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ABSTRACT
The enormous quantity of data produced every day together with
advances in data analytics has led to a proliferation of data man-
agement and analysis systems. Typically, these systems are built
around highly specialized monolithic operators optimized for the
underlying hardware. While effective in the short term, such an ap-
proach makes the operators cumbersome to port and adapt, which
is increasingly required due to the speed at which algorithms and
hardware evolve. To address this limitation, we present Modularis,
an execution layer for data analytics based on sub-operators, i.e.,
composable building blocks resembling traditional database opera-
tors but at a finer granularity. To demonstrate the feasibility and
advantages of our approach, we use Modularis to build a distributed
query processing system supporting relational queries running on
an RDMA cluster, a serverless cloud platform, and a smart storage
engine. Modularis requires minimal code changes to execute queries
across these three diverse hardware platforms, showing that the
sub-operator approach reduces the amount and complexity of the
code to maintain. In fact, changes in the platform affect only those
sub-operators that depend on the underlying hardware (in our use
cases, mainly the sub-operators related to network communication).
We show the end-to-end performance of Modularis by comparing
it with a framework for SQL processing (Presto), a commercial
cluster database (SingleStore), as well as Query-as-a-Service sys-
tems (Athena, BigQuery). Modularis outperforms all these systems,
proving that the design and architectural advantages of a modular
design can be achieved without degrading performance. We also
compare Modularis with a hand-optimized implementation of a join
for RDMA clusters. We show that Modularis has the advantage of
being easily extensible to a wider range of join variants and group
by queries, all of which are not supported in the hand-tuned join.
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1 INTRODUCTION
The growing popularity of machine learning applications and the
increasing amount of data that analytics applications must process
have had a substantial influence on the way systems are designed
and optimized. There is a constant stream of specialized accelerators
(TPUs, GPUs, FPGAs, smart NICs, smart storage, near memory
processing) and platforms (large appliances, InfiniBand clusters,
serverless, cloud instances, data centers) that forces a continuous
redesign of data processing engines—often leading to new engines—
simply to exploit the capabilities of new hardware [16].

Often, to gain performance, developers design monolithic opera-
tors that are highly tailored to the underlying hardware [11, 13, 14,
52, 56]. However, as the algorithms and platforms evolve quickly,
it becomes very difficult to reuse these operators in newer versions
of the system. Examples abound: For instance, a join optimized for
multi-core machines [11] requires fundamental changes to run on
Remote Direct Memory Access (RDMA) [13, 14] due to the different
communication schemes between NUMA nodes and the network.
As another example, although FPGAs are not competitive with
multi-core machines for full joins, they can significantly accelerate
the partitioning phase [40]. Supporting distributed query process-
ing on serverless computing has received a lot of recent attention
and requires a specialized exchange operator to allow communica-
tion through storage [52, 56]. With the current approach of highly
engineered, monolithic operators, it is difficult to exploit the poten-
tial of new architectures and platforms without major redesigns.

We argue that to cope with the fast changes in the hardware and
platform landscape, query processing needs to become more modu-
lar and composable at a finer granularity than conventional rela-
tional operators. Having many versions of highly optimized, mono-
lithic operators is not a design approach compatible with the high
degree of specialization we observe. In almost all cases where hard-
ware or platform advances offer new opportunities, the potential
advantages affect only part of an operator (e.g., only one of partition-
ing, build, or phase of a join) and often require to change other signif-
icant parts (e.g., intermediate data placement in an exchange opera-
tor, partitioning strategies, etc.). It is very rare that the whole opera-
tor can become faster or that all operators benefit. This effect is no-
table in accelerators (FPGA, GPU) [22, 26, 29, 32, 34–36, 57, 65, 66],
specialized processor components (AVX, SGX), [9, 11, 20, 42, 53, 63]
evolving networks in distributed systems (Infiniband, RDMA, smart
NICs, etc.) [13, 17, 50, 51, 60, 70, 71], and even platforms (Infiniband
clusters [13, 50, 51], cloud/serverless computing [10, 19, 30, 39, 43–
45, 52, 56, 59, 62, 64]). Yet, the current design approaches often
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require a complete redesign because they are based on careful tai-
loring to the underlying platform and hardware.

In this paper, we focus on themodular design of query processing.
We show how to design a modular distributed query processing en-
gine with performance comparable to its monolithic counterparts.
The topic of modularity in database operators has been visited
many times in the past [25, 37] and recently [24, 47]. However, to
our knowledge, we are the first to implement modularity at the
hardware platform level, while at the same time formulating con-
crete design principles. We argue that modularity at this level is a
necessity rather than a nice-to-have feature. To this end, we have
built Modularis—an execution engine aiming to maximize perfor-
mance without specializing neither the engine nor the bulk of the
operators to the target platform. Modularis is based on a collec-
tion of composable sub-operators that are both as small and simple
as possible, as well as reusable, while retaining the ability to exe-
cute entire SQL queries. Modularis’ sub-operators share the same
goal of composability of operators present in traditional database
engines: sub-operators can be freely and easily combined, have a
well-defined interface, and adhere to a common execution model.
Our sub-operators are similar to the microcode used in processor
design to implement more complex instructions. We use them to
build up complex plans like TPC-H queries. This allows Modularis
to run seamlessly on three different platforms: an InfiniBand RDMA
cluster, a serverless cloud service, and a smart storage engine, by
simply replacing in the query plan only those operators actually
affected by the change in the platform (e.g., the exchange operator),
leaving everything else unaffected.

We have evaluated Modularis’ performance and behavior exten-
sively. First, to explore the end-to-end performance of Modularis,
we compare it to mature systems using the TPC-H benchmark.
When compared to Presto, a system that is general enough to uti-
lize various storage layers and distributed set-ups, Modularis is
an order of magnitude faster. When compared to SingleStore (pre-
viously called MemSQL), a system that specializes in in-memory
analytics using SQL, Modularis is faster for the majority of the
queries. The speed-up compared to both of these systems comes
from the ability to optimize at the sub-operator level and the us-
age of RDMA for fast data transfer. Next, we show how Modularis
adapts to heterogeneous environments by discussing the minimal
changes necessary to go from running on an RDMA cluster to a
serverless platform using AWS Lambda or a smart storage engine
(S3Select) —a very significant architectural change in the underly-
ing platform. For TPC-H queries, Modularis-on-serverless is com-
petitive against commercial Query-as-a-Service systems (Athena,
BigQuery). This last experiment shows that modularity does not
need to result in end-to-end performance losses while it enables the
execution of workloads on two fundamentally different platforms
with minimal development effort, which mainly involves the design
of new exchange and executor operators. That way, we get the best
of both worlds: maximum performance across platforms, without
redesigning the whole system from scratch.

Second, we quantify the potential performance overhead of the
modular design by comparing a join composed from several Mod-
ularis’ sub-operators with a hand-tuned join. For the latter, we
use the best monolithic implementations available for RDMA clus-
ters [13, 14]. Modularis is always within 30 % of the performance

of the specialized implementation (and often closer). Nevertheless,
our system uses 3.8× fewer lines of code than the monolithic oper-
ator and all its sub-operators are not specific to the join but can be
reused in other query plans.

Third, we demonstrate the advantages of sub-operators over
monolithic approaches when it comes to extending existing opera-
tors. We show how to use the same sub-operators that we used for
the join for optimizations for sequences of joins and a distributed
GROUP BY (with one additional sub-operator). In contrast, extend-
ing existing manually handcrafted joins [13, 14, 51] to support,
e.g., inner, outer, semi, and anti joins plus grouping for partitioned,
sorted, and general inputs would be very difficult (and has not been
attempted, to our knowledge). In Modularis, once we had the sub-
operators for the initial distributed radix hash join, we needed only
a small effort to develop the rest of the operators. These results
put into perspective the potential performance loss when compar-
ing Modularis, which can run code over different platforms, with
handcrafted algorithms tailored to run on a single target system.

2 RELATEDWORK
Database operators design. Operator modularity is a crucial

design decision as it significantly affects performance. Determin-
ing the right granularity of operators has been a reoccurring topic
of research: from the bracket model [23] for parallelization in the
early days of databases to objected-oriented modular designs [25],
record-oriented components adapted at runtime [37], morsel-driven
parallelism [49], and “deep” query optimization [24] more recently.
In Modularis, we use the Volcano model [33] as the basis for the
interfaces between operators, but we also support collections in-
stead of just flat records. Modularis shares a similar vision to that
of Dittrich and Nix [4, 24], Bandle and Giceva [12], and Kohn et
al. [47] in having operators defined at a finer granularity. Dittrich
and Nix argue that this enables a deeper level of query optimiza-
tion and easy implementation of research ideas without sacrificing
performance. Bandle and Giceva analyze how sub-operators can be
used for general data analytics. Both these works sketch a vision
for modular operator design, and they focus on a few variations of
aggregation using different indexes (sorting/hashing) or on how
to build more complex algorithms (e.g hash joins, k-means) out of
sub-operators. In contrast, Modularis is a full system comprising
a variety of operators and runs full TPC-H queries using plans
tailored to three very different platforms. Kohn et al. [47] develop a
framework that uses modularity to speed up query execution when
the query contains multiple aggregates. Modularis follows a similar
spirit but builds a more generic execution layer that achieves a
similar goal for query execution in general. In contrast to these
approaches, we tackle the problem at the platform level and formu-
late design principles for these operators. We also do not focus on
the optimization aspect from the view of query rewriting. Our goal
is to reduce the implementation effort and keep up with the fast
pace with which the hardware evolves, without having to rewrite
systems completely. Finally, efforts seeking to optimize sets of op-
erators are orthogonal to Modularis as they could be applied to
the query plan generated by Modularis as additional optimization
passes. For instance, Leeka et al. [48] fuse similar operators into a
single super-operator by using a streaming interface.
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Figure 1: System architecture
Emerging technologies in data processing. Two of the most

recent emerging technologies in distributed data processing are
RDMA and serverless computing. On the one hand, RDMA has
been used to implement highly distributed relational operators [13,
14, 51] and several projects have explored the network bottleneck
and the use of RDMA for query processing and database design in a
variety of contexts [15, 16, 50, 60, 61]. On the other hand, serverless
computing has been extensively studied over the last few years for
a variety of applications [10, 19, 30, 39, 43–45, 56, 59, 62, 64]. In both
cases, research focused on solving platform-specific challenges and
was often carried out in built-from-scratch prototypes that were
limited in functionality. In Modularis, by leveraging the granular-
ity of the sub-operators, we develop specialized platform-specific
operators that leverage the latest technologies of both platforms
but keep most of the other operators and the rest of the system
hardware-agnostic. This shows that we can achieve competitive
performance without having to redesign the entire system.

Query compilation for data processing. Modularis is also
related in part to systems that perform Just-in-Time (JiT) query
compilation as pioneered in HyPer [54]. Similar techniques were
later used and extended in several other systems: Tupleware [21],
which targets machine learning workloads; Weld [55], which in-
corporates a large class of data analytics algorithms by translating
frontend languages into an intermediate representation (IR) that is
later Just-in-Time compiled; LegoBase [46], which builds a database
using a high-level language; and Flare [27, 28], which combines data
processing tasks with machine learning. Modularis uses JiT compi-
lation techniques similar to those in such systems to eliminate the
potential performance overhead of a modular design. The systems
above either have an IR tailored towards single-machine execution
and rely on systems such as Spark [69] for their distributed setup
(e.g. Weld) or, if they have a distributed setting (e.g. Tupleware),
they use a very generic model that is very hard to be adapted in
case of platform changes (e.g. from VMs to serverless functions).
Modularis on the other hand, targets directly distributed analytics
and focuses on tailoring execution to the underlying platforms by
only using minimal changes to the plans.

3 MODULAR OPERATORS
3.1 Modularis architecture
In this section, we describe the architecture of Modularis and how
it executes a query. We show the system architecture in Figure 1.
The user writes queries in a UDF-based library interface written

in Python (similar to PySpark). When the user submits the query,
she specifies the target execution platform using a flag (e.g. ,--
rdma, --lambda). The query is then parsed and translated into an
IR, representing a DAG of operators. The DAG is serialized and
passed to Modularis’ backend, written in C++, which applies a
series of both plan-specific and platform-specific transformations.

The plan-specific transformations involve projection and se-
lection push-downs, operations typical in DBMSs to reduce data
movement and I/O. Next, Modularis cuts the DAG into tree-shaped
sub-plans, each ofwhich represents a pipelinewith amaterialization
point at its end. Then, we transform the query into its distributed
equivalent. This step involves wrapping the initial plan into a dis-
tributed executor and adding exchange operators in the plan inputs.
Depending on the target platform, we specialize the generic op-
erators with hardware-specific ones. In the case of serverless, we
use the exchange operator of Lambada [52] and an executor that
spawns the workers in a tree-plan fashion. In the case of smart
storage, we use a specialized operator to get data from S3Select. In
the case of RDMA, we use an MPI executor and an RDMA-based
exchange operator based on the one of Barthels et. al [14] (with
modifications to avoid unnecessary data movement). We give con-
crete examples of the final plan in Sections 4.4 and 4.5. Finally, the
plan is lowered into LLVM IR and Just-in-Time compiled to native
machine code. To translate UDFs into LLVM IR, Modularis uses
Numba [5] and inlines the generated LLVM code into the remainder
of the plan to eliminate any function calls or interpretation in inner
loops. The query is then executed on the target platform, based on
the specialized operator that it has been wrapped around. When
the results are produced, they are returned back to the user.

3.2 Design principles
Modularis builds on the observation that the commonly used opera-
tors, e.g., for high-speed networks [13] or multi-core CPUs [11], are
built around the same conceptual building blocks: when the authors
describe their algorithms, they use some visual or textual repre-
sentation of “reading data”, “partition by key”, “for each partition”,
etc. To readers, these terms imply the same operation is being done
during different phases of query execution. However, there is no
code reuse—the implementations differ in intricacies related to how
and where data is stored, how it is passed from one phase to the
next, how they depend on the state of some enclosing scope, etc.

The goal of Modularis is to identify pieces of code that reoccur
in operators in slight variations, factor out their common logic, and
package them behind a well-defined interface such that they can be
reused and recomposed. In other words, our goal is to derive actual
building blocks from the conceptual ones. To derive sub-operators
systematically, we follow these design principles:

(1) Each sub-operator consists of or is a part of at most one inner
loop. If a high-level algorithm consists of several phases, each of
these phases is expressed by at least one sub-operator. Phases often
reoccur across and within monolithic operators, sometimes in slight
variations. For example, join operators typically use partitioning to
improve cache locality. In Section 4.3, we show that by factoring
out the partitioning logic into a dedicated sub-operator, we can
reuse it to improve cache locality in grouping operators as well.

(2) Use dedicated sub-operators for each physical (in-memory)
data materialization format. This decouples the processing of data
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from where and how it is stored. Consequently, other sub-operators
become independent of the physical formats of their inputs and
outputs and are more generic. One high-level example is to have
different scan sub-operators for reading base tables or intermediate
materializations in RDMA buffers. That way, a single partitioning
sub-operator implementation can consume inputs of two differ-
ent scan operators (or any other operator) instead of having two
specialized partitioning operators (see Section 4.1.2).

(3) Express high-level control flow as (nested) operators. This al-
lows connecting plan fragments of sub-operators that express the
heavy-lifting data processing through the same operator interface.
In monolithic operators, such orchestration logic is usually imple-
mented as imperative code specific to that operator and, thus, it
makes it necessary to reimplement the data path as imperative code
as well. One high-level example is to express the in-memory join
of two partition pairs occurring in a classical partitioned hash join
as a nested query plan that is executed for each pair of matching
partitions. That allows the use of partition-unaware sub-operators
in the inner plan. We introduce the NestedMap sub-operator for
this purpose below (Section 4.1.2).

Generality of design principles. The above somewhat differ-
ent implementations do not only apply to the context of CPUs, but
also to other hardware architectures (e.g. FPGAs, GPUs). Therefore,
the goal of the design principles is still applicable, as we can use
them to derive the basic building blocks that the underlying archi-
tectures use. By following our design principles, we do not expect
to design operators that work solely in different architectures with-
out any modifications. We rather want to avoid reimplementing
the same conceptual building blocks with small modifications. Our
goal is to end up with a very similar set of operators for different
architectures. For example, an operator that reads data in columnar
format is relevant to both CPUs and FPGAs. By having a similar
set of building blocks for different architectures, we can offload
parts of a query to different hardware configurations seamlessly,
just by swapping out the hardware-specific part of the plan. We
give a concrete example of how this can be done in the context of
smart storage in Section 4.5.

3.3 The sub-operator interface
We base the interface of sub-operators on one of the most known
models in the database community, the Volcano model [33]. The
model is based on iterators that pass records along the data path
of a tree of Next() function calls. Like in a traditional execution
engine, the iterator interface allows us to combine operators in
almost arbitrary ways, limited only by the schema or types that
operators may require.

The main distinctive feature of the sub-operator interface com-
pared to traditional Volcano-style operators is the type system of
the records (or “tuples”) passed between them. While records in re-
lations (in the First Normal Form) consist of atomic fields, we need a
more expressive type system for a generic physical execution layer.
For example, to split the materialize and scan operators of a given
physical data format into two distinct sub-operators, these opera-
tors need to pass “records” containing the materialization from one
to the other. Similarly, if we want to express operators that work on
individual records as well as those that work on batches (or morsels

[49]) in the same interface, we need to be able to represent the
concept of a “batch”. We thus extend the concept of tuples with that
of “collections”, which is the generalization of any physical data for-
mat of tuples of a particular type. This allows expressing physical
execution properties into the query plan rather than hard-coding
them for the entire execution engine.

More formally, sub-operators are iterators over tuples and the
tuples are of a statically known type from the following recursive
type structure:

tuple := ⟨item, . . . , item⟩

item := { atom | collection of tuples } ,

where a tuple is a mapping from a domain of (static) field identifiers
to item types, an item is a (statically known) atomic or collection-
based type, an atom is a particular domain of undividable values,
and a collection is the generalization of any physical data format
one might want to use in the execution layer. We denote tuple
types by ⟨fieldName0 : ItemType0, . . . , fieldNameK : ItemTypeK⟩
and collection types by CollectionType⟨TupleType⟩. Most operators
are generic in the sense that they require their upstream operator(s)
to produce tuples of a type with a particular structure but accept
any type of that structure. Their output type usually depends on the
type(s) of their upstream(s). For example, the scan operator for a
C-array of C-structs (which we call RowVector) requires from their
upstreams to produce tuples of type RowVector ⟨TupleType⟩ and
returns tuples of TupleType, where TupleType is allowed to be any
tuple type. Similarly, operators consuming or producing batches can
do that by consuming or producing tuples with RowVector fields.

We also extend the Volcano-style execution model to DAGs,
whereas operators in the original Volcano-style execution model
could only have one consumer (i.e., plans had to be trees). Before
execution, we cut a DAG of operators into pipelines, where pipelines
start with either the original plan inputs or the result of any operator
with several consumers. In each pipeline, that result will be read
only once, so the sub-plan of the pipeline is a tree and can thus
be executed with the iterator model. Pipelines materialize their
results, such that multiple downstream pipelines can read them.
For simplicity, we present the plans as DAGs in the remainder of
the paper and omit the pipelines and materialization points.

3.4 Initial set of sub-operators
In this section, we introduce the initial set of sub-operators that we
use in Modularis. We choose the sub-operators such that they are
expressive enough to support all the major relational operations,
e.g. selections, projections, aggregations, and joins. At the same
time, we follow our design principles. While the design principle of
making operators simple aims indeed at increasing code re-usage
and reducing implementation effort, this does not necessarily mean
that there is no redundancy. In fact, we do add new operators if
they provide a sufficiently large and broad performance benefit.
Such an example is the different join implementations (inner, semi,
anti). They could all be based on the same hash-build and a separate
probe operator. However, having a special operator for each of
them provides better performance. Similarly, having a second ver-
sion for each of them with flipped build and probe sides increases
performance further. Finally, while the initial set of sub-operators
is enough for relational analytics, we expect that, as we expand
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Modularis to more types of analytics (e.g. linear algebra, ML), we
need to expand our sub-operator set.

We present our initial list of sub-operators in Table 1. The sub-
operators fall into six categories: orchestration operators, data
processing operators, MPI-specific operators (to support RDMA
clusters), Lambda-specific operators (to support serverless), Smart
storage-specific operators, and generic materialize and scan op-
erators. Orchestration operators enable the execution of nested
computations. Data processing operators express the computations
carried out on the data inside the inner loops. MPI- and Lambda-
specific operators are the ones that are aware of the distributed
nature of query execution. Smart storage-specific operators use
pushdown computations to smart storage. Finally, materialize and
scan operators read and write tuples from and to nested collections.
We give an overview of our operators in Table 1. We believe that the
semantics of most operators are clear given their names. However,
the two orchestration operators merit an explanation, as they differ
substantially from other systems.

The ParameterLookup operator encapsulates plan inputs in the
operator interface, such that other operators can consume them.
This operator is the only operator aware of plan inputs. The Nest-
edMap operator executes a nested plan independently on each input
tuple, which typically contains a nested collection. Each invocation
of the nested plan produces an output tuple that may contain nested
collections as well. This allows us to process nested collections us-
ing the same building blocks regardless of the nesting level. This
operator consumes tuples of any type, and the ParameterLookup
operator(s) in the nested plan return a tuple of that type.

4 FROM OPERATORS TO COMPLEX QUERY
PLANS

4.1 High-performance distributed join
We illustrate how Modularis’ sub-operators can express optimized
monolithic operators with a case study of a state-of-the-art dis-
tributed join algorithm proposed by Barthels et al. [14].

Category Operators
Orchestration operators Parameter Lookup, NestedMap
Data processing operators (Parametrized) Map, Projection,

Cartesian Product, Filter, Re-
duce (By Key), GroupBy, Zip,
Local Histogram, Build and
Probe, Partition, Semi-join, Sort,
Top-K

MPI-specific operators MPI Executor, MPI Histogram,
MPI Exchange

Lambda-specific operators Lambda Executor, Lambda Ex-
change

Smart storage-specific operators S3Select Scan
Materialize and scan operators Local Partitioning (AVX-based),

Partition, Row Scan, Column
Scan, Parquet Scan, Materialize
Row Vector, Arrow table to col-
lection

Table 1: Initial set of sub-operators
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Figure 2: RDMA-aware hash join algorithm for two pro-
cesses proposed by [14]

4.1.1 State-of-the-art distributed join. We start with a very brief
summary of the algorithm as it was originally proposed (Figure 2).
The algorithm consists of three phases: (1) histogram computation,
(2) multi-pass partitioning including network transfer, and (3) hash
table build and probe. The two phases where communication hap-
pens amongst processes, namely the histogram calculation and the
network partitioning phase, are depicted using black boxes around
them. The original algorithm is optimized for a workload involving
two relations where both relations consist of 16-byte tuples (8 bytes
for the key and another 8 for the payload). For more details, we
refer the readers to the original paper [14].

4.1.2 Query plan in Modularis. We now show how the same join
algorithm can be expressed using sub-operators in our RDMA back-
end. The resulting query plan is shown in Figure 3. To keep the
graphical representation concise, we abbreviate the operator names
as shown in Table 2. Furthermore, we omit materialization points
and, instead, express the plan as a DAG as discussed previously.
Finally, most of the operators in the Figure are part of a nested plan
inside a MpiExecutor operator, which is executed concurrently by
all MPI processes (which we call ranks in the rest of the section) in
the cluster in a data-parallel way, illustrated with a stacked frame.

The join starts by computing the histogram of each of the two
inputs using the LocalHistogram operator. The inputs can be pro-
duced by any operator producing tuples with key fields, e.g., a scan
operator reading from a base table stored in main memory. On each
of the two sides, a MpiHistogram computes the global histogram
from the local ones until the MpiExchange consumes the local his-
tograms, the global histogram, and the original input. With this
information, each rank allocates a contiguous memory area in the
main memory of the host (called RMA window) that will hold all
tuples it will receive in this phase and computes the offsets of its
exclusive regions inside the windows of the target ranks. Then, each
rank reads the input again, computes the target partition for each
input tuple the same way as it did for computing the histogram,
and writes the tuple into a buffer corresponding to that partition.
This partitioning routine is based on well-known techniques us-
ing streaming stores and software write-combining [53, 58, 63]
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Figure 3: Plan that runs the distributed hash join with modular operators across many nodes

to achieve the full memory bandwidth. When the buffer of a par-
tition is full, it is sent to the target rank using an asynchronous
RDMA write operation, it replaces the buffer with an empty one,
and continues partitioning the input immediately. This overlaps
computation with communication and increases performance.

In the network partitioning phase, as in the original algorithm,
each rank compresses the 16-byte workload of the algorithm into
8 bytes to reduce the data transmitted by a factor of two. This
optimization comes as an additional pass to our query compiler,
and although it is very specific, it is useful for dictionary-encoded
data. The compression uses the fact that some bits of the key are
common for each partition. Specifically, if we use the identity hash
function and radix partitioning with a fan-out of 2F, the first F bits
of each partition are identical. Furthermore, we assume that keys
and values come from a dense domain and can be represented with
P bits each. Thus, key and value can be stored in a single 64-bit word
if 2 ·P−F ≤ 64. After the partitioning and compression, the operator
returns the partitions as ⟨networkPartitionID, partitionData⟩ pairs
such that all tuples of each partition end up on only one rank.
Because we extend the original algorithm with materialization of
the input tuples, we recover the missing bits by forwarding the
networkPartitionID further downstream. As we can observe, the
MPIExchange operator batches the tuples in order to avoid the
overhead of sending a tuple-at-a-time over the network.

The subsequent plan joins the tuples inside two corresponding
partitions of the two sides. An imperative implementation would
express this as a loop over matching partition pairs. In Modularis,

Abbreviation Operator name SLOC

PL Parameter lookup 28
NM Nested map 49

PR Projection 27
BP Hash build and probe 103
LH Local histogram 77
ZP Zip 44
CP Cartesian product 54
PM Parametrized map 51
RK Reduce by key 75

RS Row Scan 59
LP Local partitioning 143
MR Materialize row vector 56

ME MPI Executor 140
MX MPI Exchange 269
MH MPI Histogram 52

Table 2: Source line of code per operator

we use the NestedMap operator for the same purpose: We take the
corresponding ⟨networkPartitionID, partitionData⟩ pairs and pass
them through a Zip operator, which produces ⟨networkPartitionID,
partitionData, networkPartitionID, partitionData⟩ tuples (note that
they are produced in dense, ordered sequence). This way, all data
belonging to one partition pair is represented in a single tuple, and
we can express the remaining logic as a nested plan transforming
each such tuple. The nested plan starts by dissecting the input
tuple. The tuple has four fields: the partition ID and data of the
two sides, respectively. A sequence of ParameterLookup (which
returns the entire tuple) and Projection operators (which retains
one of the fields) extracts one of the fields, each. The partition
data is partitioned further on both sides by a sequence of RowS-
can (which extracts individual tuples from the nested collection
inside the partitionData fields), LocalHistogram, and LocalPar-
titioning operators. Note that each of these sequences returns
several ⟨localPartitionID, partitionData⟩ pairs. To be able to recover
the dropped bits further downstream, we augment each of these
pairs with the networkPartitionID by using the CartesianProduct
operator. Its left side only consists of a single tuple (containing the
network partition ID), so it does not increase the number of tuples.

The hash and probe phase happens inside another nested plan,
which is executed for each pair of sub-partitions. As before, we use
a Zip operator to combine all information of each pair of partitions
into a single tuple, on which we call a nested plan using NestedMap.
We use sequences of ParameterLookup and Projection operators
to extract the partitions of the two sides. Each partition is read
by a RowScan operator and individual tuples produced by these
two are finally fed into the BuildProbe operator, which produces
the matching pairs. To recover the dropped bits from the network
phase, we use a ParametrizedMap operator: It contains a function
that, given a parameter from upstream (the network partition ID),
shifts that parameter by a certain amount and adds the result to
the key field of each input tuple from the other upstream.

The remainder of the plan depends onwhat happenswith the join
output. The Figure shows a plan that materializes that result. Since
each NestedMap needs to return a single tuple, the result of each
nested plan needs to be materialized using a MaterializeRowVec-
tor operator. This operator produces a single tuple containing its
input tuples as a nested RowVector . Each NestedMap thus returns
several such tuples (one for each input tuples) and the inner tuples
can be recovered as a flat stream using RowScan operators.

In the above description, we reuse many of our building blocks to
construct the high-performance distributed join. Also, we showcase
many of our design principles in action, such as the dedicated
read/write operators to read data either from RMAwindows or local
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Figure 4: Naive (left) and optimized (right) versions for a se-
quence of two joins on the same attribute

partitions, how the high-level control functions work, and finally
how we reuse operators across different phases of the algorithm.

4.2 Sequences of joins
A key advantage of Modularis is that, once we have the original join
algorithm, it is straightforward to extend the plan to run sequences
of joins. None of the work to date on high-performance joins on
multi-core CPUs or over RDMA has ever addressed this design due
to the complexity of modifying the highly tuned operators. For a
cascade of N joins, the output of the n − 1-th join is joined with the
n-th relation, where n = 1, . . . ,N . Therefore, in the original plan
of Figure 3, after the RowScan operator, we return the new data
to the LocalHistogram and MpiExchange operators. On the other
side, another upstream operator returns tuples that go through the
network partitioning phase. This pattern is repeated on one side of
the corresponding join for each output and on the other side for the
corresponding new relation, until all of the N joins are performed.

However, if all the joins are on the same attribute (i.e., the at-
tribute y in Figure 4) and the relations fit in main memory, we
can apply the following optimization: We network-partition all
relations at the beginning instead of reshuffling the output of every
join through the network. This is possible since we execute the
output of the first join again on the attribute y, and therefore we
can pre-partition all the relations from the beginning of the query
instead of waiting for the result of each join . This way, for a cascade
of N joins, we shuffle through the network N + 1 instead of 2N
relations. We show our optimization for a sequence of two joins
in Figure 4, where instead of shuffling four relations through the
network, namely R, S ,T , and the output of R ▷◁ S , we shuffle only R,
S , and T . For conciseness, we depict with the operator EX the chain
of a LocalHistogram, MPI Histogram, and MPI Exchange operators.

This optimization is easily applied because of the operator modu-
larity. In the case of monolithic operators, a system engineer would
have to take special care of this case by adapting a large part of the
system and possibly by reimplementing parts of the algorithm. In
contrast, Modularis restructures the sub-operators inside the query
plans and takes advantage of the common attribute in a sequence

of joins. After it performs all the network partitioning phases at
the beginning of the inner plan of Figure 3, it carries out all the
local partitioning phases in the first nested map. Finally, it forms a
sequence of BuildProbe operators where the output of the n−1-th
BuildProbe is the input of the n-th BuildProbe and the final build
probe output is the input of the ParametrizedMap operator.

4.3 Distributed GROUP BY

To illustrate how Modularis simplifies operator development and
provides extensibility, we implement a distributed GROUP BY opera-
tor by re-using components from the previous use cases. We show
the corresponding plan in Figure 5. The algorithm workload is a
16-byte tuple (8 bytes for the key and 8 bytes for the value).

The plan starts with any upstream operator that returns tuples to
the LocalHistogram and MpiExchange operators. Since we have
multiple consumers from one operator, these tuples have to be
materialized and put into a separate pipeline (the materialization
is not shown in the Figure as discussed earlier). After the local
and global histogram calculations, the tuples are partitioned and
distributed through the network. The operator performs a simi-
lar compression scheme as in Section 4.1.2. As before, this com-
pression allows us to reduce the network traffic in half, which
is crucial for performance. Every output tuple (which consists of
⟨networkPartitionID, partitionData⟩ pairs) coming from the MpiEx-
change operator is the input of a NestedMap, which executes its
nested plan for every input partition.

The execution of the nested plan starts with the Parameter-
Lookup operators. The tuples returned by these operators are passed
to Projection operators, which ensure that each downstream op-
erator gets the correct input. Specifically, the network partitioning
data are passed to a RowScan operator that returns a tuple at a
time to the LocalHistogram and LocalPartitioning operators.
After the histogram calculation, the LocalPartitioning consumes
both the input data and the calculated histogram to calculate the
necessary prefixes inside a partition. It then performs the data par-
titioning. The corresponding partitioned data is concatenated with
the network bits that the MpiExchange removed, using a Carte-
sianProduct. Lastly, the ⟨networkPartitionID, localPartitionID,
partitionData⟩ triples are the input to NestedMap operator, which
executes the final aggregation for each input partition.

To perform the final aggregation, we first have to restore the
original keys as we did in the join algorithm after the hash build
and probe phase. The difference now is that we have to restore the
full keys using the ParametrizedMap operator before we forward
each tuple to a ReduceByKey operator, which aggregates the data
per local partition. Afterward, we materialize the output tuples of
the ReduceByKey operator with a MaterializeRowVector opera-
tor. Like in the distributed hash join case, we finish the plan with
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Figure 5: Plan that runs the distributed GROUP BY with modular operators across many nodes
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Figure 6: Modularis plan for TPC-H Q12 on RDMA
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Figure 7: Modularis plan for TPC-H Q12 on Serverless

the RowScan operators that remove nesting levels of the Material-
izeRowVector operators that should end every nested plan. Finally,
the individual results from the workers return to the driver.

Based on the previous description, it is evident that the dis-
tributed GROUP BY plan is very similar to the distributed hash join
plan. The main differences are 1) the total number of input relations
and 2) that for distributed GROUP BY operator we do not perform a
hash build and probe phase in the end but an aggregation using a
ReduceByKey operator. The large overlap between the two plans
shows how Modularis uses a similar set of sub-operators to imple-
ment different relational database operators in contrast to using
monolithic operators, where the different operators would probably
have to be reimplemented almost from scratch, although the logic
behind shares many similarities (e.g., the partitioning phases).

4.4 TPC-H queries
So far we have used Modularis to implement key components of a
relational query processor. We can use the same sub-operators to
implement TPC-H queries. In fact, by altering only our MPI-specific
sub-operators to Lambda-specific we can execute the same set of
TPC-H queries on a different hardware platform. The latter is a
strong argument towards modularity, as systems that operate on
different hardware platforms have fundamentally different execu-
tion layers making it almost impossible to apply the techniques
used in one for the other without major reimplementation.

We take as an example TPC-H Q12 and show (simplified) query
plans of Modularis in Figures 6 and 7 for RDMA and serverless re-
spectively. Although the plans are simplified, they still preserve the
semantics of the system. Since the network bandwidth in serverless
is rather slow (around 80Mbit s−1, see [52]), we use the partitioning
only as a pre-processing step required by the exchange operator
and do not partition the exchanged data further. This means that
each worker processes only one data partition after the exchange,
so we do not have any NestedMap operators in that platform. Both
plans take Parquet file paths to the base tables as input, either in S3
or NFS depending on the platform. The paths of the left and right
input are zipped and each resulting pair is used as the input for
a nested plan instance by the executor of the respective platform.
The execution of a nested plan starts again with ParameterLookup
operators, from which we project the paths for the left and right
relations, pass them to ParquetScan operators, and finally extract

individual tuples from the column chunks produced by that opera-
tor using the ColumnScan operator. The next operators express the
corresponding operations of Query 12.

At this point, we differentiate the plans with the operators that
constitute the exchange routine for each platform. Note that we do
not perform any compression of the tuples, such as in the case of
the distributed join and the GROUP BY. In the case of RDMA, the
plan looks similar to the ones that we have presented before. In the
case of serverless, we use the exchange algorithm of Lambada [52]:
First, we partition the data into a sequence of partitions using a
Partition operator. Subsequently, the GroupBy operator takes the
<pid, data> partitions and groups them by pid. Then the RowScan
operator reads each partition and forwards it to the S3Exchange
operator, which writes the data into a file on S3 whose file name
is based on the ID of the sender containing one row group per
receiver. The S3Exchange then returns triples of worker-specific S3
paths and the first and last row group to read from that file, which
is then read by the subsequent ParquetScan operator. This pattern
implements the “write combining” optimization of Lambada, which
significantly reduces the number of write requests to S3. Finally,
the column chunks produced by the ParquetScan operator are
consumed by a ColumnScan, which extracts individual tuples.

After the exchange phase finishes, the plans converge again: We
perform the join of the two relations using the HashProbe opera-
tor. The matched tuples are transformed with a series of Map and
ReduceByKey operators to get the final result, and we use a Mate-
rializeParquet operator to return the individual results of the
workers to the driver process. We read the individual results using
a sequence of ParquetScan and ColumnScan operators. Finally, we
merge the results of the workers using a ReduceByKey operator,
we select the first tuple using a TopK operator and we return the
results to the user with a MaterializeRowVector operator.

We therefore show how altering only a handful of operators that
are hardware-specific, allows us to run the same TPC-H query on
two very different hardware platforms. That way, implementation
effort is reduced vastly. Using the same ideas, we could extend the
TPC-H implementation to use an exchange operator based on TCP.
The addition of more backends only requires changing the executor
and the operators that comprise the network exchange phase.
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Figure 8: TPC-H queries runtime using SF-500

4.5 Integration with smart Storage
To show howModularis can use a smart storage component offered
by a major cloud provider, we integrate S3Select [6] into our system.
S3Select is a smart storage engine offered by Amazon that follows
the trend of pushing computation into storage [38, 67] to overcome
the I/O bottleneck. S3Select pushes computations directly into S3
and thus it pulls only the data that the user needs from these objects.

S3Select takes as parameters an SQL query, the S3 input path,
and an output serialization format (either JSON or CSV). In our
case, the user writes an SQL expression in the frontend, which
pushes selections and projections to S3Select. We have created
an additional sub-operator called S3SelectScan that our query
compiler decomposes into three simpler, more re-usable separate
operators. The first sub-operator performs an API call to S3Select
and requests the data, which S3Select returns in CSV format. The
sub-operator then uses Apache Arrow to convert the CSV to an
Arrow Table and forwards the table downstream. The next operator
converts the Arrow Table to a collection of tuples as this is defined
in Section 3.3. Finally, the third operator is a ColumnScan that gets
this collection and returns the individual tuples. Then, we continue
with the execution of the rest of the plan in our serverless backend.

Thus, by following the same design principles, we only develop
the sub-operators needed to integrate S3Select into Modularis. We
did not have to redesign the system from scratch to adapt to this sys-
tem component. We only had to make small adjustments, whereas
other systems would have to make a major redesign to incorporate
such a change. Finally, this integration shows the generality of our
design principles, because the implementation done is not limited to
S3Select. We could use the same architecture to request data from
a different smart storage engine that is based on an accelerator
(like Amazon AQUA [1]). As databases push more computation to
storage or to accelerators, we expect that systems like Modularis
will be able to use these components with only minimal changes.

5 MODULARIS EVALUATION
In this section, we first compare Modularis to commercial systems
on TPC-H queries on two hardware platforms: RDMA and server-
less. We then analyze the performance of the system against a
distributed hash join. Finally, we show the runtime of a distributed
GROUP BY operator and variations of plans for sequences of joins.
We run all of the RDMA experiments using all available cores from a
cluster of 8 machines (specifications in Table 3). Regarding the MPI
implementation, we use OpenMPI 3.1.4 as opposed to foMPI [31]
used by [14] because foMPI is specific to Cray machines. Finally,
unless otherwise mentioned, we run each experiment five times
and report the average among such runs.

5.1 TPC-H queries
We start our evaluation by comparing Modularis to commercial
systems, both for RDMA and serverless using TPC-H queries. We
present the results for scale factor 500 in Figure 8. We pick TPC-H
Queries 1, 3, 4, 6, 12, 14, 18, and 19, which is more than a third of the
benchmark and a representative subset of all the challenges that
the benchmark poses. More specifically, Q1 has a large aggregation,
Q3 has a large join, Q4 involves an inclusion test, Q6, Q14, and Q19
have selective filtering that largely reduces the processed tuples
of the input tables, Q12 involves almost all of the major operators
a relational engine should implement (join, selection, projection,
aggregation, sorting), and Q18 has a high-cardinality aggregation.
As mentioned, the challenges involved in these queries together
make up for the most important challenges of the benchmark itself
and an execution layer that has a good performance on these queries
has a high probability to perform well on the whole benchmark [18,
41]. The inclusion of more queries is not a limitation of the system
but involves the implementation of a more sophisticated optimizer,
which is part of future work and out of the scope of this paper; for
now, we concentrate on the execution layer alone.

5.1.1 RDMA. For the RDMA backend, we compare Modularis
against two different systems, Presto and SingleStore (previously
MemSQL). Both of these systems do not use RDMA for the network
exchange but we configure them to use the InfiniBand network
for data transfer at higher rates. We verify this by monitoring the
network traffic. For all the RDMA experiments, we run Modularis
using 64 workers. For SingleStore, we use version 7.0.12 and deploy
a master aggregator node and 7 leaf nodes. We do a warm run for
each of the queries and report averages of 5 runs. We deploy the
TPC-H database using both a row-store [8] and a column-store [7]
format. The row-store format is completely in-memory and has
very good random seek performance. The disk-backed column-
store format has optimizations such as indices, compression, fast

Component Specs

CPUs 2 × Intel Xeon E5–2609 2.40 GHz
Cores/Threads 2 × 4/4

RAM 128 GB
L1 Cache 2 × 4 × 64 KB
L2 Cache 2 × 4 × 256 KB
L3 Cache 2 × 10 MB
InfiniBand Mellanox QDR HCA

Table 3: RDMA cluster specification
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aggregations, and table scans, most of which are not supported by
Modularis. We use the column-store format, as it is the best for
all the queries. Although the column-store format is disk-backed,
SingleStore serves all queries from an in-memory cache; for a fair
comparison, we thus exclude the time Modularis needs to read the
data from disk as well. We observe that Modularis is between 30%
up to more than 3x faster for all the queries except Q14 and Q19.

For Q19,Modularis is slower because the histogram-based RDMA
network exchange is slower than a broadcast operator for small
joins. Modularis is 40% slower in Q14, because the Map operator
does not perform the selective LIKE as fast as SingleStore. For
the queries where Modularis is faster, all except Queries 1 and 6
have large joins, where the RDMA network exchange has better
performance. Another operator responsible for a large part of the
overall runtime is ReduceByKey, which uses a highly optimized
version of a parallel hash map in Modularis and thus executes very
fast large aggregations. The difference is obvious in Queries 1 and
18 where Modularis is 3 and 3.5 times faster, respectively.

For Presto, we deploy Presto SQL (now Trino) version 327 along
with HDFS (Hadoop version 2.6.0) in the eight-machine cluster
using one node exclusively as coordinator and NameNode. We
configure HDFS to use replication factor 3 and Presto to use as
much memory as possible. We run each query four times, use the
first run as a warm-up and then report the average of the other
runs. To have a fair comparison, we include also the time that
Modularis needs to read the input data from disk. For Queries 3 and
18, Presto cannot execute the queries and fails because of insufficient
resources. Our system is 6-9x faster than Presto, depending on the
query, partly because of the optimized RDMA network exchange
and partly because of the highly-performance sub-operators.

5.1.2 Serverless. For the serverless backend, we use the two Query-
as-a-Service systems Athena and BigQuery as baselines. These
systems run queries over cloud storage without the need to start
or maintain any infrastructure. For BigQuery, we use external ta-
bles [3] that point to 512 Parquet files per relation stored on a
single-region bucket in Google Cloud Storage in the standard stor-
age tier. Creating such a table is just a metadata operation and
takes <1s, i.e., no data is loaded. Instead, the query runs against the
original files on cloud storage. We use the same files for Athena,
for which we created an external table [2] as well. The remaining
configuration is done by the cloud provider. For Modularis we use
the same Parquet files. For the integration with S3Select, we use 512
workers and for the experiments with the ParquetScanOperator
we use 256 workers. The workers for both these configurations
have 2GiB of main memory each. For all three systems we run each
query 6 times and report averages. As we observe, Modularis with
S3Select is comparable to BigQuery for the majority of the queries
but slower than Athena. To investigate the reason, we isolate the
calls to S3Select and time them independently of Modularis. We
find out that they make up for the majority of the runtime (e.g. for
Q1, 24 out of 27 seconds are spent getting data from S3Select). The
problem is enlarged when we read many relations (e.g. Q3, Q18)
and is almost negligible for high selective queries that read only
one relation (e.g. Q6). In fact, for Q6 Modularis with S3Select is
very close to Athena and faster than BigQuery. The larger running
times of calls to S3Select are because the service returns chunks of

uncompressed CSV data, whereas our ParquetScan reads data in
compressed format and also pushes down projections. Our observa-
tions agree with the ones made in [68]. This problem is ameliorated
if we read only one Parquet file per worker, which is why we use
512 workers in this experiment.

We can improve the performance significantly by using the spe-
cialized ParquetScan operator. In that case, Modularis outperforms
both baselines in all queries except for Query 3, where Athena is
marginally faster thanks to a better query plan. For Queries 1 and
6, the running time difference is due to the ParquetScan operator,
which is optimized to push down projections while reading data
in compressed format. For the other queries, the specialized Lamb-
daExchange operator can run workloads involving data exchange
between workers faster than the commercial baselines. This is
evident because the workers are mostly bounded by network band-
width and latency. The current performance of S3Select illustrates
the advantage of modularity: today, we can use the much faster al-
ternative of our optimized ParquetScan, but using S3SelectScan
can be enabled easily if AWS improves the performance of their
smart storage engine in the future.

5.2 State-of-the-art distributed join
5.2.1 Implementation effort comparison. Before we delve into a
performance comparison of the execution of the distributed hash
join algorithm between Modularis and the original codebase, we
measure the implementation effort between the two approaches
by using the number of lines of code of each of them. Although
this metric is not always reliable, most of the time it gives a good
indication of the implementation effort. The operators that are used
in the plan according to Table 2 sum up to 1152 lines of code while
the original implementation adds to 1754 lines of code, leading to a
35% reduction. One can argue that this can be attributed to coding
style but the main take-away from this comparison is not only the
size reduction but the extensibility of our sub-operators. While
to support other join types (e.g. semi-joins, anti-joins) we only
need to modify the HashProbe operator that consists of 103 lines,
the original codebase has to be replicated for every join variant.
Furthermore, the only operators that are platform-specific used are:
MpiExecutor, MpiHistogram, and MpiExchange, which sum up to
461 lines of code. In contrast, the original monolithic code would
have to be rewritten from scratch if we wanted to change the target
platform, involving 3.8× more code.

5.2.2 Performance comparison. We compare the distributed hash
join code by Barthels et al. [13], which consists of a monolithic
operator, against our equivalent Modularis plan. For a fair compari-
son, we extend the original code base with a similar materialization
operation to our MaterializeRowVector operator. The workload
consists of two relations with 2048 million tuples each. Unless other-
wise mentioned, we use a 1-to-1 correspondence between the keys
in the inner and outer relation. This setup is consistent with the
workload used in the original paper [13] in the scale-out experiment
(shown in Figure 7(a) in [13]).

We present our results in Figure 9. To understand how our sys-
tem performs, we also microbenchmark our sub-operators. These
microbenchmarks show the model performance that Modularis’
components can achieve. We compare the total runtime of these
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Figure 9: Modularis distributed join execution time per phase and compared to Monolithic design

microbenchmarks (referred to as model) against the entire Modu-
laris query plan and the original code base. We present our results
for two machine configurations in Figure 9a. We start our analysis
by comparing the three execution times phase-by-phase.

Starting with the local histogram phase, we observe that, com-
pared to the original code, both the model and the whole query
plan have a small speedup. We attribute this speedup to the fact
that, as we mention in Section 4.1.2, the local histogram calculation
is isolated in a small pipeline because its input has to be consumed
by multiple readers. This allows for compiler optimizations (e.g.
automatic usage of SIMD instructions, function inlining) that re-
move our sub-operators abstractions. These optimizations are not
possible in larger pipelines, because in larger pipelines the compiler
cannot inline all the next() functions effectively.

The global histogram phase has almost the same execution time
in our model and the original code. However, in the full query
plan and especially when the join is executed on more machines,
the total time is significantly larger. This is associated with the
MPI_Allreduce function that calculates the histogram, which is a
collective operation that requires data from all the processes. In
case a process is stalled in a previous phase of the algorithm, then
every other process must wait until it has the required data from it.
In the original algorithm, this phenomenon is not present because
the histograms are calculated sequentially for both relations. This
also holds for the model. On the other hand, during the execution
of the join in Modularis, the global histogram calculation happens
in two distinct phases, one for each upstream path and a network
partitioning phase is between the two global histogram phases.
Because the network partitioning phase has a slight variation in its
execution time, it causes tail latencies for some processes during
the calculation of the global histogram of the second relation.

The network partitioning phase is slower in the model and the
query plan than the original code base for two reasons. First, this op-
erator is part of a large pipeline in our generated code and therefore,
as mentioned before, the compiler cannot perform all the possible
optimizations and remove all of our abstractions. To validate this
assumption and find the cause of the slowdown, we run the follow-
ing benchmark: We generate 1 billion integers and record the time
that RowScan needs to read them and compute their sum, compared
to a simple C++ program that does the same. RowScan needs about
1 second, whereas the C++ program needs around 0.8 seconds. The
second reason for the slowdown is due to tail latencies because,
as before, the window allocation/synchronization function calls
are collective operations. In the original code base, they are called

almost at the same time for both relations but, in Modularis, they
happen at different times, one for each upstream path.

The local partitioning phase is faster in the original code base
than in the model and the query plan. Part of the slowdown can
be again explained due to the complex pipelines that this phase
belongs to, which causes a comparative slowdown in the RowScan
operator. This effect is more eminent in the query plan because there
the pipeline is even bigger than the one in our microbenchmarks.
Another cause of the slowdown is that in the query plan, we cannot
exactly isolate the local partitioning phase, but we instead measure
the whole sub-plan present in the first NestedMap of Figure 3 and
subsequently subtract the one present in the second NestedMap.
This nested plan includes an extra materialization of the output
partitions, and the processing of metadata necessary for later phases
of the algorithm. Although the latter is not significantly compute-
heavy, it attributes to a small part of the slowdown present.

The build probe phase is faster in the model, compared to the
original code base and the query plan. The slowdown in the first
case is explained by the fact that the MaterializeRowVector uses
the realloc function to request more memory, compared to the al-
locator interface of the original code base. In the second case, build
probe is again part of a large pipeline. Therefore we lack some com-
piler optimizations. On 8 machines, each process materializes fewer
tuples and requests less memory, and these effects are ameliorated.

Finally, in Figure 9b, we depict the total runtime of the mono-
lithic operator compared to the Modularis plan for the distributed
join algorithm. Our modular integration is from 12 to 28% slower,
depending on the number of machines used, due to the reasons ex-
plained before. However, the operators present in this plan exhibit
the advantage that they can be reused in a variety of queries.

5.3 Distributed GROUP BY

In this section, we run the distributed GROUP BY plan presented in
Section 4.3. We show our results in Figure 10. On the left side of
the Figure, we run the plan across different machine configurations
for a workload of 2048 unique million keys. As expected, the total
runtime decreases as the algorithm load is distributed across more
nodes. On the right side of the Figure, we increase the number
of distinct keys in the input (and hence the number of groups
in the result) and execute the plan for three different machine
configurations. Because the total execution time is dominated by
the network time and the materialization of the tuples, the time is
almost steady for each machine configuration. Overall, we observe
that Modularis performs grouping of billion of elements in a few
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Figure 10: Distributed GROUP BY runtime: varying cluster size
with fixed key cardinality (left); varying key cardinality for
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seconds without having to design a specialized monolithic operator
for this cause but mainly by reusing existing system components.

5.4 Sequences of joins
Finally, we present the results of executing sequences of joins. As
a baseline, we use the naive version of the plan that shuffles four
relations through the network. We compare the naive plan against
an optimized one that shuffles only three. Both of these versions are
implemented in our system. For this experiment, we use multiple
relations with 2048 million tuples each, similar to the relations used
in [13]. Additionally, we use a 1-to-1 correspondence between the
keys in the inner and outer relation unless otherwise mentioned.

Figure 11a shows the execution time when performing a se-
quence of two joins across several machines with the two variants
of the algorithm, naive and optimized. We observe that there is a
constant speedup in the optimized version compared to the baseline,
which is partly due to the network shuffling of one less relation and
partly due to the materialization of only the final result instead of
materializing both the intermediate and the final join output. The
execution time has a sublinear speedup as the number of machines
increases because the tail latencies mentioned in the previous sec-
tion in the network phases are even more eminent. Because the
network phases constitute a larger part of the execution time of
the optimized version, these tail latencies are the main reason that
the speedup between the baseline and the optimized version is
decreased as the number of machines increases.

However, the advantage of the optimized version is more conspic-
uous when the first join has an increasing join output. We show the

total runtime of such an experiment across 8 machines in Figure 11b
and the time spent on partitioning data through the network in
Figure 11c. While the naive version increases linearly with a high
rate as the algorithm materializes and shuffles through the network
an extra relation that has an increasing size, the optimized version
has a sublinear increase in its total execution time. To analyze fur-
ther the cause of this time difference, we show in Figure 11c that
for the optimized version the time spent on shuffling data through
the network is constant, as all three relations are pre-partitioned
at the beginning of the plan execution while the network time is
increasing linearly as more data are shuffled through the network.
In these two plots, we cannot execute the baseline algorithm for
more than 18 million tuples due to memory constraints.

Lastly, we compare the two versions while increasing the num-
ber of joins performed. We show the results in Figure 11d. The
difference in the total runtime between the two versions is propor-
tional to the number of joins because for N joins, the optimized
plan performs N − 1 materializations and N + 1 network shuffling
phases less than the naive plan. This shows, as in the GROUP BY
case, that we can apply optimizations that have a significant per-
formance impact. This comes without rewriting the whole system
from scratch, as in the case of monolithic operators, but mainly by
restructuring operators across plans.

6 CONCLUSION
In this paper, we have proposed Modularis—an execution engine
based on sub-operators. After sketching the design principles that
the sub-operators should follow, we propose an initial set of sub-
operators and demonstrate how they can be combined to build
traditional database operators such as a distributed hash join or a
GROUP BY query as well as more complex query plans like sequences
of joins and TPC-H queries. We show that by changing a small
subset of our sub-operators we can execute the same TPC-H query
plans on diverse hardware platforms (RDMA, serverless clusters,
smart storage). Through extensive experiments, we show that
modularity reduces implementation effort without requiring users
to sacrifice performance. Modularis is an order of magnitude faster
than Presto, a data warehouse supporting various storage layers and
distributed setups, and more performant in the majority of cases
than SingleStore, an in-memory analytics SQL engine. Modularis
also outperforms Query-as-a-Service systems such as BigQuery
and Athena by simply changing the RDMA-specific operators with
dedicated serverless-based ones so that queries run on the cloud.
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