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ABSTRACT
The range query on encrypted databases is usually implemented

using the order-preserving encryption (OPE) technique which pre-

serves the order of plaintexts. Since the frequency leakage of plain-

texts makes OPE vulnerable to frequency-analyzing attacks, some

frequency-hiding order-preserving encryption (FH-OPE) schemes

are proposed. However, existing FH-OPE schemes require either the

large client storage of size 𝑂 (𝑛) or 𝑂 (log𝑛) rounds of interactions
for each query, where 𝑛 is the total number of plaintexts. To this

end, we propose a FH-OPE scheme that achieves the small client

storage without additional client-server interactions. In detail, our

scheme achieves 𝑂 (𝑁 ) client storage and 1 interaction per query,

where 𝑁 is the number of distinct plaintexts and 𝑁 ≤ 𝑛. Espe-

cially, our scheme has a remarkable performance when 𝑁 << 𝑛.

Moreover, we design a new coding tree for producing the order-

preserving encoding which indicates the order of each ciphertext

in the database. The coding strategy of our coding tree ensures

that encodings update in the low frequency when inserting new

ciphertexts. Experimental results show that the single round in-

teraction and low-frequency encoding updates make our scheme

more efficient than previous FH-OPE schemes.
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1 INTRODUCTION
At present, encrypted databases (e.g., CryptDB [31], Arx [29], etc)

have attracted widespread attention from academia and industry.

The range query, one of the popular search operations in encrypted

databases, is usually implemented using an encryption primitive

called order-preserving encryption (OPE) which preserves the or-

der of plaintexts. The minimum security requirement of OPE is

not to reveal any other information besides the ciphertext order.

In recent years, many studies [2, 15, 28] have pointed out that this

basic security of OPE is insufficient to protect data privacy, since
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deterministic OPE ciphertexts will leak the frequency of plaintexts.

Based on frequency information, the attacker can distinguish the

plaintexts using some auxiliary information, such that many at-

tacks (inference attacks [2, 15, 28], volume attacks [14, 16, 19], etc.)

successfully reveal the ciphertext or steal other useful information

without decrypting the corresponding ciphertexts. Therefore, hid-

ing the frequency becomes a practical security goal when OPE is ap-

plied in encrypted databases. In order to reduce information leakage,

some order-revealing encryption (ORE) schemes [6–8, 12, 17, 24]

have been proposed. Unlike OPE, the ciphertexts of ORE will not

reveal the order of the plaintext until the comparison is performed.

However, its ciphertexts still cannot hide frequency information.

To hide the frequency, the OPE scheme must not only preserve

orders of ciphertexts, but also randomly generate different (indeter-

ministic) ciphertexts/orders for same plaintexts. For example, the

plaintexts 4, 5, 5, and 5 are given ciphertexts/orders 112, 113, 115,

and 114, respectively, and each ciphertext/order of value 5 is still

larger than the ciphertext/order of value 4. Such ciphertexts/orders

should be organized by a state, otherwise the scheme without the

state cannot even achieve the security [30].

Some frequency-hiding order-preserving encryption (FH-OPE)

schemes [20, 33] have been proposed. According to the state, the

existing FH-OPE solutions can be divided into two categories: client-

state schemes and server-state schemes. The typical solution with

the client state is Kerschbaum’s scheme [20], where the client main-

tains a tree-structure state mapping plaintexts to OPE ciphertexts.

Similar to BCLO [4], it can be theoretically applied in the encrypted

database, since it stores all indeterministic OPE ciphertexts on the

client. However, this client storage is too large and linear with

the number of all records in the database, which is infeasible for

actual database applications. The typical solution with the server

state is the partial order-preserving encoding (POPE) scheme [33]

which stores ciphertexts through a B+-tree-structure state on the

server side. The scheme is partial order-preserving since cipher-

texts are sorted until any query reaches. When querying, a part of

unsorted ciphertexts will be relocated into the appropriate position

via interactive comparisons. Although the client needs to remem-

ber nothing, each comparison still requires the client to download

the compared data, which leads to many rounds of interactions

between the client and the server. These additional interactions

slow query operations greatly and thus make POPE difficult to be

deployed in the encrypted database.

Motivation. One fact is that we need to provide the frequency-

hiding security for the field which assigns a record the value from a

small domain and contains a large number of records (because the
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Table 1: Comparison with Previous OPE Schemes. 𝜆 is denoted as the security parameter and 𝜖 is denoted as a constant greater
than 0 and less than 1. POPE [33] is set to perform 𝑂 (𝑛1−𝜖 ) range queries.

OPE scheme Security Interaction Client Storage Incomparable Elements Server Storage

IND-OCPA IND-FAOCPA Insert Query Working Persistent

BCLO [4] No No 1 1 𝑂 (1) 𝑂 (1) 0 𝑂 (𝑛)
mOPE [30] Yes No 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (1) 𝑂 (1) 0 𝑂 (𝑛)
FH-OPE [20] Yes Yes 1 1 𝑂 (𝑛) 𝑂 (𝑛) 0 𝑂 (𝑛)
POPE [33] Yes Yes 1 𝑂 (log𝑛) 𝑂 (1) 𝑂 (𝑛𝜖 ) Ω ( 𝑛2−𝜖

𝑚
− 𝑛) 𝑂 (𝑛)

Our scheme Yes Yes 1 1 𝑂 (𝑁 ) 𝑂 (𝑁 ) 0 𝑂 (𝑛)

frequency attacks are easy to succeed on this field even its records

are encrypted). Take the field “age” as an example. There are about

100 values on the domain of “age”, but there are usually thousands

of database records on “age”. However, using existing schemes to

encrypt records on this field will either cost the client storage linear

with the number of all records or frequent client-server interactions.

Based on this consideration, we focus on how to design a FH-OPE

scheme that avoids the above shortcomings of existing schemes.

Moreover, a FH-OPE solution is supposed to provide a feasible way

for implementing OPE in the encrypted database as well as applying

BCLO [4] to CryptDB [31]. In more details, it only needs to add

a few functions to complete the corresponding operations on the

database rather than change the database driver.

Our work. We propose a new FH-OPE scheme which achieves

the small client storage and only costs single round interaction

per query. Different from existing works, our scheme is a client-

server-state scheme, where the client state is a local table and the

server state is a tree for organizing ciphertexts in order. The local

table maps a plaintext to the number of its ciphertexts stored on

the server side and thus its maximum size is equal to the number

of distinct plaintexts. When encrypting a target plaintext to the

ciphertext, the local table helps the client carry out the server-

side position where the ciphertext will be located. Therefore, after

receiving the ciphertext along with its position information, the

server can directly insert the ciphertext into the server state without

any further interaction with the client.

There is a critical challenge for constructing an appropriate

server state suitable for the small local table. On the one hand,

the ciphertext-comparison operation of existing server-state OPE

schemes, such as mutable order-preserving encryption (mOPE)

scheme [30] and POPE, requires additional client-server interac-

tions. On the other hand, the tree-structure state of these schemes

will trigger a large number of updates on order-preserving en-

codings/ciphertexts when the tree needs to be rebalanced, which

introduces much communicational or computational overhead. To

tackle this challenge, we design a server state called coding tree,
which unbinds the relationship between the encoding/ciphertext

update and the tree rebalancing. Unlike the previous works, the

rebalancing of the tree in our FH-OPE scheme will never trigger

the update of the existing encodings/ciphertexts, such that the fre-

quency of update operations is greatly reduced.

Our contributions are summarized as follows:

• We propose the first FH-OPE scheme with the small client

storage and no additional client-server interaction. Table 1

shows the comparison between our work and previous OPE

schemes. Our scheme achieves 𝑂 (𝑁 ) client storage and is

lower than Kerschbaum’s scheme [20] whose complexity is

𝑂 (𝑛), where 𝑁 is the number of distinct plaintexts and 𝑛 is

the total number of plaintexts. Our scheme achieves single

round interaction for each insertion/query, while mOPE [30]

and POPE [33] require 𝑂 (log𝑛) interactions at least.
• We propose a new coding tree with the coding strategy. Our

coding strategy greatly reduces the frequency of encoding

updates. Experiments demonstrate that the frequency of up-

dates in our scheme is less than that in the previous schemes

[20, 30] when inserting the same number of plaintexts.

• We deploy our scheme in the real-world encrypted MySQL

database by implementing user-defined functions (UDFs).

Experimental results on the implementation highlight our

scheme’s advantages on the client storage, the recoding fre-

quency, and the client-server interaction. The evaluation

demonstrates that our scheme is practical and outperforms

previous FH-OPE schemes [20, 33] due to the low recoding

frequency and the less interaction.

2 RELATEDWORK
2.1 OPE and Frequency Attacks
Up to now, many researches on OPE/ORE [1, 4–6, 10, 18, 20–22, 25–

27, 30, 33] have been proposed, and some of them have been inte-

grated into the database including CryptDB [31], Arx [29], ZeroDB

[11], and EncDBDB [13]. The survey [3] systematically summarized

previous OPE solutions and evaluated the performances of them.

OPE and stateful OPE. According to the methods for preserv-

ing the orders of ciphertexts, the OPE schemes are mainly divided

into two types: stateful OPE and stateless OPE. The stateful solution
contains a state that dynamically organizes ciphertexts in order,

while the stateless one does not. Such a state can be seen as a part

of “ciphertexts” which is mutable and necessary to achieve the ideal

security, i.e., indistinguishability under the ordered chosen plain-

text attack (IND-OCPA). That means a ciphertext does not reveal

any other information besides its plaintext’s order. Boldyreva et

al. [4] has proved that it is impossible for OPE scheme to achieve

IND-OCPA with non-mutable ciphertexts. Then, Popa et al. [30]

presented an interactive OPE scheme that achieves IND-OCPA via

the server state. Due to the security, researches on OPE focused

more on the stateful solution in the last decade.

Frequency attacks. As mentioned in Section 1, deterministic

OPE ciphertexts leak the frequency of plaintexts and thus provide a
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way for recovering plaintexts from ciphertexts without decryption.

Many attacks [2, 14–16, 19, 28] based on the frequency informa-

tion are proposed. The cumulative attack [28] tried to match a

ciphertext with auxiliary data (which is available for the public)

by learning frequency and order information of the ciphertext. It

can recover 80% of plaintexts with frequency information. Grubbs

et al. [15] proposed a non-crossing attack using bipartite graph

non-crossing matching to enforce the consistency of a plaintext-

ciphertext sequence. Bindschaedler et al. [2] proposed a Bayesian

inference attack which greatly improved the theoretical basis and

experimental effect of the inference attack against OPE. To reduce

the information leakage in OPE, frequency-smoothing solutions

[23, 32] were proposed for providing encryption schemes with a

security guarantee weaker than the frequency hiding. However, an

encrypted database should achieve the stronger security.

2.2 Typical FH-OPE Solution
The option of FH-OPE is to generate indeterministic ciphertexts

for same plaintexts while preserve orders of ciphertexts. We review

existing FH-OPE solutions according to the state.

Client-state solution. Kerschbaum [20] proposed the first FH-

OPE scheme which stores all the plaintexts in the tree-structure

client state. The scheme encrypts same plaintexts into different

ciphertexts by introducing random coins which randomizes the

position of each plaintext in the tree. The ciphertexts are generated

as the mean value of the ciphertexts for the next smaller plaintext

and the next greater plaintext. The tree also depicts a mapping from

plaintexts to ciphertexts, so that the client can correctly perform

decryption operations. However, the client storage is in𝑂 (𝑛), which
is not practical for large database applications. It motivates us to

design a FH-OPE scheme with the small client storage.

Server-state solution. ThemOPE [30] scheme is anOPE scheme

which maintains all ciphertexts in the tree-structure server state.

After inserting the ciphertext into the tree, the server will assign an

order-preserving encoding to the ciphertext. It is intuitively used

to construct the FH-OPE solution by encrypting plaintexts into

indeterministic ciphertexts. However, it costs much communica-

tion when inserting, because the client must compare the inserted

ciphertext with ciphertexts on branch node to decide its correct

position on the tree. Moreover, since the server generates the order-

preserving encoding of a ciphertext according to its path in the tree,

a large number of updates on encodings will be triggered when the

tree needs to be rebalanced. To reduce the additional interactions

during inserting, Roche et al. proposed POPE [33] that achieves

frequency hiding. It sets a B+ buffer tree as the server state, which

partially preserves the order of each ciphertext. When the client

performs encryption operations, the server only inserts the cipher-

text into the buffer of a node. Once the client performs a query

operation, ciphertexts in the buffers are evicted to leaf nodes of

the tree in order. Although it reduces interactions during inserting,

it is still not feasible for encrypted database, since 1) ciphertexts

are buffered and not completely ordered, which creates major logic

changes on existed encrypted databases; 2) each query operation

requires massive additional interactions. These defects motivate us

to design a FH-OPE scheme without additional interactions while

achieving the low frequency of encoding updates.

3 PRELIMINARIES
3.1 Stateful Order-preserving Encryption
Considering the ideal security goal (IND-OCPA) for an OPE scheme

is infeasible for an encryption model without a state for organiz-

ing mutable OPE ciphertexts, our FH-OPE scheme is based on a

construction of the stateful OPE scheme. The OPE ciphertext of a

plaintext in our scheme is a tuple that consists of 1) a permanent
ciphertext is encrypted from the plaintext and can be decrypted

to recover the plaintext; 2) a transient order-preserving encoding
indicates the order information of the plaintext.

A stateful OPE scheme OPE = (KeyGen, Setup, Enc, Dec, Order)
consists of the following five algorithms.

• sk← KeyGen(1𝜆): The client generates a secret key sk by
the security parameter 𝜆.

• st ← Setup(1𝜆): The server initializes the state st by the

security parameter 𝜆.

• 𝑐𝑡, st′ ← Enc(sk, st, 𝑝𝑡): The encryption is an interactive

algorithm between the client and the server. The inputs to

the client are sk and a plaintext 𝑝𝑡 , and the input to the

server is the state st. Then, the client obtains a permanent

ciphertext 𝑐𝑡 and the server updates the state from st to st′.
• 𝑝𝑡 ← Dec(sk, 𝑐𝑡): This decryption algorithm is run by the

client on sk and a ciphertext 𝑐𝑡 to obtain a plaintext 𝑝𝑡 .

• 𝑐𝑑 ← Order(st, 𝑐𝑡): This algorithm runs at the server, takes

as input a state st and a ciphertext 𝑐𝑡 , and retrieves the order-
preserving encoding 𝑐𝑑 .

In OPE, the state st is constructed as a tree stored on the server.

This tree is a search tree that maintains a set of OPE ciphertexts each
of which consists of a ciphertext and its order-preserving encoding.
Take a binary search tree as an example. If there is a node 𝑛𝑜𝑑𝑒

stores the ciphertext 𝑐𝑡 encrypted from a plaintext 𝑝𝑡 , all the nodes

in the left sub-tree of 𝑛𝑜𝑑𝑒 are smaller than 𝑝𝑡 and all the nodes in

the right sub-tree of 𝑛𝑜𝑑𝑒 are larger than 𝑝𝑡 . Moreover, the order-

preserving encoding 𝑐𝑑 of 𝑝𝑡 is generated based on the position of

𝑐𝑡 in the tree, so that it can directly indicate the order of 𝑝𝑡 .

Correctness. OPE is correct if Dec(sk, 𝑐𝑡) = 𝑝𝑡 for any valid

state st, 𝑝𝑡 , and 𝑐𝑡, st′ = Enc(sk, st, 𝑝𝑡). OPE is order-preserving if

𝑐𝑑𝑖 > 𝑐𝑑 𝑗 ⇐⇒ 𝑝𝑡𝑖 > 𝑝𝑡 𝑗 for any 𝑖 and 𝑗 .

Threat model. In the system of the stateful OPE scheme, there

are two entities: the client and the server. The client takes its data as

input and wishes to protect the data privacy, while the server is seen

as an honest-but-curious internal adversary who can loyally perform
the OPE algorithms but tries to reveal the data content. The server

can know the client’s access pattern [9], including which ciphertext

is inserted or queried. There is also an outer adversary who plays a

role of the eavesdropper. It is as powerful as the honest-but-curious

server if it eavesdrops the communication between the client and

the server throughout. Therefore, the adversary in Section 3.2 can

refer to either this eavesdropper or the honest-but-curious server.

3.2 Security Definition
An OPE scheme with IND-OCPA reveals no additional information

about the plaintext values besides their orders. Kerschbaum [20]

proposed a new security definition for frequency hiding in OPE. It

is named indistinguishability under frequency-analyzing ordered
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chosen-plaintext attack (IND-FAOCPA) and strictly stronger than

IND-OCPA security.

Randomized order. In a stateful OPE scheme, a randomized

order Γ = 𝛾1, ..., 𝛾𝑛 of a sequence 𝑃𝑇 = 𝑝𝑡1, ..., 𝑝𝑡𝑛 holds that 1)

1 ≤ 𝛾𝑖 ≤ 𝑛 for any 𝑖; 2) 𝑖 ≠ 𝑗 =⇒ 𝛾𝑖 ≠ 𝛾 𝑗 for any 𝑖 and 𝑗 ; 3)

𝑝𝑡𝑖 > 𝑝𝑡 𝑗 =⇒ 𝛾𝑖 > 𝛾 𝑗 for any 𝑖 and 𝑗 ; 4) 𝛾𝑖 > 𝛾 𝑗 =⇒ 𝑝𝑡𝑖 ≥ 𝑝𝑡 𝑗 for

any 𝑖 and 𝑗 .

IND-FAOCPA security game. The security game

𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆) between a challenger and an adversary A for an

OPE scheme Π with the security parameter 𝜆 proceeds as follows.

(1) The adversary A generates two sequences 𝑃𝑇0 and 𝑃𝑇1
which have at least one common randomized order Γ. Each
sequence contains 𝑛 not necessarily distinct plaintexts. Then,

A sends 𝑃𝑇0 and 𝑃𝑇1 to the challenger.

(2) The challenger generates a secret key sk← Π.KeyGen(1𝜆)
and chooses a random bit 𝑏 ∈ {0, 1}.

(3) The challenger and a server jointly run Π.Setup(1𝜆) to ini-

tialize the state at the server.

(4) Then, the challenger interacts with the server to encrypt 𝑃𝑇𝑏
as a ciphertext sequence 𝐶𝑇 . Finally, the challenger sends

𝐶𝑇 and the state to the adversary A, so that A can know

the access pattern that corresponds to 𝑃𝑇𝑏 .

(5) The adversary A outputs a guess 𝑏 ′ of 𝑏.

The adversary A wins the game if 𝑏 ′ = 𝑏. IND-FAOCPA is

defined by the probability of A’s win.

Definition 1. An OPE scheme achieves IND-FAOCPA secure if
for all p.p.t. adversaries A, for all 𝜆, the advantage of outputting 𝑏 is
negligible:

𝑃𝑟 [𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆) = 𝑏] < 1

2

+ 1

𝑝𝑜𝑙𝑦 (𝜆) . (1)

An OPE scheme with IND-OCPA is also a FH-OPE scheme if it

is IND-FAOCPA secure.

4 DESIGN GOALS
To meet the frequency-hiding security requirement described in

Section 3.2, a stateful OPE scheme should generate and store differ-

ent OPE ciphertexts for same plaintexts. In this option, the client

must encrypt all plaintexts rather than only distinct plaintexts into

ciphertexts and then submit the ciphertexts to the server. This

makes us fall into a dilemma: we have to cost either a large client

storage like the client-state scheme or a number of client-server

interactions like the server-state scheme. Alternatively, it inspires

us to propose a client-server-state solution which avoids the defects

above.

Local table. To run with a small client state, we set a local
table as the state, which maps sorted plaintexts to their counts.

Compared with previous client-state schemes, the table reduces the

client storage from 𝑂 (𝑛) to 𝑂 (𝑁 ), where 𝑛 is the total number of

plaintexts and 𝑁 is the number of distinct plaintexts. Moreover, this

table requires that the server stores the ciphertexts and organizes

them by a server state, which cannot be achieved by previous

client-state schemes (e.g., Kerschbaum’s scheme). Whenever a new

plaintext 𝑝𝑡 is encrypted, the client carries out how many existing

plaintext values are less than 𝑝𝑡 with the help of the local table. Thus,

it is easy to determine a randomized sequential position 𝑝𝑜𝑠 of the

corresponding ciphertext 𝑐𝑡 . We hope that the server can insert and

further query the ciphertext on 𝑝𝑜𝑠 directly. However, the previous

server-state FH-OPE solutions need either extra communication or

extra computation to locate 𝑝𝑜𝑠 on the server state even if intuitively

adopting the local table. Therefore, we should consider how to

build an appropriate server state with this small client storage and

further design algorithms of our FH-OPE scheme.

Our FH-OPE solution is supposed to be practically applied in an

encrypted database, i.e., like BCLO [4] directly applied in CryptDB

[31]. Hence, we have the following two design goals:

• Without additional interactions. Similar to the usage of a

real-world database, when performing a SQL query, the client

only needs to submit a request containing the encrypted SQL

query to the server. After the server receives the request,

it calls the user-defined function to complete the relevant

operation.We require that there is no additional client-server

interaction except submitting the request.

• Reducing frequency of ciphertext re-encoding. Besides
ensuring the IND-OCPA security of an OPE scheme, using

the (tree-structure) server state is to maintain each stored

ciphertext in order. When this tree needs to be rebalanced,

the order-preserving encodings of a set of ciphertexts will be

updated. If the tree contains a large number of ciphertexts,

this recoding caused by rebalancing will seriously degrade

the performance of the OPE scheme. Note that this situation

is more common in FH-OPE schemes. For the server-side

tree, we require that order-preserving encodings are not

updated when the tree is adjusted, so that the frequency of

ciphertext re-encoding is reduced.

Then, we describe the server-side tree and the corresponding

algorithms of our scheme which achieves the goals.

5 CODING TREE
In this section, we give a server-side tree which can produce en-

codings with the order-preserving property while ensuring the

goals in Section 4. Such a tree is called as coding tree. We build the

coding tree by designing a coding strategy and constructing the

appropriate structure.

5.1 Coding Strategy
In the OPE scheme with a server-side tree, the order-preserving

encoding indicates the path of its ciphertext stored in this sort

tree. The ciphertext’s path information intuitively represents the

order of its corresponding plaintext. That is the reason why the

order-preserving property of such an encodingworks. Alternatively,

balancing this tree is precisely what mutates the path-related encod-

ing, since the encoding must be updated according to the change

of its path. Hence, it is difficult to reduce the frequency of recoding

this encoding. This path-related encoding is quite double-blade.

To avoid the inherent defect of path-related encodings, we give

a region-code strategy to encode each ciphertext into an order-

preserving encoding which shows the order of its underlying plain-

text. Instead of recoding during the rebalancing in previous works,

our coding strategy updates encodings only if necessary.

We set that each leaf node in the coding tree stores some cipher-

texts within a specific interval. The interval of a node is denoted as
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(𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ]. When inserting a new ciphertext into this node, the

server takes the middle value of two neighbours’ encodings as the

ciphertext’s encoding. If the left (right) neighbour is empty, we use

the lower (upper) bound instead. For example, if a new ciphertext is

decided to insert in the position between 𝑐𝑑1 and 𝑐𝑑2, its encoding

is set as ⌈(𝑐𝑑1 + 𝑐𝑑2)/2⌉. These encodings can be utilized to make

an order comparison between any two ciphertexts. Although tree

rebalancing operations change some nodes’ paths, order relation-

ships of all nodes are still preserved. Therefore, there is no need for

updating our encodings which are only related to the orders. We

will show this property in Section 5.3.2.

When our coding strategy works, the condition that triggers

the recoding is that there is no available encoding for the new ci-

phertext. In this situation, a set of adjacent ciphertexts in the same

node or brother nodes will be encoded again in a uniform way. For

example, there is a node with an interval (0, 8]. It contains a ci-

phertexts sequence {𝑐𝑡1, 𝑐𝑡2, 𝑐𝑡3} with the corresponding encodings

are {1, 3, 4}. When inserting a new ciphertext 𝑐𝑡 ′ between 𝑐𝑡2 and
𝑐𝑡3, the encodings in the node will be extended to {2, 4, 6, 8} which
indicate orders of the sequence {𝑐𝑡1, 𝑐𝑡2, 𝑐𝑡 ′, 𝑐𝑡3}. This situation is

rare, which is demonstrated by the evaluation in section 8.4.

5.2 Structure of Coding Tree
To enable the coding strategy above, the coding tree should support

not only searching from its root but also the sequential traver-

sal in left-to-right order. Therefore, we choose a new structure to

construct our coding tree.

Internal node

kwd1

child1

kwd2

child2

...

...
kwdm

childm

Leaf node

ct1 ct2 ... ctm

cd1 cd2 ... cdm

lbro lower upper rbro

Figure 1: Node Component of Coding Tree.

Node. We take the 𝑚-order coding tree as an example. Each

internal node has at most𝑚 child nodes and each leaf node stores

at most𝑚 ciphertexts. We denote 𝑖𝑚𝑎𝑥 as the current number of

elements on a node. Each node’s component is shown as follows.

• Internal node. An internal node contains the pointer 𝑐ℎ𝑖𝑙𝑑

and the corresponding keyword 𝑘𝑤𝑑 for each child node.

These keywords can help to finish insert operations and

traversal operations.

• Leaf node. A leaf node stores each inserted ciphertext 𝑐𝑡

with its transient encoding 𝑐𝑑 . In addition, the leaf node

also contains its encoding interval (𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ] and the

point of its brother nodes. When a node has more than𝑚

ciphertexts, it will split into two nodes which are brothers.

Such a rebalancing does not cause any recoding operations.

Figure 1 depicts an internal node with 𝑖𝑚𝑎𝑥 child nodes and a

leaf node stores 𝑖𝑚𝑎𝑥 ciphertexts.

Keyword. It is supposed that only given a sequential position

𝑝𝑜𝑠 , the server can make use of keywords of internal nodes to

locate 𝑝𝑜𝑠 from the root. The coding tree has a structure similar

to the B+ tree, but we observe that the keywords of the B+ tree

and the corresponding search way are not suitable for our location

operations. Hence, we define that each keyword in an internal

node represents the number of OPE ciphertexts contained in the

descendants of the corresponding child node.

Usage of keyword. When receiving the request that contains

a ciphertext 𝑐𝑡 with its position 𝑝𝑜𝑠 , the server inserts 𝑐𝑡 from the

root of the coding tree. Let 𝑘𝑤𝑑𝑖 be the 𝑖-th keyword of the current

node and the tree be𝑚-order, the server:

1 for each 𝑖 = {1, 2, ...}, when 𝑝𝑜𝑠 > 𝑘𝑤𝑑𝑖 which means that

ciphertext 𝑐𝑡 will not be inserted into the descendants of

𝑐ℎ𝑖𝑙𝑑𝑖 , repeat 𝑝𝑜𝑠 ← 𝑝𝑜𝑠 − 𝑘𝑤𝑑𝑖 until 𝑝𝑜𝑠 ≤ 𝑘𝑤𝑑𝑖 ;

2 set 𝑐ℎ𝑖𝑙𝑑𝑖 as the current node and repeat step 1 until the

current node is a leaf node;

3 insert 𝑐𝑡 into the current node as the (𝑝𝑜𝑠 + 1)-th ciphertext;

4 if there is no available encoding for 𝑐𝑡 , perform a recoding

operation, and otherwise give it an encoding;

5 if the node stores 𝑚 + 1 ciphertexts now, perform a tree

rebalancing operation.

5.3 Building Blocks of Coding Tree
To process basic operations of our coding tree, we define some

functions — building blocks run by the server. Figure 2 describes

the building blocks in detail.

Insert(𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠, 𝑐𝑡 ). This function takes the coding tree 𝑟𝑜𝑜𝑡 ,

a target ciphertext 𝑐𝑡 , and its position 𝑝𝑜𝑠 as input. The server

makes a comparison between 𝑝𝑜𝑠 and each keyword of the cur-

rent node to recursively locate the leaf 𝑙𝑒𝑎𝑓 which 𝑝𝑜𝑠 belongs to.

Then, the server calls Encode(𝑙𝑒𝑎𝑓 , 𝑝𝑜𝑠 + 1) to get the encoding

of 𝑐𝑡 and the range of updated encodings. If 𝑙𝑒𝑎𝑓 stores𝑚 + 1 ci-
phertexts after inserting, the server performs the tree rebalancing

Rebalance(𝑙𝑒𝑎𝑓 ) for 𝑙𝑒𝑎𝑓 . The function returns 𝑐𝑡 ’s encoding. If

Encode involves the update on encodings, the function also returns

the range (𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ] of updated encodings.

Encode(𝑙𝑒𝑎𝑓 , 𝑝𝑜𝑠). This function takes a leaf 𝑙𝑒𝑎𝑓 and a target

position 𝑝𝑜𝑠 of it as input. Assume that the ciphertext 𝑐𝑡 is in 𝑝𝑜𝑠 of

𝑙𝑒𝑎𝑓 . The server encodes 𝑐𝑡 as 𝑐𝑑 which is the middle value of encod-

ings of 𝑐𝑡 ’s two neighbours. Then, if there is no available encoding

for 𝑐𝑡 , the server calls the building block Recode(𝑙𝑒𝑎𝑓 ) to recode

each ciphertext on 𝑙𝑒𝑎𝑓 . The function returns 𝑐𝑑 . If there is any re-

coding, the function also returns the recoding range (𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ].
Recode(𝑙𝑒𝑎𝑓 ). This function takes a leaf 𝑙𝑒𝑎𝑓 as input. It reallo-

cates encodings for ciphertexts on 𝑙𝑒𝑎𝑓 or its brothers when trigger-

ing the recoding operation during encoding. We denote 𝑖𝑚𝑎𝑥 as the

number of elements on a node. If there are more than 𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥

integers on the interval of 𝑙𝑒𝑎𝑓 , the server uniformly allocates

them for the ciphertexts. Otherwise, 𝑙𝑒𝑎𝑓 ’s brother nodes will be

gradually aggregated as a block-linked list for encoding opera-

tions. In particular, when the leftmost/rightmost leaf does not have

enough interval to allocate encodings, the server will double the

leaf’s lower/upper bound. Finally, the function outputs the recod-

ing range (𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟, 𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 ] at the leaf level. Note that the
recoding is easy to implement, since the coding tree supports se-

quential searches at the leaf level. Figure 3 shows an example of the

recoding. When inserting (Figure 3(a)) a new ciphertext between

𝑐𝑡1 and 𝑐𝑡2 on the first leaf, the tree reallocate the encodings on this

leaf since there is no available encoding between 0 and 1 (Figure
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Encode(𝑙𝑒𝑎𝑓 , 𝑝𝑜𝑠)
1: 𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡 ← 𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟, 𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 ;

2: 𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ←⊥,⊥;
2: if 𝑝𝑜𝑠 > 1

3: 𝑙𝑒 𝑓 𝑡 ← 𝑙𝑒𝑎𝑓 .𝑐𝑑𝑝𝑜𝑠−1;
5: if 𝑝𝑜𝑠 < 𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥

6: 𝑟𝑖𝑔ℎ𝑡 ← 𝑙𝑒𝑎𝑓 .𝑐𝑑𝑝𝑜𝑠 ;

7: 𝑐𝑑 ← ⌈ 𝑙𝑒 𝑓 𝑡+𝑟𝑖𝑔ℎ𝑡
2

⌉;
8: if |𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡 | ≤ 1

9: 𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ← Recode(𝑙𝑒𝑎𝑓 );
10: 𝑐𝑑 ← 𝑙𝑒𝑎𝑓 .𝑐𝑑𝑝𝑜𝑠 ;

11: return 𝑐𝑑, 𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 .

Recode(𝑙𝑒𝑎𝑓 )
1: 𝑙𝑙𝑒𝑎𝑓 , 𝑟𝑙𝑒𝑎𝑓 ← 𝑙𝑒𝑎𝑓 , 𝑙𝑒𝑎𝑓 ;

2: 𝑖𝑚𝑎𝑥 ← 𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥 ;

3: if (𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 ) ≥ 𝑖𝑚𝑎𝑥

4: 𝑓 𝑟𝑎𝑔← ⌊ 𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟−𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟

𝑖𝑚𝑎𝑥
⌋;

5: 𝑐𝑙𝑒𝑎𝑓 ← 𝑙𝑙𝑒𝑎𝑓 ;

6: 𝑐𝑑 ← 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 ;

7: for each 𝑖 ∈ [𝑐𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥 ]
8: 𝑐𝑑 ← 𝑐𝑑 + 𝑓 𝑟𝑎𝑔;
9: 𝑐𝑙𝑒𝑎𝑓 .𝑐𝑑𝑖 ← 𝑐𝑑 ;

10: if 𝑐𝑙𝑒𝑎𝑓 ≠ 𝑟𝑙𝑒𝑎𝑓

11: 𝑐𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 ← 𝑐𝑑 ;

12: 𝑐𝑙𝑒𝑎𝑓 ← 𝑐𝑙𝑒𝑎𝑓 .𝑟𝑏𝑟𝑜 ;

13: 𝑐𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 ← 𝑐𝑑 ;

14: goto 7;

15: else
16: if 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑏𝑟𝑜 ≠ 𝑁𝑈𝐿𝐿

17: 𝑙𝑙𝑒𝑎𝑓 ← 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑏𝑟𝑜 ;

18: 𝑖𝑚𝑎𝑥 ← 𝑖𝑚𝑎𝑥 + 𝑙𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥 ;

19: else if 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 < 0

20: 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 ← 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 · 2;
21: if 𝑟𝑙𝑒𝑎𝑓 .𝑟𝑏𝑟𝑜 ≠ 𝑁𝑈𝐿𝐿

22: 𝑟𝑙𝑒𝑎𝑓 ← 𝑟𝑙𝑒𝑎𝑓 .𝑟𝑏𝑟𝑜 ;

23: 𝑖𝑚𝑎𝑥 ← 𝑖𝑚𝑎𝑥 + 𝑟𝑙𝑒𝑎𝑓 .𝑖𝑚𝑎𝑥 ;

24: else
25: 𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 ← 𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 · 2;
26: goto 3;

27: return 𝑙𝑙𝑒𝑎𝑓 .𝑙𝑜𝑤𝑒𝑟 , 𝑟𝑙𝑒𝑎𝑓 .𝑢𝑝𝑝𝑒𝑟 .

GetCode(𝑛𝑜𝑑𝑒, 𝑝𝑜𝑠)
1: if 𝑛𝑜𝑑𝑒 is leaf

2: 𝑐𝑑 ← 𝑛𝑜𝑑𝑒.𝑐𝑑𝑝𝑜𝑠 ;

3: else
4: for 𝑖 ∈ [1, 𝑛𝑜𝑑𝑒.𝑖𝑚𝑎𝑥 ];
5: if 𝑝𝑜𝑠 > 𝑛𝑜𝑑𝑒.𝑘𝑤𝑑𝑖

6: 𝑝𝑜𝑠 ← 𝑝𝑜𝑠 − 𝑛𝑜𝑑𝑒.𝑘𝑤𝑑𝑖 ;
8: else
8: break;
9: 𝑐𝑑 ← Getcode(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑖 , 𝑝𝑜𝑠);
10: return 𝑐𝑑 .

Insert(𝑛𝑜𝑑𝑒, 𝑝𝑜𝑠, 𝑐𝑡 )
1: if 𝑛𝑜𝑑𝑒 is leaf

2: Insert 𝑐𝑡 into 𝑛𝑜𝑑𝑒 as the (𝑝𝑜𝑠 + 1)-th ciphertext;

3: 𝑛𝑜𝑑𝑒.𝑐𝑑𝑝𝑜𝑠+1, 𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ← Encode(𝑛𝑜𝑑𝑒, 𝑝𝑜𝑠 + 1);
4: if 𝑛𝑜𝑑𝑒.𝑖𝑚𝑎𝑥 >𝑚

5: Rebalance(𝑛𝑜𝑑𝑒) ;
6: return 𝑛𝑜𝑑𝑒.𝑐𝑑𝑝𝑜𝑠+1, 𝑙𝑜𝑤𝑒𝑟,𝑢𝑝𝑝𝑒𝑟 ;

7: else
8: for 𝑖 ∈ [1, 𝑛𝑜𝑑𝑒.𝑖𝑚𝑎𝑥 ];
9: if 𝑝𝑜𝑠 > 𝑛𝑜𝑑𝑒.𝑘𝑤𝑑𝑖

10: 𝑝𝑜𝑠 ← 𝑝𝑜𝑠 − 𝑛𝑜𝑑𝑒.𝑘𝑤𝑑𝑖 ;
11: else
12: return Insert(𝑛𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑖 , 𝑝𝑜𝑠, 𝑐𝑡 ).

Rebalance(𝑛𝑜𝑑𝑒)
1: if 𝑛𝑜𝑑𝑒 is leaf

2: Create a new leaf 𝑛𝑜𝑑𝑒′;
3: Move 𝑛𝑜𝑑𝑒’s last ⌊𝑚

2
⌋ ciphertexts with their encodings to 𝑛𝑜𝑑𝑒′;

4: else
5: Create a new internal node 𝑛𝑜𝑑𝑒′

6: Move 𝑛𝑜𝑑𝑒’s last ⌊𝑚
2
⌋ children with their keywords to 𝑛𝑜𝑑𝑒′;

7: if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑁𝑈𝐿𝐿

8: Create a new internal node 𝑟𝑜𝑜𝑡 as the new root of the coding tree;

9: Insert 𝑛𝑜𝑑𝑒 into 𝑟𝑜𝑜𝑡 ;

10: Insert 𝑛𝑜𝑑𝑒′ into 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 as 𝑛𝑜𝑑𝑒’s right brother;
11: if 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 .𝑖𝑚𝑎𝑥 >𝑚

12: Rebalance(𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡 ) ;
13: return.

Figure 2: Building Blocks on Server Side
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Figure 3: An Example for Recoding

3(b)). Then, the recoding occurs on both the second leaf and the

third leaf when inserting another new ciphertext (Figure 3(c)).

Rebalance(𝑛𝑜𝑑𝑒). This function takes a node 𝑛𝑜𝑑𝑒 as input. If

𝑛𝑜𝑑𝑒 stores more that 𝑚 elements, i.e., 𝑛𝑜𝑑𝑒.𝑖𝑚𝑎𝑥 > 𝑚, it rebal-

ances the coding tree from 𝑛𝑜𝑑𝑒 . For the coding tree, the function

recursively splits the overloaded nodes in the tree. When 𝑛𝑜𝑑𝑒

needs to be split into two nodes, its last ⌊𝑚
2
⌋ elements are moved

to a new node 𝑛𝑜𝑑𝑒 ′. Then, 𝑛𝑜𝑑𝑒 ′ is inserted into 𝑛𝑜𝑑𝑒’s parent as

𝑛𝑜𝑑𝑒’s right brother. In particular, if the node that will be split is the

root of the tree, the server creates a new root as the node’s parent.

GetCode(𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠). This function takes the coding tree 𝑟𝑜𝑜𝑡 and

a target position 𝑝𝑜𝑠 as input, and returns the 𝑝𝑜𝑠-th encoding 𝑐𝑑

of the tree.

5.3.1 Usage of Local Table. Then, we show how to generate the

OPE ciphertext for a plaintext 𝑝𝑡 by using our coding tree with our

client local table.

Ciphertext. As mentioned in Section 3.2, a FH-OPE scheme

must have a tie-breaking mechanism for hiding the frequency of
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Figure 4: A Example of OPE Ciphertext Generation using Local Table

each plaintext in permanent ciphertexts. For generating indeter-

ministic permanent ciphertexts, we will adopt a standard IND-

CPA symmetric key encryption scheme RND = (KeyGen, Enc, Dec)
to encrypt plaintexts. Thus, the client can encrypt 𝑝𝑡 into 𝑐𝑡 ←
RND.Enc𝑘 (𝑝𝑡), where 𝑘 is the symmetric encryption key.

The ciphertexts encrypted from 𝑝𝑡 are supposed to be allo-

cated different tie-breaking encodings while still keeping order-

preserving in the coding tree. After the client encrypts 𝑝𝑡 into

𝑐𝑡 , we set that the indeterministic position 𝑝𝑜𝑠 is carried out by

uniformly sampling an integer from {∑𝑝𝑡 ′<𝑝𝑡 𝑇 [𝑝𝑡 ′], ...,
∑
𝑝𝑡 ′≤𝑝𝑡

𝑇 [𝑝𝑡 ′]}. Then, the client updates the local table as follows: 1) if 𝑝𝑡
has already existed in the table, add 1 to its count; 2) otherwise, in-

sert 𝑝𝑡 into the table and set its count as 1. Finally, the client submits

𝑐𝑡 along with 𝑝𝑜𝑠 to the server. The server calls Insert to insert 𝑐𝑡

into the coding tree and gives it a transient order-preserving encod-

ing 𝑐𝑑 . The OPE ciphertext {𝑐𝑡, 𝑐𝑑} is stored on the server. Figure 4

depicts the coding tree with the local table and the condition after

encrypting a new plaintext 𝑝𝑡 ′ using the local table.

5.3.2 The Example of Rebalancing. We present a simple example

to explain how the coding tree unbinds the tree rebalancing and the

recoding. In another word, it can show the relationship between

Rebalance and Recode when inserting random plaintexts.

We consider the encryption on a binary plaintext domain of

“gender”. There are two possible plaintext values: “male” (0) and

“female” (1). We build a 3-order coding tree and set the interval of

the root as (−8, 8]. We have 8 plaintexts {0, 1, 0, 1, 0, 1, 0, 1} in all

and we have already inserted following sequence {0, 1, 0, 1, 0, 1, 0}
into the coding tree. The current states — the local table and the

coding tree are depicted in Figure 5(a), where 𝐸 (·) is the shorthand
of the encryption method for generating ciphertexts.

We show the operation where the client encrypts plaintext 1.

The client carries out a random position 𝑝𝑜𝑠 = 6 and submits it

along with 𝐸 (1) to the server. The server inserts 𝐸 (1) into the third
leaf and assigns it an encoding 5. The situation is depicted in Figure

5(b) and triggers Rebalance since the number of ciphertexts stored

on this leaf is larger than𝑚. The building block Rebalance is called
twice recursively. The situation after rebalancing is shown in Figure

5(c) and we can see that any encoding is not updated.

6 ALGORITHMS
In this section, we present the algorithms of our FH-OPE scheme.

Extended from the definition of stateful OPE, our FH-OPE scheme

FH-OPE = (KeyGen, Setup, Enc, Dec, Search) consists of the fol-
lowing five algorithms.
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Figure 5: An Example for Inserting Ciphertexts

• sk← KeyGen(1𝜆): The client generates a secret key sk by
the security parameter 𝜆.

• stCl, stSer ← Setup(1𝜆): By the security parameter 𝜆, the

server initializes the state stSer that contains an empty cod-

ing tree, while the client initializes the local state stCl that
contains an empty table.

• 𝑐𝑡, st′Cl, st
′
Ser ← Enc(sk, stCl, stSer, 𝑝𝑡): The encryption is an

algorithm involved both the client and the server. Given

an input, the client obtains a permanent ciphertext 𝑐𝑡 and

updates the local table in stCl, while the server updates the
coding tree in stSer.
• 𝑝𝑡 ← Dec(sk, 𝑐𝑡): This decryption algorithm is run by the

client on sk and a ciphertext 𝑐𝑡 to obtain a plaintext 𝑝𝑡 .

• 𝑐𝑑 ← Search(stCl, stSer, 𝑝𝑡): The search is an algorithm in-

volved both the client and the server. The inputs to the client

are the local table and a plaintext 𝑝𝑡 . Then, the server re-

trieves the encoding 𝑐𝑑 of 𝑝𝑡 .

KeyGen. As shown in Algorithm 1, the client generates a secret

key sk by running the encryption scheme of RND and then returns

sk. The key sk is used for encryption and decryption operations.

Algorithm 1 KeyGen(1𝜆)
Require:

the security parameter 𝜆

Ensure:
the secret key sk

1: sk← RND.KeyGen(1𝜆);
2: return sk.
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Algorithm 2 Setup(1𝜆)
Require:

Server/Client: the security parameter 𝜆;

Ensure:
Client: the local state stCl;
Server: the state stSer
Client:

1: Initialize an empty table 𝑇 ← ∅;
2: Set 𝑇 as stCl;

Server:
3: Initialize a leaf node 𝑟𝑜𝑜𝑡 as tree root;

4: 𝑟𝑜𝑜𝑡 .𝑙𝑜𝑤𝑒𝑟, 𝑟𝑜𝑜𝑡 .𝑢𝑝𝑝𝑒𝑟 ← 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑙 , 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑟 ;

5: return stCl and stSer.

Setup. The Setup algorithm is shown in Algorithm 2. The client

creates an empty local table 𝑇 for recording the count of each

plaintext. Alternatively, the server builds a 𝑚-order coding tree

contains an empty leaf node 𝑟𝑜𝑜𝑡 as root. The interval of the root

is set as (𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑙 , 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑟 ] where 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑙 is the default lower
bound for order-preserving encoding and 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑟 is the default

upper bound for order-preserving encoding, (𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑙 , 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑟 ) ∈
Z. The table 𝑇 and the tree 𝑟𝑜𝑜𝑡 as initial states for the client and

the server, respectively.

Algorithm 3 Enc(sk, stCl, stSer, 𝑝𝑡)
Require:

Client: the secret key sk, the local state stCl, and a plaintext

𝑝𝑡 ;

Server: the state stSer
Ensure:

Client: the updated local state st′Cl and the ciphertext 𝑐𝑡 ;

Server: the updated state st′Ser
Client:

1: 𝑐𝑡 ← RND.Enc(sk, 𝑝𝑡);
2: Get 𝑇 from stCl;
3: 𝑙 ← ∑

𝑝𝑡 ′<𝑝𝑡 𝑇 [𝑝𝑡 ′];
4: if 𝑝𝑡 ∈ 𝑇 then

5: Uniformly sample 𝑝𝑜𝑠
𝑅← {𝑙, 𝑙 + 1, ..., 𝑙 +𝑇 [𝑝𝑡]};

6: 𝑇 [𝑝𝑡] ← 𝑇 [𝑝𝑡] + 1;
7: else
8: 𝑝𝑜𝑠 ← 𝑙 ;

9: Insert 𝑝𝑡 into 𝑇 ;

10: 𝑇 [𝑝𝑡] ← 1;

11: end if
12: Set 𝑇 as st′Cl;
13: Send 𝑝𝑜𝑠 and 𝑐𝑡 to Server;

Server:
14: Get 𝑟𝑜𝑜𝑡 from stSer;
15: Call Insert(𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠, 𝑐𝑡 );
16: Set the coding tree 𝑟𝑜𝑜𝑡 as st′Ser;
17: return 𝑐𝑡 , st′Cl, and st′Ser.

Encryption. The Enc algorithm is shown in Algorithm 3. For

an input plaintext 𝑝𝑡 , the client uses the in-determinant scheme

RND to encrypt it as a ciphertext 𝑐𝑡 . Then, the client can count the

Algorithm 4 Dec(sk, 𝑐𝑡)
Require:

the secret key sk and a ciphertext 𝑐𝑡

Ensure:
the plaintext 𝑝𝑡

1: 𝑝𝑡 ← RND.Dec(sk, 𝑐𝑡);
2: return 𝑝𝑡 .

number of existing plaintext values smaller than 𝑝𝑡 by computing

𝑙 ← ∑
𝑝𝑡 ′<𝑝𝑡 𝑇 [𝑝𝑡 ′]. Note that at the leaf level of the coding tree,

𝑙 is the lower bound of the position 𝑝𝑜𝑠 where 𝑐𝑡 will be located.

Therefore, the positions of ciphertexts encrypted from 𝑝𝑡 range

from 𝑙 + 1 to 𝑙 +𝑇 [𝑝𝑡] and 𝑐𝑡 is inserted after one of them. After

updating𝑇 , the client uploads 𝑐𝑡 alongwith 𝑝𝑜𝑠 to the server. Finally,

the server runs the building block Insert(𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠, 𝑐𝑡 ) to insert 𝑐𝑡

into the tree and give it a transient OPE encoding.

Decryption. The algorithm (Algorithm 4) takes private key sk,
ciphertext 𝑐𝑡 as input and outputs the corresponding plaintext 𝑝𝑡 .

Algorithm 5 Search(stCl, stSer, 𝑝𝑡)
Require:

Client: the local state stCl and a plaintext 𝑝𝑡 ;

Server: the state stSer
Ensure:

Server: the transient OPE encoding 𝑐𝑑

Client:
1: Get 𝑇 from stCl;
2: 𝑝𝑜𝑠 ← ∑

𝑝𝑡 ′<𝑝𝑡 𝑇 [𝑝𝑡 ′] + 1;
3: Send 𝑝𝑜𝑠 to Server;

Server:
4: Get 𝑟𝑜𝑜𝑡 from stSer;
5: 𝑐𝑑 ← GetCode(𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠);
6: return 𝑐𝑑 .

Search. The Search algorithm is shown in Algorithm 5. If the

client wants to search the minimal encoding of 𝑝𝑡 , it will run this

algorithm with the server. Take the SQL application as an example.

If the client queries a SQL statement like “select * from table where

𝐼𝐷 >= 𝑟𝑚𝑖𝑛 and 𝐼𝐷 < 𝑟𝑚𝑎𝑥 ” to server, the SQL statement will

be rewritten as a secure form: “select * from table where 𝐼𝐷 >=

Search(stCl, stSer, 𝑟𝑚𝑖𝑛) and 𝐼𝐷 < Search(stCl, stSer, 𝑟𝑚𝑎𝑥 )”.

6.1 Security Analysis
We give a proof of IND-FAOCPA security of our scheme in Section

6. The definition says that an adversary cannot distinguish between

encryptions of two challenge sequences as long as the sequences

have at least one common randomized order. We prove by con-

structing two hybrid games in which the adversary A produces

identical outputs for anything it views. We denote our scheme as

Π and define the two hybrids as follows.

• Hybrid 1. It is the IND-FAOCPA game (see Section 3.2)

whose output is 𝐺𝑎𝑚𝑒𝐹𝐴𝑂𝐶𝑃𝐴
A,Π (𝜆).

• Hybrid 2. We change the IND-FAOCPA game to Hybrid
2 by modifying Π.Enc. Before encryption, the challenger

uses the (polynomial-time) Algorithm 6 in [20] to randomly
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select a common randomized order Γ = {𝛾1, ..., 𝛾𝑛} to 𝑃𝑇0 and
𝑃𝑇1 from the set of all common randomized orders. Assume

that 𝛾𝑖 is the randomized order of the 𝑖-th plaintext 𝑝𝑡𝑏
𝑖

in 𝑃𝑇𝑏 . During encryption, as locating ciphertexts in the

server-side state stServer (the coding tree), the challenger

uses the randomized order values. That is, the challenger sets

𝑝𝑜𝑠 ← ∑
𝑗<𝑖 𝑐𝑜𝑢𝑛𝑡 (𝛾 𝑗 < 𝛾𝑖 ) instead of uniformly sampling

from {𝑙, 𝑙 + 1, ..., 𝑙 +𝑇 [𝑝𝑡]}. Then, it sends 𝑐𝑡𝑖 along with 𝑝𝑜𝑠
to the server.

In the following lemma, we prove that the chance thatA guesses

correctly in Hybrid 2, i.e., the overall winning advantage of the

adversary can at most be
1

2
+ 𝑛𝑒𝑔𝑙 (𝜆).

Lemma 1. For any p.p.t. adversary A, the chance that A guesses
correctly in Hybrid 2 is 1

2
+ 𝑛𝑒𝑔𝑙 (𝜆).

Proof. We consider any adversary A and any two plaintext

sequences of values A asks for in Hybrid 2: 𝑃𝑇0 = {𝑝𝑡0
1
, ..., 𝑝𝑡0𝑛}

and 𝑃𝑇1 = {𝑝𝑡1
1
, ..., 𝑝𝑡1𝑛}. The view of A consists of a ciphertext

sequence 𝐶𝑇 and the server-side state stSer receives in Hybrid 2.
We consider two cases: the case when the challenger chose 𝑃𝑇0 to

encrypt and the case when the challenger chose 𝑃𝑇1 to encrypt. We

argue that the view of A in the two cases is exactly the same.

When no value was encrypted and we can see that A starts

off with the same information. According to the algorithm Π.Enc,
given a plaintext 𝑝𝑡𝑏

𝑖
, the challenger will encrypt and upload it

whether the server has already stored an encryption of it. Hence,

the ciphertext sequence 𝐶𝑇 = {𝐶𝑇1, ...,𝐶𝑇𝑛} must be 𝑛-length. By

observing the encryption of the 𝑖-th plaintext 𝑝𝑡𝑏
𝑖
, A can only

guess 𝑏 correctly with negligible probability in both cases due to

the security of RND. This situation for each 𝑖 ∈ [𝑛] also remains

the same.

Alternatively, the position 𝑝𝑜𝑠 of the ciphertext 𝑐𝑡𝑖 in Hybrid 2
is deterministic, since the choice of 𝛾𝑖 is determined by the common

randomized order Γ uniformly selected among all possible random-

ized orders. By observing the encoding of the 𝑖-th plaintext from

stSer, A obtains the same information distribution in both cases

and the information for each 𝑖 ∈ [𝑛] also remains the same.

Therefore, in both cases A receives the same information and

cannot distinguish with non-negligible probability. □

Theorem 1. Our scheme is IND-FAOCPA secure.

Proof. It is straightforward to check that the two hybrids can

produce a same output for the adversary A. Hence, the probability

that the adversary wins Hybrid 1 against our scheme is negligible

in 𝜆, which meet the definition of IND-FAOCPA in Section 3.2. □

7 USAGE IN ENCRYPTED DATABASE
Our scheme in encrypted database. There is a way to implement

our FH-OPE solution in the encrypted database without rewriting

database drivers. Similar to description ofmOPE [30], we implement

and encapsulate our scheme in UDFs of MySQL. The implementa-

tion includes a client application and a server database. The client

stores the local table 𝑇 and submits requests when performing

inserts and queries. The server uses the UDF to finish operations

on the database using the coding tree 𝑟𝑜𝑜𝑡 and a small table 𝑀

mapping from ciphertexts to encodings. The server runs the block

Setup to initialize the coding tree and sets𝑀 as an empty table. In

this implementation, our local table strictly keeps the consistency

of client data and server data, which avoids the error caused by

wrong encodings of ciphertexts. These UDFs are shown as follows.

• FHOPE_Insert (𝑝𝑜𝑠, 𝑐𝑡). It takes a ciphertext 𝑐𝑡 and its position
𝑝𝑜𝑠 as input. Then, it calls the block 𝐼𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑜𝑡 , 𝑝𝑜𝑠 , 𝑐𝑡)
to insert the 𝑐𝑡 into 𝑝𝑜𝑠 on the coding tree. If the insert

operation does not involve any encoding update, the UDF

returns 𝑐𝑡 ’s encoding 𝑐𝑑 = 𝐼𝑛𝑠𝑒𝑟𝑡 (𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠, 𝑐𝑡). Otherwise,
the UDF uses𝑀 to remember all updated encodings.

• FHOPE_Update(𝑐𝑡). It takes a ciphertext 𝑐𝑡 as input and re-

turns 𝑐𝑑 which is the corresponding encoding of 𝑐𝑡 in𝑀 .

• FHOPE_Update_Upper ()/FHOPE_Update_Lower (). It returns
the upper/lower bound of encodings in𝑀 .

• FHOPE_Search(𝑝𝑜𝑠). It takes a target position 𝑝𝑜𝑠 as input.

Then, it calls the block 𝑐𝑑 =𝐺𝑒𝑡𝐶𝑜𝑑𝑒 (𝑟𝑜𝑜𝑡, 𝑝𝑜𝑠) to query the
ciphertext in the position 𝑝𝑜𝑠 on the coding tree. Finally, the

UDF returns the encoding 𝑐𝑑 .

Example of usage. We show how to use the UDF to process

operations on an encrypted table “table example (ciphertext var-
char(128), encoding bigint)” as on the corresponding plaintext table

“table example (plaintext varchar(16))”

• Insert. When the client tries to insert a ciphertext 𝑐𝑡 en-

crypted from 𝑝𝑡 into the database, it submits the sql “call
PRO_INSERT(pos, ct)” instead of “insert into example values
(pt)”. The procedure is defined as follows.

create procedure PRO_INSERT (IN 𝑝𝑜𝑠 int, IN 𝑐𝑡 varchar(128))
BEGIN
insert into example values (ct,FHOPE_Insert(pos, ct));
if FHOPE_Update_Lower() < FHOPE_Update_Upper()
then update example set encoding = FHOPE_Update(ciphertext)
where encoding > FHOPE_Update_Lower() and encoding <=
FHOPE_Update_Upper()”; end if;
END
• Query. When the client tries to perform a range query from

𝑝𝑡𝑚𝑖𝑛 to 𝑝𝑡𝑚𝑎𝑥 , it submits the sql “select * from example
where encoding > FHOPE_Search( 𝑝𝑜𝑠𝑚𝑖𝑛 ) and encoding <
FHOPE_Search( 𝑝𝑜𝑠𝑚𝑎𝑥 )” where 𝑝𝑜𝑠𝑚𝑖𝑛 =

∑
𝑝𝑡 ≤𝑝𝑡𝑚𝑖𝑛 𝑇 [𝑝𝑡]

and 𝑝𝑜𝑠𝑚𝑎𝑥 =
∑
𝑝𝑡 ≤𝑝𝑡𝑚𝑎𝑥

𝑇 [𝑝𝑡] + 1, instead of “select * from
example where plaintext > 𝑝𝑡𝑚𝑖𝑛 and plaintext <= 𝑝𝑡𝑚𝑎𝑥 ”.

Note that our scheme can be modified to support deletions fur-

ther. If the client wants to run a sql “delete from example where
encoding > 𝑝𝑡𝑚𝑖𝑛 and encoding <= 𝑝𝑡𝑚𝑎𝑥 ”, the client deletes 𝑇 [𝑝𝑡]
in the local table for each 𝑝𝑡 in range (𝑝𝑡𝑚𝑖𝑛, 𝑝𝑡𝑚𝑎𝑥 ] and runs the

sql “delete from student where age > FHOPE_Search( 𝑝𝑜𝑠𝑚𝑖𝑛) and age
< FHOPE_Search( 𝑝𝑜𝑠𝑚𝑎𝑥 )” instead. Such that the corresponding

ciphertexts in the coding tree are deleted.

8 EVALUATION
8.1 Implementation Details
Our evaluation is conducted by our implementation (shown in

Section 7) on MySQL. The source code is shared in GitHub
1
. This

implementation includes a client application and a server database.

1
https://github.com/LiDongJieHIHA/OPEUDF/
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The client application is implemented by Python 3 on a local ma-

chine equipped with an Intel(R) Core(TM) i7-6700 GPU @3.40 GHz,

16 GB available RAM, Windows 10 desktop version. The database

UDFs is implemented by C++ on a remote server equipped with

8-core Intel(R) Xeon W-2245 GPU @3.9GHz and 64 GB available

RAM and installed with Ubuntu 18.04. This server is provided by

RDS MySQL of Aliyun with 5Mbps uplink/downlink bandwidth.

We use AES in the Pycrypto library with randomness to implement

the encryption RND. The encryption key of AES is set to 128 bits.

The coding tree in our scheme is set as 128-order. To make our

scheme deal with negative encodings correctly, we set a sign bit for

each encoding.

8.2 Experiment Setting
We evaluate our scheme by comparing the experimental perfor-

mance between our scheme and other schemes on client storage,
recoding frequency, interaction, and overall application. The project
overall application can depict a scheme’s overall performance in the

real-world database application. We set three schemes as the refer-

ences for our experiments. We implement Kerschbaum’s scheme

[20] as a reference of the client-state scheme. We modify mOPE [30]

with a frequency-hiding method and regard it as a reference of the

server-state scheme. That is, we remain all properties of mOPE ex-

cept randomly generating different ciphertexts for same plaintexts.

We implement POPE [33] as another reference of the server-state

scheme, which does not provide order-preserving encodings and

only partially preserves the ciphertext’s order. Moreover, POPE

buffers each encrypted ciphertexts, which means it does not keep

the ciphertexts in order until the first query reaches. Therefore, we

mainly evaluate its performance on interaction and overall applica-
tion by generally comparing it to our scheme. All implementations

work in the single-thread mode.

Dataset. Our experiments are performed on three datasets in-

cluding two synthetic distributions and a real dataset. Two synthetic
distributions are uniform (denoted as Distribution 1) and normal

(denoted as Distribution 2), respectively. Given 𝑛, Distribution 1 can

be used for constructing a dataset contains 𝑁 distinct plaintexts by

changing the range, where 𝑛 is the size of the dataset. Similarly, we

can use Distribution 2 for constructing the dataset by changing the

standard deviation. Such that we can generate datasets for evalu-

ating the influence of 𝑁 /𝑛 on the client storage. The real data set

is California public employees salaries [3] which contains 247697

records with 6 columns. We choose "Job Title" and "Other Pay"

fields of which details are shown in Table 2 for our experiments.

To highlight the frequency-hiding property of OPE schemes, we

round each float number to an integer. This real dataset is used for

evaluating the functionality of our encrypted database UDF.

Input sequence. When evaluating the project including in-

sert/query operations, e.g., recoding frequency and interaction, the
input sequence of plaintexts is an important fact for affecting the

performance of a scheme. This is because different input sequences

will result in different tree conditions which may make the tree-

structure state unbalance. In our experiments, we consider three

input sequences as follows.

• The best case (−𝑏𝑒𝑠𝑡 ). Plaintexts are uniformly set in the

input sequences according to their orders.

• The worst case (−𝑤𝑜𝑟𝑠𝑡 ). Plaintexts are incrementally/ d-

ecrementally set in the sequences according to their orders.

• The natural case (−𝑛𝑎𝑡𝑢𝑟𝑎𝑙 ). Plaintexts are naturally listed
in the sequences without manual adjustments. This case is

only for the real dataset and most common in applications.

Table 2: Columns in Real Data Set

Field Distinct Plaintext Dataset Size 𝑁 /𝑛
Job Title 3826 247697 0.015

Other Pay 100598 247697 0.406

8.3 Storage
We test the client storage of our scheme and make comparisons be-

tween our scheme and client-state schemes. Besides Kerschbaum’s

scheme[20], we set up another Kerschbaum’s scheme with a client

state which is compressed by the approach in [20]. We denote it

as compressed Kerschbaum’s scheme. Note that compressed Ker-

schbaum’s scheme performs poorer than Kerschbaum’s scheme in

any project except for the client storage, such that we only use it

as the reference in this experiment. We evaluate the client storage

from two dimensions: the number of plaintexts (i.e., 𝑛) and the

proportion of distinct plaintexts (i.e., 𝑁 /𝑛).
By adjust Distribution 1 and Distribution 2, we construct several

experimental datasets of which 𝑁 /𝑛 varies from 0.00001 to 0.5.

Figure 6 depicts these experimental results. Fixing 𝑛 (𝑛 = 10
5
or

𝑛 = 10
6
), the client storage size of our scheme is approximately

in 𝑂 (𝑁 ), while that of Kerschbaum’s scheme and compressed Ker-

schbaum’s scheme is approximately in 𝑂 (𝑛). Our client storage
size is always smaller. Table 3 shows the results evaluated on two

columns (i.e., Job Title and Other Pay) of the real datasets. On the

chosen columns, the client storage size of our scheme is smaller

than that of other schemes, which is similar to the results on the

synthetic distributions.

Table 3: Client Storage Cost (Mbyte)

Dataset our scheme K’s scheme compressed K

Size Job Title Other Pay Job Title Other Pay Job Title Other Pay

1000 0.0010 0.0041 0.0152 0.0114 0.0073 0.0164

10000 0.0069 0.0436 0.1525 0.11443 0.0616 0.18022

100000 0.0302 0.1314 1.5259 1.1444 0.4967 0.9147

247697 0.0438 0.1754 3.7795 2.8347 1.1226 1.6921

The advantage of our scheme is obvious when 𝑁 /𝑛 is small (i.e.,

𝑁 << 𝑛). This condition is very common for the dataset of which

frequency needs to be hidden. In this condition, the frequency of

plaintexts has obvious distribution characteristics which make the

OPE scheme easy to suffer inference attacks. Note that our scheme

still outperforms schemes with a client state (e.g., Kerschbaum’s

scheme and compressed Kerschbaum’s scheme) even if 𝑛 and 𝑁

are close (e.g., 𝑁 = 0.5𝑛), since our local table is in 𝑂 (𝑁 ) and other

client states are in 𝑂 (𝑛). Considering there is always 𝑁 ≤ 𝑛, our

scheme will not degrade to (compressed) Kerschbaum’s solution.
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Figure 6: Client Storage Cost
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(d) Worst Case, Distribution 2

Figure 7: Encoding Update Frequency

Server-side storage. For a commercial encrypted database, bot-

tlenecks of the system performance are often communicational

overhead and client storage cost, since the server has the powerful

capability for storing. Alternatively, the server state (the coding tree

in our scheme) has a negligible size compared with all ciphertexts

in the whole database. Therefore, our server storage cost is still in

𝑂 (𝑛), which is acceptable for practical applications.

8.4 Encoding Update Frequency
We evaluate the frequency of encoding updates by inserting a num-

ber of plaintexts (the client-state scheme) or ciphertexts (the server-

state scheme and ours) into the tree-structure state.

Figure 7 depicts the experimental results on two synthetic distri-

butions when the input sequence is in −𝑏𝑒𝑠𝑡 case and −𝑤𝑜𝑟𝑠𝑡 case.

In both cases, the recoding frequency in the modified mOPE scheme

is very high and constant, since the recoding is performed when-

ever a ciphertext is inserted. In −𝑏𝑒𝑠𝑡 , there is almost no recoding

that occurs in our scheme and Kerschbaum’s scheme. In −𝑤𝑜𝑟𝑠𝑡 ,
the frequency of recoding operations in Kerschbaum’s scheme is

very high, which is more than 10 times of that in our scheme. Table

4 shows the result on the real dataset, which is similar to the result

on synthetic datasets. Note that −𝑛𝑎𝑡𝑢𝑟𝑎𝑙 case of this real dataset
is almost identical to −𝑏𝑒𝑠𝑡 case.

The experimental results are relevant to the rebalancing of the

tree-structure state. There is almost no need for rebalancing the

tree in −𝑏𝑒𝑠𝑡 , while in −𝑤𝑜𝑟𝑠𝑡 the tree needs to be rebalanced al-

most each time an element reaches. In Kerschbaum’s scheme, the

recoding frequency is very high in −𝑤𝑜𝑟𝑠𝑡 and very few in −𝑏𝑒𝑠𝑡
and −𝑛𝑎𝑡𝑢𝑟𝑎𝑙 , since it is in accordance with the rebalancing fre-

quency. Our coding tree unbinds the relationship between the tree

rebalancing and the recoding and only triggers the recoding when

there is no available encoding for the new ciphertext. Therefore, our

recoding frequency is much lower even in −𝑤𝑜𝑟𝑠𝑡 . It demonstrates

that our coding tree makes the recoding condition in our scheme

rarer than that in other works, which is mentioned in Section 5.1.

Table 4: Recoding Frequency on Real Dataset

Case our scheme K’s scheme modified mOPE

Job Title Other Pay Job Title Other Pay Job Title Other Pay

−𝑏𝑒𝑠𝑡 0 0 0 0 5.0e+6 5.1e+6

−𝑤𝑜𝑟𝑠𝑡 1.1e+6 1.8e+6 3.8e+7 1.8e+8 7.3e+6 7.7e+6

−𝑛𝑎𝑡𝑢𝑟𝑎𝑙 0 0 0 0 5.0e+6 5.3e+6

8.5 Interaction
We evaluate the communicational cost of our scheme by performing

a number of insertions/queries and counting the interaction rounds.

In our scheme, an insert operation is conducted by our UDF

procedure “PRO_INSERT ”. Table 5 depicts the interaction rounds of

inserting the values of two columns of the whole real dataset. In any

case, there is almost no need for interactively locating ciphertexts

on the server side of our scheme and Kerschbaum’s scheme, such

that the number of interaction rounds is in 1 for each encryption

operation. Moreover, in any case, the modified mOPE scheme costs

many rounds (i.e., in 𝑂 (log𝑛)) for ensuring that each ciphertext

is stored in order. The experimental results show that our scheme

outperforms the modified mOPE scheme due to finishing insertions

without additional interaction.

Our scheme conducts the range query by the sql “select”. To test

the interaction rounds in range queries, we randomly pre-store

some ciphertexts encrypted from two columns of the real dataset

and perform 100 times range queries. There are two start settings:

a cold start and a warm start. The default setting is cold-start, while

the ciphertexts in the queries have already sorted in the server in a

warm-start setting. Only POPE shows different performances in dif-

ferent start settings. Figure 8 depicts the experimental results, where

the number of pre-stored ciphertexts varies from 100 to 100000. The

modified mOPE scheme costs several interaction rounds for decid-

ing the order of each queried element in the server state. POPE-cold
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Figure 8: Interaction Rounds of Range Query

Table 5: Interaction Rounds of Insertion

Case our scheme K’s scheme modified mOPE

Job Title Other Pay Job Title Other Pay Job Title Other Pay

−𝑏𝑒𝑠𝑡 247697 247697 247697 247697 1636750 1641595

−𝑤𝑜𝑟𝑠𝑡 247697 247697 247697 247697 1735330 1758638

−𝑛𝑎𝑡𝑢𝑟𝑎𝑙 247697 247697 247697 247697 1656260 1624138

involves huge interaction cost since it will suffer a large penalty

on the first query. Although POPE-warm may achieve one round

interaction for some query, it still spends considerable overheads

since it does not constantly store any order-preserving encodings

for the range comparison. The performance of our scheme is much

better than that of the modified mOPE and POPE. The reason is that

our scheme can correctly locate the position of a queried ciphertext,

so that we only need 1 rather than 𝑂 (log𝑛) interactions.

8.6 Overall Application
Finally, we make an overall evaluation of our implementation in the

encrypted database. To make fair comparisons between our scheme

and others, we set up each scheme for an outsourced encrypted

database in the real-world application and observe its performance.

As shown in Section 8.1, we rent the high-performance cloud service

to eliminate the influence of the unexpected network delay. In each

case (−𝑏𝑒𝑠𝑡 , −𝑤𝑜𝑟𝑠𝑡 , and −𝑛𝑎𝑡𝑢𝑟𝑎𝑙), we take 100000 records from
the column “Job Title” of the real dataset as the input sequence of an

experiment. After running a scheme in the experiment, we simulate

the real-world scenario by performing insertions and range queries

in the database alternately. In more details, 1) the client encrypts

1000 records in turn and submits them to the server-side database,

until all ciphertexts have been stored; 2) the client immediately

initiates 4 range queries on the database after each submission.

The experimental results are shown in Figure 9. The total run-

ning time cost of each scheme is stacked by four parts: Interaction,
Recoding, Other Client-side Computation, and Other Server-side Com-
putation. Note that Other Client-side Computation refers to the time

cost on client-side computations other than recoding operations,

so as to Other Server-side Computation. As a client-state scheme,

Kerschbaum’s scheme is communication-efficient, but spends ex-

treme time on Recoding in −𝑤𝑜𝑟𝑠𝑡 . As a server-state scheme, the

modified mOPE spends most time on Interaction and Recoding, and
has a stable performance in each case. POPE is actually warm-start
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Figure 9: Time Cost in Real-world Application

in our experiments, which costs much time on Interaction and Other
Client-side Computation. The computational cost is mainly for ad-

justing the server state without any order-preserving encoding

after a range query. The experimental results are in accordance

with the results in Section 8.4 and Section 8.5.

We can learn that in any case, Interaction almost dominates the

time cost in each scheme, followed by Recoding. This trend will

become more obvious if the client user is equipped with an ele-

mentary bandwidth. Under this situation, our scheme outperforms

other schemes due to its outstanding performance in Interaction
and Recoding. That means our design goals “without additional

interactions” and “low recoding frequency” in Section 4 are very

important for improving the performance of a FH-OPE scheme.

The experimental results demonstrate that our scheme is practical

for real-world database applications.

9 CONCLUSION
In this paper, we propose the first FH-OPE scheme achieves the

small client storage of size𝑂 (𝑁 ) and 1 interaction per insert/query

operation. We propose a new coding tree with the coding strategy

that reduces the frequency of encoding updates.

Experimental results show that our scheme costs the smaller

client storage when storing the same number of plaintexts as exist-

ing client-state schemes. Our scheme costs less communications

when inserting/querying with the same number of queries as ex-

isting server-state schemes. Moreover, the frequency of encoding

updates in our scheme is less than that in existing works when in-

serting the same number of plaintexts in each case. Our evaluation

demonstrates that the remarkable performance above makes our

scheme practical for real-world database applications.
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