition 2 (Induced Subgraph). Given a temporal graph

G = (𝑉 , E) and a vertex group 𝑉𝑠 , the induced subgraph of 𝑉𝑠 on G

is 𝐼G (𝑉𝑠) = (𝑉𝑠 , E𝑠), where E𝑠 = {(𝑢, 𝑣, 𝑡) |𝑢, 𝑣 ∈ 𝑉𝑠 , (𝑢, 𝑣, 𝑡) ∈ E}. It

can be abbreviated as 𝐼 (𝑉𝑠) when there is no ambiguity.

If the temporal information is neglected, a temporal graph re-

duces to a projected graph. The definition of a projected graph is

as follows.

Definition 3 (Projected Graph). Given a temporal graph G =

(𝑉 , E), the projected graph of G is 𝐺𝑃
= (𝑉 𝑃 , 𝐸𝑃), where 𝐸𝑃 =

{(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E}. Each (𝑢, 𝑣) ∈ 𝐸𝑃 is called a normal edge.

Definition 4 (Combo). Given a temporal graph G and a vertex

group 𝑉𝑠 , G𝑠 = 𝐼G (𝑉𝑠) is called a combo iff it satisfies: (1) Temporal

Cohesiveness: The timestamps of temporal edges in G𝑠 are in a short

period of time; (2) Topological Cohesiveness: Vertices in G𝑠 are

densely connected, and there are few temporal edges between a vertex

in G𝑠 and a vertex out of G𝑠 . Besides, 𝑉𝑠 is said to form the combo.

For simplicity, given a subgraph G𝑠 , the temporal edges in G𝑠
are called the intra-edges, and the temporal edges between a vertex

in G𝑠 and a vertex out of G𝑠 are called the inter-edges. Note that

the subgraphs in this paper are induced subgraphs if not specified.

Definition 5 (Local Structure). Given a temporal graph G =

(𝑉 , E) and a vertex group 𝑉𝑠 , the local structure of 𝑉𝑠 w.r.t. G, which

is denoted as G𝑙𝑠 = (𝑉 𝑙
𝑠 , E

𝑙
𝑠), satisfies that 𝑉

𝑙
𝑠 = 𝑉𝑠 ∪ 𝑁 (𝑉𝑠) and E

𝑙
𝑠

consists of all the temporal edges adjacent to vertices in 𝑉𝑠 , where

𝑁 (𝑉𝑠) represents the set of the neighbors of the vertices in 𝑉𝑠 .

3 T-COHESIVENESS

In this section, the main idea of Temporal-and-Topological Co-

hesiveness (T-cohesiveness) is proposed, the three terms of T-

cohesiveness, i.e., 𝜁t, 𝜁inter, and 𝜁intra, are detailed, and the method

to compute the T-cohesiveness of a temporal subgraph is explained.

3.1 Main Idea of T-cohesiveness

As T-cohesiveness is designed for evaluating the cohesiveness of a

temporal subgraph or combo G𝑠 , it should consider both the tem-

poral and topological information of G𝑠 . Firstly, the vertices in a

combo should be densely connected, and there should be few edges

between a vertex in the combo and a vertex out of the combo. Sec-

ondly, the creation time of the temporal edges in a combo should be

within a short period of time. Based on these considerations, we pro-

pose a novel evaluation metric named temporal-and-topological co-

hesiveness (abbr. T-cohesiveness) to evaluate temporal subgraphs.

Specifically, given a temporal graph G = (𝑉 , E) and a temporal

subgraph G𝑠 = (𝑉𝑠 , E𝑠) of G, the T-cohesiveness of G𝑠 , denoted as

T𝑐 (G𝑠), is defined as follows:

T𝑐 (G𝑠) = 𝜁𝑡 (G𝑠) ∗ 𝜁inter (G𝑠) ∗ 𝜁intra (G𝑠) (1)

Equation 1 consists of three terms multiplied together to obtain

the T-cohesiveness of G𝑠 . The first term 𝜁𝑡 is called the temporal

cohesiveness score. It reflects the temporal cohesiveness of G𝑠 , and

is in the range of (0, 1]. The second and third terms are called the

inter-topological cohesiveness score and intra-topological cohesive-

ness score respectively. They reflect the topological cohesiveness

of G𝑠 , and their values are in the range of [0, 1]. Specifically, 𝜁inter
reflects how much the intra-edges of G𝑠 are more than the inter-

edges, while 𝜁intra focuses on how densely the vertices in G𝑠 are

connected. The three terms can be considered as the probabilities of

G𝑠 being cohesive from three perspectives (temporal cohesiveness,

inter-topological cohesiveness, and intra-topological cohesiveness),

respectively, and the value of T-cohesiveness is the overall probabil-

ity that G𝑠 is cohesive. These three terms are multiplied rather than

summed in the form of 𝑎𝜁𝑡 + 𝑏𝜁inter + 𝑐𝜁intra mainly because a tem-

poral subgraph with a quite small 𝜁𝑡 , 𝜁inter, or 𝜁intra is not cohesive,

and then should have a quite small value of T-cohesiveness.

Then, the value of T𝑐 is in the range of [0, 1], and a larger T𝑐
indicates a more cohesive subgraph. Note that theT-cohesiveness of

a vertex group 𝑉𝑠 means the T-cohesiveness of 𝐼G (𝑉𝑠). The details

of 𝜁𝑡 , 𝜁inter, and 𝜁intra are presented in the following subsections.

3.2 Temporal Cohesiveness Score 𝜁𝑡
As proposed in Definition 4, the temporal cohesiveness of a sub-

graph reflects whether the edges in the subgraph are established in

a short period of time. In this subsection, the temporal cohesiveness

score 𝜁𝑡 (abbr. the TC score) is presented to measure the temporal

cohesiveness of a temporal subgraph. Specifically, 𝜁𝑡 of a subgraph

is defined based on the time span of the subgraph as follows:

𝜁𝑡 (G𝑠) =
1

1 + 𝑙𝑜𝑔
(︂

𝑒−1
𝑇0.5−𝑇1

∗
(︁
max(𝑇 (G𝑠),𝑇1) −𝑇1

)︁
+ 1

)︂ (2)

where 𝑇 (G𝑠) is the time span of G𝑠 , and can be abbreviated as

𝑇 when there is no ambiguity. 𝑇1 and 𝑇0.5 are user-specified. In

detail, temporal subgraphs with time spans 𝑇1 and 𝑇0.5 are set to

have the TC scores of 1 and 0.5 respectively in Equation 2. Besides,

max(𝑇,𝑇1) is used to ensure that a subgraph with a time span

shorter than 𝑇1 has a TC score of 1. 𝑒−1
𝑇0.5−𝑇1

is used to ensure that

𝜁𝑡 (G𝑠) = 0.5 when𝑇 = 𝑇0.5. Note that a shorter time span indicates

a more temporally-cohesive subgraph, and contributes to a larger

𝜁𝑡 . 𝜁𝑡 is defined in the form of 1

1+𝑙𝑜𝑔 (𝑥)
mainly for two reasons:

(1) The scoring function should have better distinguishing ability

when the time span is near 𝑇1. Therefore, its (absolute) gradient

should increase with the decrease of 𝑇 . (2) Equation 2 in the form

of 1

1+𝑙𝑜𝑔 (𝑥)
has larger (absolute) gradient than 1

1+
max(𝑇 ,𝑇1)−𝑇1

𝑇0.5−𝑇1

in the

form of 1

1+𝑥 when 𝑇 is near 𝑇1. The reasons for defining 𝜁inter and

𝜁intra in the form of 1

1+𝑙𝑜𝑔 (𝑥)
are similar and omitted for brevity.

Leaving two factors (i.e., 𝑇1 and 𝑇0.5) adjustable can make 𝜁𝑡
adaptive to different conditions. For example, in a coauthorship

graph, some researchers who coauthored papers only in a specific

year should be considered temporally cohesive, and we can set𝑇1 =

0 year. However, in a temporal graph representing money transfer,

a temporally cohesive subgraph should have a much shorter time

3324

span such as a week. Then, we can set 𝑇1 = 6 days to evaluate the

temporal cohesiveness of subgraphs in this temporal graph.

Example 3. We set 𝑇1 = 4 and 𝑇0.5 = 7, which means that if the

persons in a temporal subgraph contact in a time span of four days,

the TC score is 1, and if they contact in a time span of seven days, the

TC score is 0.5. As shown in Figure 3, let G𝑠 = 𝐼 ({𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}).

Then, the time span of G𝑠 is five days, and 𝜁𝑡 (G𝑠) = 0.69.

3.3 Inter-Topological Cohesiveness Score 𝜁inter
Inter-topological cohesiveness score 𝜁inter (abbr. the InterTC score)

focuses on the number of intra-edges comparedwith the inter-edges.

Specifically, if a temporal subgraph G𝑠 = (𝑉𝑠 , E𝑠) has much more

intra-edges than inter-edges, most of the temporal edges adjacent

to its vertices are in G𝑠 itself, and G𝑠 has a large InterTC score. The

ratio of the intra-edges in G𝑠 = (𝑉𝑠 , E𝑠) is computed as follows:

𝑅 (G𝑠) =
|E𝑠 |

|E𝑙𝑠 |
(3)

where |E𝑙𝑠 | represents the number of temporal edges in the local

structure of G𝑠 . 𝑅(G𝑠) is abbreviated as 𝑅 when there is no ambi-

guity. Then, the InterTC score of G𝑠 is defined as follows:

𝜁inter (G𝑠) =

⎧⎪⎪⎨
⎪⎪⎩

1

1+𝑙𝑜𝑔

(︃
𝑒−1

𝑅1−𝑅0.5
∗(𝑅1−min(𝑅 (G𝑠),𝑅1))+1

)︃ |E𝑠 | ≠ 0

0 |E𝑠 | = 0

(4)

where 𝑅1 and 𝑅0.5 are user-specified, and the temporal subgraphs

whose ratios of intra-edges are 𝑅1 and 𝑅0.5 are set to have the

InterTC scores of 1 and 0.5 respectively in Equation 4.

Example 4. Let 𝑅1 = 0.9 and 𝑅0.5 = 0.4. Given Figure 3, let G𝑠 =

𝐼 ({𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}). Then, 𝑅(G𝑠) =
12

15
and 𝜁inter (G𝑠) = 0.77.

3.4 Intra-Topological Cohesiveness Score 𝜁intra
The intra-topological cohesiveness score 𝜁intra (abbr. the IntraTC

score) evaluates how densely the vertices in the subgraph are con-

nected, and a denser structure contributes to a larger value of 𝜁intra.

Given a temporal subgraph G𝑠 = (𝑉𝑠 , E𝑠), a basic method to mea-

sure its density is to compute Density(G𝑠) =
2 |𝐸𝑃

𝑠 |

|𝑉𝑠 |∗(|𝑉𝑠 |−1)
, where

|𝐸𝑃𝑠 | is the number of edges in the projected graph of G𝑠 . However,

as the real-world temporal graphs are often sparse [9], the value of

Density is always small, and such definition of Density is inefficient

in distinguishing densely connected subgraphs in real scenes.

Therefore, it is proposed to evaluate the density of a graph with

𝑘-core [35]. 𝑘-core is a structure utilized in community search

algorithms [7, 21], and for a subgraph that is a 𝑘-core, the degree of

each vertex in it should be larger than 𝑘 − 1. As 𝑘-core can evaluate

whether vertices are closely engaged in the subgraph, a density

function 𝐷 is proposed based on the 𝑘-core structure as follows:

𝐷 (G𝑠) = 1 −

∑︁
𝑣∈𝑉𝑠

max

(︂
𝑘 − 𝑑𝑒𝑔

𝐺𝑃
𝑠
(𝑣), 0

)︂

|𝑉𝑠 | ∗ 𝑘
=

∑︁
𝑣∈𝑉𝑠

min

(︂
𝑘,𝑑𝑒𝑔

𝐺𝑃
𝑠
(𝑣)

)︂

|𝑉𝑠 | ∗ 𝑘
(5)

where 𝑑𝑒𝑔𝐺𝑃
𝑠
(𝑣) is the degree of 𝑣 in 𝐺𝑃

𝑠 , and G𝑠 is expected to be

a 𝑘-core. 𝐷 (G𝑠) is abbreviated as 𝐷 when there is no ambiguity. In

this definition,
∑︁

𝑣∈𝑉𝑠

max

(︂
𝑘 − 𝑑𝑒𝑔𝐺𝑃

𝑠
(𝑣), 0

)︂
is the minimum degrees

necessary to convert G𝑠 into a 𝑘-core. Therefore, the density of

a temporal subgraph is defined as the ratio of the actual sum of

degrees in G𝑠 to the minimum sum of degrees when G𝑠 is a 𝑘-

core. The value of 𝐷 is in the range of [0, 1], and a larger value of

𝐷 indicates a denser subgraph. Then, the IntraTC score of G𝑠 is

defined as follows:

𝜁intra (G𝑠) =

⎧⎪⎪⎨
⎪⎪⎩

1

1+𝑙𝑜𝑔

(︃
𝑒−1

𝐷1−𝐷0.5
∗(𝐷1−min(𝐷 (G𝑠),𝐷1))+1

)︃ |E𝑠 | ≠ 0

0 |E𝑠 | = 0

(6)

where 𝐷1 and 𝐷0.5 are user-specified, and the temporal subgraphs

whose densities are 𝐷1 and 𝐷0.5 are set to have the IntraTC scores

of 1 and 0.5 respectively in Equation 6.

Example 5. Let 𝑘 = 3, 𝐷1 = 1, and 𝐷0.5 =
2

3
. It indicates that the

IntraTC score of a 3-core is 1, and that of a temporal subgraph whose

vertices all have 2 neighbors is 0.5. For G𝑠 = 𝐼 ({𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}) in

Figure 3, because G𝑠 is a 4-core, 𝜁intra (G𝑠) = 1.

3.5 Computation of T-cohesiveness

The computeTC(G,G𝑠) algorithm is proposed to compute the T-

cohesiveness of a temporal subgraph G𝑠 in G. Specifically, 𝜁𝑡 (G𝑠),

𝜁inter (G𝑠), and 𝜁intra (G𝑠) are first computed according to Equations

2, 4, and 6, respectively. Next, the T-cohesiveness of G𝑠 can be

computed with 𝜁𝑡 (G𝑠) ∗ 𝜁inter (G𝑠) ∗ 𝜁intra (G𝑠). With our carefully

designed data structure [27], the time complexities of computing

these three scores are𝑂 (|𝑉𝑠 |), and that of computeTC is also𝑂 (|𝑉𝑠 |).

Example 6. As shown in Figure 3, givenG𝑠 = 𝐼 ({𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}),

it is obtained that 𝜁𝑡 (G𝑠) = 0.69, 𝜁inter (G𝑠) = 0.77, and 𝜁intra = 1.

Then, we have T𝑐 (G𝑠) = 0.53.

3.6 T-cohesiveness for Directed Graphs

The previously proposed T-cohesiveness is for undirected graphs,

and it can also be generalized to deal with directed graphs. The

main idea is to convert the directed graphs into undirected graphs

with some constraints. For example, in a money transfer network,

if there is a directed temporal edge between two accounts, the

temporal edge is considered to represent a transaction between

these two accounts, and the direction of the temporal edge can

be omitted. Then, the graph can be converted into an undirected

graph. For another example, in a Twitter network, we consider two

users to be friends if and only if they follow each other. Then, an

undirected graph that represents the friendships can be obtained.

Note that this method is applied in the preprocessing step. After

the directed graphs are converted to the undirected graphs, the

T-cohesiveness can be easily applied to evaluate their combos.

4 TIME-TOPOLOGY ANALYSIS METHODS

As T-cohesiveness is related to the time and topology dimensions,

we conduct time-topology analysis on temporal graphs with it. The

idea is partially inspired by the time-frequency analysis technique

of signal processing. In this section, two typical time-topology

analysis methods are proposed, namely, T-cohesiveness evolution

tracking (Subsection 4.1) and combo searching (Subsection 4.2).

4.1 T-cohesiveness Evolution Tracking

The analysis of T-cohesiveness evolution tracking traces the evolu-

tion of the T-cohesiveness of a given group of vertices as time goes.

3325

v1 v4

v2

v3

3

13

12

11
 6, 14, 15

6, 8 v5
15

5, 11

(a) An example of tem-

poral graph.

v1 v4

v2

v3

3 6

6 v5
5

(b) The temporal graph

of the first week.

v1 v4

v2

v3
13

12

11
14

8 v5
11

(c) The temporal graph

of the second week.

v1 v4

v2

v3

15

v5
15

(d) The temporal graph

of the third week.

0.2

0.6

1.0

1 2 3

T
-c

o
h
e
s
iv

e
n
e
s
s

k-th week

0.71

0.27 0.25

(e) T-cohesiveness of

{𝑣2, 𝑣3, 𝑣4 } in (a).

Figure 4: An example of performing T-cohesiveness evolution tracking on a temporal graph.

Algorithm 1: T-cohesiveness Evolution Tracking

Input: G = (𝑉 , E) : a temporal graph,𝑉𝑠 : a group of vertices, 𝑤: the width of the time
window, 𝑠𝑡 : the step length of the time window

Output: Γ: the list of the T-cohesiveness of𝑉𝑞 in all the time windows

1 𝑡𝑠 ← 𝑡𝑚𝑖𝑛 , 𝑡𝑒 ← 𝑡𝑚𝑖𝑛 + 𝑤 // the start and end timestamp of the first time window

2 while 𝑡𝑠 < 𝑡𝑚𝑎𝑥 do
3 G𝑡 ← temporal subgraph of G with all the edges whose timestamps are in [𝑡𝑠 , 𝑡𝑒]

4 G𝑠 ← 𝐼G𝑡 (𝑉𝑠)

5 T𝑐 ← computeTC(G, G𝑠)

6 Γ.push(T𝑐)

7 𝑡𝑠 ← 𝑡𝑠 + 𝑠𝑡 , 𝑡𝑒 ← 𝑡𝑠 + 𝑤

8 return Γ

It has practical significance and wide applications such as tracking

the evolution of organizations and detecting money launderers.

Algorithm 1 shows the process ofT-cohesiveness evolution track-

ing. Specifically, the vertex group is fixed, and the time dimension

is changing. The time complexity of Algorithm 1 is O(|E | +𝑁𝑤 |𝑉𝑠 |),

where 𝑁𝑤 represents the number of windows. Besides, the space

complexity of Algorithm 1 is O(|𝑉𝑠 | + |𝑉 | + |E | + 𝑁𝑤).

Example 7. The analysis of T-cohesiveness evolution tracking is

illustrated with Figure 4. In Figure 4a, each vertex is a person, and

the timestamp on an edge is the day the adjacent persons contact.

Specifically, 𝑉𝑠 = {𝑣2, 𝑣3, 𝑣4} is chosen as the vertex group, and the

windowwidth and step length are both set seven days (a week). Besides,

we set 𝑇1 = 3, 𝑇0.5 = 6, 𝑅1 = 0.9, 𝑅0.5 = 0.4, 𝑘 = 2, 𝐷1 = 1, and

𝐷0.5 = 0.5. Then, the result of T-cohesiveness evolution tracking is

shown in Figure 4e. 𝑣2, 𝑣3, and 𝑣4 are cohesive in the first week (Figure

4b), because these vertices form a 2-core (𝜁intra = 1), and there is only

one inter-edge (𝜁inter = 0.71). Moreover, the timestamps among them

are in a short period of time (𝜁𝑡 = 1). In the second week (Figure 4c), 𝑣2,

𝑣3, and 𝑣4 are not cohesive, because the timestamps among them are

dispersed (𝜁t = 0.50), and there are many inter-edges (𝜁inter = 0.54).

Besides, in the third week (Figure 4d), 𝑣2, 𝑣3, and 𝑣4 are not cohesive,

since the ratio of the intra-edges is still small (𝜁inter = 0.54), and the

degrees of these three vertices are at most 1 (𝜁intra = 0.46).

4.2 Combo Searching

Given a temporal graph G, a query vertex 𝑣 , a T-cohesiveness

threshold 𝛾 , and a number 𝑛, the analysis of combo searching aims

to find 𝑛 combos, whose T-cohesiveness values are at least 𝛾 . Dif-

ferent from T-cohesiveness evolution tracking, in combo searching,

the time dimension is fixed, i.e. all the temporal edges in G are

considered, while the topology dimension (the vertex group) is

changing. In this subsection, we first propose an index called Edge-

Clustered List to efficiently store the temporal edges (Subsection

4.2.1). Then, the algorithm for combo searching is presented (Sub-

section 4.2.2).

4.2.1 Edge-Clustered List Index. In combo searching, various vertex

groups are generated, and their T-cohesiveness values are evaluated

separately to check whether they are combos. As the induced sub-

graph is considered when the T-cohesiveness of a vertex group is

computed, all the temporal edges between two vertices are always

processed together. Therefore, an index named Edge-Clustered List

(abbreviated as the ECL index), is proposed to store temporal graphs

efficiently. An example of an ECL index is shown in Figure 5.

The basic unit of the ECL index is a clustered edge, which con-

tains the statistics of the temporal edges between two vertices.

These two vertices are called adjacent to the clustered edge, and

the temporal edges are said to belong to the clustered edge. The

structure of a clustered edge 𝑒𝑐 is shown in Figure 5a, and it con-

sists of five items. First, 𝑒𝑐 records its adjacent vertices in node1

and node2. Second, maxtime and mintime represent the maximal

and minimal timestamps of the temporal edges belonging to 𝑒𝑐 ,

respectively. Besides, 𝑒𝑐 stores the number of the temporal edges

belonging to it in num.

For every two vertices with at least one temporal edge between

them, a clustered edge is generated. Then, all the clustered edges

are ordered in ascending order of their maximal timestamps (the

value ofmaxtime). For each vertex𝑢, 𝐸𝐶𝐿(𝑢) stores all the clustered

edges adjacent to 𝑢. With the ECL index, the T-cohesiveness of the

temporal subgraphs can be obtained with the clustered edges di-

rectly in combo searching, instead of traversing the temporal edges.

For instance, when the time span of a temporal subgraph G𝑠 is com-

puted, the timestamps on all the temporal edges should be collected.

However, with the ECL index, only the clustered edges are needed

to be traversed, and the time cost is reduced. Moreover, given a

temporal graph G = (𝑉 , E), the memory cost of its ECL index is

𝑂 (|𝐸𝑃 |), which is much lower than that of G (i.e., 𝑂 (|E |)). There-

fore, when the temporal graph is too large to be stored in memory,

we can just store the ECL index to perform combo searching.

Example 8. The ECL index built on Figure 3 is shown in Figure

5b, and 16 clustered edges are generated.

4.2.2 Algorithm for Combo Searching. The CS algorithm that per-

forms combo searching is detailed in Algorithm 2. Firstly, Line 1

computes the time span that makes TC score 𝜁𝑡 = 𝛾 , and it is noted

that every subgraph with a time span longer than maxspan should

have a value of T𝑐 smaller than 𝛾 , and can never be a combo.

Because each combo is an induced subgraph of a vertex group, in

Algorithm 2, different vertex groups are traversed, and it is checked

whether their induced subgraphs are combos. The vertex groups

are organized with a priority queue 𝑄 , and the vertex group with

the maximal value of T-cohesiveness is at the top of 𝑄 . The vertex

group with the query vertex only and the T-cohesiveness of the

vertex group (i.e.,({𝑣}, 0)) is first added into 𝑄 (Line 3). Then, the

3326

3327

The time span of 𝐼 (cur) is 32 days, so the time span of 𝐼 (𝑐𝑢𝑟) is no

shorter than 32 days, and the TC score of 𝐼 (𝑐𝑢𝑟) is smaller than 𝛾 .

Because 𝑐𝑢𝑟 can be any supergroup of cur, the T-cohesiveness values

of all the supergroups of cur are smaller than 𝛾 . It indicates that cur

is an invalid vertex group and should not be pushed into 𝑄 .

Therefore, in this section, for each vertex group cur generated,

the upper bound of the T-cohesiveness of cur’s supergroups is

computed, and the upper bound is denoted as ˆ︁T𝑐 . If ˆ︁T𝑐 is smaller

than 𝛾 , then cur is an invalid vertex group, and should be dropped.

As defined in Equation 1, T-cohesiveness consists of three terms:

𝜁𝑡 , 𝜁inter, and 𝜁intra. Therefore, for each vertex group cur, the upper

bounds of 𝜁𝑡 , 𝜁inter, and 𝜁intra of its supergroups, denoted asˆ︁𝜁𝑡 ,ˆ︁𝜁inter,
and ˆ︁𝜁intra respectively, are first computed (Subsections 5.1ś5.3), and

then ˆ︁T𝑐 of cur’s supergroups is obtained (Subsection 5.4).

5.1 Computation of ˆ︁𝜁𝑡
Given a vertex group cur and a supergroup 𝑐𝑢𝑟 of cur, because the

temporal edges in 𝐼 (cur) is a subset of the temporal edges in 𝐼 (𝑐𝑢𝑟),

we have the following theorem.

Theorem 2. The TC score of a vertex group is no smaller than

those of its supergroups.

It means that when the given vertex group cur is extended to

generate one of its supergroups 𝑐𝑢𝑟 , the TC score of 𝐼 (𝑐𝑢𝑟) is no

larger than that of cur. Therefore, we have ˆ︁𝜁𝑡 = 𝜁𝑡 (𝐼 (cur)).

Example 11. In Figure 3, suppose cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, because

the time span of 𝐼 (cur) is five days, ˆ︁𝜁𝑡 = 𝜁𝑡 (𝐼 (cur)) = 0.69.

5.2 Computation of ˆ︁𝜁inter
As shown in Equation 4, the upper bound of 𝜁inter is determined

by that of 𝑅 (denoted as ˆ︁𝑅). Therefore, the problem of computing
ˆ︁𝜁inter becomes to compute the value of ˆ︁𝑅. In this subsection, we

first propose some concepts, and then analyze the value of ˆ︁𝑅.
Definition 7 (Sound Clustered Edge). Given temporal graph

G, vertex group cur, and vertex 𝑢 ∉ cur, a clustered edge 𝑒𝑐 adja-

cent to 𝑢 is sound w.r.t. cur iff it satisfies (1) temporal constraint:

max(maxt, 𝑒𝑐 .maxtime)−min(mint, 𝑒𝑐 .mintime) ≤ maxspan, where

maxt and mint are the maximal and minimal timestamps of 𝐼 (cur)

respectively; (2) vertex constraint: 𝑒𝑐 .node1 and 𝑒𝑐 .node2 are not

invalid neighbors of vertices in cur. Otherwise, 𝑒𝑐 is unsound.

For a vertex 𝑣𝑖 ∉ cur, 𝑁
𝑐 (𝑣𝑖)

sound
and 𝑁

𝑐 (𝑣𝑖)

unsound
represent the number

of sound and unsound clustered edges (w.r.t. cur) adjacent to 𝑣𝑖 ,

respectively. Note that for each supergroup 𝑐𝑢𝑟 of cur, if 𝐼 (𝑐𝑢𝑟) con-

tains a temporal edge belonging to an unsound clustered edge, we

have 𝜁𝑡 (𝐼 (𝑐𝑢𝑟)) < 𝛾 , and then T𝑐 (𝐼 (𝑐𝑢𝑟)) < 𝛾 . Such supergroups

cannot make cur valid and are negligible in estimating the ˆ︁T𝑐 value
of cur. Therefore, these supergroups are omitted, and the super-

groups mentioned in the rest of this paper are those whose induced

subgraphs do not have unsound clustered edges w.r.t. cur.

Definition 8 (Sound Edges). Given a temporal graphG, a vertex

group cur, and a vertex 𝑢 ∉ cur, a temporal edge 𝑒 adjacent to 𝑢 is

sound w.r.t. cur if and only if the clustered edge to which 𝑒 belongs is

sound. Otherwise, 𝑒 is an unsound edge.

Algorithm 3: ComputeMaxTC

Input: G = (𝑉 , E) : a temporal graph, cur : a vertex group, ECL: ECL index on G, 𝛾 : the
threshold of T-cohesiveness, maxspan: the maximal time span a combo can have

Output: ˆ︁T𝑐 : the upper bound of the T-cohesiveness of the supergroups of cur

1 ˆ︁𝜁𝑡 = ComputeZetaT(G, cur) //Compute ˆ︁𝜁𝑡 , quit if ˆ︁𝜁𝑡 < 𝛾

2 validv, invalidv← GetValidNeighbors(G, cur, maxspan, ECL)

3 ˆ︁𝜁inter = ComputeZetaInter(G, cur, ECL, maxspan, invalidv) //quit if ˆ︁𝜁inter < 𝛾

4 ˆ︁𝜁intra = ComputeZetaIntra(G, cur, ECL, maxspan, invalidv) //quit if ˆ︁𝜁intra < 𝛾

5 ˆ︁T𝑐 = ˆ︁𝜁𝑡 ∗ ˆ︁𝜁inter ∗ ˆ︁𝜁intra // Compute the upper bound of the T-cohesiveness

6 return ˆ︁T𝑐

For a vertex 𝑣𝑖 ∉ cur, 𝑁
(𝑣𝑖)

sound
represents the number of sound

edges w.r.t. cur adjacent to 𝑣𝑖 , and 𝑁
(𝑣𝑖)

unsound
represents the number

of unsound edges adjacent to 𝑣𝑖 . The unsound edges w.r.t. cur should

never appear in the induced subgraph of any supergroup of cur.

Example 12. In Figure 3, suppose cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4} and maxs-

pan = 7 days. For vertex 𝑣5 ∉ cur, the clustered edge between 𝑣5
and 𝑣6 is unsound, because 𝑣6 is an invalid neighbor of vertices in

cur. Then, (𝑣5, 𝑣6, 68) is an unsound edge. Besides, the other clustered

edges adjacent to 𝑣5 are sound, therefore, temporal edges (𝑣1, 𝑣5, 100),

(𝑣2, 𝑣5, 97), (𝑣3, 𝑣5, 99), (𝑣4, 𝑣5, 99), and (𝑣5, 𝑣8, 99) are sound edges

w.r.t. cur. For vertex 𝑣7, the clustered edges adjacent to 𝑣7 are both

unsound clustered edges, because they violate the temporal constraint.

Therefore, the five temporal edges adjacent to 𝑣7 are all unsound edges.

Theorem 3. Given G = (𝑉 , E) and a vertex group cur ⊂ 𝑉 , sup-

pose 𝑣𝑛1
, · · · , 𝑣𝑛𝑠 are all the vertices in𝑉− cur, and satisfy

𝑁
(𝑣𝑛1)

sound

𝑁
(𝑣𝑛1)

unsound

≥

· · · ≥
𝑁
(𝑣𝑛𝑠)

sound

𝑁
(𝑣𝑛𝑠)

unsound

. Then, if
𝑁
(𝑣𝑛1)

sound

𝑁
(𝑣𝑛1)

unsound

≥
|Ecur |

|E𝑙cur |
, ˆ︁𝑅 =

|Ecur |+
∑︁

1≤ 𝑗≤𝑖
𝑁
(𝑣𝑛𝑖)

sound

|E𝑙cur |+
∑︁

1≤ 𝑗≤𝑖
𝑁
(𝑣𝑛𝑖)

unsound

, where

𝑣𝑛𝑖 is the first vertex in 𝑣𝑛1
, · · · , 𝑣𝑛𝑠 satisfying

|Ecur |+
∑︁

1≤ 𝑗≤𝑖
𝑁
(𝑣𝑛𝑖)

sound

|E𝑙cur |+
∑︁

1≤ 𝑗≤𝑖
𝑁
(𝑣𝑛𝑖)

unsound

≥
𝑁
(𝑣𝑛𝑖+1)

sound

𝑁
(𝑣𝑛𝑖+1)

unsound

. Otherwise, ˆ︁𝑅 = max(
|Ecur |+𝑁

(𝑣𝑛1)

sound

|E𝑙cur |+𝑁
(𝑣𝑛1)

unsound

, · · · ,
|Ecur |+𝑁

(𝑣𝑛𝑠)

sound

|E𝑙cur |+𝑁
(𝑣𝑛𝑠)

unsound

) .

According to Theorem 3, ˆ︁𝜁inter = 1

1+𝑙𝑜𝑔 (𝑒−1
𝑅1−𝑅0.5

∗(𝑅1−min(ˆ︁𝑅,𝑅1))+1)
.

Example 13. In Figure 3 (i.e. G = (𝑉 , E)), let cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4}.

Then, |Ecur | = 8, |E𝑙cur | = 13, and maxspan = 7. For the vertices

in 𝑉−cur,
𝑁
(𝑣5)

sound

𝑁
(𝑣5)

unsound

=
5

1
,

𝑁
(𝑣6)

sound

𝑁
(𝑣6)

unsound

=
0

6
,

𝑁
(𝑣7)

sound

𝑁
(𝑣7)

unsound

=
0

5
, and

𝑁
(𝑣8)

sound

𝑁
(𝑣8)

unsound

=
1

3
.

Therefore, ˆ︁𝑅 =
8+5
13+1 = 0.93, and ˆ︁𝜁inter = 1.

Moreover, let cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, we have |Ecur | = 12, |E𝑙cur | =

15, and 𝑉−cur = {𝑣6, 𝑣7, 𝑣8}. Then,
|Ecur |+𝑁

(𝑣𝑛8)

sound

|E𝑙cur |+𝑁
(𝑣𝑛8)

unsound

is the maximal, ˆ︁𝑅 =

12+1
15+3 = 0.72, and ˆ︁𝜁inter = 0.68.

5.3 Computation of ˆ︁𝜁intra
In Equation 6,ˆ︁𝜁intra is determined by the upper bound of𝐷 (denoted

as ˆ︁𝐷), and ˆ︁𝐷 can be obtained with the following theorem.

Theorem 4. Given G = (𝑉 , E), a vertex group cur ⊂ 𝑉 , and core

number𝑘 , suppose 𝑣𝑛1
,· · · ,𝑣𝑛𝑠 are all the vertices in𝑉−cur, and satisfy

3328

Table 2: Statistics of Datasets

Dataset |𝑉 | |𝐸 | |E | T Dataset |𝑉 | |𝐸 | |E | T

Col-1d 1,899 102 314 1d Cont-7d 10,972 7,170 110,134 7d
Col-7d 1,899 326 1,838 7d Cont-30d 10,972 18,164 322,268 30d
Col-30d 1,899 1,069 6,646 30d Dblp-4y 364,605 1,032,437 2,700,430 4y
Email-1d 986 592 1,904 1d Syn1000 1,000 1,270 1,295 1d
Email-7d 986 1,258 6,488 7d Syn10000 10,000 9,345 10,461 1d
Email-30d 986 1,938 13,942 30d Syn100000 100,000 627,798 838,121 1d
Cont-1d 10,972 3,003 35,994 1d Syn1𝑀 1,000,000 7,789,875 11,442,996 1d

min(𝑘,𝑁
𝑐 (𝑣𝑛1)

sound
)

𝑘 ≥ · · · ≥
min(𝑘,𝑁

𝑐 (𝑣𝑛𝑠)

sound
)

𝑘 . Let 𝐶 =
∑︁

𝑣∈cur
min(𝑘, 𝑁

𝑐 (𝑣)

sound
) . If

min(𝑘,𝑁
𝑐 (𝑣𝑛1)

sound
)

𝑘 ≥ 𝐶
|cur|∗𝑘

, ˆ︁𝐷 =

𝐶+
∑︁

1≤ 𝑗≤𝑖
min(𝑘,𝑁

𝑐 (𝑣𝑛𝑗)

sound
)

|cur|∗𝑘+𝑖∗𝑘
, where 𝑣𝑛𝑖 is the first

vertex in 𝑣𝑛1
, · · · , 𝑣𝑛𝑠 satisfying

𝐶+
∑︁

1≤ 𝑗≤𝑖
min(𝑘,𝑁

𝑐 (𝑣𝑛𝑗)

sound
)

|cur|∗𝑘+𝑖∗𝑘
≥

min(𝑘,𝑁
𝑐 (𝑣𝑛𝑖+1)

sound
)

𝑘 .

Otherwise, ˆ︁𝐷 = max(
𝐶+min(𝑘,𝑁

𝑐 (𝑣𝑛1)

sound
)

|cur|∗𝑘+𝑘
, · · · ,

𝐶+min(𝑘,𝑁
𝑐 (𝑣𝑛𝑠)

sound
)

|cur|∗𝑘+𝑘
) .

According to Theorem 4, ˆ︁𝜁intra= 1

1+𝑙𝑜𝑔 (𝑒−1
𝐷1−𝐷0.5

∗(𝐷1−min(ˆ︁𝐷,𝐷1))+1)
.

Example 14. In Figure 3, let cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4}. Then, 𝐶 = 12,

𝐶
|cur |∗𝑘

= 1. For vertices in𝑉−cur,
min(𝑘,𝑁

𝑐 (𝑣5)

sound
)

𝑘
=

3

3
,
min(𝑘,𝑁

𝑐 (𝑣6)

sound
)

𝑘
=

min(𝑘,𝑁
𝑐 (𝑣7)

sound
)

𝑘
=

0

3
, and

min(𝑘,𝑁
𝑐 (𝑣8)

sound
)

𝑘
=

1

3
. Then, ˆ︁𝐷 = 1 and ˆ︁𝜁intra = 1.

Moreover, suppose that cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, we have 𝐶 = 15

and 𝐶
|cur |∗𝑘

= 1. Then,𝑉−cur = {𝑣6, 𝑣7, 𝑣8}. Since
min(𝑘,𝑁

𝑐 (𝑣8)

sound
)

𝑘
is the

maximal, ˆ︁𝐷 =
15+1
5∗3+3 = 0.89, and ˆ︁𝜁intra = 0.69.

Lemma 1. Vertex groups withmin(ˆ︁𝜁t,ˆ︁𝜁inter,ˆ︁𝜁intra) < 𝛾 are invalid.

5.4 T-cohesiveness Upper Bound

With ˆ︁𝜁𝑡 , ˆ︁𝜁inter, and ˆ︁𝜁intra analyzed above, an algorithm named Com-

puteMaxTC (Algorithm 3) is proposed to compute theT-cohesiveness

upper bound of the supergroups of a given vertex group.

The time complexities of ComputeZetaT, ComputeZetaInter, and

ComputeZetaIntra are 𝑂 (|𝐸𝑃 |), 𝑂 (|𝐸𝑃 | + |𝑉 |), and 𝑂 (|𝐸𝑃 | + |𝑉 |),

respectively. Then, that of Algorithm 3 is 𝑂 (|𝐸𝑃 | + |𝑉 |).

Example 15. Given Figure 3, suppose that cur = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}

is obtained at Line 9 of Algorithm 2. When ComputeMaxTC is invoked

at Line 18, we obtain that ˆ︁𝜁𝑡 = 0.69, ˆ︁𝜁inter = 0.68 and ˆ︁𝜁intra = 0.69,
ˆ︁T𝑐 = 0.32 < 𝛾 = 0.5. Therefore, the supergroups of cur cannot form a

combo, and cur is not inserted into 𝑄 .

6 EXPERIMENTS

In this section, datasets and parameter configurations used in the

experiments are first introduced in Section 6.1. Then, the results

of the performance evaluation, memory cost evaluation, ablation

study, scalability evaluation, parameter sensitivity, and case study

are reported and analyzed in Sections 6.2ś6.7.

6.1 Experimental Setting

Ten real-world datasets and four synthetic datasets are used in

our experiments. The real-world datasets are extracted from Col-

legeMsg [29], Email [30], Contact [34], and DBLP networks. Col-

legeMsg is a messaging network at a university, and Email is

Table 3: Configurations of Parameters

CF. ID (𝑇1,𝑇0.5) (𝑅1, 𝑅0.5) (𝑘, 𝐷1, 𝐷0.5) CF. ID (𝑇1,𝑇0.5) (𝑅1, 𝑅0.5) (𝑘, 𝐷1, 𝐷0.5)

1 (*) (0.5d, 1d) (0.9, 0.4) (2, 1, 0.5) 15 (*) (14d, 28d) (0.9, 0.3) (2, 1, 0.5)
2 (0.4d, 1d) (0.9, 0.4) (2, 1, 0.5) 16 (13d, 28d) (0.9, 0.3) (2, 1, 0.5)
3 (0.5d, 0.9d) (0.9, 0.4) (2, 1, 0.5) 17 (14d, 27d) (0.9, 0.3) (2, 1, 0.5)
4 (0.5d, 1d) (0.95, 0.4) (2, 1, 0.5) 18 (14d, 28d) (0.95, 0.3) (2, 1, 0.5)
5 (0.5d, 1d) (0.9, 0.5) (2, 1, 0.5) 19 (14d, 28d) (0.9, 0.35) (2, 1, 0.5)
6 (0.5d, 1d) (0.9, 0.4) (3, 1, 2/3) 20 (14d, 28d) (0.9, 0.3) (3, 1, 2/3)
7 (0.5d, 1d) (0.9, 0.4) (2, 0.95, 0.5) 21 (14d, 28d) (0.9, 0.3) (2, 0.95, 0.5)

8 (*) (4d, 7d) (0.9, 0.4) (2, 1, 0.5) 22 (*) (0y, 2y) (0.9, 0.3) (2, 1, 0.5)
9 (3.5d, 7d) (0.9, 0.4) (2, 1, 0.5) 23 (1y, 2y) (0.9, 0.3) (2, 1, 0.5)
10 (4d, 6d) (0.9, 0.4) (2, 1, 0.5) 24 (0y, 1y) (0.9, 0.3) (2, 1, 0.5)
11 (4d, 7d) (0.95, 0.4) (2, 1, 0.5) 25 (0y, 2y) (0.95, 0.3) (2, 1, 0.5)
12 (4d, 7d) (0.9, 0.5) (2, 1, 0.5) 26 (0y, 2y) (0.9, 0.35) (2, 1, 0.5)
13 (4d, 7d) (0.9, 0.4) (3, 1, 2/3) 27 (0y, 2y) (0.9, 0.3) (3, 1, 2/3)
14 (4d, 7d) (0.9, 0.4) (2, 0.95, 0.5) 28 (0y, 2y) (0.9, 0.3) (2, 0.95, 0.5)

an email network from a European research institute. Contact is

a human contact network, where the temporal edges represent

the proximity of persons. DBLP records the coauthorships among

researchers. There is an edge between two researchers if they coau-

thor an article, and the timestamp on this edge is the publishing

year of this article. Directed temporal graphs are converted into

undirected versions by considering the directed edges as undirected

relationships (e.g., a directed edge in Email represents a communi-

cation between two persons) as stated in Section 3.6.

Taking Col-1d as an example, it is generated in the following

steps: (1) Put all the vertices of CollegeMsg into Col-1d; (2) Set a

start timestamp 𝑡𝑠 and add all the temporal edges with existing

timestamps in the range of [𝑡𝑠 , 𝑡𝑠 + 86400 seconds] into Col-1d. The

other nine real-world datasets are generated in the similar way.

The synthetic datasets are generated in two steps. Specifically,

normal graphs without timestamps are first generated, and then

the randomly generated timestamps in the range of [1, 86400] are

assigned to the edges. The unit of timestamp is second.

Table 2 shows the statistics of the datasets, where |𝑉 |, |𝐸 |, and |E |

are the numbers of vertices, normal edges, and temporal edges in

the temporal graph, respectively. T is the time span of the temporal

graph. ‘d’ and ‘y’ are the short forms of ‘day’ and ‘year’, respectively.

Besides, for Dblp-4y, the unit of timestamp is one year, while for

each of the other datasets, the unit of timestamp is one second.

Moreover, the used parameter configurations (abbreviated as

CF.) are shown in Table 3. Every seven configurations compose

a group, and the first one in a group is the base and marked as

ł(*)ž. For example, CF. 1śCF. 7 form a group, and CF. 1 is the base.

Specifically, CF. 2śCF. 7 are obtained by changing the values of 𝑇1,

𝑇0.5, 𝑅1, 𝑅0.5, 𝑘 , and𝐷1 of CF. 1, respectively. The changed terms are

bold. Note that 𝐷0.5 is set based on 𝑘 to make a temporal subgraph,

whose vertices all have 𝑘-1 neighbors, have an IntraTC score of 0.5.

Our experiments are carried out on a server with Intel Xeon

E5-2650 2.0GHz CPU and 256GB RAM.

6.2 Performance Evaluation

The performances of the proposed two time-topology analysis meth-

ods are evaluated on real-world datasets. The parameter configura-

tions used on the datasets with the time spans of 7d and 30d are

CF. 8 and CF. 15, respectively, and that on Dblp-4y is CF. 22. The

experimental results on Col-1d, Email-1d, and Cont-1d are omitted

due to the length limitation.

3329

3330

3331

3332

3333

REFERENCES
[1] Esra Akbas and Peixiang Zhao. 2017. Truss-based community search: a truss-

equivalence based indexing approach. Proceedings of the VLDB Endowment 10,
11 (2017), 1298ś1309.

[2] V. D. Blondel, J. L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and
experiment 2008, 10 (Oct. 2008), P10008.

[3] Lu Chen, Chengfei Liu, Kewen Liao, Jianxin Li, and Rui Zhou. 2019. Contextual
community search over large social networks. In ICDE. IEEE, 88ś99.

[4] Jonathan Cohen. 2008. Trusses: Cohesive subgraphs for social network analysis.
National security agency technical report 16 (2008), 3ś29.

[5] Leon Cohen. 1995. Time-frequency analysis. Vol. 778. Prentice hall. 70ś81 pages.
[6] Wanyun Cui, Yanghua Xiao, Haixun Wang, Yiqi Lu, and Wei Wang. 2013. Online

search of overlapping communities. In Proceedings of the 2013 ACM SIGMOD
international conference on Management of data. 277ś288.

[7] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search
of communities in large graphs. In Proceedings of the 2014 ACM SIGMOD interna-
tional conference on Management of data. 991ś1002.

[8] TADang and Emmanuel Viennet. 2012. Community detection based on structural
and attribute similarities. In International conference on digital society (icds). 7ś12.

[9] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in
sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference.
589ś598.

[10] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in
sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference.
589ś598.

[11] Zeineb Dhouioui and Jalel Akaichi. 2014. Tracking dynamic community evolution
in social networks. In ASONAM 2014. IEEE, 764ś770.

[12] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng,
and Xuemin Lin. 2020. A survey of community search over big graphs. The
VLDB Journal 29, 1 (2020), 353ś392.

[13] Yixiang Fang, Yixing Yang, Wenjie Zhang, Xuemin Lin, and Xin Cao. 2020.
Effective and efficient community search over large heterogeneous information
networks. Proceedings of the VLDB Endowment 13, 6 (2020), 854ś867.

[14] S. Fortunato and D. Hric. 2016. Community detection in networks: A user guide.
Physics Reports 659 (Nov. 2016), 1ś44.

[15] M. Girvan and M. E. J. Newman. 2002. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences 99, 12 (June
2002), 7821ś7826. https://doi.org/10.1073/pnas.122653799

[16] Chonghui Guo, Jiajia Wang, and Zhen Zhang. 2014. Evolutionary community
structure discovery in dynamic weighted networks. Physica A: Statistical Me-
chanics and its Applications 413 (2014), 565ś576.

[17] WentaoHan, YoushanMiao, Kaiwei Li, MingWu, Fan Yang, Lidong Zhou, Vijayan
Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a graph engine
for temporal graph analysis. In Proceedings of the Ninth European Conference on
Computer Systems. 1ś14.

[18] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying
k-truss community in large and dynamic graphs. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 1311ś1322.

[19] Xin Huang, Laks VS Lakshmanan, and Jianliang Xu. 2019. Community search
over big graphs. Vol. 14. Morgan & Claypool Publishers. 1ś206 pages.

[20] Caiyan Jia, Yafang Li, Matthew B Carson, Xiaoyang Wang, and Jian Yu. 2017.
Node attribute-enhanced community detection in complex networks. Scientific
Reports 7, 1 (2017), 1ś15.

[21] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
K-core decomposition of large networks on a single PC. Proceedings of the VLDB
Endowment 9, 1 (2015), 13ś23.

[22] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2śes.

[23] I. X. Y. Leung, H. Pan, P. Lio, and J. Crowcroft. 2009. Towards real-time community
detection in large networks. Physical review. E, Statistical, nonlinear, and soft
matter physics 79, 6 Pt 2 (June 2009), 066107.

[24] Michael Levi and Peter Reuter. 2006. Money laundering. Crime and Justice 34, 1
(2006), 289ś375.

[25] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent
community search in temporal networks. In ICDE. IEEE, 797ś808.

[26] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao.
2020. VAC: Vertex-Centric Attributed Community Search. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 937ś948.

[27] Yunkai Lou, Chaokun Wang, Tiankai Gu, Hao Feng, Jun Chen, and Jeffrey Xu
Yu. 2021. Time-Topology Analysis (Full Version). Technical Report. Tsinghua
University, Beijing, China.

[28] Jiehuan Luo, Xin Cao, Xike Xie, Qiang Qu, Zhiqiang Xu, and Christian S Jensen.
2020. Efficient Attribute-Constrained Co-Located Community Search. In 2020
IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 1201ś1212.

[29] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. 2009. Patterns and dynam-
ics of users’ behavior and interaction: Network analysis of an online community.
Journal of the American Society for Information Science and Technology 60, 5
(2009), 911ś932.

[30] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference onWeb Search
and Data Mining. 601ś610.

[31] David H Pyle. 1999. Bank risk management: theory. In Risk Management and
regulation in banking. Springer, 7ś14.

[32] U. N. Raghavan, R. Albert, and S. Kumara. 2007. Near linear time algorithm to
detect community structures in large-scale networks. Physical Review E 76, 3
(Sept. 2007), 036106.

[33] Giulio Rossetti and Rémy Cazabet. 2018. Community discovery in dynamic
networks: a survey. ACM Computing Surveys (CSUR) 51, 2 (2018), 1ś37.

[34] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository
with Interactive Graph Analytics and Visualization. In AAAI. 4292ś4293. http:
//networkrepository.com

[35] Stephen B Seidman. 1983. Network structure and minimum degree. Social
networks 5, 3 (1983), 269ś287.

[36] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and
how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining. 939ś948.

[37] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S Yu. 2007.
Graphscope: parameter-free mining of large time-evolving graphs. In Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining. 687ś696.

[38] Mansoureh Takaffoli, Farzad Sangi, Justin Fagnan, and Osmar R Zäıane. 2011.
Community evolution mining in dynamic social networks. Procedia-Social and
Behavioral Sciences 22 (2011), 49ś58.

[39] Chaokun Wang and Junchao Zhu. 2019. Forbidden nodes aware community
search. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33.
758ś765.

[40] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. 2015. Community
detection in social networks: an in-depth benchmarking study with a procedure-
oriented framework. Proceedings of the VLDB Endowment 8, 10 (2015), 998ś1009.

[41] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. 2016. Se-
mantic community identification in large attribute networks. In Thirtieth AAAI
Conference on Artificial Intelligence. 265ś271.

[42] Zhuo Wang, Weiping Wang, Chaokun Wang, Xiaoyan Gu, Bo Li, and Dan Meng.
2019. Community focusing: yet another query-dependent community detection.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 329ś337.

[43] YubaoWu, Ruoming Jin, Jing Li, and Xiang Zhang. 2015. Robust local community
detection: on free rider effect and its elimination. Proceedings of the VLDB
Endowment 8, 7 (2015), 798ś809.

[44] Zhonggang Wu, Zhao Lu, and Shan-Yuan Ho. 2016. Community detection with
topological structure and attributes in information networks. TIST 8, 2 (2016),
1ś17.

[45] Chen Zhe, Aixin Sun, and Xiaokui Xiao. 2019. Community detection on large
complex attribute network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 2041ś2049.

[46] Di Zhuang, Morris J Chang, and Mingchen Li. 2019. DynaMo: Dynamic commu-
nity detection by incrementallymaximizingmodularity. TKDE (2019), 1934ś1945.

3334

https://doi.org/10.1073/pnas.122653799
http://networkrepository.com
http://networkrepository.com

