
MP-RW-LSH: An Efficient Multi-Probe LSH Solution to ANNS-L1

Huayi Wang†, Jingfan Meng† , Long Gong†† , Jun Xu† , Mitsunori Ogihara‡
†Georgia Institute of Technology, USA ††Facebook, USA ‡University of Miami, USA
†{huayiwang,jmeng40}@gatech.edu, jx@cc.gatech.edu, ††lgong30@fb.com, ‡ogihara@cs.miami.edu

ABSTRACT

Approximate Nearest Neighbor Search (ANNS) is a fundamental

algorithmic problem, with numerous applications in many areas of

computer science. Locality-Sensitive Hashing (LSH) is one of the

most popular solution approaches for ANNS. A common shortcom-

ing of many LSH schemes is that since they probe only a single

bucket in a hash table, they need to use a large number of hash ta-

bles to achieve a high query accuracy. For ANNS-L2, a multi-probe

scheme was proposed to overcome this drawback by strategically

probing multiple buckets in a hash table. In this work, we propose

MP-RW-LSH, the first and so far only multi-probe LSH solution to

ANNS in L1 distance, and show that it achieves a better tradeoff be-

tween scalability and query efficiency than all existing LSH-based

solutions. We also explain why a state-of-the-art ANNS-L1 solution
called Cauchy projection LSH (CP-LSH) is fundamentally not suit-

able for multi-probe extension. Finally, as a use case, we construct,

using MP-RW-LSH as the underlying “ANNS-L1 engine”, a new

ANNS-E (E for edit distance) solution that beats the state of the art.

PVLDB Reference Format:

Huayi Wang, Jingfan Meng, Long Gong, Jun Xu, Mitsunori Ogihara.

MP-RW-LSH: An Efficient Multi-Probe LSH Solution to ANNS-L1. PVLDB,

14(13): 3267-3280, 2021.

doi:10.14778/3484224.3484226

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/Why1221/MP-RW-LSH.

1 INTRODUCTION

Approximate Nearest Neighbor Search (ANNS) is a fundamental

algorithmic problem, with numerous applications in many areas

of computer science, including informational retrieval [35], recom-

mendations [40], near-duplication detections [47], etc. In ANNS,

given a query point (vector) �q, we search in a massive dataset D,

that lies in a high-dimensional space, for one or more points in D

that are among the closest to �q according to some distance metric.

Throughout this paper, we accent every vector with a right arrow,

like in the case of �q.
The ANNS literature is mostly focused on ANNS in the Euclidean

(L2) distance, or ANNS-L2 for short. In this work, we focus instead

on ANNS-L1, ANNS in the Manhattan (L1) distance, which is much

less thoroughly studied in comparison. ANNS-L1 is nonetheless an

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 13 ISSN 2150-8097.
doi:10.14778/3484224.3484226

extremely important problem for four reasons. First, it arises in al-

most all application domains of ANNS-L2. Second, set and multiset

similarity search and join [45], an increasingly important family of

ANNS problems that arise in database application domains such as

data cleaning [14], social network data mining [48], finding similar

sequences [58], and information retrieval [52], can be reduced to

ANNS-L1 [23]; any breakthrough on the latter can lead to much

better solutions to the former. Third, ANNS in the edit distance

(ANNS-E), an important yet extremely challenging problem [58],

can be reduced to and solved as an ANNS-L1 problem [38]. Finally,

the same can be said about ANNS in earth mover’s distance (EMD).

ANNS-EMD is an extremely important problem [54] that arises in

application domains such as duplicated document detection [32],

image retrieval [44], and detection of similar distributions [54]. So

far, no scalable LSH solution exists for ANNS-EMD. A scalable LSH

solution for ANNS-L1 can lead to one for ANNS-EMD for the fol-

lowing reason. The L1 distance is known to be the “closest relative”

to the EMD: In one-dimension, the EMD between two probability

density functions (pdf’s) is equal to the L1 distance between the

corresponding cumulative density functions (cdf’s), and in two or

higher dimensions, the best (in terms of distortion factor) metric

embedding result on the former is to the L1 distance [9, 28].

1.1 LSH and Multi-Probe LSH

One of the most popular ANNS solution approaches is Locality-

Sensitive Hashing (LSH) [27]. The key intellectual component of

an LSH scheme is its hash function family H . Any function h sam-

pled uniformly at random from H has the following nice collision

property: It maps two distinct points in D to the same hash value

with probability p1 if they are close to each other (say no more

than distance r1 apart) and with probability p2 < p1 if they are

far apart (say more than r2 > r1 apart), respectively. Such an LSH

scheme can achieve a query time complexity of roughly O(nρ),
where ρ � logp1/logp2 is called the quality of the LSH family, and

n is the number of points in D. However, an LSH scheme requires

the maintenance and search of a large number (O(nρ) in theory [27]
and tens to hundreds in practice [13]) of hash tables, for the reason

explained next.

Whenever possible, in the rest of this paper, we focus on only

one of these hash tables and explain how it is probed for the nearest

neighbors of �q. In this hash table, an LSH scheme probes only a

single bucket that has the highest success probability (of containing

a nearest neighbor of �q):
−−→
h(q), the bucket that �q is hashed to by

an LSH function vector
−−→
h(·) � 〈h1(·), · · · ,hM (·)〉. We refer to

−−→
h(q)

as the epicenter bucket in the sequel. Unfortunately, the success

probability of the epicenter bucket is still quite low for the following

reason. In order for a nearest neighbor �s to be (successfully) found in
the epicenter bucket, each of itsM hash valueshi (�s), i = 1, 2, · · · ,M ,

has to agree with the corresponding hash value of �q. Hence this

3267

probability decays exponentially withM , andM can be as large as

20 in some LSH schemes. As a result, a large number of hash tables

have to be used to boost this probability.

Multi-probe [36] was proposed for boosting this success prob-

ability when the Gaussian-projection LSH scheme (GP-LSH) [18]

for ANNS-L2 is used as the baseline LSH. The idea of multi-probe

is that, the algorithm probes not only the epicenter bucket, but

also T > 0 other nearby buckets whose success probabilities are

among theT + 1 highest. This way, the total success probability can
be significantly increased, and the number of hash tables used for

reaching a target success probability can be significantly reduced.

Due to its spectacular efficacy, multi-probe GP-LSH (MP-GP-

LSH) has since been deployed in various systems including smart-

phone applications [43], audio content retrieval [56], automatic

product suggestions [30], etc. We will explain in §2.2 that the ef-

ficacy of MP-GP-LSH stems entirely from the following property

of GP-LSH: The success probability of a bucket decreases roughly

at the “Gaussian pdf rate” O(e−cd2
2
), where d2 is the bucket’s L2

distance from the epicenter (to be defined in §2.2), and c > 0 is

a constant. It appears hard to apply multi-probe to LSH schemes

lacking this property. Currently, besides those for ANNS-L2 [33, 36],
multi-probe LSH solutions exist only for ANNS in the Chi-squared

distance [24] and in the angular distance [10, 33], and in both cases

the success probability has this property.

1.2 Our Multi-Probe LSH Solution

In this work, we propose multi-probe random-walk LSH (MP-RW-

LSH), the first and so far only multi-probe LSH solution for ANNS-

L1. Our solution significantly outperforms Cauchy projection LSH

(CP-LSH) [18], the state-of-the-art LSH scheme for ANNS-L1. Our
solution however is not a multi-probe extension of CP-LSH. In

fact, we discover that CP-LSH is fundamentally not suitable for the

multi-probe extension for the following reason: The total success

probability of the top-(T + 1) buckets remains quite low even when

T is very large thanks to the heavy-tail nature [42] of its underlying

Cauchy distribution.

We propose a new LSH scheme for ANNS-L1 that is much better

suited for multi-probe. We call it random-walk LSH (RW-LSH),

because any raw hash value function (defined later) f in it has the

following property: Given any two nonnegative integer data points

�s and �t , f (�s)− f (�t), the difference between their raw hash values, has

the same probability distribution as that of a d1-step random walk,

where d1 = ‖�s − �t ‖1 is their L1 distance. Hence, when d1 is large,
this difference converges to a zero-mean Gaussian distribution

with variance d1. As a result, given a query point �q, the success
probability of a bucket decays in the same aforementioned Gaussian

pdf manner as in GP-LSH. Hence RW-LSH can be extended to MP-

RW-LSH in almost the same way as GP-LSH (to MP-GP-LSH). We

will show that MP-RW-LSH strikes a much better tradeoff between

scalability and query efficiency than all existing LSH-based ANNS-

L1 solutions.
As a use case of MP-RW-LSH, we will show that by replac-

ing, in the state-of-the-art ANNS-E (edit distance) solution called

iDEC [23], the “ANNS-L1 engine” with MP-RW-LSH, the result-

ing ANNS-E solution achieves much better query efficiency while

increasing the index size only slightly.

To summarize, we have made three major contributions in this

work. First, MP-RW-LSH is the first multi-probe LSH solution for

ANNS-L1, and it achieves a much better scalability-efficiency trade-

off than all existing LSH solutions. Second, through a thorough

analysis, we explain why CP-LSH, the state-of-the-art LSH solution

for ANNS-L1, is fundamentally unsuitable for multi-probe exten-

sion. To the best of our knowledge, this is the first such unsuitability

study. Third, using MP-RW-LSH as the underlying “ANNS-L1 en-
gine”, we construct a new ANNS-E solution that beats the state of

the art.

2 PRELIMINARIES

2.1 Locality-Sensitive Hashing

In an LSH scheme, typically a vector of M > 1 LSH functions
�h = 〈h1, h2, · · · , hM 〉 are used to map each point �s in D to an M-

dimensional vector of hash values
−−→
h(s) = 〈h1(�s),h2(�s), · · · ,hM (�s)〉.

This point �s is to be stored in a hash bucket indexed by the vector
−−→
h(s); hence we identify this hash bucket as

−−→
h(s). Then given a query

point �q, the search procedure is to probe all points in the hash bucket
−−→
h(q) in the hope that some nearest neighbors of �q are mapped to

the same hash vector (bucket).

We now describe what such an LSH function hi (a scalar

in the vector �h defined above) is in the three aforementioned

LSH schemes respectively: GP-LSH, CP-LSH, and RW-LSH. In all

three LSH schemes, hi takes the same following form: hi (�s) =
�(fi (�s) + bi)/W �, whereW > 0 is a constant and bi is a random
variable (fixed after generation) uniformly distributed in [0,W].

Here fi (�s) is called the raw hash value of �s . For anm-dimensional

point �s = 〈s1, s2, · · · , sm〉, the raw hash value function fi (·) takes
the same form in GP-LSH and CP-LSH: fi (�s) = �s · �η, where “·”

is the inner product (which is mathematically a projection). GP-

LSH and CP-LSH differ only in the choice of �η. In GP-LSH, �η is

an m-dimensional i.i.d. standard Gaussian random vector (fixed

after generation), so its fi is called a Gaussian projection. In CP-

LSH, �η is anm-dimensional i.i.d. standard Cauchy random vector,

so its fi is called a Cauchy projection. In RW-LSH, fi mimics the

one-dimensional random walk, which will be described in §3.1.

Each bucket �β corresponds to anM-dimensional cube with width

W in each dimension. Any point �s whose shifted (by �b) raw hash

value vector
−−−→
f (q)+ �b � 〈f1(�s)+b1, f2(�s)+b2, · · · , fM (�s)+bM 〉 falls

into this cube belongs to �β . Given a query point �q, we refer to its

shifted raw hash value vector
−−−→
f (q) + �b as the epicenter and its hash

bucket
−−→
h(q) as the epicenter bucket in the sequel. We can represent

any other bucket, say �β (an M-dimensional vector), by �β −
−−→
h(q),

its offset from
−−→
h(q). This offset, denoted as �δ = 〈δ1, δ2, · · · , δM 〉, is

called the perturbation vector [36] of the bucket �β .

We denote as
−−−−→
xq (1) the vector 〈x

�q
1 (1), x

�q
2 (1), · · · , x

�q
M
(1)〉, where

x
�q
i (1) = W − {(fi (�q) + bi)/W }W , for i = 1, 2, · · · ,M ; here {y}

denotes the fractional part of y. We call
−−−−→
xq (1) the coordinates vector

of the query point �q since the length of each x
�q
i (1) is the distance

from the epicenter
−−−→
f (q) + �b to the “right” face of of the epicenter

cube (bucket) that is perpendicular to the ith axis (dimension).

3268

To simplify the notation, we drop the superscript �q from
−−−−→
xq (1)

and x
�q
i (1) in the sequel, and simply write them as

−−→
x(1) and xi (1)

respectively, with the understanding that they depend on �q. Since
each bi is uniformly distributed in [0,W], each xi is uniformly

distributed in [0,W] also. Hence,
−−→
x(1) is a random vector that is

uniformly distributed in theM-dimensional cube [0,W]M .

Let p1 and p2 be as defined in §1.1. Given a query point �q, the
number of spurious points inD (say containing n points), is equal to

pM2 n in expectation, where a spurious point is one that is mapped

by theM LSH functions to the same vector as, but is not actually

close to, the query point �q. Since this number, which contributes

to the time cost of probing each bucket, needs to be kept low at

O(1), we needM = log1/p2 n+O(1) LSH functions. However, in this

case the probability with which any good point (one that is close to

�q) is hashed to the epicenter bucket, is only pM1 = O(n
−ρ), where

ρ = logp1/logp2 is the quality of the LSH family as defined above.

Hence roughlyO(nρ) hash tables have to be used to guarantee that

any good point has a probability at least 1 − e−1 to be found in at

least one hash table, Therefore, the query time complexity of such

an LSH scheme is also O(nρ).

2.2 Multi-Probe LSH

In this section, we describe MP-GP-LSH, the original multi-probe

LSH scheme for ANNS-L2 [36] that uses the Gaussian projection

LSH (GP-LSH) as its baseline. Again, we fix a query point �q and

one hash table, and focus on probing for a nearest neighbor of �q,
which we denote as �s , in this hash table. As explained earlier, the

idea of multi-probe is to probe the top-(T+1) buckets, which include

the epicenter bucket
−−→
h(q) = 〈h1(�q),h2(�q), · · · ,hM (�q)〉 and T other

buckets that have the highest success probabilities of containing �s .
In a multi-probe LSH scheme, the top-(T+1) buckets need to be

first identified and then probed in the decreasing order of their

success probabilities; we call this ordered list the optimal probing

sequence and denote it as ST (
−−→
x(1)), where

−−→
x(1) is the aforemen-

tioned coordinates vector. This succinct notation is justified since

ST (
−−→
x(1)) is determined by

−−→
x(1). However, given an arbitrary

−−→
x(1),

to efficiently compute ST (
−−→
x(1)) is nontrivial.

Three refinements were proposed in [36] for more efficiently

computing the optimal or a near-optimal probing sequence. The

first refinement is to explore the “neighborhood” of
−−→
h(q), for the

next bucket (that has the next highest success probability) in the

ordered list ST (
−−→
x(1)) in an “M-dimensional spiral fashion” using

a heap data structure. As shown in [36], this “spiral search” algo-

rithm guarantees to find the correct ST (
−−→
x(1)), by traversing, and

computing the success probabilities of, at most O(T) buckets. How-
ever, even to compute O(T) such success probabilities can be quite

time-consuming because each success probability is the product of

M different probability values (like that will be shown in (4)).

The second refinement significantly reduces the computation cost

of each success probability. To explain the second refinement and

later our MP-RW-LSH solution, we need to introduce some nota-

tions. Recall that in the coordinates vector
−−→
x(1), each scalar xi (1)

is the distance from the epicenter to the “right” face of the epicen-

ter bucket that is perpendicular to the ith axis (dimension). We

define each xi (−1) asW − xi (1), which is the distance from the

epicenter to the corresponding “left” face, and define each xi (0) as

0. We denote as
−−−→
x(δ) the vector 〈x1(δ1), x2(δ2), · · · , xM (δM)〉. We

call it a distance vector since its length is the distance from the

epicenter to the bucket with perturbation �δ . Note that the notation
−−−→
x(δ) is “backward compatible” with the notation

−−→
x(1), since when

�δ = 〈1, 1, · · · , 1〉, the former vector is the same as the latter vector.

�

�

�

Figure 1: A toy example on multi-probe

We illustrate these notations using a two-dimensional toy exam-

ple shown in Figure 1. In this example,M = 2 and the “neighborhood”

of
−−→
h(q) contains 8 equal-sized buckets. Each bucket is geometrically

aW ×W rectangle (hereW = 10) and is represented by its perturba-

tion vector. For example, the bucket in the center with perturbation

vector 〈0, 0〉 is the epicenter bucket. In this example, the distances

between the epicenter and the four “faces” of the epicenter bucket

are x1(1), x2(1), x1(−1), and x2(−1) respectively, and the distance

vector is
−−−−→
x(1, 1).

We now fix another arbitrary point �s that is a nearest neigh-

bor of the query point �q. Suppose the L2 distance between �s and
�q is d2 (the subscript of which refers to L2 distance). The second
refinement is based on the following fact established in [36]: The

probability for �s to land in a bucket with perturbation �δ is roughly

proportional to e−‖
−−−→
x (δ) ‖22/(2d

2
2), where the distance vector

−−−→
x(δ) was

defined above and ‖
−−−→
x(δ)‖22 =

∑M
i=1 x

2
i (δi). This approximation for-

mula e−‖
−−−→
x (δ) ‖22/(2d

2
2) implies that the (approximate) success proba-

bility of (finding �s in) a bucket decreases when its squared distance

from the epicenter increases. Hence a near-optimal probing se-

quence ST (
−−→
x(1)) can instead be obtained by sorting these squared

distances (using the aforementioned heap) in the increasing order,

which is much cheaper than computing and sorting the correspond-

ing success probabilities.

The third refinement is to precompute a unique (for anyM) uni-

versal (for all future queries) template from which a near-optimal

probing sequence for any given query can be instantiated. Given a

query �q, the universal template and the order among the 2M dis-

tances xi (−1) and xi (1) for i = 1, 2, · · · ,M uniquely determine the

probing sequence. Since the third refinement involves the sorting

of only 2M numbers (to determine this order) for each query, it

has a smaller time complexity than the second refinement, which

3269

involves O(T) heap operations. We omit the detailed description

of this template and its instantiation here, since it has been imple-

mented and used many times by the database community.

3 RW-LSH AND MP-RW-LSH

In this section, we first describe random-walk LSH (RW-LSH), a

new LSH scheme for ANNS-L1. Then we describe MP-RW-LSH, the

multi-probe enhancement of RW-LSH. Throughout this section, we

focus on the operations in a single hash table.

3.1 The RW-LSH Scheme

To describe RW-LSH, we need to define what a random walk is.

Let τ (1), τ (2), · · · be a sequence of i.i.d. random variables. Each τ (i)

is a single-step random walk that takes value 1 or −1 with equal

probability 1/2, and its value (realization), once generated, is fixed.

The resulting (deterministic) sequence of values, denoted simply

as τ , is called a random walk. With a slight abuse of notation, we

denote as τ (t) the position after t steps along the random walk τ

starting at the origin; that is, τ (t) � τ (1) + · · · + τ (t).
It suffices to define a single raw hash value function f , since

as explained earlier an RW-LSH function h is derived from f in

the same way as in GP-LSH and CP-LSH: h(·) = �(f (·) + b)/W �.

Suppose the dimension of the dataset D ism. Then f is a random

walk projection parameterized by a vector ofm mutually indepen-

dent random walks �τ = 〈τ1, · · · , τm〉; for the moment, we denote it

as f�τ to emphasize its dependence on �τ . Then given a data point

�s = 〈s1, s2, · · · , sm〉, f�τ (�s) is defined as
∑m
i=1 τi (si). We require that

each si , i = 1, 2, · · · ,m, be a nonnegative even integer. This require-

ment is imposed on all data points in D and all query points. We

will explain shortly why this assumption is not overly restrictive

for real-world applications.

Let �q = 〈q1,q2, · · · ,qm〉 be the query point. We denote as d1 the
value of the L1 distance between �s and �q, that is, d1 =

∑m
i=1 |si −qi |;

d1 is a nonnegative even integer since every si andqi is. Then f�τ (�s)−
f�τ (�q) =

∑m
i=1(τi (si)−τi (qi)) is a random walk of

∑m
i=1 |si −qi | = d1

steps, for two reasons. First, thesem random walks τ1, τ2, · · · , τm
are mutually independent since they are along different sequences.

Second, for each i , i = 1, 2, · · · ,m, τi (si) − τi (qi) has the same

probability distribution as an |si − qi |-step random walk along the

sequence τi . For example, suppose along a dimension i , we have si =

6 and qi = 8. Then τi (si) − τi (qi) = τi (6) − τi (8) = −τ
(7)
i − τ

(8)
i has

the same distribution as a 2-step (2 = |6− 8|) random walk, because

−τ
(7)
i and −τ

(8)
i are independent and each has the same probability

distribution as a single-step random walk, whose distribution is

symmetric about 0.

We note that a d1-step random walk, which we denote as Yd1 ,
is parameterized only by d1, as it has the following distribution:

Pr[Yd1 = l] is equal to
(d1
(d1+l)/2

)
(1/2)d1 when l is an even integer

satisfying −d1 ≤ l ≤ d1, and is equal to 0 otherwise. As a result,

the collision probability Pr[h(�s) = h(�q)] is a function of only d1. We

denote this probability as p(d1), since it is the collision probability

(when hashed by h) of any two points the L1 distance between

which is d1.

3.2 Analysis of p(d1)
In this section, we prove Theorem 3.1, which states that p(d1)mono-

tonically decreases when d1 increases. This property is important

since it qualifies RW-LSH as an LSH function family. Throughout

this section, we consider �q a query point and �s a point in D.

Theorem 3.1. WhenW is a positive even integer, the collision

probability p(d1) decreases monotonically when d1 takes on only

nonnegative even integer values (which d1 indeed does under our

assumptions); that is, p(0) > p(2) > p(4) > · · · .

Before we prove Theorem 3.1, we first derive the general formula

of Pr[h(�s) − h(�q) = δ |x(1)], where �s and �q are two points that are

d1 apart in L1 distance as assumed above, δ is an arbitrary integer,

and x(1) =W − {(f (�q) + b)/W }W . When h is a certain hi (the LSH

function in the ith dimension), this x(1) is precisely xi (1) as defined
in §2.2. It is not hard to verify that

Pr[h(�s) − h(�q) = δ |x(1)] =

δW + �x (1)�∑
l=(δ−1)W +
x (1)�

Pr[Yd1 = l]. (1)

We now derive p(d1) from the general formula. When δ = 0, we

have Pr[h(�s) = h(�q)|x(1)] =
∑ �x (1)�
l=−W +
x (1)�

Pr[Yd1 = l]. Since x(1) is

uniformly distributed in [0,W] (since b is uniformly distributed in

[0,W]), we have

p(d1) = Pr[h(�s) = h(�q)] = E[Pr[h(�s) = h(�q)|x(1)]]

=

∫ W

0

1

W

�x (1)�∑
l=−W +
x (1)�

Pr[Yd1 = l]dx(1)

=

W∑
l=−W

(
1 −

|l |

W

)
Pr[Yd1 = l]. (2)

In the following proof of Theorem 3.1, we drop the subscript 1

from d1 in both places they appear in: p(d1) and Yd1 .

Proof. It suffices to prove that, for any nonnegative even

integer d , we have p(d) > p(d + 2). We have p(d) =∑W
l=−W

(
1 −

|l |
W

)
Pr[Yd1 = l] =

∑W
�=0

(
1 − �

W

)
Pr[|Yd | = �] =∑W −1

�=0

∑W −�−1
t=0

1
W Pr[|Yd | = �] =

∑W −1
t=0

∑W −t−1
�=0

1
W Pr[|Yd | =

�] = 1
W

∑W −1
t=0 Pr[|Yd | ≤W − t − 1] = 1

W

∑W −1
t=0 Pr[|Yd | ≤ t].

Replacing d with d + 2 in the above equation, we obtain that

p(d+2) = 1
W

∑W −1
t=0 Pr[|Yd+2 | ≤ t]. To provep(d) > p(d+2), we use

the following stochastic ordering (see Definition 3.1 below) result

established in [25]: |Yz | ≤st |Yz+2 | for any nonnegative integer

z. By Definition 3.1, we have Pr[|Yd | ≤ t] ≥ Pr[|Yd+2 | ≤ t] for
t = 1, 2, · · · ,W . When t = 0, we have Pr[|Yd | ≤ t] > Pr[|Yd+2 | ≤ t]

since Pr[|Yd | = 0] − Pr[|Yd+2 | = 0] = 1
2d+1(d+2)

(d+2
(d+2)/2

)
> 0.

Hence p(d) = 1
W

∑W −1
t=0 Pr[|Yd | ≤ t] > 1

W

∑W −1
t=0 Pr[|Yd+2 | ≤ t] =

p(d + 2). �

Definition 3.1. Random variable X is said to be stochastically less

than or equal to random variable Y , denoted as X ≤st Y , if and
only if Pr[X ≤ t] ≥ Pr[Y ≤ t] for −∞ < t < ∞.

Now we connect p(d1) with the success probability for the base-

line RW-LSH scheme (without multi-probe) to find �s (given a query

3270

point �q) in the epicenter bucket in the hash table, which we denote

as P0(d1). Using (2) and the fact that h1(·), h2(·), · · · , hM (·) are

independent, we obtain

P0(d1) =
M∏
i=1

Pr[hi (�s) − hi (�q) = 0] = pM (d1). (3)

3.3 Discussions on RW-LSH

Recall that we restrict the domain of each coordinate value of each

data or query point (vector) to nonnegative even integers, the RW-

LSH scheme can be extended to work without this restriction as

follows. First, for each dimension i , we can increment (shift) the ith

coordinate of every (data or query) vector by a large enough positive

constant ai so that these ith coordinates all become nonnegative.

Second, we can multiply (scale) every vector by a large enough

integer numberC and then round each resulting scalar to the nearest

even integer. It is clear that both the shift and the scaling operations

preserve the ranked order among the L1 distance values. Although
rounding can cause changes to this ranked order, the percentage

of such changes can be made extremely small, by increasing the C
value, so that with overwhelming probability, an ANNS query over

the original dataset has the same correct answer as that over the

rounded scaled shifted dataset.

We now discuss an implementation issue of RW-LSH. As a com-

mon practice, each random walk sequence τi (for implementing

a function f�τ) is implemented as a pseudorandom bit sequence

wherein bit 0 is interpreted as −1. It certainly does not make sense

to regenerate thesem pseudorandom sequences when computing

f�τ (�q) for each query point �q. Our baseline solution is to precompute

and store each τi (t) for t = 2, 4, 6, · · · ,Ui whereUi is the maximum

possible (even) value for the ith coordinate of a data point. Let the

universeU be the maximum value among U1,U2, · · · ,Um . For each

hash table (withM hash functions), we need a maximum ofmUM
bytes for storing the precomputed table (one table entry costs 2

bytes for each even t value). For large datasets, this storage cost is
small (typically more than an order of magnitude smaller) relative

to the size of each hash table, since this cost is fixed in the sense

it is independent of the size (number of points n) in D. However,

for some smaller datasets wheremUM is much larger than n, this
storage cost can significantly increase the total index size. For ex-

ample, for the Enron dataset to be described in § 6, this storage

cost increases the total index size by 709 times, from 75.3MB to

52.2GB. For such datasets, we employ a “long-jump” technique, to

be described next, that can significantly reduce this storage cost

while increasing the query time only slightly.

To simplify notation, we drop the subscript i from τi in the sequel,
with the understanding that each τi is an instance of τ . Our solution,
called “long-jump” (LJ), is to precompute and store τ (t) only for t
values that are multiples of a large (relative to the jump size 2 in

the baseline solution) integer jump size J , such as 64. Suppose J
is 64, which would reduce this storage cost by 32 times. Then, for

any t > 0, the value of τ (t) can be computed as follows. We write

t = 64l + r , where l = �t/64� is the quotient (of dividing t by 64)

and r is the remainder. We only need to compute an r -step random

walk τ (t) − τ (64l) = τ (64l+1) + · · · + τ (64l+r) in this case, since

τ (64l) is precomputed and stored. Using a pseudorandom sequence

(bitmap) implementation as just described, computing this r -step
random walk boils down to counting the number of 1′s in a 64-

bit (in this case) bitmap, which can be accomplished in one CPU

cycle using a built-in instruction called __builtin_popcount (in
the GCC compiler) that is supported on Intel and AMD processors.

This popcount-based implementation can easily scale to very large

J values. For example, even when J = 2, 048 (which reduces the

storage cost by 1,024 times), no more than 32 popcount operations

are involved.

3.4 Multi-Probe Extension

From this point on, we drop the subscript �τ from f�τ . The multi-

probe extension of RW-LSH (to MP-RW-LSH) is straightforward:

It is identical to that of GP-LSH. This “porting” is possible for the

following reasons: Recall that in both RW-LSH and GP-LSH, an

LSH function h is defined as h(·) = �(f (·) + b)/W �. They differ

only in (the choice of) the raw hash value function f (·). Recall that
the following property of a Gaussian projection f (·) is a sufficient

condition for all three refinements (for computing ST (
−−→
x(1))) to work

for GP-LSH: For any two points �s and �q, f (�s) − f (�q) has a zero-

mean Gaussian distribution (with variance d22 = ‖�s− �q‖22). However,
this zero-mean Gaussian distribution (with variance d1 = ‖�s − �q‖1)
property continues to hold approximately when f (·) is instead a

random walk projection, especially when d1 is not tiny (d1 ≥ 20).

As just explained, our MP-RW-LSH solution “inherits” all three

refinements. We have measured, on a dataset containing 1 million

points, the amounts of time needed for MP-RW-LSH to compute

the exact or an approximate ST (
−−→
x(1)) (which is a part of the query

time) using the three refinements respectively. We have found that

the second refinement is 2 to 3 orders of magnitude faster than the

first refinement, and the third refinement is 2 to 3 times faster than

the second refinement. We have also found that the approximate

ST (
−−→
x(1)) computed using the third refinement is very close to the

exact ST (
−−→
x(1)) computed using the first refinement, and as a result

leads to a negligible loss of query accuracy, as will be reported at the

end of §4. For these reasons, we conclude that the third refinement

achieves the best tradeoff between query time and query accuracy,

and hence use it in our implementation and evaluation of MP-RW-

LSH. However, the exact ST (
−−→
x(1)) is used in all success probability

analyses of MP-RW-LSH, to be shown next.

3.5 Analysis of PT (d1)
In this section, we derive the success probability PT (d1) of finding
a point �s ∈ D, whose L1 distance from the query point �q is d1, in
the top-(T+1) buckets using MP-RW-LSH. Note that P0(d1), derived
in (3), is a special case of PT (d1), where T = 0. We emphasize that

the following derivations are precise. In particular, here we do not

use any Gaussian approximation of random walk that was used in

the previous section to clearly explain MP-RW-LSH.

Recall that
−−→
x(1) � 〈x1(1), · · · , xM (1)〉 is the coordinates vector

(defined in §2.1) of the epicenter in the epicenter bucket and that
−−→
x(1) is uniformly distributed in the cube [0,W]M . Recall that, given

a realization of
−−→
x(1) (still denoted as

−−→
x(1) here with a slight abuse of

notation), the optimal probing sequence ST (
−−→
x(1)), comprised of the

3271

top-(T+1) buckets, is fully determined. Let each bucket in ST (
−−→
x(1))

be referenced by its perturbation vector �δ . Like before, we assume

that M independent hash functions h1(·), h2(·), · · · , hM (·), which

we denote as
−−→
h(·), are used for the hash table. The conditional (upon

−−→
x(1)) success probability of finding �s in the bucket with perturbation

vector �δ can be calculated as follows:

Pr[
−−→
h(s) −

−−→
h(q) = �δ |

−−→
x(1)] =

M∏
i=1

Pr[hi (�s) − hi (�q) = δi |xi (1)] (4)

where each Pr[hi (�s) − hi (�q) = δi |xi (1)] is computed using (1).

The conditional probability (upon
−−→
x(1)) for �s to be hashed to

one of the top-(T+1) buckets is
∑

�δ ∈ST (
−−−→
x (1))

Pr[
−−→
h(s)−

−−→
h(q) = �δ |

−−→
x(1)],

in which each summand is calculated using (4). We denote this

conditional probability as PT (d1,
−−→
x(1)). The unconditional success

probability PT (d1) is the average of the conditional probability

PT (d1,
−−→
x(1)) over the uniform distribution W −MdM

−−→
x(1), where

dM
−−→
x(1) � dx1(1)dx2(1)· · ·dxM (1). That is:

PT (d1) =

∫
−−−→
x (1)∈[0,W]M

PT (d1,
−−→
x(1)) ·W −M dM

−−→
x(1) (5)

Finally, we relate this quantity PT (d1) to the query accuracy.

Suppose L hash tables are used in a MP-RW-LSH. Then 1 − (1 −

PT (d1))
L is the probability that �s appears in at least one of the L

lists of top-(T + 1) buckets. If �s is indeed the nearest neighbor of �q,
then this probability is precisely the expected recall value of the

one nearest neighbor (1-NN) query given �q as the query point. Note

this probability is a constant unaffected by how other data points

in D are distributed.

4 CAN CP-LSH BE MULTI-PROBED ALSO?

As mentioned earlier, Cauchy-projection LSH (CP-LSH) is the state-

of-the-art baseline LSH scheme for ANNS-L1. In this section, we

will show that CP-LSH is actually a slightly better baseline LSH

scheme than RW-LSH. We will also show, however, that CP-LSH

is fundamentally unsuitable for multi-probe, and as a result, the

multi-probe CP-LSH (MP-CP-LSH) would perform far worse than

the multi-probe RW-LSH (MP-RW-LSH).

Recall that the quality ρ of an LSH function family measures and

determines the efficacy of the corresponding (baseline) LSH scheme,

since both the query time complexity of the LSH scheme and its

space complexity in terms of the number of hash tables are O(nρ).
We have found that the quality value ρ of RW-LSH is slightly larger

(worse) than that of CP-LSH. For example, when r1 = 6 (near radius)

and r2 = 12 (far radius), the best attainable quality value of RW-LSH,

reached when the bucket widthW is set to 8, is p1 = p(6) = 0.7656,

p2 = p(12) = 0.6633 and ρ = logp1/logp2 = 0.6506. For the

same far and near radii, the best attainable quality value of CP-

LSH, reached when W = 20, is p1 = 0.5763, p2 = 0.4021, and

ρ = logp1/logp2 = 0.6050. Here the p1 and the p2 values of RW-

LSH are calculated using (2), the formula of p(d1) derived in §3.2.

Those of CP-LSH are similarly derived and calculated using formula

from [18].

Because of the difference in ρ, RW-LSH is slightly less efficient,

in terms of both memory space (in number of hash tables) and query

Table 1: PT (d1) w/ optimal probing sequences.

d1
MP-RW-LSH MP-CP-LSH

T=30 T=60 T=100 T=30 T=60 T=100

6 0.50 0.63 0.72 0.0405 0.0568 0.0716

8 0.36 0.48 0.57 0.0137 0.0203 0.0268

12 0.19 0.27 0.34 0.0018 0.0030 0.0043

16 0.10 0.15 0.20 0.0003 0.0005 0.0008

time (both areO(nρ) as just explained), than Cauchy projection LSH
(CP-LSH). We will show that, with multi-probing, MP-RW-LSH can

successfully reduce the number of hash tables to almost a constant

(typically between 6 and 8), so this quality ρ no longer affects its

space complexity. However, the time complexity of MP-RW-LSH

remains O(nρ), since O(nρ) buckets still have to be probed except

that these buckets are now spread over 6 to 8 (instead of O(nρ))
hash tables. This, combined with a slightly larger ρ value for RW-

LSH, explains why the query time of MP-RW-LSH is slightly higher

that of CP-LSH shown in §6.3.

We now explain why, despite that RW-LSH has a worse quality

ρ than CP-LSH, RW-LSH is much better suited for multi-probe

extension than CP-LSH. We do so by comparing PT (d1) of their
respective multi-probe extensions MP-RW-LSH and MP-CP-LSH.

Like before, here d1 is the L1 distance between a query point �q and

a point �s (in D) that is a nearest neighbor of �q. Recall from §3.5

that PT (d1) is the success probability of finding �s in the top-(T + 1)
buckets along the optimal probing sequence. For MP-RW-LSH, (5)

is the formula for calculating PT (d1), and for MP-CP-LSH, a similar

formula can be derived. We compare PT (d1) values under MP-RW-

LSH and MP-CP-LSH. For a fair comparison, M is set to a typical

value of 10 in both baselines RW-LSH and CP-LSH; and like in the

quality (ρ) comparison example above,W is set to 8 in RW-LSH and

set to 20 in CP-LSH to achieve a respective optimal or near-optimal

ρ value for r1 = 6 (near radius) and r2 = 12 (far radius).

The comparison results are shown in Table 1. For both algorithms,

we calculate and demonstrate in Table 1 the PT (d1) values for the
following 12 value combinations of d1 and T : d1 = 6, 8, 12, 16 and

T = 30, 60, 100. Table 1 shows, for the sameT andd1, thePT (d1) val-
ues under MP-CP-LSH are one to two orders of magnitude smaller

than those under MP-RW-LSH; this “top-light” behavior of MP-CP-

LSH is expected since the Cauchy distribution underlying CP-LSH

is heavy-tailed [42]. As a result, MP-CP-LSH would need a much

larger number of hash tables to achieve the same query accuracy

(success probability) as MP-RW-LSH. For example, when T = 100

and d1 = 8, MP-RW-LSH needs to use only 6 hash tables to achieve

a success probability of 1− (1− 0.57)6 = 0.99, whereas MP-CP-LSH

needs to use 186 hash tables to do the same. Hence we conclude

that whereas multi-probe significantly reduces the number of hash

tables and correspondingly the index size for RW-LSH, it offers no

or little such improvement for CP-LSH.

Finally, we explain another reason why CP-LSH is not suitable

for multi-probe extension. The second and the third refinements

(for computing ST (
−−→
x(1))) are inapplicable to CP-LSH, since an ap-

proximation formula that can simplify the success probability com-

putation and comparison, such as e−‖
−−−→
x (δ) ‖22/(2d

2
2) for GP-LSH (and

3272

RW-LSH), does not appear to exist for CP-LSH. Hence, MP-CP-LSH

can use only the first refinement which, as just explained, is roughly

three orders of magnitude slower than the third refinement. As a

result, the query time of MP-CP-LSH, of which the ST (
−−→
x(1)) com-

putation time is a small but nontrivial part, would be a few times

longer than that of MP-RW-LSH.

As explained at the end of §3.4, in our evaluations next, for MP-

RW-LSH, we compute an approximate ST (
−−→
x(1)) using the template-

based algorithm (the third refinement described in §2.2), since it

reduces the computation time of ST (
−−→
x(1)) by roughly three orders

of magnitude, as just explained. Our simulations show that this

approximation reduces the success probability values (attained

when using the exact ST (
−−→
x(1))) shown in Table 1 by only 5% to 10%,

and hence sacrifices the query accuracy only slightly.

5 ANNS-E AS A USE CASE FOR MP-RW-LSH

In this section, we describe a use case of our MP-RW-LSH: ANNS

in the edit distance (ANNS-E), where the edit distance between

two strings x and y is defined as the minimum number of symbol

insertions, deletions, and replacements that are needed to change

x to y. This use case also serves as another motivation for ANNS-

L1 as explained earlier. ANNS-E is more challenging than most

other ANNS problems for the following reason:Whereas computing

almost any other distance between twom-dimensional points has

a time complexity of O(m), computing the edit distance between

twoO(m)-symbol-long strings has a high time complexity ofO(m2)

using the textbook dynamic programming algorithm for the longest

common substring [15]. For this reason, an ANNS-E solution can

afford to perform this computation for only a very short list of

candidates, unless m is small. However, to achieve a high query

accuracy, this short list must be of high-quality in the sense it

includes the vast majority of the true nearest neighbors in edit

distance. To generate a short yet high-quality list is a challenge that

any efficient ANNS-E solution has to address.

5.1 iDEC: the State of the Art

The state-of-the-art ANNS-E solution is proposed in [23] and based

on a framework called indexable distance estimating codes (iDEC).

It first converts an ANNS-E problem into an ANNS-L1 problem, and

then solves the resulting ANNS-L1 problem. A key innovation in the

iDEC-based ANNS-E solution is the introduction of two excellent

features: multiset and context. Each feature, denoted as �μ(·), maps a

string y to a feature vector �μ(y) that is of a constant dimension. For

example, the multiset feature maps y to a multiset of q-grams [41]

(also called q-shingles in the literature); the resulting feature vector

�μ(y) is the multiplicity vector of the resulting multiset, and its

dimension is the number of possible q-gram values, which is clearly

a constant. Both features are excellent for the ANNS-E purpose in

that each maps two strings that are close in edit distance to two

feature vectors that are close in L1 distance, as shown in [23]. Hence
both features convert an ANNS-E (overD) problem to an ANNS-L1
(over �μ(D)) problem. This ANNS-L1 (over �μ(D)) problem remains

challenging, since the dimension of �μ(D) can still be quite large

(say tens to hundreds).

For both features, the resulting ANNS-L1 (over �μ(D)) problem

is solved using iDEC-ToW4L1. Here ToW4L1, which stands for Tug-

of-War for L1, is a variant of the Tug-of-War sketch (originally

proposed in [7] for estimating the L2 norm of a data stream [19])

for estimating the L1 distance of two multisets [19]. A ToW4L1

function, denoted as �ξ (·), maps each �μ(y) ∈ �μ(D), which has a

higher dimension, to a low-dimensional (say between 6 and 12)

iDEC vector
−−−−−→
ξ (μ(y)) = 〈ξ1(

−−→
μ(y)), ξ2(

−−→
μ(y)), · · · , ξM (

−−→
μ(y)). As shown

in [23], the ToW4L1 function �ξ (·) maps any two feature vectors

that are close in L1 distance to two iDEC vectors that are close in

L1 distance.
The iDEC-based solution contains two variants that use the

multiset and the context features respectively. In both variants,

the iDEC-based solution works as follows. At the indexing stage,

iDEC maps the set of feature vectors �μ(D) into a low-dimensional

point set
−−−−−−→
ξ (μ(D)) � {

−−−−−→
ξ (μ(s)) | s ∈ D} using the aforementioned

ToW4L1 function �ξ (·). Then given a query string x , iDEC computes

an ANNS-E of x in two steps. First, iDEC searches in the “projection

image”
−−−−−−→
ξ (μ(D)) for t exact nearest neighbors (t-NN) of

−−−−−→
ξ (μ(x)) over

L1 distance. This t-NN search can be computed very efficiently

by organizing
−−−−−−→
ξ (μ(D)), a low-dimensional point set, as a k-d tree.

Second, the exact edit distances between these t nearest neighbors
and the query string x are computed and compared, to arrive at the

final ANNS-E query result.

5.2 Our ANNS-E Solution

Our ANNS-E solution also contains two variants that use the mul-

tiset and the context features respectively. Each variant simply

replaces iDEC-ToW4L1 with MP-RW-LSH in solving the ANNS-L1
problem as follows. At the indexing stage, MP-RW-LSH takes as

input the set of feature vectors �μ(D), and organizes the RW-LSH

hash value vectors into L hash tables, as described in §3.1. Then

given a query string x , MP-RW-LSH computes an ANNS-E of x
in three steps. First, MP-RW-LSH “multi-probes” the L hash tables

for the ANNS candidates (in �μ(D)) of �μ(x) (the feature vector of
x) in L1 distance. Second, the exact L1 distances between these

candidates and x are then calculated and compared for generating

a short list of K (typically less than 100) finalists. The purpose of

this step is to filter out the vast majority of low-quality ANNS-E

candidates so that the list of (surviving) finalists is both short and

of high-quality, which is critical for achieving high query efficacy

as explained at the beginning of §5. For this step, our MP-RW-LSH

solution needs to keep in memory a copy of the feature vectors set

�μ(D). Third, the exact edit distances between only theseK finalists

and the query string x are computed and compared, to arrive at the

final ANNS-E query result.

Unlike our solution, the iDEC-based solution does not have the

second step (of L1-distance-based filtering using �μ(D)) since, to

make the index size competitively small, it does not keep a copy of

�μ(D) in memory. As a result, the iDEC-based solution has to check a

much longer list of candidates (typically in thousands), whose (low-

dimensional) iDEC vectors are close to
−−−−−→
ξ (μ(x)) (the iDEC vector

of the query x) in L1 distance, for their closenesses to x in edit

distance, which is computationally very expensive as explained

earlier. Augmenting the iDEC-based solution with the second step

3273

significantly improves its query time, making it a much worthier

competitor for our solution; we refer to the augmented solution

as A-iDEC. Hence, in evaluating our ANNS-E solution in §7, we

compare it with A-iDEC instead of with iDEC. We do so also for the

following reason. Since A-iDEC and our solution differ only in the

first step, which performs ANNS-L1 queries (to generate the ANNS-
E candidates), comparing A-iDEC and our solution boils down to

comparing their respective ANNS-L1 query efficacies. The latter

comparison is precisely the objective of our ANNS-E evaluations,

since our ANNS-E solution is proposed here only as a use case of

our ANNS-L1 solution, and should be evaluated as such.

6 ANNS-L1 PERFORMANCE EVALUATION

In this section, we evaluate the ANNS-L1 query performance of

MP-RW-LSH against those of the following four LSH schemes: CP-

LSH, RW-LSH (its baseline LSH without multi-probe), SRS [49] and

QALSH [26]. All five algorithms except QALSH are implemented

and optimized for in-memory operations, and are hence evaluated

as such. Since QALSH was originally implemented and optimized

for external-memory operations, to fairly compare QALSH with

others without modifying its code, we run QALSH on a Ubuntu

RAM disk so that its disk I/O’s become memory reads/writes. CP-

LSH (in terms of query efficiency), SRS (in terms of scalability)

and QALSH are three state-of-the-art LSH solutions for ANNS-L1.
Our evaluations show conclusively that although its baseline RW-

LSH is “mediocre” compared to CP-LSH and SRS (but RW-LSH

still outperforms QALSH), MP-RW-LSH achieves a much better

tradeoff between the query efficiency and scalability than CP-LSH,

SRS, and QALSH. In §6.6, we have also evaluated the query perfor-

mance of MP-RW-LSH against a non-LSH-based algorithm called

FLANN [37].

6.1 Experiment Settings

Evaluation Datasets.We use eight widely used publicly available

datasets of diverse dimensions, sizes (number of points), and types.

The SIFT50M dataset contains 50 million points sampled uniformly

at random from the 1 billion points contained in SIFT1B [3]. We

cannot use SIFT1B instead since the resulting index structures of

CP-LSH, RW-LSH and QALSH would not fit into the main memory

(Those of MP-RW-LSH and SRS can). We normalize (scale and

round as described in §3.3) the coordinates of all data points to

nonnegative even integers in all eight datasets. For each of the

eight nominalized datasets, Table 2 shows its size n, its dimension

m, the number of queries nq processed on it, its universeU (defined

in §3.3) and its type. We drop the word “normalized” in the sequel

with the understanding that all datasets we refer to by names have

been normalized.

PerformanceMetrics.We evaluate the performances of these five

algorithms in three aspects: scalability, query efficiency, and query

accuracy. To measure scalability (howwell an algorithm can scale to

very large datasets), we use the index size (excluding the size of the

original dataset). For each query, each algorithm being evaluated

needs to find k = 50 nearest neighbors in L1 distance; using any

other value of k ranging from 1 to 100 (commonly used in the ANNS

literature [20, 26, 36, 59]) results in similar query accuracies of all

algorithms except QALSH, whose query accuracy decreases more

Table 2: Datasets summary.

Dataset n m nq U Type

Small

Audio [2] 53.3K 192 200 200K Audio

MNIST [55] 69.0K 784 200 2K Image

Enron [4] 95.0K 1,369 200 505K Text

Trevi [53] 99.9K 4,096 200 510 Image

Medium
GIST [3] 1.0M 960 1K 3K Image

Glove [39] 1.2M 100 200 25K Text

Large
Deep10M [11] 10.0M 96 10K 3K Image

SIFT50M [3] 50.0M 128 10K 510 Image

rapidly than all other algorithms when k increases [59]. To measure

query efficiency, we use query time. To measure query accuracy, we

use recall, which we define carefully next such that it can correctly

accommodate the tie situation (of two distinct points having the

same distance to the query point). Given a query point �q, we define
D(R) = {| | �q, �o1 | |1, | | �q, �o2 | |1, · · · , | | �q, �ok | |1}, where �o1, �o2, · · · , �ok are

the k (ANN) points returned by the algorithm that are sorted in the

increasing order (with ties broken arbitrarily) of their L1 distances to
�q. Since there can be ties,D(R) is in general a mutliset. Similarly, we

defineD(R∗) = {| | �q, �o∗1 | |1, | | �q, �o
∗
2 | |1, · · · , | | �q, �o

∗
k
| |1}, where �o

∗
1, �o

∗
2, · · · ,

�o∗
k
are the true k nearest points to �q. The recall value is computed as

|D(R) ∩D(R∗)|/k . Each query time or recall value presented in this

section is the average over nq queries, where nq for each dataset is

shown in Table 2.

Implementation Details. We implement RW-LSH functions, CP-

LSH functions, and the multi-probe framework with the third refine-

ment (template-generated probing sequence) in C++. For indexing

and querying in LSH, we use an efficient open-source C++ LSH

implementation called FALCONN [5]. For SRS and QALSH, we use

the C++ source code provided by their authors. We compile all C++

source code using g++ 7.5 with -O3. All experiments are done on a

workstation running Ubuntu 18.04 with Intel(R) Core(TM) i7-9800X

3.8GHz CPU, 128GB DRAM and 4 TB hard disk drive (HDD).

6.2 Benchmark Algorithms

We first briefly describe SRS [49], the only benchmark algorithm

that has not been introduced before. The SRS framework is con-

ceptually the same as the iDEC framework described in §5.1. Like

that of iDEC, the idea of SRS is to first map each point �s ∈ D to

anM-dimensional vector
−−→
f (s) = 〈f1(�s), f2(�s), · · · , fM (�s)〉 and then

perform the aforementioned t-NN search on �f (D), which is orga-

nized as a cover tree (whereas iDEC uses a k-d tree). Intuitively, this

algorithm works because the Cauchy projection vector
−−→
f (·) is statis-

tically distance-preserving in the sense if the point �s is among the

closest points to �q in L1 distance, then
−−→
f (s) is with high probability

among the closest to
−−−→
f (q) in L1 distance.

Now for each algorithm, we describe how we tune its parameters

for the best query performance. In RW-LSH, MP-RW-LSH, and CP-

LSH, we have three parameters to tune: M (the dimension of an

LSH function vector),W (the bucket “width”), and L (the number

of hash tables). In SRS, we have two parameters to tune: M and t
(defined above in “t-NN search”). There is no L in SRS, since it uses

3274

a cover tree instead of hash tables as the index structure. In QALSH,

we have one parameter to tune: the approximation ratio.

RW-LSH and MP-RW-LSH. For RW-LSH, we find that the

following value combinations of (M,W) strike the best trade-

offs between query accuracy and query efficiency for the

eight datasets listed in Table 2 from top to bottom respectively:

(12, 3144), (12, 930), (9, 122), (16, 1728), (8, 452), (16, 1104), (17, 424),

(14, 224). The same value combinations are used for MP-RW-LSH.

MP-RW-LSH has an additional parameter to tune: T (number

of additional buckets to be probed in each hash table). We find

that T = 100 strikes near-optimal tradeoffs between query time

and query accuracy for all eight datasets. For both RW-LSH and

MP-RW-LSH, we adjust L to achieve a recall value larger than 0.9

for each dataset.

Recall that MP-RW-LSH can use the long-jump (LJ) technique

described in §3.3 to reduce the total size of precomputed tables

without noticeably increasing the query time. To show the effect

of this reduction, the index sizes of MP-RW-LSH and RW-LSH are

broken down into two parts: (1) the total size of the L hash tables,

which we denote as v1; and (2) the total size of the precomputed

tables, which we denote asv2. Each index size entry of MP-RW-LSH

and RW-LSH in Table 3 is written as “v1 (+v2)”. For MP-RW-LSH, we

enable the long-jump technique on all small and medium datasets

because, without this reduction, their v2 can be much larger than

v1. We set the jump size J to be 64 on all small and medium datasets

except Audio and Enron, and we set jump steps to 512 for Audio

and to 8192 for Enron respectively. We do not enable LJ on the

two large datasets Deep10M and SIFT50M, since their v2 values
without long-jump are already much smaller than their v1 values.
For RW-LSH, we do not enable LJ, and as a result its v2 values are
much larger than those of MP-RW-LSH on some datasets. In the

following, we ignore the v2 values (in parentheses) of MP-RW-LSH

and RW-LSH in index size comparisons, since v2 is less than 20% of

v1 in MP-RW-LSH on all eight datasets and it will become clear that

includingv2 would not change the scalability narrative in the index

size comparison between MP-RW-LSH and any other algorithm.

CP-LSH. We use the following near-optimal parameter settings

for the eight datasets in the same order as above: (M,W) =

(7, 4401336), (8, 384416), (9, 22000), (7, 561426), (6, 153732), (8, 3033

12), (6, 34014), (8, 17336). For each dataset, we adjust L to achieve a

similar query accuracy as achieved by RW-LSH and MP-RW-LSH.

SRS. It was suggested by authors of SRS thatM should range from 6

to 10 [49]. For all eight datasets, we find thatM = 10 strikes roughly

the best tradeoffs between query accuracy and query efficiency. As

suggested by authors of SRS [49], we adjust parameter t to reach

the same level of query accuracy as achieved by the other three

algorithms for each dataset.

QALSH. QALSH [26] is an LSH-based ANNS-L1 algorithm opti-

mized for external-memory operations. We set the approximation

ratio to 1.4 except in SIFT50M (where we set approximation ratio

to 1.8 in order to fit the index structure into the RAM disk), and use

e−1 for the error probability and 100/n for the false positive per-

centage as suggested by authors of QALSH [26]. For each dataset,

we set the page size in QALSH in such a way that at least one object

(point) can fit in one page. As a result, the page size is 4 KB for all

eight datasets except Enron and Trevi, where the page sizes are

16 KB and 64 KB respectively.

6.3 Comparison with CP-LSH and RW-LSH

In this section, we compare MP-RW-LSH with CP-LSH and RW-

LSH in terms of scalability and query efficiency. They all use hash

tables and each hash table has the same size for the same dataset.

Hence, their index sizes are proportional to the number of hash

tables they use. In Table 3, we report the query times and the index

sizes needed by all three algorithms for achieving similar query

accuracies (if possible) on each dataset.

Scalability. Table 3 clearly shows that MP-RW-LSH has much bet-

ter scalability than both CP-LSH and RW-LSH. On all eight datasets,

the index sizes of, and equivalently the numbers of hash tables used

by, MP-RW-LSH are 14.8 to 53.3 and 15.0 to 27.5 times smaller

than those of CP-LSH and RW-LSH, respectively. Figure 2 shows

the tradeoffs between recall values achieved and the numbers of

hash tables used by these three algorithms on two medium datasets

GIST and Glove. Figure 2a shows that for achieving the same recall

value, CP-LSH and RW-LSH need to use roughly 18.2 to 20.1 and

roughly 24.8 to 27.5 times more hash tables than MP-RW-LSH on

GIST, respectively. Figure 2b shows that for achieving the same

recall value, CP-LSH and RW-LSH need to use roughly 20.1 to 29.2

and roughly 13.9 to 19.4 times more hash tables than MP-RW-LSH

on Glove, respectively. In fact, MP-RW-LSH can scale to the one-

billion-point dataset SIFT1B (without sampling) [3] with an index

size of roughly 24GB, whereas the other four algorithms cannot

(using the 128GB memory the computer has) while achieving the

same query accuracy as MP-RW-LSH.

Query Efficiency. As shown in Table 3, for achieving similar (or

better) query accuracies, MP-RW-LSH has shorter query times on

all the four small datasets and similar or slightly longer query times

on all medium and large datasets than its baseline RW-LSH. Table 3

also shows that CP-LSH has between 1.3 and 2.2 times shorter query

times than MP-RW-LSH on the eight datasets. The reason why the

query time of CP-LSH is a bit shorter than that of MP-RW-LSH was

explained in the third paragraph in §4. Overall, it is fair to say that

MP-RW-LSH achieves a much better tradeoff between scalability

and query efficiency than CP-LSH.

0.5 0.6 0.7 0.8 0.9 1
Recall

2
4
8

16
32
64

128
256

N
um

be
r

of
 H

as
h

T
ab

le
s MP-RW-LSH CP-LSH RW-LSH

(a) GIST

0.6 0.7 0.8 0.9 1
Recall

2
4
8

16
32
64

128
256

N
um

be
r

of
 H

as
h

T
ab

le
s MP-RW-LSH CP-LSH RW-LSH

(b) Glove

Figure 2: Number of hash tables vs. recall.

6.4 Comparison with SRS

Scalability. As shown in Table 3, MP-RW-LSH has smaller index

sizes on the two large datasets, but has larger index sizes on the six

small and medium datasets, than SRS.

Query Efficiency. As shown in Table 3, MP-RW-LSH has much

shorter query times than SRS for achieving similar query accuracies,

especially on large datasets. Therefore, it is fair to say that overall

3275

Table 3: Experiment results. CR indicates that the index structure crashed due to out of memory.

MP-RW-LSH CP-LSH RW-LSH SRS QALSH FLANN

Audio

Query Time (ms) 5.2 2.4 13.5 18.0 53.9 3.4

Recall 0.9438 0.9298 0.8445 0.9140 0.9168 0.9426

Index Size (MB) 65.6 (+13.7) 968.0 984.4 (+52743.4) 3.0 128.6 3.7

MNIST

Query Time (ms) 10.7 5.6 37.1 47.7 45.6 3.3

Recall 0.9491 0.9309 0.9221 0.9314 0.9303 0.9492

Index Size (MB) 66.1 (+4.4) 2644.2 1487.4 (+3230.0) 3.8 118.1 4.7

Enron

Query Time (ms) 47.0 40.8 CR 64.9 91.1 18.0

Recall 0.9339 0.9376 CR 0.9323 0.7034 0.9339

Index Size (MB) 75.3 (+13.0) 836.2 CR 5.4 268.9 6.5

Trevi

Query Time (ms) 69.6 40.4 147.1 86.8 110.1 31.8

Recall 0.9210 0.9162 0.9055 0.9168 0.8283 0.9205

Index Size (MB) 58.7 (+7.0) 2681.9 1005.7 (+3825.0) 5.7 412.0 13.7

GIST

Query Time (ms) 361.9 273.8 364.1 1045.8 2193.2 373.9

Recall 0.9696 0.9640 0.9557 0.9602 0.9456 0.9669

Index Size (MB) 94.5 (+5.4) 1654.0 2599.2 (+4834.0) 52.6 2928.2 171.7

Glove

Query Time (ms) 140.4 119.2 143.6 557.1 2486.4 357.4

Recall 0.9809 0.9753 0.9751 0.9648 0.6606 0.9770

Index Size (MB) 100.4 (+9.6) 3764.7 1886.6 (+5722.0) 63.6 3530.1 204.7

Deep10M

Query Time (ms) 1045.0 560.8 825.6 5338.8 48310.4 136.1

Recall 0.9756 0.9758 0.9737 0.9565 0.7932 0.9750

Index Size (MB) 323.0 (+32.7) 6922.0 6922.0 (+700.4) 525.2 23656.4 1716.6

SIFT50M

Query Time (ms) 5475.7 2445.0 3615.4 28302.9 126715.8 673.5

Recall 0.9807 0.9809 0.9668 0.9595 0.5873 0.9801

Index Size (MB) 1192.4 (+5.2) 19873.5 17886.1 (+470.7) 2656.8 63058.4 13732.91

MP-RW-LSH achieves a much better tradeoff between scalability

and query efficiency than SRS.

6.5 Comparison with QALSH

Scalability. Table 3 shows that MP-RW-LSH has better scalability

than QALSH while achieving similar or better query accuracy. On

all eight datasets, the index sizes of MP-RW-LSH are 1.79 to 73.2

times smaller than those of QALSH.

Query Efficiency. Table 3 shows that MP-RW-LSH has between

1.8 to 16.4 times shorter query times than QALSH on all small and

medium datasets. On the two large datasets, query times of QALSH

are 23.1 and 46.2 times larger than those of MP-RW-LSH respec-

tively, for achieving recall values (0.7932 and 0.5873) that are much

lower than those of MP-RW-LSH (0.9756 and 0.9807). This asymp-

totic behavior (that query time advantage grows with dataset size

n) is expected for the following reason. The query time of QALSH is

roughly equal to memory reads/writes time and computation time

adding up. Our measurements show that computation time dom-

inates query time, especially on two large datasets. For example,

computation time accounts for roughly 90% of the query time of

QALSH on Deep10M. However, the computation time complexity

of QALSH is O(n logn) [26], whereas the query time complexity

of MP-RW-LSH is O(nρ) (where ρ < 1) as explained in § 4, so

MP-RW-LSH’s advantage in query time grows with n.

6.6 Comparison with FLANN

Finally, we compare MP-RW-LSH with a prominent non-LSH-based

solution suite called FLANN [6]. FLANN is mainly designed for

ANNS-L2, but can be configured to answer ANNS-L1 queries, which
we do here. The suite includes a randomized k-d tree algorithm [46]

and a priority search k-means tree algorithm [21]. For this compar-

ison, we use the former algorithm since the latter algorithm has a

larger index size and is dataset-dependent (whereas MP-RW-LSH is

dataset-independent). For each dataset, we set the number of trees

to a value for the algorithm to achieves a nice tradeoff between

query accuracy and index size, both of which increase when this

number increases. For each dataset, we adjust the number of leaf

nodes to be examined (as suggested in [37]) to match the query

accuracy of MP-RW-LSH. We report the average query time and

recall of FLANN over nq queries, and its index size in Table 3.

Scalability. As shown in Table 3, the index sizes of MP-RW-LSH

are larger than those of FLANN on the four small datasets, but are

1.8 to 11.5 times smaller on the four medium and large datasets.

Query Efficiency.As shown in Table 3, the query times of MP-RW-

LSH are 1.5 to 8.1 times longer than those of FLANN on all eight

datasets except GIST and Glove. The query time of MP-RW-LSH is

slightly shorter on GIST and 2.5 times shorter on Glove. All these

results can be explained by the intrinsic dimension (ID) values [8]

of these datasets as follows. The original k-d tree algorithm [12]

has a query time complexity of roughly O(2m + logn) as shown
in [31]. However, when randomized [17, 46, 51] as done in FLANN,

3276

its empirical query time complexity is known to remain the same

asymptotic formula except that the dimensionm therein is replaced

by the much smaller ID of the dataset. The query time of MP-RW-

LSH, on the other hand, is not sensitive to this ID. This explains

why FLANN is faster on the six datasets whose ID’s are relatively

small (no more than 12.2 for all six [8, 34]) and slower on GIST and

Glove whose ID’s are relatively large (18.9 and 20 respectively [34]).

It also predicts that the outperformance of MP-RW-LSH will grow

larger when the ID (of the dataset) grows larger.

We note that MP-RW-LSH has a significant performance advan-

tage over FLANN when performing queries over a dynamic dataset.

In the case of FLANN, if a large number of new data points are

inserted into the dataset after the k-d tree was built, the query effi-

ciency can deteriorate significantly due to the k-d trees becoming

severely unbalanced [29]. While rebuilding the trees solves this

problem, it is very time-consuming. In comparison, in the case of

MP-RW-LSH, inserting new data points has virtually no impact on

query efficiency.

7 ANNS-E PERFORMANCE EVALUATION

In this section, we evaluate the two variants (multiset and context)

of our solution, which we call “MP-RW-LSH” in the sequel, against

the two variants of A-iDEC, in terms of ANNS-E query efficacy. For

MP-RW-LSH, the long-jump technique (described in §3.3) is used

with J = 128 in all four evaluation scenarios; the total size of the

resulting precomputed tables is negligible compared to that of the

hash tables and hence not accounted for in the index size.

7.1 Experiment Settings

Evaluation Datasets. We use four string datasets: GEN50KS [57],

UNIREF [57], TREC [57] and Enron-E [16] (a string dataset derived

from the aforementioned Enron dataset [4]). Table 4 summarizes

the number of strings (excluding those in the query workload), the

alphabet size |Σ|, the minimum, average and maximum lengths of

the strings, and the type (DNA, protein sequences, medical or text)

on the 4 datasets.

Table 4: Datasets summary.

Dataset n |Σ|
Length

Type nqMin Avg Max

GEN50KS 49K 4 4,844 5,000 5,109 DNA 1,000

TREC 232K 37 80 1,217 3,947 Medical 1,000

Enron-E 244K 37 12 885 59,420 Text 1,000

UNIREF 399K 24 200 445 35,213 Protein 1,000

Performance Metrics. Like in the ANNS-L1 evaluation, we eval-
uate the performances of MP-RW-LSH versus A-iDEC in three

aspects: scalability, query efficiency, and query accuracy. For scala-

bility and query efficiency, we use the same metrics as ANNS-L1
in §6.1. Due to the aforementioned extreme difficulty of achiev-

ing high ANNS-E query accuracy, each algorithm being evaluated

needs to find only k = 1 nearest neighbor with approximation ratio

c = 1.3 (called c-ANN in the literature [22, 26]). In this case, recall

is defined as follow. For a query string q, let the query result be

o1 and o1
∗ be the actual nearest neighbor. The recall value is 1 if

‖q,o1‖E ≤ c · ‖q,o1
∗‖E , where ‖·, ·‖E denotes the edit distance; oth-

erwise the recall value is 0. Like in the ANNS-L1 evaluation, each
query time or recall value is the average over nq queries, where nq
values are shown in Table 4.

Implementation Details. For the implementation of multiset fea-

ture, context feature and A-iDEC, we use the C++ source code

provided by their authors [23], and run it on the same workstation

as in the ANNS-L1 evaluation (§6.1).

7.2 Benchmark Algorithms

For a fair comparison, for each dataset and feature (multiset or

context) combination, the same parameter settings are used for

MP-RW-LSH and A-iDEC. Specifically, for the multiset feature, we

use the gram (shingle) size of q = 3 on GEN50KS and of q = 1

in on other three datasets; for the context feature, we use q = 3

on GEN50KS and q = 1 on the other three datasets respectively.

Another parameter in the context feature is the window size w
(which translates into a context size of 2w + 1 symbols), which we

set to 12 for all four datasets.

Now we describe the parameter settings for the two benchmark

algorithms. For MP-RW-LSH, like in the ANNS-L1 evaluation (§6.2),

we have three parameters to tune:M andW which are already de-

fined in §6.2 andK , the number of finalists for the third (verification)

step. For A-iDEC, we have three parameters to tune: M (dimension

of the “projection image”
−−−−−−→
ξ (μ(D))), t (the number of candidates

produced by the first step of searching
−−−−−−→
ξ (μ(D)) for ANNS-L1) and

the number of finalists K .

Table 5: Query time (in ms) and index size (in MB) results.

Dataset Feature Algorithm Time Recall Size

GEN50KS

Multiset
MP-RW-LSH 0.3+0.3+5.5 0.9980 32+0.8+6.0

A-iDEC 10.9+0.2+5.5 0.9970 2.3+6.0

Context
MP-RW-LSH 1.0+0.6+2.5 0.9970 32+0.8+6.0

A-iDEC 39.7+0.4+2.5 0.9970 2.3+6.0

TREC

Multiset
MP-RW-LSH 1.4+5.8+11.9 0.9960 32+3.5+15.7

A-iDEC 79.6+0.8+11.9 0.9960 10.9+15.7

Context
MP-RW-LSH 1.2+5.3+7.6 0.9970 32+3.5+15.7

A-iDEC 96.5+1.8+7.6 0.9970 10.8+15.7

Enron-E

Multiset
MP-RW-LSH 1.7+6.4+10.7 0.9050 32+3.7+17.3

A-iDEC 76.3+0.7+10.7 0.9050 11.6+17.3

Context
MP-RW-LSH 1.8+6.4+13.6 0.9050 32+3.7+17.3

A-iDEC 240.3+3.0+13.6 0.9050 10.7+17.3

UNIREF

Multiset
MP-RW-LSH 6.6+21.9+1.7 0.9500 32+6.1+17.5

A-iDEC 1648.7+4.7+1.7 0.9550 17.1+17.5

Context
MP-RW-LSH 3.7+15.7+3.1 0.9550 32+6.1+17.5

A-iDEC 1131.2+3.2+3.1 0.9550 18.2+17.5

The parameter settings of MP-RW-LSH are described as fol-

lows. We find that L = 4 (hash tables) and T = 100 leads

to the best tradeoffs between query accuracy and query effi-

ciency on both two features. We use the following value com-

binations of (M,W) that lead to the best such tradeoffs for the

four datasets listed in Table 4 (from top to bottom) respectively:

(11, 78), (9, 76), (12, 62), (8, 40) for MP-RW-LSH with the multiset

3277

feature and (8, 282), (9, 170), (10, 238), (8, 200) for MP-RW-LSH with

the context feature. We adjust the number of finalists K to achieve

a certain level of query accuracy for each dataset.

In all ANNS-L1 and ANNS-E evaluations, to avoid introducing

another tunable parameter, we fix the number of hash buckets in

each hash table to 221 ≈ 2.1 million in MP-RW-LSH, which results

in a fixed (i.e., not growing with n) cost of 8MB per hash table.

In ANNS-L1 evaluations, we include this fixed cost in index size

comparisons because its impact is small on large datasets. We must

exclude this fixed cost here for a fair comparison, because all four

ANNS-E datasets are tiny (so using 2.1 million buckets is very

wasteful), and as a result this fixed cost dominates all other costs.

To this end, we divide the index size of MP-RW-LSH into three

parts: this fixed cost of 32MB (for the 4 hash tables), the total size

of the 4 hash tables excluding this fixed cost, and the size of the

feature vectors set �μ(D) (the filter that was described in §5).

The parameter settings of A-iDEC are as follows. We find that

M = 12 strikes roughly the best tradeoffs between query accuracy

and query efficiency on all four datasets and both features. For

each feature (multiset or context) and dataset combination, the

number of finalist K is set to the same value (that can vary from

one combination to another) in both A-iDEC and MP-RW-LSH,

for a fair comparison between their ANNS-L1 query efficacies as

explained in §5. We adjust the parameter t to reach the same level

of query accuracy as achieved by MP-RW-LSH for each feature on

each dataset. For a fair comparison, like what we did to MP-RW-

LSH, we divide the index size of A-iDEC into two parts: the size of

the “projection image”
−−−−−−→
ξ (μ(D)), and that of the filter �μ(D).

7.3 Comparison with A-iDEC

In Table 5, we report the average query times and the index sizes

needed by MP-RW-LSH and A-iDEC respectively for achieving

similar query accuracies when applying the same feature (multiset

or context) on each dataset. For a more insightful comparison, for

all four variants (algorithm+feature combinations), we break down

each query time into three parts: the amount of time for perform-

ing the first (candidate-generating) step (t1), that for performing

the second (filtering) step (t2), and that for performing the third

(verification) step (t3). Every query time entry in Table 3 is written

as “t1+t2+t3”. Note that, for each dataset, t3 is the same for each cor-

responding variant pair (MP-RW-LSH and A-iDEC with the same

feature), since they use the same number of finalist K as explained

earlier. Hence, our focus in the rest of this section is on comparing

t1 + t2.
Table 5 shows that MP-RW-LSH is both more time-efficient

and more scalable than A-iDEC. On one hand, for each of the four

datasets, the query time of an MP-RW-LSH variant excluding t3 is
between 9.5 and 59.2 times shorter than that of the corresponding

A-iDEC variant (for the same feature), for achieving similar query

accuracies. On the other hand, for each of the four datasets, the

index size of an MP-RW-LSH variant excluding the 32MB fixed

cost (the first number) is roughly 3 times smaller than that of the

corresponding A-iDEC variant, when the cost of �μ(D) (the last

number), is excluded from both.

As shown in Table 5, in the case of MP-RW-LSH, t3 is larger

than t1 + t2 on all four datasets except UNIREF, which confirms

the importance of keeping K (the number of finalists) small for

better ANNS-E query efficiency in general. UNIREF is an exception

(on which t3 is small), since the average string length in UNIREF

is much smaller than those in the other three datasets (as shown

in Table 4). For this same reason and the fact that t1 is generally
much longer than t3 in the case of A-iDEC, for UNIREF, it is possible
to reduce the total query time t1 + t2 + t3 of A-iDEC by increasing

its K (which increases t3) and reducing the number of candidates

generated in the first step (which decreases t1). However, even with

this optimization, the query times of A-iDEC are still several times

longer than those of MP-RW-LSH on UNIREF. For example, the

query time of A-iDEC with the context feature is 1131.2 + 3.2 + 3.1

= 1137.5 ms on UNIREF (see Table 5) whenK is set to 88; and when

K is increased to a near-optimal value of 2000, we can significantly

reduce t1 (while achieving the same recall) so that the query time

of A-iDEC decreases to 29.7 + 1.2 + 66.9 = 97.8ms. On the other

three datasets, this optimization reduces the query times of A-iDEC

only slightly, which is consistent with the reason explained earlier.

8 RELATED WORK

The ANNS literature is vast. Here in the interest of space we briefly

survey only LSH-based solutions that we have not described earlier.

Most of these solutions are for ANNS-L2 and all are designed for

external-memory operations. Examples of these solutions include

LSB-forest [50], C2LSH [22], LazyLSH [60], and PM-LSH [59] (a

variant of QALSH). Some of them, such as C2LSH and LazyLSH, can

be adapted for ANNS-L1. However, they all need a large number

of hash tables (e.g. L = 213 for C2LSH as reported in [22]), so their

index sizes are too large to fit in memory when the dataset is large.

Therefore, they have to use disk-resident data structures, which

result in long query time.

Another family of popular ANNS-L1 solutions is tree-based algo-
rithms. They have been widely used for both exact NNS and ANNS.

Representative tree-based ANNS-L1 algorithms include random k-d

tree algorithm [46] and Annoy [1].

9 CONCLUSION

In this paper, we propose MP-RW-LSH, the first and so far only

multi-probe LSH solution for ANNS-L1 distance, and show that it

achieves a better tradeoff between scalability and query efficiency

than all existing LSH-based solutions. We also explain why CP-LSH,

a state-of-the-art ANNS-L1 solution, is fundamentally not suitable

for multi-probe extension. As a use case, we construct, using MP-

RW-LSH as the underlying “ANNS-L1 engine”, a new ANNS-E

solution that beats the state-of-the-art solution called iDEC.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation under Grant No. CNS-1909048 and CNS-2007006.

We thank the reviewers for their suggestions that have greatly

improved the quality and the readability of this paper.

REFERENCES
[1] [n.d.]. Annoy: Approximate Nearest Neighbors in C++/Python optimized for

memory usage and loading/saving to disk. https://github.com/spotify/annoy.
[2] [n.d.]. Audio Dataset. http://www.cs.princeton.edu/cass/audio.tar.gz.
[3] [n.d.]. Datasets for ANN neighbor search. http://corpus-texmex.irisa.fr/.

3278

[4] [n.d.]. Enron Email Dataset. http://www.cs.cmu.edu/~enron/.
[5] [n.d.]. FALCONN - FAst Lookups of Cosine and Other Nearest Neighbors. https:

//github.com/FALCONN-LIB/FALCONN.
[6] [n.d.]. FLANN - Fast Library for Approximate Nearest Neighbors. https://github.

com/flann-lib/flann.
[7] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of

Approximating the Frequency Moments. Journal of Computer and System Sciences
58, 1 (Feb. 1999), 137–147.

[8] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E.
Houle, Ken-ichi Kawarabayashi, and Michael Nett. 2015. Estimating Local In-
trinsic Dimensionality. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’15). Association for
Computing Machinery, New York, NY, USA, 29–38. https://doi.org/10.1145/
2783258.2783405

[9] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. 2008. Earth Mover
Distance over High-Dimensional Spaces. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA ’08). Society for Industrial
and Applied Mathematics, USA, 343–352.

[10] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. 2015. Practical and Optimal LSH for Angular Distance. In Proceedings
of the 28th International Conference on Neural Information Processing Systems -
Volume 1 (NIPS’15). MIT Press, Cambridge, MA, USA, 1225–1233.

[11] Artem Babenko and Victor Lempitsky. [n.d.]. Deep: Datasets of deep descriptors.
http://sites.skoltech.ru/compvision/noimi/.

[12] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517. https:
//doi.org/10.1145/361002.361007

[13] Jeremy Buhler. 2001. Efficient large-scale sequence comparison by locality-
sensitive hashing. Bioinformatics 17, 5 (2001), 419–428.

[14] Surajit Chaudhuri, Venkatesh Ganti, and Raghav Kaushik. 2006. A Primitive
Operator for Similarity Joins in Data Cleaning. In 22nd International Conference
on Data Engineering (ICDE’06). 5–5. https://doi.org/10.1109/ICDE.2006.9

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2009. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press.

[16] Xinyan DAI, Xiao Yan, Kaiwen Zhou, YuxuanWang, Han Yang, and James Cheng.
2020. Convolutional Embedding for Edit Distance. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’20). Association for Computing Machinery, New York, NY, USA,
599–608. https://doi.org/10.1145/3397271.3401045

[17] Sanjoy Dasgupta and Yoav Freund. 2008. Random Projection Trees and Low
Dimensional Manifolds. In Proceedings of the ACM Symposium on Theory of Com-
puting. New York, NY, USA, 537–546. https://doi.org/10.1145/1374376.1374452

[18] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. 253–262.

[19] Joan Feigenbaum, Sampath Kannan, Martin J. Strauss, and Mahesh Viswanathan.
2003. An Approximate L1-Difference Algorithm for Massive Data Streams. SIAM
J. Comput. 32, 1 (Jan. 2003), 131–151. https://doi.org/10.1137/S0097539799361701

[20] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-out Graph. PVLDB 12,
5 (2019), 461–474. https://doi.org/10.14778/3303753.3303754

[21] Keinosuke Fukunaga and Patrenahalli M. Narendra. 1975. A Branch and Bound
Algorithm for Computing k-Nearest Neighbors. IEEE Trans. Comput. C-24, 7
(July 1975), 750–753. https://doi.org/10.1109/T-C.1975.224297

[22] Junhao Gan, Jianlin Feng, Qiong Fang, and Wilfred Ng. 2012. Locality-Sensitive
Hashing Scheme Based onDynamic Collision Counting. In Proceedings of the ACM
SIGMOD International Conference on Management of Data. Scottsdale, Arizona,
USA, 541–552. https://doi.org/10.1145/2213836.2213898 Source code: https:
//github.com/fengjl18/C2LSH-Code.

[23] Long Gong, Huayi Wang, Mitsunori Ogihara, and Jun Xu. 2020. iDEC: Indexable
Distance Estimating Codes for Approximate Nearest Neighbor Search. PVLDB
13, 9 (2020), 1483–1497.

[24] David Gorisse, Matthieu Cord, and Frederic Precioso. 2012. Locality-Sensitive
Hashing for Chi2 Distance. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34, 2 (2012), 402–409. https://doi.org/10.1109/TPAMI.2011.193

[25] Raymond J Hickey. 1983. Majorisation, randomness and some discrete distribu-
tions. Journal of applied probability (1983), 897–902.

[26] Qiang Huang, Jianlin Feng, Qiong Fang, Wilfred Ng, and Wei Wang. 2017. Query-
aware locality-sensitive hashing scheme for lp norm. The VLDB Journal 26, 5
(2017), 683–708.

[27] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. ACM, 604–613.

[28] Piotr Indyk and Nitin Thaper. 2003. Fast image retrieval via embeddings. In 3rd
international workshop on statistical and computational theories of vision (at ICCV),
Vol. 2. 5.

[29] Jaemin Jo, Jinwook Seo, and Jean-Daniel Fekete. 2017. A progressive k-d tree
for approximate k-nearest neighbors. In 2017 IEEE Workshop on Data Systems for
Interactive Analysis (DSIA). 1–5. https://doi.org/10.1109/DSIA.2017.8339084

[30] Yannis Kalantidis, Lyndon Kennedy, and Li-Jia Li. 2013. Getting the look: clothing
recognition and segmentation for automatic product suggestions in everyday
photos. In ICMR. 105–112.

[31] Carl Kingsford. [n.d.]. kd-Trees. https://www.cs.cmu.edu/~ckingsf/bioinfo-
lectures/kdtrees.pdf. [Online; accessed 18-Oct-2019].

[32] Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, and Kilian Q. Weinberger. 2015. From
Word Embeddings to Document Distances. In Proceedings of the 32nd International
Conference on International Conference onMachine Learning - Volume 37 (ICML’15).
JMLR.org, 957–966.

[33] Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony K. H. Tung. 2020.
Locality-Sensitive Hashing Scheme Based on Longest Circular Co-Substring. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’20). Association for Computing Machinery, New York, NY, USA,
2589–2599. https://doi.org/10.1145/3318464.3389778

[34] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimensional
Data — Experiments, Analyses, and Improvement. IEEE Transactions on Knowl-
edge and Data Engineering 32, 8 (2020), 1475–1488. https://doi.org/10.1109/TKDE.
2019.2909204

[35] Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-Song Chen. 2015. Deep
learning of binary hash codes for fast image retrieval. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW). 27–35. https:
//doi.org/10.1109/CVPRW.2015.7301269

[36] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
probe LSH: efficient indexing for high-dimensional similarity search. In PVLDB.
950–961.

[37] Marius Muja and David G Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 11 (Nov 2014), 2227–2240. https://doi.org/10.1109/TPAMI.2014.
2321376

[38] Rafail Ostrovsky and Yuval Rabani. 2005. Low Distortion Embeddings for Edit
Distance. In Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory
of Computing (STOC ’05). Association for Computing Machinery, New York, NY,
USA, 218–224. https://doi.org/10.1145/1060590.1060623

[39] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. [n.d.]. GloVe:
Global Vectors forWord Representation. https://nlp.stanford.edu/projects/glove/.

[40] Lianyong Qi, Xuyun Zhang, Wanchun Dou, and Qiang Ni. 2017. A Distributed
Locality-Sensitive Hashing-Based Approach for Cloud Service Recommendation
From Multi-Source Data. IEEE J. Sel. Areas Commun. 35, 11 (2017), 2616–2624.

[41] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of Massive Datasets.
Cambridge University Press.

[42] Sidney I Resnick. 2007. Heavy-tail phenomena: probabilistic and statistical model-
ing. Springer Science & Business Media.

[43] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In ICCV. IEEE, 2564–2571.

[44] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. 2000. The earth mover’s
distance as a metric for image retrieval. International journal of computer vision
40, 2 (2000), 99–121.

[45] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian locality sensitive
hashing for fast similarity search. PVLDB 5, 5 (2012), 430–441.

[46] C. Silpa-Anan and R. Hartley. 2008. Optimised KD-trees for fast image descriptor
matching. In 2008 IEEE Conference on Computer Vision and Pattern Recognition.
1–8. https://doi.org/10.1109/CVPR.2008.4587638

[47] Sadhan Sood and Dmitri Loguinov. 2011. Probabilistic Near-Duplicate Detection
Using Simhash. In Proceedings of the 20th ACM International Conference on In-
formation and Knowledge Management (CIKM ’11). Association for Computing
Machinery, New York, NY, USA, 1117–1126. https://doi.org/10.1145/2063576.
2063737

[48] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. 2005. Evaluating Simi-
larity Measures: A Large-Scale Study in the Orkut Social Network. In Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in
Data Mining (KDD ’05). Association for Computing Machinery, New York, NY,
USA, 678–684. https://doi.org/10.1145/1081870.1081956

[49] Yifang Sun. 2016. Approximate similarity search in high dimensional spaces:
solutions, evaluations and applications. Ph.D. Dissertation. University of New
South Wales, Sydney, Australia. http://handle.unsw.edu.au/1959.4/56970

[50] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2009. Quality and Effi-
ciency in High Dimensional Nearest Neighbor Search. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’09). Association for Computing Machinery, New York, NY, USA, 563–576.
https://doi.org/10.1145/1559845.1559905

[51] Santosh Vempala. 2012. Randomly-oriented k-d Trees Adapt to Intrinsic Dimen-
sion. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad,
India. 48–57. https://doi.org/10.4230/LIPIcs.FSTTCS.2012.48

[52] Xuerui Wang, Andrew McCallum, and Xing Wei. 2007. Topical n-grams: Phrase
and topic discovery, with an application to information retrieval. In ICDM. IEEE,
697–702.

3279

[53] Simon Winder, Matt Brown, Noah Snavely, Steven Seitz, and Richard Szeliski.
[n.d.]. Trevi: Local Image Descriptors Data. http://phototour.cs.washington.edu/
patches/default.htm.

[54] Jia Xu, Zhenjie Zhang, Anthony KH Tung, and Ge Yu. 2012. Efficient and effective
similarity search over probabilistic data based on earth mover’s distance. The
VLDB Journal 21, 4 (2012), 535–559.

[55] LeCun Yann, Cortes Corinna, and J.C. Burges Christopher. [n.d.]. THE MNIST
DATABASE of handwritten digits. http://yann.lecun.com/exdb/mnist/.

[56] Yi Yu, Michel Crucianu, Vincent Oria, and Ernesto Damiani. 2010. Combining
multi-probe histogram and order-statistics based LSH for scalable audio content
retrieval. In ACM MM. 381–390. https://doi.org/10.1145/1873951.1874004

[57] Haoyu Zhang. [n.d.]. String Datasets. https://iu.box.com/s/
x7hg7uxj7xmmcdvc62k7iux9txtt9doi.

[58] Haoyu Zhang and Qin Zhang. 2017. EmbedJoin: Efficient Edit Similarity Joins
via Embeddings. In SIGKDD. ACM, 585–594. https://doi.org/10.1145/3097983.
3098003

[59] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu, and
Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework for
High-Dimensional Approximate NN Search. Proc. VLDB Endow. 13, 5 (Jan. 2020),
643–655. https://doi.org/10.14778/3377369.3377374

[60] Yuxin Zheng, Qi Guo, Anthony K.H. Tung, and Sai Wu. 2016. LazyLSH: Approx-
imate Nearest Neighbor Search for Multiple Distance Functions with a Single
Index. In Proceedings of the 2016 International Conference on Management of
Data (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,
2023–2037. https://doi.org/10.1145/2882903.2882930

3280

