Using VDMS to Index and Search 100M Images

Luis Remis
ApertureData
luis@aperturedata.io

ABSTRACT

Data scientists spend most of their time dealing with data prepara-
tion, rather than doing what they know best: build machine learning
models and algorithms to solve previously unsolvable problems.
In this paper, we describe the Visual Data Management System
(VDMS), and demonstrate how it can be used to simplify the data
preparation process and consequently gain in efficiency simply
because we are using a system designed for the job. To demonstrate
this, we use one of the largest available public datasets (YFCC100M),
with 100 million images and videos, plus additional data including
machine-generated tags, for a total of about ~12TB of data. VDMS
differs from existing data management systems due to its focus on
supporting machine learning and data analytics pipelines that rely
on images, videos, and feature vectors, treating these as first class
citizens. We demonstrate how VDMS outperforms well-known and
widely used systems for data management by up to ~364x, with an
average improvement of about 85x for our use-cases, and partic-
ularly at scale, for a image search engine implementation. At the
same time, VDMS simplifies the process of data preparation and
data access, and provides functionalities non-existent in alternative
options.

PVLDB Reference Format:

Luis Remis and Chaunté W. Lacewell. Using VDMS to Index and Search
100M Images. PVLDB, 14(12): 3240-3252, 2021.
doi:10.14778/3476311.3476381

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/luisremis/visual_storm/tree/master/yfcc100m.

1 INTRODUCTION

Visual computing workloads performing analytics on images and/or
videos have become prolific across a wide range of application
domains. This is in part due to the growing ability of machine
learning (ML) techniques to extract information from the visual data
which can subsequently be used for informed decision making [28].
The insights this information can provide depend on the application:
retail vendors might be interested in knowing which are the most
visited areas of their stores using security video feeds as input, or
a doctor might want know the effect of a specific treatment by
looking at the changes in size of a tumor from a brain scan.

*Luis Remis was a Research Scientist at Intel Labs until late 2019. Most of this work
was done while at Intel Labs.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476381

3240

Chaunté W. Lacewell
Intel Labs
chaunte.w.lacewell@intel.com

Despite the increasing use of visual data processing, there has
been very little research on the management of visual data. Most
of the current storage solutions for visual data are an ad-hoc col-
lection of tools and systems, that are re-purposed and adapted to
work with visual data. The approach of re-purposing and integrat-
ing solutions not designed for a task results in resource utilization
inefficiencies[2]. The combination of systems is required to man-
age both metadata and visual data. We use visual data to refer to
any pixel-data (images, videos, frames in a video, etc.), and feature
vectors (a.k.a. descriptors, or embeddings), which are representa-
tions of the pixel data. We use metadata to refer to any data that is
important within the context of specific applications. Information
about a patient (name, last name, unique identifiers), or about a
clinic (name, location, etc.) are examples of what we refer to as
metadata in the context of a health-care IT system. One can think
of metadata as the data an application would store in rows and
tables following the relational model.

To illustrate the point on the need for multiple systems to build
the data infrastructure for applications, consider a ML developer
constructing a pipeline for extracting brain tumor information from
existing brain images in a classic medical imaging use case. This re-
quires assigning consistent identifiers for the scans and adding their
metadata in a relational or key-value database[17]. If the queries
require a search over patient information, then patients are associ-
ated with their brain scans. Finally, if the ML pipeline needs images
with a different resolution than the original, there is additional
compute diverted towards pre-processing the original images. All
these steps require understanding different software solutions that
provide various functionalities that can then be stitched together
with many scripts for this specific use case. Moreover, if the pipeline
identifies new metadata to be added for the tumor images, most
databases make it hard to change the schema on the fly. As another
example, many applications can be studied through the use of large
and publicly available datasets. Applications include basic image
search functionality (through the use of human-generated tags),
advanced image search through the use of machine-generated tags
and feature vectors[8, 27] for each image, and video summariza-
tion. For these use-cases, the usual first step consists on selecting
a subset of the data before running any processing, and a large
effort is devoted to filtering, curating, and pre-processing the data.
Selecting subsets of data is by itself a time consuming task, as it
involves loading all metadata into a solution that enables searching
based on tags (relational database, graph database, csv files, etc.),
and building the necessary pipelines for querying and retrieving
the right data.

More generally, data scientists and machine learning developers
usually end up building an ad-hoc solution that results in a com-
bination of databases and file servers to store metadata and visual
data (images, videos), respectively [30]. This is integrated with a
set of custom scripts that tie multiple systems together, unique

https://doi.org/10.14778/3476311.3476381
https://github.com/luisremis/visual_storm/tree/master/yfcc100m
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476381

not only to a specific application/discipline but often to individual
researchers or development teams [22, 30]. These ad-hoc solutions
make replicating experiments difficult, and more importantly, they
do not scale well when deployed in the real-world. The reason be-
hind such complexity is the lack of a system that can be used to store
and access all the data the application needs, including metadata,
images, videos, and feature vectors.

In this paper, we describe VDMS and show how it provides a
comprehensive solution to the data management for applications
that heavily rely on visual data. VDMS is an Open Source project
designed to enable efficient access of visual data. To the best of our
knowledge, a rich set of functionalities designed for visual data man-
agement, provided behind an integrated API, is unique to VDMS
and we were unable to find a system with similar functionality.
While there are a number of big-data frameworks [32, 33], systems
that can be used to store metadata [19, 25, 31, 34], and systems that
manipulate a specific category of visual data [2, 5], VDMS can be
distinguished from them on the following aspects:

e Design for analytics and machine learning: By targeting vi-
sual data for use cases that require manipulation of visual
information and associated metadata,

Ease-of-use: By defining a common API that allows appli-
cations to combine their complex metadata searches with
operations on resulting visual data, and together with full
support for feature vectors. VDMS goes beyond the tradi-
tional SQL or OpenCV level interfaces that do one or the
other.

Performance: We show how a unified system such as VDMS
can outperform an ad-hoc system constructed with well-
known discrete components. Because of the capabilities we
have built into VDMS, it handles complex queries signifi-
cantly better than the ad-hoc system without compromising
the performance of simple queries.

In order to evaluate VDMS in a realistic use case, we use the
YFCC100M dataset[35]. The YFCC100M dataset is the largest pub-
lic multimedia collection. It contains the metadata of around 99.2
million photos and 0.8 million videos from Flickr, plus expansion
packs [1] that include a variety of multidimensional data, all of
which were shared under one of the various Creative Commons
licenses. We have used this dataset for multiple proof of concepts
and applications within our research lab.

Overall, this paper makes the following contributions:

e We present the design and implementation of the Visual
Data Management System. To the best of our knowledge,
there are no other system capable of managing visual data
and its metadata behind a unified API and that, at the same
time, enable applications to operate over visual data (images,
videos, feature vectors).

We introduce the VDMS API in detail, designed for Machine
Learning and visual data analytics at scale.

We use our internal use-cases and implementations of visual
data processing pipeline to make a comprehensive evaluation
between common ad-hoc solutions that rely on multiple
systems and VDMS.

We use the largest public available image dataset, YFCC100m,
together with machine generated tags for our real-world use

3241

Applications

[

Query Engine
(implements JSON-based VDMS API)

’ P Python Connector

e C++ Connector ‘

Visual Compute Module

File System (Local or Distributed)

Graph Engine

o
R

(inteD OPTANE)

VDMS Server

Figure 1: VDMS Architecture

case, providing a performance evaluation both from the point
of view of high concurrency as well as scale (the database
size, including images and metadata is 12TB in size).

2 RELATED WORK

There are several databases and data management systems that
focus on enabling analytics or combining transactional and analytic
workloads over large scale data, such as SciDB [5], BigTable [6],
Shark [38], and Vertica [18]. While these systems do not focus on
visual processing as a primary entity, they are valuable resources in
distributing and analyzing very large scale data. A more concrete
application involving visual data include the Facebook architecture
for photos that combine Tao [37], Haystack [3], and 4 [24] for
metadata, hot/recent data, and warm data respectively. While the
social aspect of Facebook is logically suited to a graph, the bulk of
their data is already stored in MySQL [25], so they chose to develop
a graph-aware cache. A similar approach was taken by Grail [7],
which argued that a syntactic layer written on top of a relational
database could answer graph queries. Diamond [12, 29] exploited
active disks to perform discard-based searching order to shrink
the amount of data returned to a reasonable size. We accomplish
the same goal by exploiting persistent memory to store a graph
database for metadata.

3 VDMS DESIGN & IMPLEMENTATION

In this section, we further describe VDMS design principles and
implementation, which was briefly introduced in previous work
[28]. VDMS implementation is fully open-sourced !.

VDMS implements the typical client-server architecture that
handles client queries transactionally and concurrently, similar to
what most common relational and non-relational database systems
[6, 25, 34] use. The main difference between other data management
systems and VDMS is that it goes beyond the typical supported
data types (string, integers, floats, blobs, JSON-documents, etc.),
recognizing visual entities (image, videos, feature vectors, etc.) as
first class citizens. VDMS API enable users to insert, index, process,
and query visual data, as well as provides full support for inserting,
indexing and querying user-defined metadata. Users interact with

!https://github.com/IntelLabs/vdms

both metadata and visual data using a unified AP, in a transactional
manner.

VDMS provides a graph model abstraction with the traditional
atomicity, consistency, isolation, and durability (ACID) properties
expected from databases. This is, users interact with their objects
(metadata, images, videos, etc.), as if these objects were in a con-
nected graph. Graph represents an easier abstraction to model
complex problems, making it very suitable for the data and access
patterns shown by visual metadata, which can be easily mapped
into application-level abstractions by developers [37]. For instance,
abstractions like BoundingBoxes associated to images or videos can
be easily represented using nodes and edges in a graph. This is the
main reason why the team chose a graph model over a relational
one for the implementation of VDMS APL

VDMS API provides a mechanism to insert and connect Images,
Videos, BoundingBoxes, Frames, and Descriptors (feature vectors),
together with any metadata associated with the objects. Each object
is a node in the graph. The information associated to each visual
object (image, video, etc.) is modeled as "properties” of the node in
the graph. Users can query, filter, and retrieve these objects based
on its properties. VDMS does not simply treat these objects as
binary blobs of data, but rather understands them and the type of
processing that is common for them, providing the ability to run
processing on-the-fly, both at insertion and retrieval time. This is
one of the main differentiating aspects when compared to other
database systems, including relational databases. In a relational
database, for instance, one can query and compute over values in a
column only for basic data types (strings, integers, floats), and over
the abstractions the relational model supports (tables, columns).
This is, a SQL query can retrieve the computed average "salary” of
all the employees in a company (stored using the table/columns
abstraction), but cannot perform any computation over data stored
as a blob or binary object. VDMS, because it recognized the nature
of visual objects by design, provides the ability to compute on these
visual objects (image, videos, etc.).

VDMS API also allows users to insert application-defined "Enti-
ties", that enable applications to model any use-case specific meta-
data. An "Entity" object (and its properties) is a node in the graph.
For example, a user can define an Entity object of a class "Person",
and connect this person to one or multiple image objects. Later,
the user can retrieve the Entity object corresponding to a person,
together with all the images connected to it. In some cases, users
may need to apply different processing operations to the visual data
for their application. We chose to support specific operations due
to their frequent use in ML applications using visual data. Common
operations supported for both images and videos are thresholding,
cropping, and resizing. Additional operations such as flipping and
rotation are supported for images and extracting frames by interval
is supported for videos. In most ML applications, a subset of these
operations are included in the preprocessing stage of model training
and/or inferencing which supports majority of the research com-
munities who analyze visual data and may benefit from replacing
customized solutions with VDMS.

By providing the ability to store visual data objects together with
application-defined entities and its properties, VDMS can manage
all the data the application need behind a single, unified API. This
means users can access all data (metadata, images, videos, etc.) from

3242

the VDMS API and even implement their own API/front-end on
top of VDMS without adding any additional abstractions. This is
in contrast with current applications that rely on a combination
of multiple data management systems and APIs to access different
portions of the data they need [22, 30, 30, 37].

Figure 1 depicts the high-level architecture of VDMS, which is
composed by several sub-components, and a Query Engine that
implements the unified API and hides all the complexity under-
neath. We first describe the VDMS API, and then describe its sub-
components and design decisions.

3.1 VDMS API

One of the most important differentiating aspects of VDMS is its API.
VDMS is unique in recognizing visual entities (i.e., images, videos,
etc.) as first class citizens. Thus, VDMS’ API revolves around visual
data operations and retrieval, but at the same time, enables applica-
tions to store any other application-specific metadata. VDMS API is
easy to use and explicitly pre-defines certain primitives associated
with metadata, images, videos, and feature vectors. Authors have
paid particular attention to hide the complexities of our internal
implementation and up-level the API to a JSON-based API, which
is very popular across various application domains. By defining a
new JSON-based AP]I, there is a trade-off between expressiveness
(compared to well-established query languages like SPARQL, Grem-
lim, or even SQL) and the ability to natively support visual data
operations. However, we believe it is possible for our API to achieve
similar levels of expressiveness compared to more mature query
languages over time.

Listing 1 shows a sample query for inserting an image, properties
associated with the image, and metadata to VDMS. The metadata,
in this case, is the information about the "autotag", which is pro-
vided by the dataset in this specific image-search application. In this
example, the transaction inserts an application-defined "Entity" of
the class "autotag", with the "name" property being alligator, inserts
an Image with its "latitude” and "longitude”, stores the image as
a JPG (VDMS will transcode if needed), and creates a connection
between the Image and the Entity, with a "prob" property (which
indicates the probability of that image containing an object of type
alligator) with a specific value. This query is performed transac-
tionally: either all the image, metadata and connection are inserted,
or none of them are and an error is returned. Note that no schema
needs to be defined in advance. The Entity of class "autotag”, with
its properties, are declared and added at insertion time, without any
need to define a schema of objects (and its properties) before hand.
This is a benefit over relational databases which require the user to
identify how data is divided into different tables and determine the
relationship between tables.

Listing 2 shows another sample query, in this case, for retrieval.
In this particular example, the transaction retrieves all the images
of alligators with probability higher than 0.66, filter by latitude and
longitude within 1 degree, apply a resize operation to make the
images 224x224, rotate the images 45.34 degrees, and return the
images as "png" files. It is important to note how the API natively
supports basic building blocks of visual data processing, like resize,
rotation, or transcoding (changing output formats and encodings).
Moreover, because VDMS is in control of the metadata and the

1 "AddEntity"{

2 "_ref" .1,

3 "class": "autotag",

4 "properties": {

5 "name": "alligator"
6 3

7 3,

8 "AddImage":{

9 "_ref": 2,

10 "properties": {

11 "latitude": 36.23433,
12 "longitude": -116.80666
13 3,

14 "format": "jpg"

15 3,

16 "AddConnection": {

17 "ref1": 1,

18 "ref2": 2,

19 "properties": {

20 "prob": 0.7653

21 }

22 }

Listing 1: Sample Query for Image Insertion - The query ex-
presses the following: Insert an Entity of the class "autotag”,
with the "name" property being alligator, insert an Image
with its "latitude" and "longitude", store the image as a JPG,
and create a connection between the image and the "auto-
tag", with a property "prob" (which indicates the probability
of that image containing an object of type alligator).

image data, re-ordering or pre-processing operations can be done
transparently, increasing the performance of the retrieval process.
The API allows interaction with metadata, images, videos, bounding
boxes, frames, feature vectors, and more in a similar fashion, and
it is fully documented on the project’s Github wiki 2. The visual
data pre-processing operations supported in VDMS are generic and
application independent. By design, we only include pre-processing
operations that are not specific to one domain, but rather general
for visual analytics.

3.2 Graph Engine

The Graph Engine used in VDMS is the Persistent Memory Graph
Database (PMGD). PMGD was developed at Intel Labs, and was
designed and optimized for persistent memory technologies like
Intel Optane [13], which promise storage providing nearly the
speed of DRAM and the durability of block-oriented storage. PMGD
is also fully open-sourced 3. PMGD implements an in-persistent-
memory graph database optimized to run on a platform equipped
with persistent memory, but also provides the option to run on
SSD and ext4 filesystem using OS support to provide transactional
guarantees (through msync). PMGD provides a property graph
model of data storage with the traditional atomicity, consistency,
isolation, and durability (ACID) properties expected from databases.
Specifically, the database remains consistent, each transaction either
completes entirely or not at all, and the effects of a completed
transaction survives any failure. In cases where the system may
crash or fail, PMGD has the ability to recover to a consistent state

Zhttps://github.com/IntelLabs/vdms/wiki/ API-Description
3https://github.com/IntelLabs/pmgd

3243

"FindEntity"{

1
2 "_ref" : 1,
3 "class": "autotag",
4 "constraints": {
5 "name": ["==", "alligator"]
6 }
7 1,
8 "FindImage":{
9 "format": "png",
10 "constraints": {
1 "latitude": [">=", 36.23433,
12 "<=", 38.23433]
13 "longitude":[">=", -114.80666,
14 "<=", -116.80666]
15 3
16 "operations": [{
17 "type": "resize",
18 "height": 224,
19 "width": 224,
20 A
21 "type": "rotate",
22 "angle": 45.34
23 1,
24 "link": {
25 "ref":1,
26 "constraints": {
27 "prob": [">=", 0.66]
28 }
}

Listing 2: Sample Query for Image Retrieval - The query ex-
presses the following: Find all the images connected to the
autotag alligator with probability higher than 0.66, filter the
images by latitude and longitude within 1 degree, apply a re-
size operation to make the images 224x224, rotate the image
45.34 degrees, and return the images as "png" files.

without loading its content into memory. This is done through an
undo log, chosen because it is optimistic and it handles reads after
writes naturally. Upon failures, PMGD consults the log to restore
the database to its state just past the last committed transaction.
PMGD comes as a C++ library that VDMS uses for implementing its
query engine. Because PMGD already supports most of the graph
abstractions we wanted to see on VDMS AP, it was our preferred
option. Also, our internal evaluation shows that PMGD is faster
than other graph databases, including Neo4j[23]. In this paper, the
evaluation uses SSDs instead of persistent memory. Hence, PMGD
performance evaluation will be published separately to highlight
the advantages of using persistent memory for visual data.

3.3 Visual Compute Module

The Visual Compute Module was designed and implemented to
provide an internal abstraction layer for interacting with visual data.
It enables the query engines to coordinate and perform visual data
handling and processing (i.e., basic building block operations like
crop, resize, etc. for images/videos and k-nearest neighbor search
for feature vectors), shown in Figure 1. For traditional formats
(jpg, png, tiff, mp4, etc.), the interface is an abstraction layer over
OpenCV. However, it also provides a way to use novel formats
that are better suited for visual analytics: a novel, array-based
lossless image format. This format is built on the array data manager

TileDB [26] and is well suited for images that are used in visual
analytics. Note that, even if VDMS currently provides support for
array-based lossless image format, we do not use it as part of this
evaluation. This work focuses on a more direct comparison with a
combination of alternatives, and thus we use the traditional format
(jpg and png). The performance comparison between the array-
based lossless image format we developed and other similar formats
(like png or tiff) are outside of the scope of this evaluation.

VDMS also provides full support for video storage and opera-
tions, in a similar way it does for images. This includes support for
encoding, decoding, and transcoding of mp4, avi, and mov contain-
ers, as well as support for xvid, H.263 and H.264 encoders. This is
supported through the use of either OpenCV [4] or libffmpeg[21], or
both, plus additional implementation to support fast random access
to video frames. All operations supported for images in VDMS are
also supported at the video and frame level of the APIL On top of
that, there are a number of video-specific operations that are sup-
ported, such as the interval operations, enabling users to retrieve
clips at different frames-per-second (fps) versions of the video.

Another key differentiating factor of VDMS is that it allows the
creation of indexes for high-dimensional feature vectors and the
insertion of these feature vectors associated with entities, images,
and/or videos. Feature vectors are intermediate results of various
machine learning or computer vision algorithms when run on vi-
sual data. Feature vectors are also known as descriptors or visual
descriptors. We use these terms interchangeably. These descrip-
tors can be classified, labeled, and used to build search indexes.
Feature Vectors support is provided through our implementation
based on high-dimensional sparse arrays, also using array-based
approaches. In addition, the Visual Compute Library provides a
wrapper for another high-dimensional index implementation, Face-
book’s Faiss [15]. Users can, through our API, use different indexing
techniques for feature vectors, depending on their application’s
need.

3.4 Client Library

The client library implements TCP/IP based connectors to the
VDMS Server, similar to most databases[25, 31, 34]. Users can con-
nect to VDMS and run queries using VDMS’ API by defining a
transaction using JSON objects. The client library provides a sim-
ple method that accepts a JSON string and an array or vector of
blobs. Internally, the library wraps the query string and blobs using
Google Protobufs [36] and sends it to the VDMS server. It also
receives a similarly formed response from VDMS and returns it to
the client. Currently, client libraries are implemented for Python
and C++ client. The client libraries are lightweight, as they simply
implement the communication protocol between the client and the
server. This makes it easier for developers to implement similar
client libraries using any other programming language of their
choice.

4 EVALUATION

We have used the YFCC100M dataset to evaluate different aspects
of our system. We use the images in the dataset and its associated
metadata to implement an image-search engine based on properties
associated with those images. This is a very common use-case we

3244

vdms app

mysql app

postgresql app
Op: OpencV

metadata
+images

’ metadata images images metadata
VDMS

PostoroSQL Apache Web Server My
ext4 Filesystem ext4 Filesystem ext4 Filesystem

Image Repository — ext4 Filesystem over RAIDS

Figure 2: Comparison Systems: Logical view of the interac-
tion between the client application with VDMS (left) and
the baseline systems based on Apache Web Server and Post-
greSQL (middle), or MySQL (right). The image repository is
shared.

have encountered when building applications such as smart-retail,
sports applications, and video summarization. For these type of
applications, the starting point is usually a large set of data that
must be curated before proceeding with the data processing (such as
neural network training). In order to evaluate the different aspects
of the performance on the image search, we have built different
baselines following the methodology used in the industry, and
following what we have done in the past in order to build an image
search engine, which we describe in Section 4.3.

4.1 YFCC100M Dataset

The Yahoo! Flickr Creative Commons 100m (YFCC100M) dataset
is a large collection of 100 million public Flickr media objects cre-
ated to provide free, shareable multimedia data for research. This
dataset contains approximately 99.2 million images and 0.8 million
videos with metadata characterized by 25 fields such as the unique
identifier, userid, date the media was taken/uploaded, location in
longitude/latitude coordinates, device type the media was captured,
URL to download the media object, and the Creative Commons
license type information. The YFCC100M dataset also contains
autotags provided as a set of comma-separated concepts such as
people, scenery, objects, and animals from 1,570 trained machine
learning classifiers [35]. Together with each autotags, there is a
probability associated with each tag to indicate certainty of the clas-

sification. This is, an image can have the autotags "people", "person”,
"party”, "outdoor”, and each autotag assigned will be accompanied
by a probability of that autotags being present in that image/frame.
Given that there is no standard benchmark oriented towards vi-
sual data queries, we have built a series of queries to filter this
dataset that is modeled after our internal use cases for many of the

mentioned applications we have worked with.

4.2 Experimental Setup

Given that there are no other open-source systems that provide
similar functionality and interfaces as VDMS (i.e., transactionally
dealing with images and metadata behind a single interface), we
have implemented two equivalent visual data management sys-
tem as baselines, design specifically for the image search use case,
and comprised of a combination of widely available, off-the-shelf
components. The first baseline uses MySQL Server 5.7 (for storing

metadata), Apache Web Server 2.4.18 (as interface for image access),
and OpenCV 3.3 (to provide pre-processing operations on images).
We chose Apache Web Server to work as a file server (serving the
image files), because it provides the lowest possible overhead (when
compared to other object store system), at the expenses of providing
less functionality (authentication, data integrity checking, etc.). The
other baseline system replaces the MySQL Server 5.7 with a most
advanced open-source relational database, PostgreSQL 9.5 [34]. We
decided to use relational databases in the baseline systems instead
of non-relational databases because of their maturity, and also be-
cause it is the most common tools used for storing and querying
metadata [14, 20]:

o Relational databases support atomicity, consistency, isola-
tion, and durability (ACID) while non-relational may com-
promise some ACID properties.

e The YFCC100m data is clearly structured, and can be mod-
eled with relatively ease with a relational database.

e We need to efficiently collate and return metadata records,
and SQL engines are very mature and optimized for that
task.

The baseline implementations only partially replicate the func-
tionalities that VDMS offers when it comes to image and metadata
handling, and it was built for the purpose of an ad-hoc image search
implementation. The baseline implementations are based upon in-
ternal tools used for ML-based pipelines for visual data, which is
common practice in the industry [3, 37]. We have implemented
a set of client-side applications that take care of retrieving the
components from the different systems, and applies pre-processing
operations when needed.

For all our experiments, we use two servers with Ubuntu 20.04,
one hosting a VDMS server and another hosting the baseline imple-
mentations. Both servers have a dual-socket Intel® Xeon® Platinum
8180 CPU @ 2.50GHz (Skylake), each CPU with 28 physical cores
with hyper-threading enabled, for a total of 112 logical cores per
server. The server hosting MySQL and PostgreSQL has 256GB of
DDR4 DRAM, while the server hosting VDMS has 194GB of DDR4
DRAM. We decided to run the VDMS server in the machine with
less DRAM to make sure MySQL and PostgreSQL had no disadvan-
tage. Previous evaluation indicated smaller footprint in the case
of VDMS when compared to similar baselines based on MySQL.
To build both MySQL and PostgreSQL on the same machine, we
stored each database on separate SSD drives. Other than the dif-
ference in DRAM space and storage needed for two baselines, the
machines are identical. The client application running the queries
and measuring round-trip time is connected to the server through
a 1GB wired link through a 10GB back-plane switch, same as both
servers. The client application was implemented using Python 3
for both VDMS and the baselines. Figure 2 shows a logical view
of the difference between the interaction of the client application
(retrieves metadata and images) with VDMS (left), the PostgreSQL
baseline (middle), and the MySQL baseline (right).

It is worth noting that the images are stored in a shared reposi-
tory (ext4 filesystem on a RAID 5 configuration of 16TB) that both
Apache WebServer and VDMS have direct access. In the case of
videos, only the first frame is used for the image search. In the
case of the baselines, metadata is stored in MySQL and PostgreSQL

3245

using an attached SSD disk. Even if VDMS has native support for
Optane Persistent Memory, we do not use it in this experiment
because of fairness of comparison with respect to MySQL and Post-
greSQL, which were not designed for Persistent Memory type of
storage. The benefits of Persistent Memory for metadata and a full
evaluation of the PMGD subsystem is material for another paper,
and outside the scope of this evaluation. For this experiment, in
the case of VDMS we simply use a similar attached SSD disk to
store metadata. Even if PMGD, the graph database used by VDMS,
is designed for persistent memory, it can deliver good performance
when using SSDs directly.

For the metadata, we built VDMS, MySQL, and PostgreSQL
databases using the YFCC100M dataset with incremental database
sizes to study the effects at scale. For simplicity, we named the data-
base based on the approximate number of images it contains, as
follows: 1M, 5M, 10M, 50M, 100M. The baseline systems have com-
parable number of elements. The exact number of images/elements
in each database are shown in Table 1 and 2. The differences can
be attributed to minor failures in data preparation/loading because
of incomplete/inconsistent formatting, which is common in large
datasets [10]. In our set up, that difference is very small: less than
0.253% in terms of number of elements (images and/or metadata
information).

4.2.1 Data Representation. We detail the data representation for
each of the systems we implemented:

VDMS: For each database size, we created an instance of VDMS
using the image/video metadata, the machine-generated autotags
associated with each image/video identifier, and the list of 1,570
autotags. Internally, that information is represented as a graph,
where we have one node for each image, one node for each tag
(always 1,570 tags), and a connection between each image and its
respective tag(s). For instance, if an image has four autotags as-
signed, there will be four connections between that image and the
different nodes for those autotags. The probability the autotag is
present in an image is expressed as a property in the connection
between the two nodes. Figure 3 shows an example on two images,
two autotags, and the connections between those autotags and the
images. Image id 23143252 has two autotags assigned: Alligator
with probability 0.285, and Lake with probability 0.872. Image id
86756231, on the other hand, has a single autotags assigned: Alliga-
tor with probability 0.894. On average there are 8 tags assigned to
each image so there will be around 8 times more connections than
images, as shown in Table 1. Also, each image node will contain
multiple properties associated with it (some of which are listed in
Section 4.1). The number of nodes (representing images and auto-
tags) are dependent on the database size and the connections are
responsible for 90% of the elements in each database instance, as
shown in Table 1. It is also important to note that we create indexes
for the image identifier, autotags properties, and longitude/latitude
coordinates to enable faster retrieval.

MySQL-Based System (mysql): Each MySQL database is cre-
ated in a similar manner as VDMS but the data is represented as
three tables, following the relational model: 1) images table: con-
tains one row per image, and a column for each property associated
with the images (some of which are listed in Section 4.1); 2) taglist
table: contains one row per autotag element (always 1,570 rows); 3)

N T A
Autotag # Image

id: 23143252
latitude: 2.321
longitude: 20.432

name: “Lake”

Autotag

id: 86756231
latitude: -56.321
longitude: 10.532

name: “Alligator”

Figure 3: VDMS Data Representation Using a Property
Graph: Example on two images and 2 autotags with their re-
spective probabilities expressed in the connection. Image id
23143252 has two autotags assigned: Alligator with probabil-
ity 0.285, and Lake with probability 0.872. Similarly, Image
id 86756231 has a single autotags assigned: Alligator with
probability 0.894.

Table 1: VDMS Database - Number of Elements

DB Name #Images # Connections # TagList
1M 1,000,000 8,503,045 1,570
5M 5,000,000 42,505,478 1,570
10M 10,000,000 85,040,404 1,570
50M 50,000,000 425,162,070 1,570

100M 99,205,984 895,572,430 1,570

autotags table: contains one row per autotag assigned to an image.
Each row contains a foreign key to the image, a foreign key to
the tag, and the probability assigned to that tag belonging to that
image. Given that there are 8 autotags, on average, per image, the
autotags table has around 8 times the number of rows present in
the metadata table, as can be seen in Table 2. Using a Python client
and simple queries, the taglist table is read from the list of tags
with an auto-incremented tagid as a primary key, and the metadata
table is read from the YFCC100M metadata using the identifier as a
primary key. The autotags table contains the generated autotags
and probabilities for entries of the images table. To generate the
table, we split the autotags data for each database by the image
identifier and autotag into new files. The new files are read into the
autotags table with the image identifier and tagid as foreign keys.

In an attempt to have the best MySQL configuration possible for
this use case, we explore several parameters to increase the perfor-
mance of both loading the data, as well as executing the queries. In
particular, MySQL optimizes threads and transactions out-of-box,
but it cannot handle the entire YFCC100M dataset without config-
uring specific parameters. When creating large databases, a data
lock may occur to protect the data from concurrent updates [11]. To
avoid this mechanism, we increased the buffer pool size to increase
the amount of memory allocated to internal data structures. It is
recommended to set the buffer pool size to 60-80% of the physical

3246

memory size [11, 25]. However, the time to build a database in-
creased. We later changed the buffer pool size to be 16x the default
value, where we saw the best performance.

By default, MySQL uses the available operating system threads
to execute n requests in parallel where n is the number of back-
ground read/write I/O threads. Setting the respective parameters in
the MySQL configuration file can limit the number of concurrent
threads and the number of background threads. When a limit is set
on the number of threads, and no threads are available, requests
will go into a FIFO queue until threads are available to execute the
request [11, 25]. We ran a few experiments investigating the effects
of setting a limitation on the number of concurrent and background
threads. We concluded that the default settings perform better for
large databases instead of setting a limit. Therefore, we let MySQL
automatically handle the concurrency.

PostgreSQL-Based System (postgresql): Each PostgreSQL data-
base is created in the exact same manner as MySQL where data is
represented as three tables: images, taglist, and autotags. PostgreSQL
works well out-of-box and optimizations were not necessary, as
in MySQL, to load or execute queries. When executing queries for
larger databases, it is pertinent to have enough disk space for both
the database and tablespace. The tablespace is associated with a
database and stores the temporary files created within the database
object [34]. When processing the larger databases, additional stor-
age may be needed for the tablespace or a diskfull error may occur.
To avoid this, we allocated a separate SSD disk specifically for the
tablespace of all databases. This was required, specially for 100M
database, in order to make the queries complete execution without
failures, and represented a big disadvantage in terms of the disk
space footprint during query execution.

By default, PostgreSQL can manage concurrent access to data
well using Multiversion Concurrency Control (MVCC) and a Serial-
izable Snapshot Isolation (SSI) level of transaction isolation. MVCC
provides better performance by using SSI to guarantee querying
data never blocks writing data, and vice versa [34]. The PostgreSQL
configuration file initially limits the maximum number of concur-
rent connections to the database server to 100. We increased this
limit to 200 to complete the concurrency analysis in Section 4.3.1.

In the case of VDMS, we did not attempt to tune any parameter
to avoid unfairness in the comparison against the baselines. Unlike
the baselines, VDMS can handle the entire YFCC100m dataset using
the default parameters provided by the implementation.

4.2.2 Indexes: For all systems, we created indexes over the proper-
ties we used for search, such as name of autotag, and geo-location
values. Building indexes for the right properties and objects is basic
operation that would be present in any real-world deployment,
and measuring performance without them would lead to useless
analysis in our real-world applications and use cases.

4.2.3 Database Storage Footprint. The Graph Database used by
VDMS (PMGD) was designed for performance, especially in envi-
ronments where persistent memory is present. This design decision
comes as a trade-off for storage footprint, which is noticeable in
other PMGD evaluation we have run in the past. Because PMGD
was not optimized for low storage footprint, authors feared that any
improvement would come at the expenses of a significant increase
on disk occupancy. We measured metadata disk footprint for that

Table 2: MySQL and PostgreSQL Databases - Number of
Rows in each Table

Table
DB Name images autotags taglist
1M 1,000,000 8,508,380 1,570
5M 4,987,379 42,425,905 1,570

10M 10,000,000 85,095,265 1,570
50M 50,000,000 425,446,208 1,570
100M 99,206,564 896,002,496 1,570

. MysQL
I PostgreSQL
= \/DMS
102 —

Metadata Size (GB)

-
o

= =
S S
= n

1
5M
100M

Database Size (# of images)

Figure 4: Data footprint (in GB) of MySQL, PostgreSQL, and
VDMS databases.

reason, and show the results in Figure 4. PostgreSQL and VDMS
require comparable amount of storage for metadata which is more
than required by MySQL, shown in Figure 4. In the case of VDMS,
this is space used to store information about each node/connection.
VDMS required 37-41% more storage than MySQL for storing the
same amount of metadata. On the other hand, PostgreSQL required
1-4% more storage than VDMS. The storage footprint may become
a factor if storage is a limitation, but it should also be noted that
metadata accounts for less than 2% of the overall database size even
if we have a 41% increase in metadata size. For example, the largest
database (both metadata and images) we built (100M) has around
230GB of metadata and 12TB of images. In systems where persis-
tent memory is a scarce resource, the increased storage footprint
of PMGD may represent a challenge. On the other hand, persistent
memory is expected to be available in the order of TBs per server,
which should fit the metadata of intensive use-cases[13].

4.3 Image Search

In order to evaluate VDMS and the baseline systems for our use-case
queries, we implemented 6 queries that filter and retrieve a specific
set of images. We chose these queries because they are the same
that we use when filtering a cohort of images to be retrieved and
processed from a large corpus of data. As we mentioned before, we
took this approach mainly because we wanted to replicate systems
we have built internally for our use cases, and also because of the
lack of standard benchmarks that are oriented towards visual data
retrieval.

3247

The implementation of this evaluation, as well as all the queries,
are available open-source for reproducibility ¢, together with all
the results of our evaluation °.

We use the metadata associated with the images to filter the
images. We use the autotags (as they contain information about the
content of the image), and geo-location information (latitude and
longitude) of the images for search and filtering. Note that, even
if we use geo-location for our study, any other property assigned
to the images can be used to refine the search in both VDMS and
baseline implementations. On top of that, and for our use cases, we
would like to extract more information about the content of the
image through the use of ML, such as Convolutional Neural Net-
works [16]. For this, we resize the images to 224x224, which is the
input layer size for popular variations of neural networks for object
detection on images [9]. We used both ResNet and Yolov3 for ob-
ject detection, both of which have the requirement of a downsized,
lower resolution image as input.

To evaluate the access to metadata and images, we use the fol-
lowing queries, based on our internal use cases:

e q1- 1tag resize: Retrieve images with one specific autotag
and resize to 224x224.

® g2 - Itag geo_resize: Retrieve images with one specific au-
totag, in a particular geo-location, and resize to 224x224,.

® g3 - 2tag resize_and: Retrieve images with two specific
autotags (i.e. alligator AND lake), and resize to 224x224.

® g4 - 2tag resize_or: Retrieve images with either of two spe-
cific autotags (i.e. alligator OR lake), and resize to 224x224.

® g5 - 2tag geo_resize_and: Retrieve images with two spe-
cific autotags (i.e. alligator AND lake), in a particular geo-
location, and resize to 224x224.

® (6 - 2tag_geo_resize_or: Retrieve images with either of two
specific autotags (i.e. alligator OR lake), in a particular geo-
location, and resize to 224x224.

It is important to note that when querying for images with
certain autotags, we also apply a filter using the probability. For
instance, we only retrieve images with an autotag alligator and a
probability higher than 92%. These probabilities are both present
in VDMS (in the form of a property of the connection between the
image and that autotag), as well as in mysql and postgresql (in the
form of a column in the autotags table that links images with tags).
In the case of VDMS, the query involves a graph traversal query that
starts from the autotag node and ends in the images node, following
connections between the image and that autotag). In the case of
the baseline implementations, the query involves JOIN operations
between the 3 tables.

Also, note that the size of the result (number of images retrieved)
is linear with the size of the database. This is, if a query returns
100 images for the 1M database, it will return around 1000 im-
ages for the 10M database. This poses a problem when evaluating
performance as the size of the database increase, and clearly under-
standing the measurements. Because of this reason, we control the
number of returned images for all the databases using the probabil-
ity of the autotags (higher probabilities returns less images), so that
the queries in this experiment return a similar number of images

*https://github.com/luisremis/visual_storm/tree/master/yfcc100m
Shttps://github.com/luisremis/visual_storm/tree/master/yfcc100m/python/eval/results

for all database sizes. In other words, as the size of the database
increase, we increase the probability threshold for the queries. We
do this for both VDMS and the baselines, of course. This way, we
remove bottleneck introduced by network bandwidth that would
otherwise over-complicate the understanding of the results, and
play in disadvantage for the baseline implementations.

Image search based on metadata is very expensive in large
databases. Because of the large volume of data, the processing
of the retrieved images is performed in parallel, using multi-core
and/or distributed systems. For instance, a common implemen-
tation of an image processing pipeline would involve the use of
distributed processing frameworks like Hadoop [33] or Spark [32].
Consequently, it is key that the data management system used sup-
ports concurrency, providing multiple workers with data in parallel.
The ability to scale with the number of simultaneous clients is key
for the applicability of visual data management systems like VDMS.
Because of this, we put emphasis on the analysis of concurrency
and throughput, rather than latency.

—#- vdms
-+~ postgresal
mysal

Images/s

2816 32 5664

50M

2816 32 5664

100M

2816 32 5664
of concurrent clients

112

Images/s
g

1014 1

2816 32 5664
of concurrent clients

112 2816 32 5664

of concurrent clients

112

Figure 5: Concurrency Analysis on q2 (1tag_geo_resize) from
our use-case described in the Experimental Setup Section.
The figures show the throughput (images per second) when
retrieving resized versions of the images, as the number of
concurrent clients increases. Hardware concurrency (num-
ber of physical cores in each system) is 56.

4.3.1 Concurrency Analysis. To analyze these results, one needs
to compare the full-line (VDMS) versus the dotted-lines (two base-
lines). We start with a simple query that involves a simple metadata
filtering over 1 tag and also geo-location, plus pre-processing oper-
ations. Figure 5 illustrates a concurrency analysis for q2 described
above (1tag_geo_resize), using VDMS and the baselines. Here we
evaluate the concurrency of all systems, as the number of concur-
rent clients grows (x-axis) and as the size of the databases grow.
Figure 5 shows throughput (images per second) when retrieving
resized versions of the images, as the number of concurrent clients
increase. The first thing to notice is that VDMS outperforms both
baselines for all databases for this query by a large margin. For the
baseline systems, in the case of 100M, the increase in the size of data
seems to have a larger impact in performance. This result can be

3248

attributed to the increase in the complexity of the JOIN operation
as the number of rows in the tables increases.

Another thing to notice is that, as the number of concurrent
clients increases, VDMS throughput continues to increase up to 56
threads, which is the hardware concurrency of the system. Also,
more parallelism after 56 threads does not increase the delivered
throughput for the larger databases (50M and 100M) but there is
a slight improvement in the other databases (1M, 5M, and 10M).
On the other hand, both baselines seem to deliver less aggregated
throughput after 16 threads except for the 100M case. In this case,
postgresql has a performance spike at 32 clients and the performance
for both baselines is less stable when compared to VDMS. Note
that most of the throughput for the baseline systems are very close
to each other. This is mostly an effect of the log-scale used, which
is needed to clearly depict the difference between VDMS and the
baselines. Here, the baselines are the full architectures described in
Figure 2 (middle and right).

All queries run a resize operation on the image, an operation
that requires decoding, resizing, and encoding the image before
sending it back to the client. These operations are mainly compute
bound, and that is the reason for the system to stop scaling beyond
the number of physical cores. In contrast, the baseline does not
scale nearly as well as VDMS, and we see that even after increasing
concurrency, the increase in throughput is just about 2x. When
comparing the case of 56 or 64 concurrent clients, VDMS delivers
between 8x and 10X the throughput.

1ltag_resize 1tag_geo_resize 2tag_resize_and

2

—#— vdms

-4~ postgresal

mysql

Images/s

2816 32 5664
2tag_resize_or

2816 32 5664
2tag_geo_resize_and

2816 32 5664
2tag_geo,_resize_or

112

10°

Images/s
g

2816 32 5664
of concurrent clients

112 2816 32 5664

of concurrent clients

112 2816 32 5664

of concurrent clients

112

Figure 6: Concurrency Analysis for all the queries using the
10M database. Each figure shows the throughput (images per
second) when retrieving resized versions of the images as
the number of concurrent clients increases. Hardware con-
currency (number of physical cores in each system) is 56.

We continue by looking at Figure 6 which shows the images
per second delivered by each system for all queries using the 10M
database, as the number of concurrent clients grows (x-axis). This
figure takes a closer look at the concurrency for each of the six
queries. VDMS consistently outperforms each of the baseline sys-
tems for queries q1, g2, g4, and g6 as concurrency grows. This figure
shows a similar trend as Figure 5 when it comes to concurrency.
The VDMS throughput continues to significantly increase up to 56

concurrent clients, which is the hardware concurrency of the sys-
tem, for all queries except ¢3. In this query, the throughput seems
to decrease after 32 clients and both baselines outperform VDMS
after 8 concurrent clients. Prior to 8 clients, VDMS has a slight
advantage over postgresql which has a major performance improve-
ment at 16 concurrent clients. On the other hand, mysql maintains
its improvement in throughput over postgresql and VDMS over all
concurrent clients. In the case of g5, the throughput of the base-
lines are less aggregated than those of VDMS up to 16 concurrent
clients. When it comes to low concurrency, the baselines do as
good and even better than VDMS with 2 or 4 concurrent clients. At
16 concurrent client, the performance of the mysql baseline begin
to stabilize while the throughput of postgresql begins to degrade.
However, as concurrency increases beyond 16 concurrent clients,
the difference in throughput becomes clear, with VDMS reaching
its peak performance at 112 concurrent clients.

In the case of VDMS, we see the performance in the case of g3
and g5 suffers significantly in comparison to the other queries. The
reason for that lack of scalability lies on the query implementa-
tion: given that VDMS does not yet support operators that enable
querying images that have both connections to a tagA and a tagB;
we have to implement this transaction by doing 2 retrievals. This
involves retrieving partial information in the first retrieval, apply-
ing an INTERSECTION operation in the client, and doing a second
retrieval to bring the right metadata and/or images. The reason for
this is a lack of operations that would enable this query to be run
entirely on the server is not an inherent limitation to VDMS but
rather just a missing implementation. In the case of g4 and gs, it
is worth noting that for the OR operation, there is no need for 2
retrievals (2 transactions). Rather, a single transaction is performed
and the result filtered on the client. Future VDMS releases will
add more of such operators (AND, OR, etc.) in order to prevent
unnecessary retrievals and extra filtering on the client side.

clients: 8

clients: 16 clients: 32

Images/s

- vdms
- postgresql

mysql 3

5M 10M
clients: 56

50M 100M 5M 10M

clients: 64

50M 100M 5M 10M

clients: 112

50M 100M

Images/s

5M 10M
Database Size

50M 100M M 5M 10M

Database Size

50M 100M ™ 5M 10M

Database Size

50M 100M

Figure 7: Concurrency Analysis on g4 (2tag_resize_or) from
our use-case described in the Experimental Setup Section.
The experiments show the throughput as images per second
for all systems (VDMS and two baselines) as the database size
increases.

3249

In the case of g4 and g6, we see the performance for mysql de-
grades up to 64 concurrent clients, then there’s an improvement
with 112 concurrent clients. To further evaluate the concurrency
of these queries with an OR operation, we continue by looking
at Figure 7. This figure illustrates a concurrency analysis for g4
(2tag_resize_or) which shows the images per second delivered by
each system as the database size grows (x-axis). We show different
number of concurrent clients in different figures for readability rea-
sons. For this query, VDMS delivers higher throughput for databases
1M through 10M for all concurrent clients. As the number of clients
and the size of database grows, the performance for this query
drops and the performance of postgresql becomes more comparable
to VDMS. Lets look at the case with 32 concurrent clients. In this
case, the throughput of VDMS drops drastically with the 100M
database and postgresql outperforms by a small margin. As the
clients increase, we see this trade-off occurs with the 50M database
instead of 100M while in the 100M database, VDMS outperforms
both baselines. In this case, the throughput of postgresql drastically
degrades for the 100M database and the performance of the baseline
systems are more comparable.

When considering Figure 5 through Figure 7, there are many
reasons why we generally see performance improvement, the main
being that the entire operation (metadata query, image fetching and
resizing) happens on the server side in the case of VDMS, within a
single message exchange between the client and the server. Many
of the inefliciencies that come with combining tools that were de-
signed without visual data in mind simply disappear when building
a tool that treats visual entities as first class citizens, as it is the case
of VDMS. Another reason, which is quantifiable in the figures, is
that VDMS sends resized (smaller) versions to the client instead of
the full image to be resized on the client side (as is the case in the
baselines). This is in contrast with the baseline implementations,
where 2 rounds of blocking back-and-forth communication with the
server is needed, as depicted in Figure 2. Note that one could argue
that the opposite will happen when the resize operation retrieves an
up-sampled (larger) version of the image instead of a down-sampled
(smaller) one. In practice, retrieving an up-sampled version is not
a common use case, given that up-sampling the image does not
add any extra information that can help, for instance, improve the
accuracy of a ML model. The case of down-sampling the original
image is much more common and is the common practice when it
comes to image processing through CNNs [9, 16].

4.3.2 Scalability Analysis. The next step in our analysis involves
looking more deeply at how the performance scales with the num-
ber of elements in the database. Figure 8 shows the evaluation of
the queries we analysed for our use case. Each figure shows the
throughput when retrieving images, plus operations applied to im-
ages when applicable. The experiments show the performance of all
systems (VDMS and two baselines) as the database size increases in
terms of number of images. These queries were run using 56 simul-
taneous clients, and averaged over 10 runs. To analyze these plots,
one needs to compare the full-line (VDMS) versus the dotted-lines
(two baselines), each plot representing a different query.

For q1 and g2, we can appreciate higher performance being
delivered by VDMS when compared to the baselines, and how this
improvement is maintained as the size of the database increase

1tag_resize 1tag_geo_resize 2tag_resize_and

Images/s

10?

- vdms
- postgresql
mysql

10t \
¥

50M 100M

5M 10M
2tag_resize_or

5M 10M 50M 100M
2tag_geo_resize_and

5M 10M 50M 100M
2tag_geo_resize_or

Images/s

5M 10M
Database Size

50M 100M M 5M 10M

Database Size

50M 100M ™ 5M 10M

Database Size

50M 100M

Figure 8: Throughput Analysis using all queries from our
use-case described in the Experimental Setup Section. We
show queries in different figures for readability reasons. The
experiments show the performance of all systems (VDMS
and the two baselines) as the database size increases. These
queries were run using 56 simultaneous clients, and aver-
aged out of 10 runs.

while, on the other hand, the baseline implementations have a drop
in performance for the 100M database. For g3, we see that VDMS
performs best when the database size is small (1M images), but as
the database size increases, the performance degrades as well. For
this query, mysql (and in some cases postgresql) outperforms VDMS
for databases larger than 1M. This also occurs for g5 but only for
databases larger than 10M. This is entirely attributed to the 2-round
process needed for this query, as we explained before which is
more visible in the larger databases. It is interesting to note that
adding filtering by geo-location (g5) decreases the performance as
the database sizes scales. The behavior is different in the case of g6,
which also filters by geo-location. This is attributed to the fact that
OR queries involves processing larger results, and thus does not
benefit from the filtering which is evident when compared to g4.

From the first 2 queries, as well as g4 and g6 (with exception to
the 50M case), we clearly see that VDMS outperforms the baseline
systems when retrieving visual data and applying operations. This
is one of the most important finding, as it validates the design prin-
ciples of VDMS, which aims to provide scalability and performance
acceleration at the type of queries that require visual data access
and transformations.

We designed VDMS with the idea in mind that pre-processing
operations will be commonly performed, as visual data is generally
pre-processed before analytics computation are performed on them
(i-e., a resize plus normalization done on images before passing
them through a neural network). Figure 9 shows how the query
throughput varies when a pre-processing operations is applied (in
this case, a resize operation). The first thing to notice is that a resize
operation is a significant part of the overall operation (retrieval
+ preprocessing). Doing a resize operation as part of the retrieval
process brings the throughput down by orders of magnitude. This
is the case for both VDMS and the baselines. Nonetheless, VDMS is

3250

2tag_geo_or

1ltag

1ltag_geo

Images/s

2

—#— vdms
-4~ postgresal
mysal

2

5M 10M 50M 100M
2tag_geo_resize_or

i 5M 10M
1tag_resize

50M 100M 5M 10M

1tag_geo_resize

50M 100M

10°

Images/s

10*

5M 10M
Database Size

50M 100M m 5M 10M

Database Size

50M 100M M 5M 10M

Database Size

50M 100M

Figure 9: Throughput Analysis using a subset of the queries,
with and without resize.

orders of magnitude faster when retrieving images both with and
without resize operations. An important thing to notice is that, even
if a resized image is smaller, and thus transfered faster between the
server and the client, transferring the image as is (without resize)
is faster in this case. This is a characteristic of the dataset, which
has relatively small images (the average image is about 150KB in
size). We have seen on other applications and datasets with higher
resolution images that transferring resized (or cropped) images
is significantly faster than transferring images as they are stored.
An interesting aspect to notice is that, when removing the resize
operations, differences between the 2 baseline systems become more
noticeable. For instance, for an image retrieval based on a single
tag, we see how postgresql outperforms mysql, but when adding
geo-location filtering, we see mysql showing a small advantage.
When the resize operation is performed, both baselines do very
similar on 1tag based queries, and orders of magnitude worst than
VDMS. Note that in the baseline systems, the resize happens on the
client side, rather than on the server side. This is the common case
in most analytics applications, where pre-processing operations
happen on the client side (or wherever the analytics computation
happens), rather than near where the data is located, as it is the
case with VDMS. We kept both the server and client systems the
same to avoid the computation capabilities difference complicating
our understanding of the results.

Finally, Figure 10 summarizes the results comparing VDMS
and postgresql. In comparison to postgresql, VDMS provides up
to 364x speedup (for the case of qI), and an average improvement
in throughput of about 85x. This is an impressive improvement
over the two baseline systems. More importantly, we see that the
speedup increases as the database size grows, showing that VDMS
scales better than the baseline systems. We also see how g3 and
q5 have poor performances and scalability when compared to the
baselines as the database size grows, except in the case of the largest
database (100M), where the baselines performed very poorly. This
evaluation served the purpose of understanding the importance of
VDMS server side operators that enable more complex queries for
our use cases. The team will address the missing implementation

Speedup of vdms over postgresql for all queries

1M 5M

I 1tag_resize
BN 1tag_geo_resize

2tag_resize_and
I 2tag_resize_or

/s
S S S

10M 50M 100M

2tag_geo_resize_and Y avg
B 2tag_geo_resize_or

Figure 10: Summary of performance gains for all queries. We see up to 364x speedup (qI), and an average of about 85x. More
importantly, we see that the speedup grow as the database size increases, showing that VDMS scales better than the Post-

greSQL+Apache baseline.

as part of future work. Most of the performance improvements
can be attributed to the design principles of VDMS, which aims
to eliminate the need of combining and re-purposing systems that
were designed to handle types of data other than visual. VDMS,
by design, eliminates most of the inefficiencies that result from a
forced integration of components designed for a different range of
applications.

Because of space constraints, we are only showing a subset of
our evaluation. More details about our comprehensive evaluation
are available ©.

5 CONCLUSION

In this paper, we described VDMS design and implementation and
show a comprehensive evaluation on our Image Search Application.
We use one of the largest publicly available datasets: The Yahoo
Flickr Creative Commons 100M (YFCC100M), together with the
expansions packs that include machine-generated labels. We show
how VDMS compares against a combination of industry standard
systems, all of which are needed to replicate only a portion of
VDMS'’ functionality. We see improvements up to 364x in certain
queries, and an average improvement of about 85x when compared
to PostgreSQL+Apache. When compared to MySQL+Apache, we
see up to 96x speedup and an average improvement of 31x. The
design of VDMS, which was conceived as a data management sys-
tem that treats visual entities as first class citizens, can remove
inefficiencies that result from re-purposing and combining solu-
tions that were not designed for the job while providing simpler
and richer interfaces. VDMS’ easy-to-use interfaces outperform
industry standard systems with a set of functionalities which, to
the best of our knowledge, are not available in any other single
data management solution for visual data. VDMS was designed for
analytics and it can efficiently handle complex queries which can
simplify the design of future applications that rely on visual data.

Shttps://github.com/luisremis/visual_storm/tree/master/yfcc100m/python/eval/results

3251

6 FUTURE WORK

Based on the results of this evaluation and our experience with
VDMS for this and other internal use cases, we have identified
certain features that are needed to fully exploit the potential of the
unified back-end for visual data infrastructure. In particular, we
have identified the urgent need for a set of UNION/INTERSECTION
interfaces to enable richer queries and improve performance, given
the limitations discussed on 4.3.1. Even if this evaluation focuses on
image search using metadata properties, VDMS has the capability
to also perform similarity search based on feature vectors. The team
will work on a evaluation of this feature as future work, as more
work is needed to arrive at a comparable and fair baseline. Last, but
not least, we recognize the need for a distributed implementation
of VDMS. Most of the subcomponents and abstractions were de-
sign with a distributed architecture in mind, but also most of the
applications we encountered in our internal use cases would fit on
a single server plus a distributed file system. With a validation of
the benefits of the abstractions provided by VDMS, the natural next
step is working on scaling the system out.

ACKNOWLEDGMENTS

We would like to thank the many people that made this project pos-
sible and helped us through the process, as this work is the results of
many efforts. We want to specially thank our senior technologists
Nilesh Jain and Ravi Iyer for their full support and input during the
duration of the project. We want to specially acknowledge Philip
Lantz and Vishakha Gupta for their help with PMGD, key to loading
large datasets into VDMS. We want to thank Jim Blakley for his
input during the various phases of our project, and for advocating
and promoting VDMS. We want to acknowledge the Intel Labs
VDMS team for their efforts open-sourcing and maintaining the
system. We want to thank Jason Gardner for his helping in setting
up many of the servers and infrastructure needed to conduct our
experiments.

REFERENCES

(1]

=

[10

(1]

[12]

[13

[14]

[15

[16]

[17]

[18]

[19

[20]
[21

[22]

[23]

[24]

Giuseppe Amato, Fabrizio Falchi, Claudio Gennaro, and Fausto Rabitti. 2016.
YFCC100M-HNfc6: A Large-Scale Deep Features Benchmark for Similarity Search.
In Similarity Search and Applications. Springer International Publishing, 196-209.
https://doi.org/10.1007/978-3-319-46759-7_15

P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. 1998. The
Multidimensional Database System RasDaMan. In Proc. of the 1998 ACM SIGMOD
(Seattle, Washington, USA) (SIGMOD °98). ACM, 575-577. https://doi.org/10.
1145/276304.276386

Doug Beaver, Sanjeev Kumar, Harry C Li, Jason Sobel, Peter Vajgel, et al. 2010.
Finding a Needle in Haystack: Facebook’s Photo Storage.. In 9th USENIX Sympo-
sium on OSDI, Vol. 10. 1-8.

Gary Bradski and Adrian Kaehler. 2013. Learning OpenCV: Computer Vision in
C++ with the OpenCV Library (2nd ed.). O’Reilly Media, Inc.

Paul G Brown. 2010. Overview of SciDB: large scale array storage, processing
and analysis. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of data. 963-968.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1-26.

Jing Fan, Adalbert Gerald Soosai Raj, and Jignesh M Patel. 2015. The Case Against
Specialized Graph Analytics Engines.. In CIDR.

Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. 2005. Learn-
ing object categories from google’s image search. In Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1, Vol. 2. IEEE, 1816-1823.
Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine, Bill Kramer, and Franck
Cappello. 2011. Modeling and tolerating heterogeneous failures in large parallel
systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis. 1-11.

Geir Hoydalsvik. 2019. MySQL Connection Handling and Scaling. Retrieved
July 23, 2021 from https://mysglserverteam.com/mysgl-connection-handling-
and-scaling/

Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, Mahadev Satya-
narayanan, Gregory R Ganger, Erik Riedel, and Anastassia Ailamaki. 2004. Dia-
mond: A Storage Architecture for Early Discard in Interactive Search.. In FAST,
Vol. 4. 73-86.

IntelPR. 2015. Intel and Micron Produce Breakthrough Memory Technology.
Retrieved July 23, 2021 from http://goo.gl/MUWmMOW

Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain.
2012. A Survey and Comparison of Relational and Non-Relational Database.
International Journal of Engineering Research and Technology 1 (2012). Issue 6.
Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. CoRR abs/1702.08734 (2017). arXiv:1702.08734 http://arxiv.
org/abs/1702.08734

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. . C. Burges, L. Bottou, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 1097-1105. http://papers.nips.cc/paper/
4824-imagenet- classification- with- deep- convolutional- neural-networks.pdf
Arun Kumar, Matthias Boehm, and Jun Yang. 2017. Data management in machine
learning: Challenges, techniques, and systems. In Proceedings of the 2017 ACM
International Conference on Management of Data. 1717-1722.

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier,
Lyric Doshi, and Chuck Bear. 2012. The vertica analytic database: C-store 7 years
later. arXiv preprint arXiv:1208.4173 (2012).

Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. 2012. The vertica analytic database: C-store 7 years
later. Proc. of the VLDB Endowment 5, 12 (2012), 1790-1801.

Ziqi Li. 2019. NoSQL Databases. https://doi.org/10.22224/gistbok/2018.2.10
Libffmpeg. [n.d.]. FFMPEG Library. Retrieved July 23, 2021 from http://source.
ffmpeg.org

Ruben Mayer and Hans-Arno Jacobsen. 2020. Scalable deep learning on dis-
tributed infrastructures: Challenges, techniques, and tools. ACM Computing
Surveys (CSUR) 53, 1 (2020), 1-37.

Justin J Miller. 2013. Graph database applications and concepts with Neo4;.
In Proceedings of the Southern Association for Information Systems Conference,
Atlanta, GA, USA, Vol. 2324.

Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: Facebook’s Warm {BLOB} Storage System. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14). 383—
398.

3252

[25] Oracle Co. [n.d.]. The world’s most popular open source database. Retrieved

[26

[27

[28

[29

[30

[36

[37

[38

July 23, 2021 from https://www.mysql.com/

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy Mattson.

2016. The TileDB Array Data Storage Manager. Proc. VLDB Endowment 10, 4

(Nov. 2016), 349-360. https://doi.org/10.14778/3025111.3025117

Jianbin Qin, Wei Wang, Chuan Xiao, and Ying Zhang. 2020. Similarity query

processing for high-dimensional data. Proceedings of the VLDB Endowment 13,

12 (2020), 3437-3440.

] Luis Remis, Vishakha Gupta-Cledat, Christina R. Strong, and Ragaad Altarawneh.

2018. VDMS: An Efficient Big-Visual-Data Access for Machine Learning Work-

loads. Systems for Machine Learning Workshop (SysML) at NIPS, Montreal, Canada

abs/1810.11832 (2018). arXiv:1810.11832 http://arxiv.org/abs/1810.11832

Mahadev Satyanarayanan, Rahul Sukthankar, Lily Mummert, Adam Goode, Jan

Harkes, and Steve Schlosser. 2010. The unique strengths and storage access char-

acteristics of discard-based search. Journal of Internet Services and Applications 1,

1(2010), 31-44.

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Diet-

mar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and Dan

Dennison. 2015. Hidden technical debt in machine learning systems. Advances

in neural information processing systems 28 (2015), 2503-2511.

SingleStore, Inc. [n.d.]. SingleStore: The Single Database for All Data-Intensive

Applications. Retrieved July 23, 2021 from https://www.singlestore.com/

] The Apache Software Foundation. [n.d.]. Apache Spark: Lightning-fast unified
analytics engine. Retrieved July 23, 2021 from https://spark.apache.org/

] The Apache Software Foundation. [n.d.]. What is Apache Hadoop? Retrieved
July 23, 2021 from https://hadoop.apache.org/

] The PostgreSQL Global Development Group. [n.d.]. PostgreSQL: The World’s
Most Advanced Open Source Relational Database. Retrieved July 23, 2021 from
https://www.postgresql.org/

] Bart Thomee, Benjamin Elizalde, David A. Shamma, Karl Ni, Gerald Friedland,

Douglas Poland, Damian Borth, and Li-Jia Li. 2016. YFCC100M. Commun. ACM

59, 2 (Jan 2016), 64-73. https://doi.org/10.1145/2812802

Kenton Varda. 2008. Protocol buffers: Google’s data interchange format. Google

Open Source Blog, Available at least as early as Jul 72 (2008).

Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-

era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Jeremy Hoon, et al. 2012. Tao: how facebook serves the social graph. In Proceed-

ings of the 2012 ACM SIGMOD International Conference on Management of Data.

791-792.

Reynold S Xin, Josh Rosen, Matei Zaharia, Michael] Franklin, Scott Shenker, and

Ton Stoica. 2013. Shark: SQL and rich analytics at scale. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of data. 13-24.

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.

Your costs and results may vary.

©Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel
Corporation or its subsidiaries. Other names and brands may be claimed as the property of
others.

Intel does not control or audit third-party data. You should consult other sources to evaluate
accuracy.

Intel disclaims all express and implied warranties, including without limitation, the implied
warranties of merchantability, fitness for a particular purpose, and non-infringement, as well
as any warranty arising from course of performance, course of dealing, or usage in trade.
Software and workloads used in performance tests may have been optimized for perfor-
mance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should
consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with
other products. For more complete information visit www.intel.com/benchmarks.

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors
for optimizations that are not unique to Intel microprocessors. These optimizations include
SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not man-
ufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Ref-
erence Guides for more information regarding the specific instruction sets covered by this
notice. Notice Revision #20110804

https://doi.org/10.1007/978-3-319-46759-7_15
https://doi.org/10.1145/276304.276386
https://doi.org/10.1145/276304.276386
https://mysqlserverteam.com/mysql-connection-handling-and-scaling/
https://mysqlserverteam.com/mysql-connection-handling-and-scaling/
http://goo.gl/MUWm0W
https://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1702.08734
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.22224/gistbok/2018.2.10
http://source.ffmpeg.org
http://source.ffmpeg.org
https://www.mysql.com/
https://doi.org/10.14778/3025111.3025117
https://arxiv.org/abs/1810.11832
http://arxiv.org/abs/1810.11832
https://www.singlestore.com/
https://spark.apache.org/
https://hadoop.apache.org/
https://www.postgresql.org/
https://doi.org/10.1145/2812802

